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Abstract: This paper aims to determine the optimal construction strategies for new-build 

houses in the UK to minimize heating energy demand and discomfort hours. This research 

utilizes a previously calibrated model of “The Future Home” in Energy House 2.0’s envi-

ronmental chamber. Eight design variables were optimized including multiple building 

fabric specifications, air permeability rates, and heating setpoint temperatures. Three op-

timization scenarios were investigated: fixed heating setpoints, variable heating setpoints, 

and variable setpoints with comfort constraints. The analysis revealed that while fixed 

heating setpoints showed limited optimization potential, variable setpoint scenarios iden-

tified three distinct clusters of optimal solutions. The optimization consistently favored 

superior building fabric parameters, though air permeability solutions became more nu-

anced with variable heating control. When constrained to a maximum of 400 discomfort 

hours, solutions required elevated heating setpoints (22–23 °C) while maintaining high 

fabric specifications. These findings advance building optimization methodology by 

demonstrating the importance of heating control flexibility and comfort constraints in 

achieving optimal performance, while the use of a calibrated model in controlled condi-

tions overcomes the limitations of previous studies that relied on uncalibrated or hypo-

thetical models. As in situ field measurements of short- and long-term building perfor-

mance are often subjected to disruptions, delays, and uncertainties, the building perfor-

mance research under controlled conditions reported in this article will lead towards the 

achievement of net zero targets in a timelier manner and with more certainty. 

Keywords: multi-objective optimization; dynamic thermal simulation; thermal comfort; 

controlled conditions; future home standard 

 

1. Introduction 

The residential building sector is a significant contributor to the UK’s carbon emis-

sions, driving the development of increasingly stringent building standards and regula-

tions. While the PassivHaus standard has long been recognized as a gold standard for 

energy-efficient building design, its widespread adoption has been limited by cost impli-

cations [1]. The UK government has proposed the Future Homes Standard (FHS) through 

consultation documents [2], with planned implementation in 2025, aiming to establish 

more practical yet effective requirements for low-carbon residential buildings. These 

standards primarily govern building fabric performance through specifications for U-val-

ues of external walls, roofs, ground floors, and windows, as well as air permeability rates. 

However, the relationship between increasing insulation levels and energy performance 
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is not linear, with studies suggesting diminishing returns beyond certain thresholds [3,4]. 

While previous studies have explored building fabric optimization, their results often face 

uncertainties due to variable environmental conditions and occupancy patterns in real-

world settings [5,6]. This research addresses these limitations by utilizing Energy House 

2.0, a state-of-the-art research facility featuring two environmental chambers capable of 

simulating extreme weather conditions from −20 °C to +40 °C, including wind, rain, snow, 

and solar radiation. 

For instance, determining a building’s heat transfer coefficient (HTC) through coheat-

ing tests traditionally requires extensive measures to control environmental factors, such 

as using aluminum foil to eliminate solar radiation effects [7], and necessitates the build-

ing being unoccupied. In contrast, the controlled environment of Energy House 2.0 allows 

these tests to be completed efficiently with lower uncertainty within several days. This 

facility contains “The Future Home” (TFH) in environmental chamber one, a prototype 

house constructed by Bellway Homes to demonstrate anticipated FHS compliance, which 

serves as the case study for this research [8]. Recent experimental studies have established 

comprehensive baseline performance data for TFH through coheating tests, heat flux 

measurements, and air permeability testing under these controlled conditions [8]. 

Building upon previous research under controlled conditions in a climate chamber 

in Energy House 2.0, the overall aim of this research is to address uncertainties arising 

from variable environmental conditions on building performance studies that lead to dis-

crepancies between design and as-built values. 

The specific objectives of this research are to investigate the design optimization of a 

new-build Future Homes Standard House constructed in Climate Chamber 1 in Energy 

House 2.0, focusing on envelope U-values (walls, loft, windows, and French doors), air 

permeability, and heating setpoints for living and other zones. 

Using TFH as a case study, these precisely measured parameters enable the develop-

ment of a calibrated dynamic thermal simulation (DTS) model. DesignBuilder (v7.0.0.116), 

incorporating EnergyPlus (v9.2) as its physics engine, was used to develop the DTS model 

using Typical Meteorological Year (TMY) weather data for Manchester [9]. The resulting 

multi-objective optimization study within the controlled environment of Energy House 

2.0 therefore offers unprecedented reliability, as it reduces the uncertainties typically as-

sociated with real-world conditions. This unique setup provides an opportunity to con-

duct reliable optimization studies that can directly inform industry practices, particularly 

as UK housebuilders target the construction of 300,000 homes annually under the forth-

coming FHS requirements [2]. This approach represents a significant advancement in 

building performance optimization methodology, bridging the gap between theoretical 

models and practical applications. 

2. Literature Review 

2.1. Multi-Objective Optimization for Building Performance Simulation 

Multi-objective optimization (MOO) has gained significant attention in building per-

formance simulation due to its ability to handle complex, often conflicting objectives. In 

design optimization, researchers have successfully applied MOO to optimize building en-

velope parameters, Heating Ventilation and Air-Conditioning (HVAC) systems, and re-

newable energy integration. For instance, Nguyen et al. demonstrated the application of 

MOO in optimizing window-to-wall ratio and insulation thickness to balance energy con-

sumption and thermal comfort [10]. Similarly, Ascione et al. employed MOO for cost-op-

timal retrofitting strategies, considering both energy savings and investment costs [11]. 

Asadi et al. investigated various retrofit measures including insulation materials, window 

types, and HVAC systems to minimize energy consumption, retrofit cost, and thermal 

discomfort hours [12]. Wang et al. implemented MOO to optimize building retrofitting 
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measures and their quantities to maximize energy savings and economic benefits while 

minimizing payback period and lifecycle costs [13]. Similarly, Asadi et al. applied a multi-

objective optimization model towards minimizing energy consumption and investment 

costs by optimizing window types, insulation materials, and solar collector configurations 

in residential buildings [14]. Delgarm et al. optimized building energy performance and 

thermal comfort, considering variables such as room rotation, window size, setpoint tem-

peratures, and envelope properties in different climate regions of Iran [15]. More recently, 

Rosso et al. developed a comprehensive framework to optimize building retrofits in Med-

iterranean climates, examining eleven different variables including envelope systems, so-

lar technologies, and shading strategies to simultaneously minimize investment cost, en-

ergy cost, energy consumption, and carbon dioxide emissions [16]. D’Agostino et al. uti-

lized MOO to optimize the building envelope, HVAC system configurations, and renew-

able energy sources to minimize cooling demand, heating demand, and investment costs 

while adhering to the guidance of Net-Zero Energy Buildings (NZEB) [17]. Finally, Be-

nincá et al. employed MOO to optimize the solar orientation of two residential building 

shapes (“H” and linear) to simultaneously minimize cooling and heating demands in 

Southern Brazil [18]. 

2.2. Multi-Objective Optimization Algorithms 

The most widely adopted approach is the Non-dominated Sorting Genetic Algorithm 

II (NSGA-II), developed by Deb et al. [19], which offers a balance between solution con-

vergence and distribution. This algorithm is implemented in commercial software like 

DesignBuilder, providing a fast and elitist multi-objective optimization method. 

As Jankovic explains, NSGA-II operates through genetic operations of crossover, mu-

tation, and reproduction [6]. The algorithm combines building performance parameters 

into chromosomes and manipulates these using genetic operations. Starting with random 

population initialization, the solution space is “peppered” with the starting chromosomes. 

Through successive generations, chromosomes are paired and split at random positions 

(crossover), occasionally mutated to explore new parts of the solution space, and selected 

based on fitness criteria (reproduction). 

The efficiency of NSGA-II was demonstrated in Jankovic’s study, where it reduced 

the search space from 920,000 potential cases to 737 cases while maintaining high accuracy 

in building performance prediction. While DesignBuilder notes a limitation in NSGA-II’s 

constraint handling capability [20], the algorithm’s proven effectiveness in ranking com-

peting objectives makes it valuable for building optimization problems. 

2.3. In Situ Performance Measurement Methods 

The accurate measurement of building fabric thermal performance through in situ 

testing is essential for understanding real-world building energy efficiency and validating 

simulation models. 

Heat flux measurement using heat flux plates (HFPs) has emerged as a standardized 

method for determining the thermal transmittance of building elements. ISO 7345 defines 

the thermal transmittance (U-value) of a building element as “the heat flow rate in the 

steady state divided by area and by the temperature difference between the surroundings 

on each side of a system”, measured in W/m2K [21]. For in situ U-value measurements, 

ISO 9869-1 typically requires using a cumulative moving average of the heat flow rate and 

temperature difference (ΔT) to account for thermal storage and release effects in building 

elements [22]. However, the controlled environment of Energy House 2.0 during the TFH 

testing enabled steady-state conditions to be maintained, allowing direct calculation of in 

situ U-values according to ISO 9869 methodology [22]. The importance of measuring ac-

tual U-values was demonstrated by Johnston et al., who reviewed 25 new-build dwellings 
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in the UK constructed to Part L1A 2006 or higher standards, revealing a significant 6 to 

162% disparity between design and as-built whole-house U-values [23]. 

Air permeability measurements were conducted using a fan pressurization test (also 

known as a blower door test) following ATTMA Technical Standard L1 protocols [24]. The 

test measured two key parameters: the air permeability value (AP50) and air change rate 

(n50) at a pressure differential of 50 Pa. During testing, all intentional ventilation path-

ways in the building, including MVHR ducts, trickle vents, cooker hood, and wastewater 

services, were temporarily sealed. The measured n50 values were then used to calculate 

the overall air change rate using an established “rule of thumb” that divides n50 by 20 

[25], with appropriate adjustments made for the dwelling shelter factor as specified in 

SAP [26]. Measuring air permeability is crucial, as studies have shown that air permeabil-

ity can significantly impact building energy efficiency; for example, Alfano et al. demon-

strated that uncontrolled air leakage can account for up to 25% of a building’s total heating 

energy consumption in residential buildings [27]. 

3. Materials and Methods 

3.1. Energy House 2.0 and TFH Experimental Study 

The experimental study evaluated the fabric performance of TFH (Figure 1) and iden-

tified performance gaps between the design intent and actual measured results [8] (Table 

1). These gaps, representing differences between design models, based on the Standard 

Assessment Procedure (SAP) and real-world performance, were assessed using measure-

ments of the HTC [28–30], U-values [22], and airtightness [24]. 

The overall fabric heat loss of TFH was 7.7% higher than predicted, increasing the 

Dwelling Fabric Energy Efficiency (DFEE) by 3.54 kWh/m2/year. This increase was calcu-

lated by amending the SAP model to reflect a 7.7% higher heat loss in comparison with 

the design model, as reported by Fitton et al. [8]. The main issue was an airtightness value 

of 4 m3/h·m2, 61% worse than the design target of 2.5 m3/h·m2, caused by additional sock-

ets, service penetrations, and insulation gaps at key junctions. Thermal imaging confirmed 

these issues. 

The roof underperformed by 56% due to poorly installed insulation and a large loft 

decking area that hindered inspection. By contrast, the external walls performed well, 

with the rendered wall meeting design expectations thanks to continuous PIR insulation 

that minimized thermal bridging. 

A metric called “Point Thermal Transmittance” (PTT) was developed [8] to account 

for the numerous variables influencing the U-value of ground floors, including thermal 

bridging, air brick impact, perimeter effect, and insulation geometry. This accounts for the 

limitations of comparing average heat flux plates measurements to design U-values. As 

stated in the report, the PTT calculation method mirrors the formula, presenting a range 

of PTTs (U-values) rather than the average [8]. Ground floor PTT values were broadly 

consistent with the design, though challenges in measuring suspended floors highlighted 

a need for standardized methods. 

Windows and doors performed as expected, though limited manufacturer data con-

strained the analysis. Center-pane measurements aligned with specifications, while the 

front door overperformed by 29%, likely due to simplified U-value calculations. 
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Figure 1. Front elevation of TFH in Energy House 2.0 environmental chamber one (left) and TFH 

modeled in DesignBuilder (right). 

Table 1. Comparison of thermal performance parameters between TFH design specifications, as-

built measurements, and relevant UK and international building standards. 

Building Fabric Element Design As-Built UK FHS 
UK Building 

Regulations 

PassivHaus 

Standard 

External wall U-value (W/m2K) 0.18 0.17 0.18 0.26 0.15 

Loft ceiling U-value (W/m2K) 0.09 0.14 0.11 0.16 0.15 

Ground floor PTT-value (W/m2K) 0.11 0.14 0.13 0.18 0.15 

Windows U-value (W/m2K) 1.20 - 1.20 1.60 0.80 

French door U-value (W/m2K) 1.40 - 1.20 - - 

External door U-value (W/m2K) 1.00 - 1.00 1.60 0.80 

Air infiltration rate @50 Pa (m3/hm2) 2.50 4.00 5.00 8.00 0.60 

3.2. TFH and Building Standards Context 

This optimization study utilizes TFH as its case study. Table 1 presents the building’s 

thermal performance specifications alongside relevant UK standards for context. The de-

sign values represent the theoretical performance calculated during the building’s design 

phase following ISO 6946 methodology [31]. To illustrate the level of detail in the calcula-

tions, consider the external wall construction, which consists of seven layers: 102.5 mm 

brickwork; 63 mm ventilated cavity; 9 mm OSB board; 89 mm timber frame with mineral 

fiber insulation (λ = 0.035 W/mK); 40 mm PIR insulation board (λ = 0.022 W/mK); 25 mm 

service void; and 15 mm gypsum plasterboard finish. Similar detailed calculations were 

performed for all envelope elements (external wall, loft ceiling, and ground floor), with 

comprehensive construction specifications documented by Fitton et al. [8] and Tsang et al. 

[9]. Window, French door, and external door U-values were sourced from manufacturer 

specifications and include the frame. The as-built measurements were obtained through 

in situ testing of the constructed building using heat flux plates for U-values and a blower 

door test for the air permeability rate, reflecting actual performance under real conditions. 

These measurements account for thermal bridging effects. The values listed under UK 

Building Regulations represent the maximum permitted values for new dwellings [32]. 

PassivHaus standards represent a more stringent voluntary standard; it specifies a maxi-

mum U-value of 0.15 W/m2K for all opaque building envelope components (external 

walls, loft ceiling, and ground floor) [33]. The design values of TFH demonstrate compli-

ance with the UK FHS requirements. For comprehensive details of the experimental test-

ing methodology and results, readers are referred to Fitton et al. [8]. The development and 
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calibration process of the DTS model used in this study is fully documented by Tsang et 

al. [9]. 

3.3. Selection of Variables for Multi-Objective Optimization 

Eight building parameters were selected for multi-objective optimization to mini-

mize heating energy consumption and thermal discomfort in TFH (Table 2). These param-

eters were chosen based on three criteria: significant discrepancies between design and 

as-built values, potential for practical improvements through retrofit measures, and var-

ying recommendations across different standards. The parameters include envelope U-

values (walls, loft, windows, and French doors), air permeability, and heating setpoints 

for living and other zones. Each parameter underwent multiple iterations to evaluate its 

performance impact. All perturbations/scenarios from Table 2 were analyzed simultane-

ously using multi-objective optimization. The following sections detail the selection ra-

tionale and range for each variable. 

Table 2. Summary of design variables perturbations used in multi-objective optimization. 

Variable  Baseline Perturbations/Scenarios Iterations 

External wall U-value (W/m2K) 0.17 0.12, 0.13, 0.14, 0.15, 0.16, 0.17§, 0.18, 0.19, 0.20 9 

Loft ceiling U-value (W/m2K) 0.14 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16 8 

Window U-values (W/m2K) 1.2 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6 9 

French door U-value (W/m2K) 1.4 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8 9 

Air permeability rate @50 Pa (m3/hm2) 4.0 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 6 

Ground floor PTT-value (W/m2K) 0.14 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18 8 

Living room heating setpoint (°C) 21 19, 20, 21, 22 4 

Other zone heating setpoint (°C) 18 18, 19, 20, 21 4 

§ bold indicates as-built values. 

3.3.1. External Walls 

The external wall U-value was selected as a design variable due to its significant im-

pact on thermal performance and retrofit potential, specifically through the existing 63 

mm ventilated cavity, which offers an opportunity for additional insulation. The current 

wall assembly consists of brickwork, the 63 mm ventilated cavity, OSB board, insulated 

timber frame, PIR insulation board, service void, and plasterboard, achieving an as-built 

U-value of 0.17 W/m2K [8]. 

The general principle we used for specifying the optimization range was to start from 

the as-built value, shown in bold text in Table 2, and add values above and below in order 

to “catch” any discrepancy from the as-built value using multi-objective optimization 

whilst staying within the parameter values that are achievable in practice. The optimiza-

tion range (0.12–0.20 W/m2K) explores various cavity insulation scenarios by filling this 

existing 63 mm void. The lower bound (0.12 W/m2K) represents increased levels of ther-

mal insulation, while intermediate values correspond to commercial options, such as 

high-performance glass wool (0.14 W/m2K), Knauf Supafil CarbonPlus (0.15 W/m2K) [8], 

and enhanced mineral wool (0.16 W/m2K). The upper range (0.19–0.20 W/m2K) accounts 

for potential non-uniform insulation distribution. Values above 0.20 W/m2K were ex-

cluded despite the UK building regulation limit of 0.26 W/m2K, as they are improbable 

with the existing construction. 

3.3.2. Loft Ceiling 

The loft ceiling U-value was selected as a design variable due to the significant devi-

ation between the design (0.09 W/m2K) and as-built performance (0.14 W/m2K), primarily 



Sustainability 2025, 17, 724 7 of 15 
 

caused by disturbed and non-uniform insulation distribution, inconsistent thickness 

throughout the loft space, and potential air infiltration issues identified through thermo-

graphic imaging [8], which revealed air leaks due to service penetrations. The optimiza-

tion potential is particularly relevant, as approximately 50% of the loft area is decked, 

limiting intervention options. 

The optimization range (0.09–0.16 W/m2K) explores various remediation scenarios. 

The lower bound (0.09 W/m2K) represents the original design specification, achievable 

through comprehensive remediation of installation issues. Intermediate values (0.10–0.13 

W/m2K) correspond to incremental improvements through insulation redistribution, ther-

mal bridging reduction, and air sealing measures. The upper range extends to 0.16 

W/m2K, aligning with UK building regulations, while accounting for scenarios with re-

duced insulation thickness from design specification. This range reflects both the practical 

constraints of the decked loft space and technically feasible improvements. 

3.3.3. Windows and French Door 

Window upgrades present significant retrofit potential in TFH. The current installa-

tion features double-glazed windows with a manufacturer-specified combined U-value 

(frame and glazing) of 1.2 W/m2K, meeting the FHS requirements but offering potential 

for enhancement [8]. 

The optimization range (0.8–1.6 W/m2K) explores various glazing technologies. The 

lower bound (0.8 W/m2K) aligns with PassivHaus standards and represents enhanced tri-

ple glazing with low-emissivity coatings and inert gas filling. Intermediate U-values of 1.0 

W/m2K represents standard triple glazing according to UK SAP calculations [26]. The up-

per range extends to 1.6 W/m2K, aligning with current UK building regulations, to account 

for potential performance variations. Similarly, French doors follow a complementary op-

timization range (1.0–1.8 W/m2K), with the current installation having a manufacturer-

specified combined U-value of 1.4 W/m2K. This coordinated approach enables the evalu-

ation of whole-house glazing strategies while maintaining technical feasibility. 

3.3.4. Air Permeability Rate 

The air permeability rate shows significant potential for improvement, with the cur-

rent measured performance of 4.0 m3/h·m2 at 50 Pa deviating from the design value of 2.5 

m3/h·m2. This difference is primarily attributed to additional service penetrations installed 

for research purposes [8]. 

The optimization range (2.5–5.0 m3/h·m2) explores various airtightness scenarios. 

While the PassivHaus standard recommends 0.6 m3/h·m2, and values below 1.5 m3/h·m2 

are technically achievable, such low air permeability rates would require enhanced seal-

ing techniques and potentially Mechanical Ventilation with Heat Recovery (MVHR). 

Therefore, the lower bound (2.5 m3/h·m2) represents the design value. The upper range 

extends to 5.0 m3/h·m2, representing the maximum allowable value under FHS. This range 

allows for the analysis of various performance scenarios within practical and regulatory 

constraints. 

3.3.5. Ground Floor 

Ground floor thermal performance shows complexity in assessment, with an as-built 

PTT-value of 0.14 W/m2K, exceeding the design value of 0.11 W/m2K. The optimization 

range (0.11–0.18 W/m2K) explores various performance scenarios. The lower bound (0.11 

W/m2K) represents potential improvement to the design-stage performance, while the up-

per bound aligns with the UK building regulations’ maximum allowable value. Interme-

diate values account for potential performance variations due to thermal bridging effects, 

air movement through ventilation bricks, and insulation distribution patterns. 
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3.3.6. Heating Setpoint Temperatures 

The heating setpoint temperatures were differentiated between the living room at 21 

°C and other zones at 18 °C, based on varying occupancy patterns and comfort require-

ments. These baseline values follow the default guidance of DesignBuilder [20]. 

The optimization ranges consider multiple standards: SAP recommends 21 °C for 

living areas and 18 °C for other zones, PassivHaus standards specify a consistent 20 °C 

[33], CIBSE suggests 20 °C for living areas and 18 °C for bedrooms [34], while ASHRAE 

defines comfort zones of 20–24 °C for living areas and 18–21 °C for bedrooms [35]. The 

living room range of 19–22 °C and other zones’ range of 18–21 °C explore this variation 

while maintaining zonal temperature differences. These ranges enable the evaluation of 

energy demand and comfort trade-offs across four discrete temperature steps, with con-

stant heating setpoints assumed throughout each zone except storage areas. 

3.4. Running Multi-Objective Optimization 

Multi-objective optimization was performed using the calibrated energy model from 

Tsang et al. to evaluate three scenarios: fixed heating setpoints, variable heating setpoints, 

and variable heating setpoints with a 400 h thermal discomfort constraint. The optimiza-

tion targeted two objectives: minimizing heating energy demand and thermal discomfort 

hours, with the latter defined by exceedance of ASHRAE 55-2004 winter clothing comfort 

boundaries based on zone humidity ratio and operative temperature [36]. 

The optimization utilized DesignBuilder’s default genetic algorithm settings with 

maximum generations of 100, convergence criteria of 5 generations, and an initial popu-

lation size of 20. The solution space of 8,211,456 combinations was explored until conver-

gence was achieved, with all simulations performed on an HP ZBook (i9-13950HX pro-

cessor, 64GB RAM by HP inc., Palo Alto, CA, USA). 

4. Results and Discussion 

4.1. Fixed Heating Set-point Optimization Analysis 

The results, as illustrated in Figure 2, demonstrate a distinct linear correlation be-

tween electric heating demand and winter clothing discomfort hours when the heating 

setpoint was fixed. The simulation achieved convergence after 37 generations with 669 

iterations, yet a true Pareto front was not established, suggesting limited optimization po-

tential under these constraints. The simulation shows only five optimal designs (red 

square). 

Furthermore, the findings underscore the complexities of building performance op-

timization when constraining individual variables. The interdependence of building pa-

rameters suggests that fixing any single variable may significantly limit the available 

trade-off options for designers. Of particular concern is the potential for cross-compensa-

tion among variables, whereby the optimization algorithm may suggest building physics 

properties that deviate from realistic values to compensate for the constrained parameter. 

Similar optimization patterns were observed in previous multi-objective studies of UK 

zero-carbon buildings that used fixed setpoint temperatures while optimizing for cost and 

carbon dioxide emissions [7]. 

Given the UK’s heating-dominated climate, the analysis used a constant winter cloth-

ing insulation value throughout the annual simulation period. While this approach could 

have resulted in relatively high observed discomfort hours (1750–2080 h), previous re-

search has demonstrated that incorporating adaptive clothing behaviors into thermal 

comfort simulations yields substantially improved results [7,37], highlighting a potential 

limitation in the current methodology. 



Sustainability 2025, 17, 724 9 of 15 
 

Notably, the single Pareto solution suggests an optimization tendency towards max-

imizing building envelope performance, indicating that optimal designs favor superior 

external wall, loft ceiling, and window constructions, combined with minimal air perme-

ability rates. This finding aligns with established building physics principles but may not 

fully capture the economic and practical constraints of real-world applications. 

 

Figure 2. Optimization results of electric heating demand versus winter clothing discomfort hours. 

Gray dots: previous generations; red square: Pareto solution (37 generations). 

4.2. Variable Heating Setpoint Optimization Analysis 

The multi-objective optimization with variable heating setpoints demonstrated ro-

bust convergence after 66 generations, encompassing 1289 iterations (Figure 3). The re-

sults revealed a well-defined Pareto front, clearly illustrating the inherent trade-offs be-

tween occupant thermal discomfort and heating energy consumption. This trade-off rela-

tionship manifests in three distinct clusters of optimal solutions, suggesting multiple via-

ble design strategies. The simulation shows 78 optimal designs (red squares). The emer-

gence of multiple distinct clusters in the optimization results is consistent with findings 

from previous studies on multi-objective design optimization [11,12,38]. This phenome-

non aids designers in understanding the full range of available design alternatives and 

their implications. 

Similarly to the fixed set-point analysis, the optimal designs consistently favored su-

perior external wall, loft ceiling, and window constructions, confirming these elements as 

crucial parameters for simultaneously minimizing both discomfort hours and heating de-

mand. However, a notable departure from the fixed set-point scenario emerged in the air 

permeability optimization. Rather than consistently driving towards minimum air perme-

ability rates, the variable setpoint optimization revealed more nuanced solutions, suggest-

ing a more complex interaction between ventilation and thermal performance when heat-

ing control strategies can adapt. 

These findings highlight the limitations of conventional design processes that rely on 

limited simulation iterations. Such restricted exploration of the solution space risks con-

verging on sub-optimal solutions, potentially resulting in buildings that underperform 

throughout their lifecycle. 
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Figure 3. Optimization results of electric heating demand versus winter clothing discomfort hours, 

showing Pareto front evolution. Gray dots: previous generations; red squares: Pareto solutions (66 

generations). 

4.3. Constrained Optimization Analysis with Maximum Discomfort Threshold 

The multi-objective optimization process, operating under a constraint of 400 discom-

fort hours, achieved robust convergence after 79 generations and 1487 iterations. The anal-

ysis yielded a well-defined Pareto front, similar to the results shown in Figure 2. However, 

the increased number of generations required for convergence suggests inherent variability 

in the optimization process, highlighting the stochastic nature of the algorithm. 

When implementing a constraint of 400 discomfort hours, the optimization results 

yielded a significantly reduced solution space, with only 43 optimum designs, shown as 

Pareto points, meeting the comfort criterion (Figure 4). This approach of using explicit com-

fort or other constraints in building optimization aligns with established methodologies in 

the field [5,7,14,39], where thresholds are used to ensure practical viability of optimal solu-

tions. 

 

Figure 4. Optimization results of electric heating demand versus winter clothing discomfort hours, 

showing Pareto front evolution. Gray dots: previous generations; red squares: Pareto solutions (79 

generations); yellow squares: rejected solutions due to constraint. 
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This constraint effectively filtered out a substantial portion of the previously viable 

solutions from the analysis in Figure 3. The remaining optimal solutions exhibited similar 

trends to the unconstrained analysis, particularly in terms of building envelope specifica-

tions. However, a distinctive characteristic emerged in the heating control strategy, with 

optimal solutions consistently favoring higher heating setpoints of 22 °C to 23 °C. This 

finding emphasizes that maintaining elevated heating setpoints becomes crucial for 

achieving occupant thermal comfort requirements in the UK climate context. 

The Pareto front in Figure 4 represents a design decision making tool, which gener-

ally shows that higher heating energy consumption results in lower discomfort hours and 

vice versa. To investigate this in more detail, a quantified summary taken from the two 

extremes of the Pareto front is shown in Table 3. 

Table 3. Summary of extremes of design parameters from the Pareto front. 

Pareto 

Extreme 

Heating (Electric) 

(kWh) 

Total Building 

Cost (GBP) 

Discomfort (Win-

ter Clothing) (h) 

Air Permeability 

Rate @50 Pa 

(m3/hm2) 

Glazing U-Value 

(W/m2K) 

Living Room 

Heating Set-point 

Temperature (°C) 

Other Rooms 

Heating Setpoint 

Temperature (°C) 

(1) 672 134,357 397 2.5 0.8 22 22 

(2) 1044 134,865 276 5.0 1.6 22 (23) * 22 

Difference  

(2) − (1) 
372 508 −101 2.5 0.8 0 (1) * 0 

* In the case of the living room, there is only a single occurrence of 23 °C setpoint temperature within 

the 43 Pareto points. 

As can be seen from this table, the increase of 372 kWh in heating energy from the 

lower to the upper extreme contributes to a reduction of 101 discomfort hours. This coin-

cides with an increase in air permeability rates from 2.5 m3/hm2 to 5.0 m3/hm2, and an 

increase in glazing U-value from 0.8 W/m2K to 1.6 W/m2K. The heating set-point temper-

atures of 22 °C for the living room and the other rooms was constant throughout this 

range, except for a single occurrence of 23 °C, as shown in Table 3. The constant set tem-

peratures indicate that temperature uniformity across all rooms leads to better thermal 

comfort. Whilst the increased glazing U-value is a counter-intuitive contributor to the de-

crease in thermal discomfort hours, this could be one of the causes of increased heating, 

which in turn leads to better thermal comfort. Similarly, the increased air permeability 

rate is a counter-intuitive contributor to the decrease in thermal discomfort hours, but this 

could also be one of the causes of increased heating leading to better thermal comfort. It 

can be argued that the increased air permeability rate also leads to the increased amount 

of fresh air per person and to better internal air quality, although this is not accounted for 

under discomfort hours. These findings align with DesignBuilder’s use of the ASHRAE 

Standard 55-2004 comfort criteria, which evaluates both summer and winter conditions 

[36]. The increased glazing U-value and air permeability rate appear to enable faster ther-

mal response and better regulation of solar gains year-round, resulting in more stable 

comfort conditions despite higher winter heating demand. 

What are the practical implications of these counter-intuitive matters and how do 

they align with real-world applications? The increase in both the air permeability and the 

glazing U-value from Table 3 can be referred to as a partial downgrading of the building 

envelope characteristics. The reduction of 101 discomfort hours from Table 3 represents 

4.2 × 24 h, which is 4.2 days. Effectively, what Table 3 is telling us is that the partial down-

grading of the building envelope leads to a slight increase in thermal comfort. But this 

occurs under increased internal temperatures uniform across all spaces and at the expense 

of the additional 372 kWh of the heating electricity consumption and additional cost of 

508 GBP, which represents the balance between the reduced envelope costs and increased 

heating costs. Aligning this with a real-world design decision, this means that we can 
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spend less on the building envelope and more on heating bills and achieve slightly better 

thermal comfort. Considering that the variation in thermal comfort is marginal, the design 

decision in a mass-produced housing development will inevitably be based on the cost 

difference between the envelope costs and the heating costs and based on who pays for 

what: the developer or the owner/occupier. 

Nevertheless, these few counter-intuitive matters will be investigated in future re-

search under controlled laboratory conditions. 

5. Conclusions 

This study employed multi-objective optimization on a calibrated model of TFH in 

the controlled environment in Energy House 2.0 to determine optimal construction strat-

egies for new UK homes. The optimization analysis revealed several key insights: (1) fixed 

heating setpoints demonstrated limited optimization potential, while the optimization 

consistently favored superior building fabric across all scenarios. (2) Variable setpoint sce-

narios produced three distinct clusters of optimal solutions and showed more nuanced air 

permeability solutions compared to the fixed setpoint’s drive toward minimum rates. (3) 

When constrained to a maximum of 400 discomfort hours, solutions required elevated 

heating setpoints of 22–23 °C while maintaining superior building fabric. 

The Pareto front shown in this analysis represents a range of trade-off solutions that 

designers and developers can use in order to achieve different design objectives with con-

fidence. Otherwise, design solutions will not be rigorously tested and could lead to infe-

rior building performance. The few counter-intuitive occurrences of the results reported 

in the previous section will be investigated in future research. 

This research aimed to address the uncertainties arising from variable environmental 

conditions causing the performance gap between design and as-built values. This was 

achieved by fulfilling the specific objectives of design optimization of envelope U-values, 

air permeability, and heating setpoints in living and other zones of a new-build Future 

Homes Standard House under controlled conditions in the Energy House 2.0 climate 

chamber. 

Future research will extend this work through the parallel optimization of another 

case study in Energy House 2.0 called “eHome2” [40], incorporating additional design 

variables such as building orientation, heat pump Coefficient of Performance (COP), light-

ing, and photovoltaic panel sizing. Additional objectives such as carbon emissions and 

building costs could be evaluated, while further constraints like summer overheating 

hours could be introduced to enhance the optimization framework. More generally, the 

currently planned roadmap of future research includes the following: performance anal-

ysis of heat pumps to deliver domestic hot water under high and medium use tapping 

schedules and several constant environmental temperatures; physical experiments with 

heating up and cooling down of houses with measurement of the heat transfer coefficient, 

time constant, and effective thermal capacitance; determination of effective solar aper-

tures under an artificial sun irradiation; overheating analysis and mitigation measures; an 

ongoing measurement of the heat transfer coefficient for control optimization purposes; 

and calibration of simulation models, taking into account the results of all of these physi-

cal experiments. 
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Nomenclature 

FHS Future Homes Standard 

HTC Heat Transfer Coefficient 

DTS Dynamic Thermal Simulation 

MOO Multi-Objective Optimization 

HVAC Heating, Ventilation and Air-Conditioning 

NZEB Net-Zero Energy Building 

NSGA-II Non-dominated Sorting Genetic Algorithm 

TFH 
The Future Home in Energy House Labs Environmental Chamber 1 developed in 

collaboration between Bellway Homes and the University of Salford 

MVHR Mechanical Ventilation and Heat Recovery  

PTT Point Thermal Transmittance 

eHome2 

Experimental house in Energy House Labs Environmental Chamber 1 developed 

in collaboration between Barratt Developments, Saint-Gobain, and the University 

of Salford. 
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