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Enhancing Infrared Small Target Detection: A
Saliency-Guided Multi-Task Learning Approach

Zhaoying Liu, Yuxiang Zhang, Junran, He, Ting Zhang*, Sadaqat ur Rehman, Mohamad Saraee , Changming Sun

Abstract—Object detection in infrared images poses a con-
siderable challenge due to its small-scale targets, low contrast
and poor signal-to-clutter ratio, often resulting in a high false
alarm rate. To improve the detection accuracy on infrared
small targets, we introduce Light-SGMTLM, a lightweight and
saliency-guided multi-task learning model. This model integrates
saliency detection into the YOLOv5x framework through a
parallel multi-task learning structure and employs a joint loss
function during training. Such integration significantly alleviates
the impact of complex backgrounds and improves the precision
of small target localization. Moreover, we have developed a
streamlined module, termed SIWD, to create a more agile back-
bone, which establishes an optimal balance between precision
and efficiency, making the model more suitable for situations
with limited computational resources. Comprehensive compar-
ative experiments were conducted on six infrared small target
datasets, namely, Small-ExtIRShip, Small-SSDD, IHAST, NUAA-
SIRST, IRSTD-1k, and IRDST, and we assessed the model’s
performance against ten leading target detection models, such
as YOLOv7, YOLOv8, DINO, and Relation-DETR. The findings
reveal that our method’s unique joint learning architecture,
combining saliency and object detection tasks, significantly im-
proves accuracy for infrared small target detection. Notably,
it achieved impressive mean average precision (mAP) values
of 92.60% and 75.71% on the NUAA-SIRST and IRSTD-1k
datasets, respectively.

Index Terms—Infrared small target detection, feature fusion,
sailency detection, multi-task learning, lightweight.

I. INTRODUCTION

INFRARED small target detection plays a vital role in a
wide range of military and civilian applications including

infrared guidance [1], early warning of natural disasters [2, 3],
and maritime surveillance [4–7]. In comparison to visible
imaging, detecting multiple small targets within a single
infrared image frame constitutes a challenging endeavor due to
their distinct characteristics. First, the infrared imaging’s long-
range characteristics result in an exceedingly small proportion
of the target within the image, often consisting of just a few
pixels or even a single pixel in extreme cases. Therefore,
multilayer convolution and downsampling within the feature
extraction process can easily cause the loss of small target
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features. Additionally, a significant imbalance arises between
the positive and negative samples which are easily categorized
mostly [8], so the model cannot be optimized in the desired
direction. Second, owing to the distinctive imaging properties
inherent to infrared imagery, pertinent information such as
color, shape, and texture is commonly absent [9]. Finally, the
background of an infrared small target is complex, contains
substantial amounts of noise and exhibits a low signal-to-
clutter ratio (SCR) [10]. Consequently, the target becomes
prone to being overwhelmed by the background [11]. Thus,
it is very difficult to detect small infrared targets using the
network designed for normal objects [12–17].

Therefore, most of the existing research on infrared small
target detection treats it as a semantic segmentation task [18–
22]. An underlying reason for its effectiveness may stem from
the semantic segmentation’s ability to classify each pixel in the
image, thereby mitigating the challenges associated with small
target scales. However, segmentation tasks require meticulous
processing of the intricacies of the pixel level, which involves
considerable computational resources. Consequently, both the
training and inference phases are commonly protracted. Fur-
thermore, semantic segmentation serves as an intermediate
representation used solely for tracking and localizing small
infrared targets. The coherence of segmentation merely ap-
proximates the detection accuracy, while the precise detection
performance remains unassessable. In summary, infrared small
target detection based on general object detection methods
typically yields inaccurate results. Conversely, segmentation-
based approaches frequently incur extended computational
time during the inference phase and struggle to address cases
of overlapping targets. So it is necessary to design a robust and
effective end-to-end infrared small targets detection method.

An intuitive idea is to integrate the object detection with
the segmentation, leveraging the strengths of these two tasks
to learn more comprehensive features of small targets. Recent
studies have validated the advantages of multi-task learning
[23–27], including improved data utilization efficiency, al-
leviation of overfitting, and enhancement of model perfor-
mance. Prevailing method for constructing multi-task learning
architectures involves incorporating a detection head into a
segmentation model or embedding a segmentation head into
a detection model. As for other parts they share parameters
and features, namely hard parameter sharing (HPS). It is
worth mentioning that compared to segmentation models, the
backbone design of detection models is more cost-effective,
as it can capture more non-local semantic information with
the same number of downsampling and upsampling stages,
which is beneficial for detecting small objects. Based on these
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motivations and observations, we introduced a saliency guid-
ance model based on YOLOv5x, and constructing a parallel
multi-task learning structure using hard parameter sharing.
Additionally, inspired by the concepts of dilated convolution
and decomposed convolution [28, 29], we also designed a
simple inception with dilation (SIWD) backbone to further
reduce the number of model parameters and computational
complexity.

In summary, our contributions are as follows:
• We propose a lightweight multi-task learning model,

named Light-SGMTLM. By integrating saliency detec-
tion and employing multi-task learning techniques, this
model significantly enhances the detection accuracy of
existing object detection models for infrared images.

• We propose a saliency detection module that effectively
reduces the impact of complex backgrounds. This mod-
ule also facilitates the integration of deep and shallow
features, further enhancing the accuracy of small target
detection.

• We have designed a lightweight module named SIWD
which is capable of significantly reducing the number
of model parameters while maintaining the size of the
receptive field. This module can be easily integrated into
most detection models.

• The results of the comparative experiments with ten
current state-of-the-art models, such as YOLOv5, De-
formable DETR, DAB-DETR, DN-DETR, and DINO,
on datasets including Small-ExtIRShip, Small-SSDD,
IHAST, NUAA-SIRST, IRSTD-1k, and IRDST, demon-
strate that our method outperforms other CNN-based
models on the mAP metric and Transformer-based mod-
els on FLOPs metric.

II. RELATED WORK

The categorization of infrared small target detection algo-
rithms predominantly comprises two ways: sequence detection
(Tracking Before Detection, TBD) [30], [31], and single-
frame detection (Detection Before Tracking, DBT). As TBD
algorithms necessitate the integration of multi-frame imagery
and demonstrate suboptimal performance under real-time con-
ditions, we exclusively focuses on single-frame methods. The
current single-frame ISTD methods can be classified into
two main categories: model-based traditional methods and
data-driven deep learning methods. In the subsequent section,
we will delve into a more comprehensive review of these
methodologies.

A. Model-Based ISTD Method

The traditional methods for infrared small target detection
involve directly constructing a model to quantify the distinc-
tion between an infrared small target and its surrounding
environment, which typically comprise the following three
categories: filter-based methods, human visual system (HVS)-
based methods and low-rank sparse based methods.

The filter-based methods utilize specifically designed tem-
plates to filter the input images, and thereby facilitating the
detection of small targets through effectively enhancing the

intensity of targets. Shi et al. [32] introduced an upgraded
version of the high-boost filter, which effectively preserved
the high-frequency signals related to small targets while sup-
pressing low-frequency background signals. Kong et al. [33]
employed Haar wavelet decomposition to filter the original
image, followed by the application of a wavelet energy fusion
algorithm to isolate small targets. Zhang et al. [34] proposed a
novel gradient correlation filtering (GCF) method, which was
integrated with local consumption characteristics to achieve
accurate distinction between small targets and clutter.

The human visual system suggests that the most salient
regions in an image are determined not by brightness alone,
but rather by the level of contrast they possess. Therefore
they commonly rely on calculating the intensity difference
between the target and its surrounding neighborhood for target
identification. Chen et al. [35] proposed an LCM method that
measured the contrast between the central and its neighboring
region, which improved the intensity of small targets and
suppressed clutters. Deng et al. [36] put forward a WLDM
method, which assesses the local variance of each pixel across
multiple scales, subsequently assigning modified local entropy
as the weight for this variance.

The low-rank sparse methods distinguish the target and
background by leveraging the sparsity of the target and the
low-rank properties of the background. For example, Gao et al.
[37] introduced the IPI model, utilizing a fixed-size window to
traverse the entire image, extracting various patches, and sub-
sequently vectorizing each patch for background estimation.
To address the issue of inaccurate estimation of strong edges,
Dai et al. [38] employed the nonnegative constraint and partial
sum of singular values for background estimation. Gao et al.
[39] proposed a graph learning-enhanced matrix decomposi-
tion method for separating cirrus clouds from backgrounds. By
integrating this method with weighted local fractal features,
they effectively suppressed strong edge noise and improved
the detection capability of dim cirrus clouds.

These methods are computationally efficient, however, as
they depends on the manual designed features and hyperpa-
rameters, high false alarm rate may occur for images with
complex backgrounds.

B. Data-Driven ISTD Method

Over the past decade, deep learning methods have shown a
remarkable capacity to dynamically extract image features and
capture high-level semantic information. Consequently, these
methods have outperformed traditional approaches in handling
diverse complex environments. Furthermore, the availability of
numerous infrared small target datasets has sparked growing
interest among researchers in deep learning-based methods.
For example, in order to enhance the detection performance
of small infrared targets, Li and Shen [40] devised a tech-
nique that combines super-resolution enhancement of the input
image with refinements to the structure of YOLOv5. In a
comparable context, Zhou et al. [41] addressed the task of
infrared small target detection through the utilization of a
YOLO-based framework. Dai et al. [8] proposed a one-
stage cascaded refinement network (OSCAR), which aims to
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alleviate the inherent defects and inaccuracies of bounding
box regression encountered in detecting small infrared targets.
Meanwhile, Yao et al. [42] devised a lightweight network
amalgamating conventional filtering methods with the standard
FCOS framework to enhance the responsiveness towards in-
frared small target detection. To alleviate the issue of extreme
foreground-background imbalance in infrared target detection
tasks, Yang et al. proposed the adaptive threshold focal loss
(ATFL), which utilizes an adaptive mechanism to adjust loss
weights, compelling the detector to allocate more attention to
foreground features.

In addition to the aforementioned object detection ap-
proaches, numerous studies have regarded ISTD as a semantic
segmentation task which utilizes pixel-level threshold to yield
a segmentation mask. Dai et al. [43] introduced an asymmetric
contextual modulation (ACM) module, integrating top-down
and bottom-up point-wise attention mechanisms to amplify the
semantic information. Furthermore, Dai et al. [44] introduced
an attentional local contrast network (ALCNet), to overcome
the receptive field constraints and facilitating the interaction
of long-range contextual information. To mitigate the loss of
deep information induced by pooling layers in infrared small
target detection, Li et al. [45] introduced the dense nested
attention network (DNA-Net), which incorporates stacked U-
shaped structures to extract significantfeatures. Additionally,
Zhang et al. [46] proposed an attention-guided contextual
module, which captures pixel correlations within and between
blocks at different scales through local semantic association
and global contextual attention. For real-time detection of
infrared targets, Kou et al. [19] introduced the depth-wise
separable atrous asymmetricatrous module (DAAA), which
can effectively reduce computational complexity while learn
multiscale features of small infrared targets.

Although these deep learning methods circumvent the need
for extensive prior knowledge in manual design and achieve
satisfactory performance, they are devised based on individual
task. Therefore, there are certain limitations in the generaliza-
tion ability of these methods.

C. Multi-task Learning

Multi-task learning aims to train multiple related tasks at
the same time, achieve knowledge transfer by sharing under-
lying features, and promote the model to learn richer feature
representations, thereby improving the performance and gen-
eralization capabilities of the model. Chen et al. [4] proposed a
novel end-to-end framework for infrared small target detection
and segmentation named MTUNet, and achieved a higher
accuracy of infrared small target localization by incorporating
a simple anchor-free detection head into the segmentation
network. Xu et al. [24] proposed MTFormer, a Transformer-
based multi-task learning architecture that integrates semantic
segmentation, depth estimation, and saliency detection tasks.
Additionally, they devised a cross-task attention mechanism to
achieve adaptive sharing among different tasks. Experimental
results demonstrate that this approach leads to performance
improvements across all tasks. However, as tasks increases,
the complexity of the decoder increases accordingly. To solve

this problem, Xin et al. [47] integrated the decoder-free
vision-language model CLIP with multi-task learning, propos-
ing a tuning framework based on Multi-modal Alignment
Prompts (MmAP). By combining the zero-shot generalization
capabilities of CLIP with MmAP, this framework enhances
information interaction and sharing between tasks, thereby
effectively improving the performance and efficiency of multi-
task learning.

Although these methods improve the performance of each
subtask, most of them are targeted at visible scenes, how to use
multi-task learning to improve the location ability of infrared
small targets is still a topic worth exploring. Therefore, we try
to construct multi-task learning based on saliency detection
task and object detection task in infrared scene, so as to
improve the detection accuracy of infrared small targets.

III. PROPOSED METHOD

A. Overall Architecture

The workflow of our proposed method is illustrated in
Fig. 1. Given an infrared image as input, features across five
different scales are acquired through a lightweight backbone
comprised of a stack of five SIWD modules. Subsequently,
we utilize the FPN [48] to fuse features from the latter
three stages, thus integrating multi-scale information. Follow-
ing this, the upsampling stage within the proposed saliency
detection module is utilized to further integrate shallow local
features extracted from the first and second stages with the out-
put of FPN. Simultaneously, while feeding the fused features
into the saliency detection head, the downsampling stage is
employed to pass shallow information of small targets back to
the PAN [49]. Finally, leveraging the saliency detection head
and the detection head of YOLOv5x separately for saliency
detection and bounding box prediction, we construct a joint
loss function and utilize multi-task learning for end-to-end
training.

B. Saliency Detection Module

Due to the longer distances involved in infrared imaging,
most targets appear as small objects. However, current object
detectors generally only rely on deeply aggregated semantic
information for prediction, with feature maps having much
lower resolutions than the original input images. Although
operations such as FPN and PAN are employed for feature
fusion, they are limited to relatively deeper features and do
not consider shallow features containing rich detailed infor-
mation, which are very important for small object detection.
To mitigate this issue, we expanded the depth of FPN and
PAN by introducing a saliency detection module as shown in
Fig. 1.

The proposed saliency detection module comprises two
components: feature extraction and saliency detection head.
The feature extraction module comprises upsampling fusion
and downsampling fusion. Specifically, we incorporate cross-
stage residual blocks (CSPF) to the FPN and PAN, respec-
tively. The CSPFs in upsampling fusion process aim to allevi-
ate the aliasing effect resulting from the fusion of upsampling
features and lateral connection features, while facilitating
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Fig. 1. The overall structure of the proposed Light-SGMTLM.

the fusion of deep semantic information and shallow local
features. The CSPFs in downsampling fusion process aims to
pass the small target information back to PAN. Furthermore, to
alleviate the mitigating issues related to information loss and
gradient vanishing, we discarded the skip connections present
in the original CSP in our proposed CSPF module, as shown
in Fig. 2. The fusion feature map of up-sampling is obtained
via:

FFi =

{
Oi (Xi ⊙ Up (Y )) i = 2
Oi (Xi ⊙ Up (FFi+1)) i = 1

(1)

where FFi represents the output features of each layer of
the up-sampling fusion, and Oi represents the i-th CSPF
operation, and i decreases from the deep layer to the shallow
layer. Xi is the feature map of the i-th output of the first
two Down Stages (Down Stage 1 and Down Stage 2). Y
represents the output of the last layer of FPN. Up represents
the up-sampling operation based on bilinear interpolation. ⊙
represents channel-based feature fusion. Meanwhile, the down-
sampling process is shown in (2) :

FPi =

{
Oi (FFi ⊙ CBS (FFi)) i = 1, 2
Oi (FFi ⊙ CBS (Y )) i = 3

(2)

where FPi represents the output features of each layer of the
down-sampling fusion, and CBS indicates the combination
operations of convolution, BN, and SiLU.

The saliency detection head consists of two convolution
operations and a sigmoid function. The process of obtaining
the final saliency map is as follows:

S = σ (Conv 7 (Conv 6 (R (Fup)))) (3)

where Conv6 and Conv7 are convolution operations for dimen-
sionality reduction, and the size of the convolution kernel is
1× 1. R represents the CSPS module, which shares the same
structure as the CSPF. σ represents a sigmoid operation, which
is used to compute the probability of each pixel and predict
whether it belongs to the saliency target, so as to obtain the
saliency feature map S.

C. Lightweight Backbone Feature Extraction Network
While the incorporation of a saliency detection module for

multi-task learning amplifies the feature information of small
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Conv4+BN+SiLU

Conv5+BN+SiLU
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Output

N

Input

Fig. 2. The structure of the CSPF module, where N is set to 4.

targets and suppresses background noise, it also introduces
increased model complexity, which imposes limitations on
its applicability in practical scenarios with constraints on
memory and computational resources. To alleviate the issue,
we designed a simple inception module named SIWD. In-
spired by the Inception structure [50], we proposed a multi-
branch architecture. Within it, the conventional convolutions
are decomposed and substituted using the principles of asym-
metric and dilated convolutions. The SIWD structure employs
asymmetric convolutions with varying dilation rates to ensure
a substantial reduction in parameter count while maintaining
a consistent receptive field. The following sections provide
detailed descriptions of the backbone network and the SIWD
module.

From Fig. 1, it can be observed that the main component of
the entire model comprises five down-sampling stages, each
of which corresponds to an SIWD module. These modules
are equipped with convolutional kernels of varying sizes and
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Fig. 4. The structure diagram of the SIWD module. The layered architecture
of the SIWD module highlights its key components such as dilated convolution
layers and factorized convolution units. It illustrates how the module effi-
ciently processes infrared images, reducing computational complexity while
maintaining accuracy for small target detection in complex backgrounds.

TABLE I
PARAMETER CONFIGURATION OF SIWD IN EACH DOWN-SAMPLING

STAGE.

Module Stage Input Channel Output Channel

SIWD1 Down Stage 1 3 80
SIWD2 Down Stage 2 80 160
SIWD3 Down Stage 3 160 320
SIWD4 Down Stage 4 320 640
SIWD5 Down Stage 5 640 1,280

dilation rates, and the changes in channel numbers before
and after each down-sampling stage are illustrated in Table
I. To reduce the model’s parameter count, the SIWD module
replaces the 3× 3 convolutional kernels with 1× 3 and 3× 1
convolutional kernels and employs dilated convolutions to
expand the receptive field. As depicted in Fig. 4, the SIWD
module primarily consists of five branches. The first branch

comprises a 1× 1 convolutional layer with a dilation rate of
1, aimed at dimension reduction. The second branch employs
two convolutional layers with kernel sizes of 3× 1 and 1× 3,
both with a dilation rate of 1. The input feature maps are
individually processed by these two convolutional layers and
then pointwise added to form the output of this branch.
The structures of the third and fourth branches are similar
to the second branch, but with dilation rates of 3 and 5,
respectively, to extract features with different receptive field
sizes. The fifth branch draws inspiration from the residual
network’s Shortcut mechanism, with input features undergoing
dimension reduction through 1× 1 convolutions to obtain
output features. After each of the input feature maps has
traversed these five branches, the outputs from the first four
branches are concatenated, followed by fusion through a
pointwise convolution layer to yield OL. Finally, this result is
concatenated with the output from the fifth branch to obtain the
final output OS of the SIWD module. The overall processing
flow of the SIWD module can be defined as follows:

OS = (C1
1×1 (B1 ⊙B2 ⊙B3 ⊙B4))⊙B5 (4)

Bi =

 Aadd
(
C2i−3

1×3 (IS) , C
2i−3
3×1 (IS)

)
i = 2, 3, 4

Aadd
(
C1

1×1 (IS) , C
1
1×1 (IS)

)
i = 1, 5

(5)

where Cy
x denotes the combination of a convolution layer

with kernel size of x and dilation rate of y, a batch normal-
ization layer, and a SiLU activation operation. Aadd denotes
the point-by-point summation of the feature maps, ⊙ denotes
the splicing of the feature maps, and Bi denotes the output
feature maps of the i-th branch.

Assuming that the dimensions of the input and output
features of the SIWD module are denoted as Cin ×Hin ×Win
and Cout × Hout × Wout, respectively, the size of the output
feature maps for the first four branches is 1

4Cout× 1
2Hin× 1

2Win,
while the size of the output feature maps for the fifth branch
and after the pointwise convolution is 1

2Cout× 1
2Hin× 1

2Win. As
a convolutional kernel with dimensions k × 1 and a dilation
rate of d is essentially equivalent to a convolution of size
((d − 1) × 1 + k) × 1, and a convolutional kernel with
dimensions 1× k is essentially equivalent to a convolution
of size 1× (1× (d− 1)+ k), so the parameter count for each
branch of SIWD can be defined as in (6), where Pi represents
the parameter count for the i-th branch. The total parameter
count for the SIWD module is the summation of the parameter
counts for its five branches and the pointwise convolution,
denoted as ( 214 Cin +

1
2Cout)× Cout.

Pi =


1× 1× Cin × 1

4Cout i = 1

(1× 3× Cin + 3× 1× Cin )× 1
4Cout i = 2, 3, 4

1× 1× Cin × 1
2Cout i = 5

(6)
When not employing dilated convolutions in the decomposi-

tion of convolutional layers, only the parameters of the second,
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third, and fourth branches differ from the rest, as illustrated
in (7). The parameter count remains constant for the other
branches. Therefore, the total parameter count without using
dilated asymmetric convolution decomposition is (21Cin +
1
2Cout)×Cout. The difference between the two is 15.75CinCout.
This can be a substantial reduction in the aggregated parameter
count, indicating a noteworthy reduction.

P ∗
i =

(
(2i− 1)2 × Cin

)
× 1

4
Cout (i = 2, 3, 4) (7)

D. Joint Multi-task Loss Function

The loss function of Light-SGMTLM proposed in this paper
consists of two parts: saliency loss and object detection loss, as
shown in (8), where λ1 and λ2 are the weights of sailency loss
and target detection loss, respectively. We conducted ablation
experiments on the proportion settings of these two parameters
and selected the appropriate weights.

Ltotal = λ1Lsalience + λ2Ldet (8)

where the saliency loss Lsaliency consists of the cross-entropy
loss Lce and the structural similarity loss Lssim as shown in (9).
Lce denotes the similarity measure between the final predicted
significance score map and the real label, while Lssim denotes
the overall similarity measure between the two in terms of
structural features including brightness and contrast.

Lsaliency = Lce + (1− Lssim) (9)

The infrared images typically encompass crucial structural
information, including the contour, texture, and shape of the
target. By incorporating a structural similarity loss as an
auxiliary loss for saliency detection tasks, the model can be
forced to learn the inherent texture and shape features of the
target within the image. This facilitates better alignment with
the original image’s structure and generates saliency region
images of higher quality. Consequently, it reduces sensitivity
to image noise and environmental variations while reducing
false alarm rates. Combining this approach with cross-entropy
loss helps in improving convergence speed. They are defined
below:

Lce = −
N∑
i=1

(Yi log (Si) + (1− Yi) log (1− Si)) (10)

Lssim =
(2µY µS + k1) (2σY S + k2)

(µ2
Y + µ2

S + k1) (σ2
Y + σ2

S + k2)
(11)

Among them, Y and S represent the prediction results of
the real label and saliency detection respectively, N represents
the number of pixels, µY and µS are the mean values of Y
and S respectively, σY and σS are the standard deviations of
Y and S respectively, σY S is the covariance of Y and S, k1
and k2 are two constants used to prevent the dividend from
being 0, and they were set to 0.001 and 0.0009 respectively
in the experiment.

Ldet = Lreg + Lconf + Lcls (12)

The target detection loss consists of bounding box regres-
sion loss Lreg, confidence loss Lconf, and classification loss
Lcls, as shown in (12). For the bounding box regression loss,
as given in (13), λcoord represents the weight of the positive
sample, K represents the number of grids divided into each
row and column of the input image, and M represents the
preset anchor in each grid. For the number of boxes, M is
set to 3 in this paper, and the value of Iobjij is 0 or 1, which
indicates whether the j-th bounding box in the i-th grid is used
to predict the target. wi and hi represent the width and height
of the prediction box respectively, and D represents the area
of the smallest circumscribed rectangle between the prediction
box and the real box.

Lreg = λcoord

K×K∑
i=1

M∑
j=1

Iobjij LGIoU (2− wi × hi) (13)

LGIoU = 1−GIoU = 1− IoU +
|D −A ∪B|

|D|
(14)

For the confidence loss, as shown in (15), λnoobj represents
the weight of the negative sample. Inoobjij indicates whether the
j-th prediction box of the i-th grid is responsible for predicting
the target. If it is not responsible for predicting the target, it
takes 1, otherwise it takes 0. C̄i indicates whether there is a
target in the i-th grid. If it is, it takes 1, otherwise it takes 0.

Lconf = −
K×K∑
i=1

M∑
j=1

Iobjij

[
C̄i log (Ci) +

(
1− C̄i

)
log (1− Ci)

]
− λnoobj

K×K∑
i=1

M∑
j=1

Inoobjij

[
C̄i log (Ci) +

(
1− C̄i

)
log (1− Ci)

]
(15)

For the classification loss, as shown in (16), P̄i(n) repre-
sents the true value of category n in the i-th grid. If it belongs
to category n , its size is 1, otherwise it is 0, and Pi(n)
represents the predicted probability of category in the i-th grid.

Lcls = −
K×K∑
i=1

M∑
j=1

Iobjij∑
c∈classes

[P̄i(n) log(Pi(n)) + (1− P̄i(n)) log(1− Pi(n))]

(16)

IV. EXPERIMENT

A. Experimental Details

1) Implementation Settings: Our experiments were con-
ducted on a computer equipped with an NVIDIA Tesla K40c
graphics card and the software environment utilized the Py-
Torch framework, with Python version 3.6. During training,
we configured the initial learning rate to be 0.001, employed
a batch size of 8, and utilized the Adam optimizer with a
weight decay of 0.0005 for a total of 50 epochs.
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2) Datasets: We curated and annotated the saliency detec-
tion datasets in GL-Light-NLDF [51] and the publicly avail-
able dataset SSDD [52]. Subsequently, two multi-task infrared
ship target detection datasets were constructed, namely Small-
ExtIRShip and Small-SSDD. Additionally, four public datasets
were also utilized: IRDST [53], IHAST [54], IRSTD-1k [55],
and NUAA-SIRST [43].

The Small-ExtIRShip dataset is derived from the saliency
detection dataset GL-Light-NLDF. Firstly, we employed a
relative proportion method to screen small targets with a pixel
proportion less than 0.12%, resulting in 1,270 small target
images. Secondly, since the ExtIRShip dataset lacks target
detection labels, we annotated the target box to obtain the
multi-task Small-ExtIRShip dataset. Finally, we divided the
training and test sets at a ratio of 9:1, resulting in 1,143
training images and 127 test images.

Fig. 5. Example images from the Small-ExtIRShip dataset. The first row
represents the original images while the second and third rows depict the
object detection and saliency detection labels respectively.

The Small-SSDD dataset is derived from the publicly avail-
able SSDD dataset, which already includes object detection
and saliency labels. Hence, it requires filtering the dataset
based on the relative proportion of pixels less than 0.12% and
subsequently dividing it into a training set and a test set in a
9:1 ratio, resulting in 252 images for training and 28 images
for testing.

The IHAST dataset consists of 1,200 infrared images fea-
turing complex, dynamic backgrounds and high-speed small
targets, categorized into aircraft, drones, and birds. We anno-
tated the dataset with pixel-level masks to support multi-task
model training. The dataset is split into training and test sets
in a 7:3 ratio.

The IRDST dataset contains 142,727 images, including
40,650 real images from 85 scenes and 102,077 simulated
images from 317 scenes. Each image is annotated with pixel-
level masks, bounding boxes, and central pixels. In this study,
only the 40,650 real images were used, split into training and
test sets at a 7:3 ratio, resulting in 28,460 training images and
12,196 test images.

The NUAA-SIRST dataset includes 427 images selected
from infrared video sequences. However, the original target
detection labels were inaccurate, often grouping multiple
targets within an image under a single label. We corrected

Fig. 6. Example images from the Small-SSDD dataset. The first row
represents the original images while the second and third rows depict the
object detection and saliency detection labels respectively.

Fig. 7. Example images from the IHAST dataset. The first row represents the
original images while the second and third rows depict the object detection
and saliency detection labels respectively.

Fig. 8. Example images from the IRDST dataset. The first row represents the
original images while the second and third rows depict the object detection
and saliency detection labels respectively.

this by re-annotating individual bounding boxes using mask-
based modifications. The final dataset, containing around 480
instances, is split into training and test sets at a 7:3 ratio.

The IRSTD-1k dataset comprises a total of 1,000 infrared
images. It is already provided with the regression labels and
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Fig. 9. Example images from the NUAA-SIRST dataset. The first row
represents the original images while the second and third rows depict the
object detection and saliency detection labels respectively.

pixel-level masks, thereby requiring only the division of the
training set and test set in a 7:3 ratio. Data augmentation
involves random flipping and adjustments to image brightness
and contrast while no data augmentation was used during test-
ing. Some examples of these six datasets are demonstrated in
Fig. 5 to Fig. 10. Throughout all the comparison experiments
and ablation experiments conducted in this study, fixed input
sizes were employed during training: the Small-ExtIRShip and
Small-SSDD datasets had an input size of 416× 416, the
NUAA-SIRST dataset utilized an input size of 320× 320,
the IHAST dataset adopted an input size of 608× 608, the
IRSTD-1k dataset featured an input size of 512× 512, and
the IRSTD dataset employed an input size of 992× 992.

Fig. 10. Example images from the IRSTD-1k dataset. The first row represents
the original images while the second and third rows depict the object detection
and saliency detection labels respectively.

3) Evaluation Metrics: We adopt commonly used evalua-
tion metrics including multi-class average precision (mAP) ,
number of model parameters (Params) , floating point opera-
tions (Flops) , intersection over union (IoU) and normalized
intersection over union (nIoU). The calculations of mAP
refers to the average AP value across multiple classes, which
is calculated as the area under the curve, with recall on
the x-axis and precision on the y-axis, ranging from 0 to
1. While typically computed via integration, in practice, an

approximation is often used by summing the precision at each
threshold, multiplied by the corresponding change in recall.

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)

mAP =

∑M
i=1 AP (i)

M
(19)

IoU aims to measure the accuracy of detecting the corre-
sponding object in a given dataset, i.e.,

IoU = Ai/Au (20)

where Ai and Au are intersection region and union region
between the prediction and ground truth, respectively.

nIoU is the normalization of IoU. It can make a better
balance between structural similarity and pixel accuracy of
infrared small target and is defined as follows:

nIoU =
1

N

N∑
i=1

(TP[i]/(T [i] + P [i]− TP[i])) (21)

where N represents the total number of the target pixels
and TP [·] denotes the number of true positive pixels.

B. Comparative Experiments of Object Detection

To validate the effectiveness of the proposed Light-
SGMTLM, we conducted comparative experiments against
fourteen state-of-the-art detection models, i.e., YOLOv3 [56]
, YOLOv4 [49] , YOLOv5x [57] , YOLOv6l [13] , YOLOv7x
[58] , YOLOv8x [59] , Deformable DETR [14] , DAB-DETR
[15] , DN-DETR [16] , DINO [17] , Rank-DETR [60] , MS-
DETR[61] , Salience-DETR [62] and Relation-DETR [63].
The experimental results are presented in Table II. From
the results, it is evident that our method achieves a signif-
icantly higher detection accuracy compared to convolution-
based approaches. Additionally, compared to state-of-the-art
transformer-based methods, our approach demonstrates supe-
rior performance in terms of both parameter efficiency and
computational cost.

Fig. 11 and Fig. 12 present the visual results of different
comparison methods against complex sky and ocean back-
grounds, respectively. From the visualization results, it is
evident that our method is more effective in suppressing false
alarms at cloud boundaries, identifying small targets hidden
within cloud layers, and exhibiting greater robustness against
high-intensity sea wave noise near coastlines compared to
other methods.
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TABLE II
THE COMPARATIVE EXPERIMENTAL RESULTS OF MULTIPLE OBJECT DETECTION MODELS, WHERE DM-DETR DENOTES DEFROMABLE DETR. THE

UPPER SECTION OF THE TABLE CORRESPONDS TO MODELS BASED ON CNNS, WHILE THE LOWER SECTION PERTAINS TO MODELS BASED ON
TRANSFORMERS. THE METRICS MARKED IN RED AND BLUE CORRESPOND TO THE BEST AND SECOND PERFORMANCE RESPECTIVELY.

Model Params (M)
Small-ExtIRShip Small-SSDD NUAA-SIRST IHAST IRSTD-1k IRDST
FLOPs (G) mAP FLOPs (G) mAP FLOPs (G) mAP FLOPs (G) mAP FLOPs (G) mAP FLOPs (G) mAP

YOLOv3 61.53 32.80 86.95 32.80 86.35 19.41 74.16 70.07 81.33 49.69 63.04 186.53 74.74

YOLOv4 63.94 29.98 88.15 29.98 88.21 17.74 75.65 64.04 82.24 45.42 64.62 170.48 75.82

YOLOv5x 83.21 45.91 92.27 45.91 92.60 54.45 78.34 196.58 85.53 139.41 67.73 523.30 75.93

YOLOv6l 59.60 32.22 93.48 32.22 94.32 19.06 78.56 68.81 86.18 48.80 68.92 183.17 76.03

YOLOv7x 71.75 42.48 94.53 42.48 95.68 25.14 81.25 90.74 86.97 64.35 70.42 241.56 76.84

YOLOv8x 91.90 48.47 95.10 48.47 96.10 28.68 82.30 103.52 88.90 73.42 72.53 275.57 77.43

Deformable-DETR 41.02 78.14 92.51 78.14 93.22 46.23 78.90 166.90 85.70 118.36 63.44 444.30 76.30

DAB-DETR 44.38 84.54 93.82 84.54 93.80 50.02 81.33 180.57 86.50 128.05 64.64 480.69 76.10

DN-DETR 47.31 90.12 94.41 90.12 94.90 53.32 84.56 192.49 88.50 136.51 66.81 512.43 77.50

DINO 47.78 91.01 94.72 91.01 95.20 53.85 87.70 194.4 91.80 137.86 70.80 517.52 78.30

Rank-DETR 49.83 95.12 94.33 95.12 95.36 56.29 88.46 203.20 92.10 144.10 72.44 540.92 78.33

MS-DETR 51.21 105.69 94.71 105.69 95.92 62.54 88.90 225.78 92.22 160.11 73.84 601.02 78.38

Salience-DETR 159.60 104.99 94.89 104.99 96.01 60.29 89.15 216.26 92.46 154.33 74.68 579.34 78.42

Relation-DETR 153.64 123.31 95.72 123.31 96.41 72.96 90.28 250.01 92.88 177.29 74.92 665.54 78.55

Light-SGMTLM 45.53 36.51 96.66 36.51 97.43 19.68 92.60 71.05 93.40 50.39 75.71 189.16 78.92

YOLOv3 YOLOv4 YOLOv5xGT

YOLOv6l YOLOv7x L-SGMTLM

Deformable-DETRDAB-DETR DN-DETR DINO

YOLOv8x Salience-DETR Relation-DETRMS-DETRRank-DETR

Fig. 11. Detection results under complex cloud background. The red, yellow and blue boxes represent correctly predicted targets, false alarms and missed
targets, while the green boxes denote the ground truth.

L-SGMTLMDeformable-DETR

DAB-DETR DN-DETR DINO

YOLOv8x

YOLOv3 YOLOv4 YOLOv5xGT

YOLOv6l YOLOv7x

Rank-DETR

MS-DETR Salience-DETR Relation-DETR

Fig. 12. Detection results in a near-shore marine background. The red, yellow and blue boxes represent correctly predicted targets, false alarms and missed
targets, while the green boxes denote the ground truth.
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TABLE III
THE COMPARATIVE EXPERIMENTAL RESULTS OF MULTIPLE SEGMENTATION MODELS, THE METRICS MARKED IN RED AND BLUE CORRESPOND TO THE

BEST AND SECOND PERFORMANCE RESPECTIVELY.

Model NUAA-SIRST IRSTD-1k IHAST ExtIRShip Small-SSDD

IoU(%) nIoU(%) IoU(%) nIoU(%) IoU(%) nIoU(%) IoU(%) nIoU(%) IoU(%) nIoU(%)

ISNet 68.78 70.73 61.21 59.18 75.04 65.35 62.32 61.76 73.94 71.09

ISTDU 63.34 62.58 51.58 50.26 70.01 69.84 51.88 51.02 72.61 70.87

FC3Net 64.64 64.49 53.08 50.43 72.87 66.31 53.88 53.79 74.85 70.64

IAANet 66.43 67.83 54.66 53.89 72.64 72.02 54.63 53.78 73.24 69.58

HCFNet 68.33 69.28 56.48 55.80 75.86 73.51 60.92 59.10 74.83 72.96

DNANet 67.90 68.09 64.53 62.54 77.82 69.17 64.15 64.34 73.31 69.26

SCTransNet 69.64 68.99 64.34 59.29 78.07 71.27 56.46 56.70 78.52 75.73

MiMNet 69.92 70.80 65.02 61.30 78.31 72.98 57.30 56.64 78.58 75.85

Light-SGMTLM 70.61 71.03 65.22 63.37 79.50 73.67 65.78 63.45 78.67 76.18

C. Comparative Experiments of Saliency Detection

To further demonstrate the effectiveness of our proposed
method, we also compare it with another eight advanced
methods designed for ISTD, including ISNet [64], ISTDU
[65], FC3Net [66], IAANet [67], HCFNet [68], DNANet [69],
SCTransNet [70] and MiMNet [71]. The quantitative results
are presented in Table III. It can be seen from Table III that
our proposed method demonstrated superior results with the
optimal or suboptimal IoU and nIoU metrics across multiple
datasets. Notably, our method achieves an IoU of 65.78% on
the ExtIRShip dataset, surpassing the runner-up by 1.63%.
Some visualization examples of results have shown in Fig.
13 and Fig. 14, including multiple targets under homogeneous
cloud and water surface with high-brightness reflection noise.

As shown in Fig. 13, due to the lack of color and texture,
extremely small targets in the clouds generally exhibit homo-
geneity with the background, leading to the phenomenon of
missed detection. Whereas, our method can effectively identify
these targets hidden in clouds. Fig. 14 demonstrates that our
proposed method can also suppress false alarms caused by
coastal and wave reflections effectively. Additionally, com-
pared to other methods, the segmentation results generated
by our approach closely approximate the real shapes, further
validating the effectiveness in capturing infrared small target
features.

D. Loss Function Weights Analysis

The influence of the loss weight λ1 for the saliency de-
tection task and the loss weight λ2 for the target detection
task on the accuracy of infrared small target detection in the
multi-task loss function is presented in Table IV. The results
indicate that when the target detection loss weight exceeds
that of saliency detection, the model tends to prioritize target
detection, negatively affecting both saliency detection and
small target localization. However, with λ1 = 1 and λ2=1,
a balanced approach is achieved, leading to higher accuracy

in small target detection. Therefore, setting both weights to 1
is recommended.

TABLE IV
WEIGHTED ANALYSIS EXPERIMENTAL RESULTS OF MULTI-TASK LOSS

FUNCTION ON INFRARED SMALL TARGET DATASETS.

λ1 λ2

mAP
Small-ExtIRShip Small-SSDD NUAA-SIRST IHAST IRSTD-1k

1 2 95.42 96.96 91.08 90.94 75.03

2 1 95.35 96.41 92.56 91.41 75.08

1 3 96.21 96.47 91.94 92.21 73.16

3 1 95.39 96.22 91.34 91.39 73.05

2 3 91.68 97.30 90.60 92.84 72.79

3 2 91.74 97.07 91.39 92.04 74.88

1 4 90.53 97.01 90.97 93.10 75.51

4 1 90.87 97.23 90.89 92.22 69.35

1 5 90.67 97.60 90.75 92.77 71.70

5 1 91.40 98.32 90.44 92.43 72.80

1 1 96.66 97.43 92.60 93.40 75.71

E. Effectiveness Analysis of Each Structure of the Saliency
Detection Module

We conducted ablation experiments on the Small-
ExtIRShip, Small-SSDD, and IHAST datasets to evaluate the
feature extraction and saliency detection head in our proposed
saliency detection branch, keeping other network components
unchanged. As shown in Table V, the addition of feature
extraction improved detection accuracy on small targets by
1.64%, 3.12%, and 4.12% on the three datasets, respectively.
When both feature extraction and saliency detection heads
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ISTDU FC3Net IAANet HCFNet

ISNet DNANet MiMNet SCTransNet L-SGMTLM

GT

Fig. 13. Segmentation results obtained by different ISTD methods under a large number of homogeneous cloud backgrounds. The blue and red circles
represent correctly predicted and missed detection respectively, while the green boxes denote ground truth.

ISTDU FC3Net IAANet HCFNet

ISNet DNANet MiMNet SCTransNet L-SGMTLM

GT

Fig. 14. Segmentation results obtained by different ISTD methods under the background of high-brightness reflection noise on the water surface. The blue,
yellow and red circles represent correctly predicted, false alarm and missed detection respectively, while the green boxes denote ground truth.

were included, accuracy further increased by 3%, 5.93%,
and 7.92%. These results demonstrate that feature extraction
enhances the fusion of shallow details with deep semantic
features, enriching the input to the detection head and boosting
accuracy. Additionally, the saliency detection task further im-
proves infrared small target detection. To visualize the impact,
we used heatmaps on the Small-SSDD dataset, comparing
the original YOLOv5x model, YOLOv5x* (with feature ex-
traction), and our L-SGMTLM model (with both modules).
As shown in Fig. 15, feature extraction improves detection
by integrating local and semantic information, though it can
also introduce non-target features. However, adding saliency
detection effectively suppresses background noise, guiding
the model to focus on small targets and improving overall
accuracy.

TABLE V
THE RESULTS OF ABLATION EXPERIMENTS ON FEATURE EXTRACTION

AND SALIENCY DETECTION HEAD ON INFRARED SMALL TARGET
DATASETS.

Feature Extraction Saliency Detection mAP
Head Small-ExtIRShip Small-SSDD IHAST

✕ ✕ 93.66 91.50 85.48

✓ ✕ 95.30 94.62 89.60

✓ ✓ 96.66 97.43 93.40

F. Analysis of the Applicability of Each Structure in the
Saliency Detection Module

The proposed Light-SGMTLM is developed based on
YOLOv5x. To further validate the effectiveness of the feature
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(a)

(b)

(c)

YOLOv5x YOLOv5x* L-SGMTLM GT

Fig. 15. The heatmap of the Small-SSDD dataset, where (a), (b) and (c)
respectively represent the detection results of three pictures in the Small-SSDD
dataset under the original YOLOv5x, YOLOv5x after adding the feature fusion
part, and Light-SGMTLM model, as well as their corresponding ground truth.

fusion component and saliency detection header in the saliency
detection module, we utilize different versions of YOLOv5
as backbones, incorporating feature extraction and saliency
detection headers separately. Subsequently, experiments are
conducted on the Small-ExtIRShip and Small-SSDD datasets
to assess its applicability. The experimental results are pre-
sented in Table VI.

The result reveals that the feature extraction component
and the saliency detection head within YOLOv5s, YOLOv5m,
and YOLOv5l exhibit equal applicability for infrared small
target detection tasks, demonstrating the generalizability of the
saliency detection module across these YOLOv5 models.

TABLE VI
THE ABLATION EXPERIMENTAL RESULTS OF THE FRAMEWORK BASED

ON SALIENCY GUIDANCED MULTI-TASK LEARNING ON THE
SMALL-EXTIRSHIP AND SMALL-SSDD DATASETS.

Backbone Feature Extraction Saliency Detection mAP
Head Small-ExtIRShip Small-SSDD

YOLOv5s

✕ ✕ 89.19 87.52

✓ ✕ 90.72 88.61

✓ ✓ 93.74 89.67

YOLOv5m

✕ ✕ 90.19 88.41

✓ ✕ 92.11 89.38

✓ ✓ 94.37 91.62

YOLOv5l

✕ ✕ 91.96 90.80

✓ ✕ 93.35 92.61

✓ ✓ 95.41 93.29

G. Validation Analysis of the SIWD Module

To assess the impact of the proposed lightweight module
SIWD on model performance, we first conducted ablation
experiments on the Small-ExtIRShip and Small-SSDD datasets
with various scales of YOLOv5 and our proposed Light-
SGMTLM. Results are presented in Table VII. From the
results, it is evident that our proposed SIWD module, for

infrared small target detection tasks, significantly reduces
model parameters, floating-point operations, and cumulative
operations while attempting to preserve model detection accu-
racy.

Moreover, to further verify the transferability of SIWD, we
integrated the SIWD structure with different resource intensive
models including DANet [72] , SegFormer [73] , SETR-PUP
[74] , kMaX-DeepLab [75] and OneFormer [76]. Experiments
were conducted on the NUAA-SIRST and IRSTD-1k datasets
and the results are shown in Table VIII and Table IX. From the
results, it is evident that the proposed SIWD module can be
seamlessly integrated into various large models, reducing their
parameter count and computational complexity while simulta-
neously improving segmentation accuracy. This enhancement
improves the applicability of the model in scenarios with
limited computational resources.

TABLE VII
ANALYSIS OF THE IMPACT OF THE SIWD MODULES ON THE

SMALL-EXTIRSHIP AND SMALL-SSDD DATASETS.

Models SIWD Param (M) FLOPs (G) MAdd (G) mAP
Small-ExtIRShip Small-SSDD

YOLOv5s
✕ 6.91 4.83 9.65 89.19 87.52

✓ 4.19 3.15 6.27 88.73 86.94

YOLOv5m
✕ 20.62 14.96 29.89 90.19 88.41

✓ 11.73 9.08 18.11 89.68 90.02

YOLOv5l
✕ 45.68 34.0 67.94 91.96 90.80

✓ 25.03 20.98 41.88 91.57 92.31

YOLOv5x
✕ 83.21 45.91 91.81 92.27 92.60

✓ 43.30 20.11 40.18 94.19 91.50

Light-SGMTLM
✕ 85.44 62.32 124.55 96.82 97.66

✓ 45.53 36.51 72.92 96.66 97.43

TABLE VIII
TRANSFERABILITY EVALUATION OF THE SIWD MODULE ON THE

NUAA-SIRST DATASET.

Models Backbone Param (M) FLOPs (G) IoU(%) nIoU(%)

DANet
ResNet101 66.60 126.86 64.98 62.88

SWID 43.48 133.24 66.79 64.25

SegFormer
Mit-B5 84.59 38.92 66.95 65.01

SWID 4.77 17.32 67.30 66.38

SETR-PUP
ViT-Large 318.3 228.72 65.64 63.29

SWID 33.62 113.15 65.92 63.53

kMaX-DeepLab
ConvNeXt-L 232.0 84.25 68.58 67.02

SWID 47.92 17.25 68.76 67.33

OneFormer
DiNAT-L 223.0 90.75 69.18 68.20

SWID 35.78 23.32 70.29 69.34

H. Comparative Analysis of Different Lightweight Modules

To investigate the impact of using different lightweight
modules to replace the backbone feature network on the
performance of the lightweight multi-task model, we employ
InceptionV3 [50], ShuffleNet2 [77], SqueezeNet1 [78], and
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TABLE IX
TRANSFERABILITY EVALUATION OF THE SIWD MODULE ON THE

IRSTD-1K DATASET.

Models Backbone Param (M) FLOPs (G) IoU(%) nIoU(%)

DANet
ResNet101 66.60 324.76 58.63 54.41

SWID 43.48 338.46 60.76 55.53

SegFormer
Mit-B5 84.59 99.64 61.87 55.32

SWID 4.77 44.35 62.16 56.73

SETR-PUP
ViT-Large 318.3 577.78 60.73 54.61

SWID 33.62 288.90 60.78 55.16

kMaX-DeepLab
ConvNeXt-L 232.0 213.12 62.54 59.45

SWID 47.92 41.44 62.71 59.66

OneFormer
DiNAT-L 223.0 229.76 62.78 60.14

SWID 35.78 56.92 62.89 59.72

SIWD as replacements for the backbone feature extraction
network in this section. The parameters of each lightweight
module are adjusted to match the input dimensions at each
downsampling stage of Light-SGMTLM while maintaining
other parts unchanged. Comparative experiments are con-
ducted on the Small-SSDD, IRSTD-1k, NUAA-SIRST, and
IHAST datasets using these lightweight modules. The first
dataset primarily consists of marine ship scenes, characterized
by significant wave noise interference, and the scenes in
the rest datasets predominantly consist of sky and urban,
accompanied by significant interference from cloud noise and
complex background. Moreover, the input sizes of these four
datasets exhibit inconsistency. The experimental results are
presented in Table XI and Table XIII.

The results indicate that when InceptionV3 is employed
as the backbone network, it exhibits the highest number of
parameters, floating-point computation, and MAdd. This can
be attributed to its larger network depth and width, along
with the adoption of multiple stacked lightweight modules for
enhanced feature extraction, resulting in a higher parameter
count. On the other hand, SIWD is derived from Inception
but only incorporates an SIWD module structure in the five
down-sampling stages within Light-SGMTLM. Consequently,
when SIWD serves as the feature extraction network instead of
InceptionV3, there is a reduction in parameter count, floating-
point computation, and MAdd for the model. Remarkably,
this replacement of backbone network with the SIWD mod-
ule leads to significant reductions across different datasets
and input sizes without compromising detection accuracy.
In fact, improvements may even occur. Notably although
the parameter count of SIWD module exceeds SqueezeNet1
by 6.57M, our proposed model demonstrates lower floating-
point computation and MAdd on all datasets while achieving
higher detection accuracy. These findings highlight that among
various lightweight modules considered herein, SIWD outper-
forms others within lightweight multi-task models.

TABLE X
THE COMPARATIVE EXPERIMENTS OF DIFFERENT LIGHTWEIGHT

MODULES OF LIGHT-SGMTLM ON THE SMALL-SSDD AND IRSTD-1K
DATASETS.

Backbone Param (M) Small-SSDD IRSTD-1k
FLOPs (G) MAdd (G) mAP FLOPs (G) MAdd (G) mAP

InceptionV3 47.96 64.99 129.81 95.62 98.44 196.64 69.52

ShuffleNetV2 38.72 39.93 79.74 94.37 60.49 120.79 69.77

SqueezeNetV1 38.96 37.68 75.20 94.66 57.07 113.91 68.89

SIWD 45.53 36.51 72.92 97.43 50.39 100.62 75.71

Ground Truth Detection ResultInput

Fig. 16. Example of missed detection when detecting closely targets, where
the red, blue and green boxes represent missed detection, correct detection
and ground truth respectively.

I. Limitations and Future Work

Although our method demonstrates good performance on
the six datasets, it still exhibits instances of missed detection
when confronted with overlapping or dense small targets, as
illustrated in Fig. 16. It is caused by the sensitivity of In-
tersection over Union (IoU) metrics concerning small targets,
resulting in some detection boxes being filtered out during
post-processing by Non-Maximum Suppression (NMS).

In addition, our model requires high-dimensional feature
maps to capture rich semantic information, which results in
a high number of parameters. Therefore, we attempt to reduce
the dimensions of the feature maps. Specifically, we reduce the
number of channels of the output feature maps of each stage
in the backbone to one-tenth of their original number, while
keeping other parts unchanged. Then, we conduct experiments
on six datasets, including Small-ExtIRShip, Small-SSDD,
NUAA-SIRST, IRSTD-1k, IHAST, and IRDST. The results are
shown in the Table XI and Table XIII. It can be observed that
although dimension reduction effectively decreases the number
of parameters, it significantly slows down the convergence
speed. After reducing the number of channels, it often takes
600 to 1200 epochs to converge, whereas previously, only 50 to
70 epochs were needed to achieve convergence. The extended
training time increases the risk of over-fitting and reduces the
generalization ability of the model. Therefore, in this work,
we chose to maintain the number of channels in backbone.

In future work, we will focus on enhancing NMS to
deal with small dense target with overlapping and to further
lightweight the model while ensuring training speed and
accuracy.

V. CONCLUSION

In this paper, our contributions encompass two main aspects:
firstly, we propose a multi-task learning model for infrared
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TABLE XI
COMPARATIVE RESULTS ON THE SMALL-SSDD, IRSTD-1K AND IHAST DATASETS BEFORE AND AFTER REDUCING THE NUMBER OF CHANNELS.

WHERE †REPRESENTS THE MODEL AFTER REDUCING THE NUMBER OF CHANNELS.

Model Param (M) Small-SSDD IRSTD-1k IHAST

FLOPs (G) mAP Epoch FLOPs (G) mAP Epoch FLOPs (G) mAP Epoch

Light-SGMTLM† 0.49 0.43 97.27 700 0.65 74.94 700 0.92 92.66 700

Light-SGMTLM 45.53 36.51 97.43 50 50.39 75.71 70 71.05 93.40 50

TABLE XII
COMPARATIVE RESULTS ON THE NUAA-SIRST, SMALL-EXTIRSHIP AND IRDST DATASETS BEFORE AND AFTER REDUCING THE NUMBER OF

CHANNELS. WHERE †REPRESENTS THE MODEL AFTER REDUCING THE NUMBER OF CHANNELS.

Model Param (M) NUAA-SIRST Small-ExtIRShip IRDST

FLOPs (G) mAP Epoch FLOPs (G) mAP Epoch FLOPs (G) mAP Epoch

Light-SGMTLM† 0.49 0.26 91.38 1200 0.43 92.33 800 2.46 75.08 900

Light-SGMTLM 45.53 19.68 92.60 60 36.51 96.66 50 189.16 78.92 50

TABLE XIII
THE COMPARATIVE EXPERIMENTS OF DIFFERENT LIGHTWEIGHT
MODULES OF LIGHT-SGMTLM ON NUAA-SIRST AND IHAST

DATASETS.

Backbone Param (M) NUAA-SIRST IHAST
FLOPs (G) MAdd (G) mAP FLOPs (G) MAdd (G) mAP

InceptionV3 47.96 38.45 76.81 90.12 138.82 277.29 91.49

ShuffleNetV2 38.72 23.63 47.18 89.52 85.30 170.34 90.29

SqueezeNetV1 38.96 22.29 44.50 91.27 80.48 160.64 90.35

SIWD 45.53 19.68 39.31 92.60 71.05 141.90 93.40

small target detection by aggregating a saliency detection
module with YOLOv5x. Specifically, it consists of two compo-
nents, namely feature extraction and saliency detection head.
The feature extraction section integrates shallow and deep
information from neck to capture more comprehensive feature
sets and then divided into two branches: one portion is directed
towards the saliency detection head to generate saliency map
and participate in the calculation of the joint loss, while the
other is passed back to the neck to guide the PAN to focus
on the small target area. Secondly, we devised a streamlined
implant module based on factorized convolution and dilated
convolution, termed SIWD, to establish an agile backbone net-
work. In our experiments, we conducted extensive evaluations
on six datasets and compared our approach with some state-of-
the-art methods. The experimental results substantiate that our
proposed method not only adeptly enhances the performance
of infrared small target detection, thereby mitigating false
alarms, but also notably diminishes parameter count and
computational complexity.
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