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Abstract: Cancer stem cells (CSCs) account for 0.01 to 2% of the total tumor mass; however, they
play a key role in tumor progression, metastasis and resistance to current cancer therapies. The
generation and maintenance of CSCs are usually linked to the epithelial–mesenchymal transition
(EMT), a dynamic process involved in reprogramming cancer cells towards a more aggressive and
motile phenotype with increased stemness potential. Cells that undergo an EMT process have shown
to be more resistant to conventional chemo/radiotherapies. In this context, aldehyde dehydrogenase
(ALDH) enzymes, known for their role in the cellular detoxification of aldehydes and enhancement
of cell survival, are often upregulated in cancer cells, promoting their resistance to conventional
cancer treatments. Indeed, high ALDH levels have become a hallmark biomarker of CSCs and are
often used to isolate this sub-population from the more abundant cancer cell populations. Herein, we
isolated human breast cancer epithelial cells with higher ALDH abundance (ALDHHigh) and com-
pared them to those with low ALDH abundance (ALDHLow). ALDHHigh sub-populations exhibited
more characteristic EMT biomarkers by adopting a more mesenchymal phenotype with increased
stemness and enhanced migratory potential. Furthermore, ALDHHigh sub-populations displayed
elevated senescent markers. Moreover, these cells also demonstrated higher levels of mitochon-
dria DNA/mass, as well as greater mitochondrial and glycolytic metabolic function. Conversely,
ALDHLow sub-populations showed a higher efficiency of mammosphere/colony formation and an
increased proliferative capacity. Therefore, we demonstrated that these ALDH sub-populations have
distinct characteristics, underscoring their role in EMT, the formation of tumors and the mechanisms
of metastasis.

Keywords: cancer stem cells; EMT; aldehyde dehydrogenase; cell senescence; metabolic reprogramming;
mtDNA

1. Introduction

The cancer stem cell (CSC) hypothesis proclaiming that tumors are sustained by a
small number of cells with stemness properties is increasingly adopted as a model for
tumor development, metastasis and resistance to therapy. Currently, breast cancer remains
one of the most common cancer-related mortalities worldwide [1]. Cancer stem cells (CSCs)
constitute approximately 0.01 to 2% of the total tumor mass [1,2]. Nevertheless, they are
believed to be the main culprits for the inefficiency of current cancer therapies and have
shown to be highly resistant to conventional chemo/radiotherapy strategies. In addition,
an increasing amount of evidence has demonstrated their significant implication in the
progression and metastasis of breast cancer tumors [3,4].
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The epithelial–mesenchymal transition (EMT) is a dynamic process highly involved in
cancer progression via reprogramming epithelial cells towards a more mesenchymal-like
phenotype with increased stemness [5,6]. Interestingly, CSCs undertaking the EMT process
are shown to exhibit increased CD44 expression and a high activity of aldehyde dehydro-
genase (ALDH) enzymes, two biomarkers known for their high correlation with CSCs in
breast cancer [7,8]. CD44, a hyaluronic acid transmembrane glycoprotein overexpressed by
CSCs, is known for regulating the adhesion, survival, migration and motility of cancer cells.
This promotes their escape or resistance to the effects of current drug/radiation therapeutic
approaches and potentiates relapses and the metastasis of breast tumors [9,10]. ALDHs
are a group of enzymes responsible for oxidizing aldehydes via Nicotinamide adenine
dinucleotide phosphate (NADP)-dependent mechanisms and play a role in protecting cells
against the deleterious effects of toxication and oxidative stress [11,12]. However, these
cell-protective characteristics of ALDHs are key contributors to the resistance of tumor
cells of various cancers to chemotherapeutic drugs. Therefore, high ALDH activity has
become a hallmark characteristic of CSCs and is associated with their enhanced stemness,
metastatic, migratory and invasive potential [12,13]. Consequently, the isolation of can-
cer cells with high ALDH levels has become a widely used marker for identifying CSC
populations [14,15].

Another key biomarker associated with the EMT process is vimentin, a common
marker of mesenchymal stem cells (MSCs) [16]. Vimentin is a cytoskeletal protein involved
in focal adhesion for the extracellular attachment, migration, motility and overall structural
support of cells [16,17]. CD44+/ALDHHigh cancer cells were shown to exhibit activated
vimentin, correlating with enhanced cell plasticity and tumorigenicity. Furthermore, cells
that adopted a mesenchymal phenotype through the EMT process and expressed high
levels of vimentin were shown to display significant metabolic reprogramming [7,18,19].
Therefore, these EMT biomarkers and metabolic reprogramming changes are believed to
be important contributors to the therapeutic escape of CSCs [20,21].

While CSC markers have been well established and are known to be highly resistant to
conventional cancer therapy, much is still unknown about those that survive and develop
therapy-induced senescence. It has been shown that cells treated with Adriamycin, an
anthracycline antibiotic used in chemotherapy, or radiotherapy could be induced into a
senescent phenotype with enhanced stemness and ALDH activity [22,23]. However, the
physiological consequence of elevated ALDH levels in CSCs is poorly understood. In
this study, we segregated MDA-MB-231 epithelial cancer stem cells into ALDHLow and
ALDHHigh sub-populations. These ALDH sub-populations demonstrated significantly dis-
tinct EMT properties including vimentin levels, stemness, metabolic activity, proliferation
and migration. Moreover, differences in the colony/mammosphere formation capacity, cell
cycle and cell senescence were also observed between these sub-populations. Our results
reveal that while ALDHHigh sub-populations possess increased cell plasticity and migratory
behavior and higher levels of senescence markers compared to ALDHlow sub-populations,
they displayed a lower proliferative capacity.

2. Materials and Methods
2.1. Cell Culture

Breast cancer epithelial cells MDA-MB-231, MCF7 and MDA-MB-468 were obtained
commercially from the American Type Culture Collection (ATCC). Cells were cultured in
Dulbecco’s Modified Eagle Medium (DMEM; Gibco, 41966029, USA) supplemented with
10% fetal bovine serum (FBS; Gibco, 10082-147, USA), 1X Glutamax (Gibco, 35050-061, USA)
and 1% Penicillin–Streptomycin (Sigma-Aldrich, P0781, Poole, UK). Cells were maintained
at 37 ◦C in a humidified air incubator containing carbon dioxide (5%). When cells reached
≃80% confluency, they were trypsinized, harvested, washed and used for experiments or
passaged for further expansion.
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2.2. FACS for Aldehyde Dehydrogenase (ALDH)-High and -Low Sub-Populations

MDA-MB-231 cells were sorted via Florescence-Associated Cell Sorting (FACS) using
an ALDEFLUOR™ Kit (Stem Cell Technologies, 01700, Vancouver, BC, Canada). Cells were
stained with the ALDEFLUOR™ Kit according to the manufacturer’s recommendations
and then sorted using a Sony LE-SH800S Cell Sorter for cells displaying the 5% lowest
fluorescence intensity (ALDHLow) and the 5% highest fluorescence intensity (ALDHHigh).
The sub-populations were then analyzed via flow cytometry and various microplate assays
and imaging techniques for characterization (Figure 1).
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Figure 1. Schematics of cell sorting method with ALDEFLUOR™ Kit and subsequent experiments
conducted to analyze differences in ALDHLow and ALDHHigh sub-populations.

2.3. Lentiviral Transduction and FACS of Vimentin-Transfected Cells

MDA-MB-231 cells were transfected with RFP-Vimentin (Puro) Lentiviral particles
(GeneTarget Inc, LVP1340-R, Abingdon, UK) according to the manufacturer’s protocol.
After viral transduction, cell lines were selected with puromycin for two weeks. Thereafter,
cells were sorted via FACS using the Sony LE-SH800S Cell Sorter for cells displaying the
5% lowest fluorescence intensity (VimentinLow) and the 5% highest fluorescence intensity
(VimentinHigh). The sub-populations were then stained with the ALDEFLUOR™ Kit
according to the manufacturer’s recommendations and analyzed via flow cytometry to
determine the percentage of ALDH-positive cells within each sub-population.

2.4. Vimentin Analysis via Immunofluorescence Imaging and Flow Cytometry

Once sorted, cells were either seeded on 24-well plates at a density of 100,000 cells/well
for immunofluorescence imaging or collected in cell pellets for flow cytometry analysis.
Cells cultured on 24-well plates were fixed with 4% paraformaldehyde (PFA) 24 h post-
sorting and permeabilized with 0.2% Triton X-100 prior to being blocked in 1% bovine
serum albumin (BSA) for 1 h. Thereafter, cells were incubated with Vimentin primary
Antibody V9 (AMSBIO, SC-6260, Cambridge, MA, USA) for 1h at RT and conjugated
with an Alexa Fluor 660 anti-mouse secondary antibody (Invitrogen, A11012, Carlsbad,
CA, USA) incubated for 1h at RT thereafter. Hoechst 33342, Trihydrochloride, Trihydrate
(Invitrogen, H3570, Carlsbad, CA, USA) was counterstained to show nuclei. Cell pellets
collected post-sorting were stained live with BioTracker™ TiY Vimentin Live Cell Dye
(Sigma-Aldrich, SCT059, Saint Louis, MO, USA) for flow cytometry analysis and vimentin
quantification using an Attune™ NxT flow cytometer (ThermoFisher Scientific, Waltham,
MA, USA).
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2.5. Immunofluorescence Imaging of mtDNA

Post-sorting, cells were seeded on 24-well plates for immunofluorescence imaging and
fixed and permeabilized as detailed above. Thereafter, cells were blocked with 3% BSA for
45 min at RT and subsequently incubated with AC-30-10 mtDNA primary antibody (Progen,
690014, Heidelberg, Germany) for 1h at RT. The primary antibody was then conjugated
with an Alexa Fluor 594 anti-mouse secondary antibody (Invitrogen, A11005, Carlsbad, CA,
USA) incubated for 1h at RT and counterstained with Hoechst 33342 to show nuclei.

2.6. ATP Assay Using Cell-Titer-Glo 2.0

Cells sorted for ALDHLow and ALDHHigh sub-populations were seeded in 96-well
plates at a density of 10,000 cells/well in DMEM supplemented with 10% FBS, 1X Glutmax
and 1% Penicillin–Streptomycin. Cell-Titer-Glo 2.0 Reagent from Promega (G9242, Madison,
WI, USA) was added to the culture media, and cells were incubated at 37 ◦C in a humidified
air incubator containing carbon dioxide (5%) for 15 min. To quantify ATP, Luminescence
content was evaluated using a Varioskan™ LUX plate reader (ThermoFisher Scientific,
Waltham, MA, USA).

2.7. Flow Cytometry Analysis of Stemness Markers

After FACS, ALDHLow and ALDHHigh sub-populations were fixed with PFA 4% and
stained for epithelial–mesenchymal transition (EMT)/MSC-associated stem markers (CD44,
CD73, CD90, CD105) or pluripotent markers (OCT 4, SOX 2 and NANOG). Cells were
washed and resuspended in 1% BSA PBS and analyzed via flow cytometry using the
Attune™ NxT Flow Cytometer (ThermoFisher Scientific, Waltham, MA, USA). A list of all
the antibodies used is displayed in Figure S1. SOX 2 unconjugated antibody was conjugated
with an Alexa Fluor 594 anti-rabbit secondary antibody (Invitrogen, A11012, Carlsbad,
CA, USA).

2.8. Seahorse XFe-96 Metabolic Flux Analysis

Extracellular acidification rates (ECARs) and real-time oxygen consumption rates
(OCRs) for ALDH-expressing MDA-MB-231 sub-populations were determined using a
Seahorse Extracellular Flux (XFe96) analyzer (Seahorse Bioscience, North Billerica, MA,
USA). For analysis, 30,000 cells/well were seeded after sorting in XFe-96-well plates and
incubated at 37 ◦C in a humidified air incubator containing carbon dioxide (5%) for 24 h.
Thereafter, cells were maintained in 175 µL/well of XF assay media at 37 ◦C, in a non-CO2
incubator for 1 h. During the incubation period, 5 µL of 80 mM glucose, 9 µM oligomycin
and 1 M 2-deoxyglucose (for ECAR measurement) or 10 µM oligomycin, 9 µM FCCP, 10 µM
Rotenone and 10 µM antimycin A (for OCR measurement) were loaded in XF assay media
into the injection ports in the XFe-96 sensor cartridge. Measurements were normalized
to account for cell density by assessing the fluorescence intensity of cell nuclei stained
with Hoechst 33342, Trihydrochloride, Trihydrate (Invitrogen, H3570, Carlsbad, CA, USA).
Fluorescence was measured by the Varioskan™ LUX plate reader at an excitation/emission
of 355/460. All experiments were performed three times independently. Data sets were
analyzed by XFe-96 software (version 2.6.3.5).

2.9. Mammosphere Formation

Post-sorting, single-cell suspensions were seeded in 6-well plates under non-adherent
conditions at a density of 500 cells/cm2. Tissue culture plates were previously coated
with Poly 2-hydroxyethyl methacrylate (poly-HEMA, Sigma-Aldrich, P3932, Germany)
to generate non-adherent surfaces, and cells were cultured in mammosphere medium
consisting of the following: DMEM F12 (Gibco, 21041-025, Billings, MT, USA), 20ng/ml
B27 (Gibco, 17504-044, USA) 20 ng/mL EGF (Peprotech, AF-100-15, Cranbury, NJ, USA)
and 1% Penicillin–Streptomycin. Cells were grown for 7 days and maintained at 37 ◦C in a
humidified air incubator containing carbon dioxide (5%). After incubation, mammospheres
greater than 50 µm were counted using a graticule.
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2.10. Colony Formation

After sorting, single-cell suspensions were seeded in 6-well tissue culture plates at
a density of 25 cells/cm2. Cells were cultured in DMEM supplemented with 10% FBS,
1X Glutmax and 1% Penicillin–Streptomycin. Cells were grown for 14 days and maintained
at 37 ◦C in a humidified air incubator containing carbon dioxide (5%). Media were replaced
once after the first 7 days with fresh media. After 14 days, colonies were fixed with
100% methanol at 4 ◦C for 30 min and stained with 0.5% Crystal Violet for 10 min at RT.
Stained cell colonies in each well were counted, and the results were representative of three
independent experiments.

2.11. Lipofuscin Analysis for Cell Senescence

Post-sorting, ALDH-expressing sub-populations were analyzed for lipofuscin via
immunofluorescence imaging and flow cytometry. To image cells, cells were seeded
onto coverslips and incubated for 36 h prior to fixing with PFA 4%. Immunostaining
was performed according to PAN-Biotech UK Ltd. (Wimborne, UK)’s instructions. Cells
were washed with Ethanol prior to staining with SenTraGor™ and thereafter with the
fluorescent-labeled secondary antibody Anti-biotin Fluorescein (Vector Laboratories, SA-
5001-1, Newark, CA, USA). The coverslips were then mounted onto microscope slides
by VECTASHIELD® Antifade Mounting Medium with DAPI (H-1200), and images were
taken with an EVOS FL Auto 2 microscope (ThermoFisher Scientific, Waltham, MA, USA).
For flow cytometry analysis, cell pellets were collected after FACS and fixed with PFA
4%. Pellets were then stained in tubes using the same manufacturer’s (PAN-Biotech UK
Ltd.’s) instructions detailed above and analyzed using the Attune™ NxT Flow Cytometer
(ThermoFisher Scientific, Waltham, MA, USA).

2.12. β-Galactosidase Analysis for Cell Senescence

The detection and analysis of β-galactosidase for ALDHLow- and ALDHHigh-sorted
MDA-MB-231 sub-populations were conducted using a Senescence β-Galactosidase Stain-
ing Kit (Cell Signaling Technology, 9860, Danvers, MA, USA) for imaging and a CellEvent™
Senescence Green Flow Cytometry Assay Kit (ThermoFisher Scientific, C10840, Waltham,
MA, USA) for flow cytometry analysis. The Senescence β-Galactosidase Staining Kit was
used according to the manufacturer’s instructions, and imaging was conducted using
the EVOS FL Auto 2 microscope (ThermoFisher Scientific, Waltham, MA, USA). For flow
cytometry analysis, cells were first fixed in pellets with PFA 4% and thereafter stained
with the CellEvent™ Senescence Green Flow Cytometry Assay Kit per the manufacturer’s
instructions. Thereafter, cells were analyzed using the Attune™ NxT Flow Cytometer
(ThermoFisher Scientific, Waltham, MA, USA).

2.13. Cell Cycle Analysis

Post-sorting, cells were stained with propidium iodide using a Muse® Cell Cycle
Kit (Luminex, MCH100106, Seattle, WT, USA). Staining was performed according to the
manufacturer’s instructions, and cells were analyzed via flow cytometry with the Attune™
NxT Flow Cytometer (ThermoFisher Scientific, Waltham, MA, USA).

2.14. Scratch Assay to Evaluate Cell Migration

Prior to sorting, Culture-Insert 2 Well inserts from Ibidi (81176, Fitchburg, WI, USA)
were placed and prepared in 12-well plates. Thereafter, cells were sorted for ALDHLow

and ALDHHigh sub-populations and seeded in the inserts at a cell density of 500,000 cells
per insert. Cells were cultured in DMEM supplemented with 10% FBS, 1X Glutmax and
1% Penicillin–Streptomycin and allowed to adhere and grow overnight. Thereafter, inserts
were removed, and the gaps of cell-free areas were measured at different time-points (0 h,
4 h, 8 h, 16 h, 24 h).
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2.15. Sulphorhodamine B Assay

After FACS, the protein content of MDA-MB-231 ALDHLow and ALDHHigh sub-
populations was assessed via a sulphorhodamine (SRB) assay. Cells were fixed with
10% trichloroacetic acid (TCA) for 1 h in the cold and dried overnight at RT. Cells were then
incubated with SRB for 15 min, washed with 1% acetic acid and air-dried for at least 3 h or
overnight. Lastly, protein-bound dye was dissolved in a 10 mM Tris pH 8.8 solution, and
absorbance was read using the Varioskan™ LUX plate reader (Thermo Fisher Scientific,
USA) at 562 nm.

2.16. Measurement of Lysosomal Mass

Post-sorting, the lysosomal mass of ALDHLow and ALDHHigh sub-populations was
measured using LysoTracker™ Deep Red (Thermo Fisher Scientific, L12492, USA). Cells
were collected as pellets and stained live with LysoTracker™ Deep Red. Fluorescence
intensity was then analyzed via flow cytometry analysis using the Attune ™ NxT Flow
Cytometer (ThermoFisher Scientific, USA).

2.17. RNA, DNA and qPCR

RNA was extracted using a Monarch Total RNA Miniprep Kit (New England Biolabs,
Ipswich, MA, USA) following the manufacturer’s instructions for cultured mammalian
cells, and samples were diluted to a final concentration of 20 ng/µL. DNA extractions
were performed using a Monarch® Genomic DNA Purification Kit (New England Biolabs)
for cell pellets of 1 × 106 cells. DNA was subsequently diluted to a final concentration of
5 ng/µL. The relative mitochondrial DNA (mt-DNA) copy number was obtained using
a Relative Human Mitochondrial DNA Copy Number Quantification qPCR Assay Kit
(ScienCell, Carlsbad, CA, USA). Briefly, the 10 µL reaction contained the following: 5 µL
Reaction MasterMix, 1 µL primers (10 µM, Fwd + Rv mixed), 1 µL of DNA (5 ng) and 2.7 µL
water. qPCRs were performed in triplicate, and three biological repeats were analyzed
for each condition. qPCRs were performed in a StepOnePlus™ Real-Time PCR System
(Applied Biosystems, Waltham, MA, USA) with conditions as follows: 95 ◦C for 10 min,
followed by 32 cycles of 95 ◦C for 20 s, 52 ◦C for 20 s and 72 ◦C for 45 s. The relative mtDNA
levels were calculated using the ∆∆CT method [24].

A Luna Universal One-Step RT-qPCR Kit (New England Biolabs) was used for RT-
qPCRs. Briefly, the 10 µL reaction contained the following: 5 µL Reaction MasterMix, 0.5 µL
EnzymeMix, 0.4 µL primers (10 µM, Fwd + Rv mixed), 1 µL of RNA (20 ng) and 3.1 µL
water. RT-qPCRs were performed in triplicate, and three biological repeats were analyzed
for each condition. RT-qPCRs were performed in a StepOnePlus™ Real-Time PCR System
(Applied Biosystems) with conditions as follows: 55 ◦C for 10 min and 95 ◦C for 1 min,
followed by 45 cycles of 95 ◦C for 10 s and 60 ◦C for 30 s. The cycle threshold (Ct) value
was calculated for each sample and normalized to GAPDH. The relative expression levels
were calculated using the ∆∆CT method [24]. Primer sequences and melting curves for all
the primers used are displayed in Figure S2.

2.18. RNAseq Analysis

Total RNA was purified using a Monarch® Total RNA Miniprep Kit (New England
Biolabs) following the manufacturer’s instructions. Novogene’s (Novogene (UK) Company
Limited, Cambridge, UK) RNA sequencing services were used for all mRNA sequencing.
Briefly, an mRNA library was generated from total RNA, quantified and sequenced using
the Illumina NovaSeq 6000 platform (Illumina, San Diego, CA, USA). Clean data were
obtained from raw reads, and all downstream analyses were based on clean data. A ref-
erence genome index was built using Hisat2 v2.0.5. Differential expression analysis was
completed using DESeq2, and p-values were adjusted using Benjamini and Hochberg’s
approach for controlling the false discovery rate. Genes with an adjusted p-value ≤ 0.05
found by DESeq2 were assigned as differentially expressed. Enrichment analyses were
completed using the clusterProfiler R package (version 4.14.4) to test the statistical enrich-
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ment of differential expression genes in the GO, KEGG, Reactome and DO databases. The
Dataset for RNAseq analysis is publicly available via the Harvard Dataverse online data
repository (https://doi.org/10.7910/DVN/LRFZWI (accessed on 9 December 2024)).

2.19. Azithromycin Treatment

ALDHHigh/Low sub-populations sorted using FACS, a heterogenous unsorted popula-
tion of MDA-MB-231, hTERT-BJ1 human immortalized fibroblast and MRC-5 human lung
fibroblast cells were plated into 96-well plates (6000 cells/well) for 2 days before treatment.
Azithromycin (PHR1088-1G, Merck Life Science UK Ltd., London, UK) or vehicle (DMSO)
was added to the plates for 6 days. After incubation, the 96-well plates were washed with
PBS and incubated with Hoechst 33342, Trihydrochloride, Trihydrate (Invitrogen, H3570,
Carlsbad, CA, USA) for 30 min then read with a plate reader at an excitation/emission of
355/460 nm. Values then were normalized to control data, and all treatments were repeated
three times unless stated otherwise.

2.20. Statistical Analysis

Data were analyzed using GraphPad Prism software (GraphPad Software Inc. Version
9.3.1, San Diego, CA, USA) and Microsoft Excel (Microsoft Corporation, Redmond, WT,
USA). Statistical significance was determined using Student’s t test or an ANOVA test if
more than two groups were compared. Data are shown as the mean± SEM unless stated
otherwise. All experiments were performed at least three times independently, with three
or more technical replicates for each experimental condition tested, unless stated otherwise.
Values of p < 0.05 were considered significant, where * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001
and **** p ≤ 0.0001. p > 0.05 was considered not significant (ns).

3. Results

3.1. ALDHHigh Sub-Populations Present with Different Morphologies and Increased Levels of
Vimentin as Compared to ALDHLow Cells

Over the years, studies have observed differences in the cell size and stemness of
cancer cells with contrasting results being reported [25,26]. The average dimension of an
epithelial cell (~10–17 µm) is smaller than that of an MSC (~15–30 µm) [27–29]. Given
that the EMT process commonly associated with CSCs drives their differentiation into a
more mesenchymal phenotype, this might highly influence these cells to adopt a larger
size. In our study, MDA-MB-231 cells were categorized for their expression of ALDH using
FACS analysis (Figure 1). Cells were sorted for the 5% lowest fluorescence intensity and 5%
highest fluorescence intensity to identify the ALDHLow and ALDHHigh sub-populations,
respectively. Cells sorted for high levels of ALDH (Figure 2A) displayed a greater cell
size as measured by their FSC-A electrical signal as compared to cells with low ALDH
levels (Figure 2B,C). This morphological characteristic was also observed in MDA-MB-468
cells sorted for their levels of ALDH (Figure S3). Interestingly, these cells with a higher
expression of ALDH, denominated as the ALDHHigh sub-population, also demonstrated
increased levels of vimentin (Figure 2D,E). In comparison, ALDHLow sub-populations not
only exhibited lower levels of vimentin, but their vimentin expression was also similar
to that seen in the MCF7 cell line, known for its low vimentin content (Figure 2E). To
further validate our results, MDA-MB-231 cells were transfected with a vimentin RFP
promoter, selected as VimentinHigh or VimentinLow sub-populations and evaluated for
ALDH expression. A higher frequency of ALDH-positive cells (41.106%) was observed
in the VimentinHigh-sorted cells compared to the VimentinLow sub-populations (12.380%)
(Figure 2F,G). In addition, our VimentinHigh sub-populations displayed a larger size than
VimentinLow cells, similarly to the size difference observed in ALDHHigh vs. ALDHLow cells
but to a lesser degree (Figure S4). Thus, these results suggest that cells exhibiting high levels
of ALDH adopted a mesenchymal phenotype or underwent an EMT process as compared
to ALDHLow sub-populations and potentially have an increased stemness potential.

https://doi.org/10.7910/DVN/LRFZWI
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Figure 2. Cells were sorted for the 5% lowest fluorescence intensity and 5% highest fluorescence
intensity to identify the ALDHLow and ALDHHigh sub-populations, respectively, of the heterogenous
MDA-MB-231 population (A). Cell size was measured using the median FSC-A for the ALDHHigh

sub-populations and the ALDHLow sub-populations (B,C). ALDHHigh sub-populations were also
shown to have higher protein levels of vimentin compared to ALDHLow and MCF7 cells when
measured via flow cytometry and visualized in immunofluorescence images (D,E). The percentage of
ALDH-positive cells measured via flow cytometry was observed to be higher in VimentinHigh-sorted
cells compared to VimentinLow-sorted cells (F,G). Experiments were performed at least 3 times
independently. Data significance is presented as * p ≤ 0.05, ** p ≤ 0.01 and *** p ≤ 0.001.

3.2. ALDHHigh Cells Were Shown to Possess a Mesenchymal Phenotype and Increased Markers
of Pluripotency

As mentioned above, various studies have demonstrated that CSCs are highly associ-
ated with the EMT process and thus are prone to adopting a more mesenchymal phenotype.
In the context of EMT, pluripotency markers such as Nanog and Oct 4 have been shown to
be involved in promoting EMT and the cell migration of breast CSCs [30–32]. By evaluating
the markers of the mesenchymal transition in ALDH-expressing CSCs, our data show that
ALDHHigh sub-populations exhibited higher levels of MSC markers, CD90 and CD105,
along with CD44, which is often associated with both MSCs and CSCs, as compared to
ALDHLow cells (Figure 3A). Pluripotency markers such as Nanog and Sox 2 were also
shown to be upregulated in ALDHHigh cells. However, other MSC/pluripotency markers
including CD73 and Oct 4 appeared to be similarly expressed in both ALDHHigh and
ALDHLow sub-populations (Figure 3B). These data further underscore the mesenchymal
transition potential of ALDHHigh CSCs.
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Figure 3. An increase in multiple MSC markers (CD90, CD015 and CD44) was observed via flow
cytometry (A). Pluripotent markers NANOG and Sox 2 were also observed to increase as analyzed by
flow cytometry (B). Experiments were performed at least 3 times independently. Data significance is
presented as * p ≤ 0.05, ** p ≤ 0.01 and *** p ≤ 0.001. Value p > 0.05 were considered not significant (ns).

3.3. ALDHLow Sub-Populations Are More Adept at Forming Mammospheres and Colonies

Various studies over the years have shown that cells with an increased expression of
ALDH or even just ALDH-positive cells have a greater capacity for stemness and an ability
to form mammospheres and colonies [19,33,34]. Thus, we assessed mammosphere/colony
formation in our CSCs. To our surprise, the results demonstrated an opposite correlation be-
tween the number of generated mammospheres/colonies and the levels of expressed ALDH.
ALDHLow cells were capable of forming almost a 2-fold higher frequency of mammospheres
after 7 days (40.00 ± 2.34) as compared to ALDHHigh sub-populations (21.22 ± 0.8678),
and their mammospheres were significantly larger (Figure 4A,B). A similar correlation
between low ALDH expression and a higher capacity to generate mammospheres was also
observed in MDA-MB-468 cells (ALDHLow vs. ALDHHigh cells) (Figure S5). MDA-MB-231
with low ALDH content also showed a greater capacity to generate colonies (21.67 ± 1.59
vs. 7.55 ± 0.60) with a 3-fold higher number of colonies than ALDHHigh sub-populations
after 14 days (Figure 4C,D).

3.4. ALDHHigh Cells Are Associated with Greater Expression of Senescence Markers

Cells that undergo senescence were initially thought to enter an irreversible cell cycle
arrest in the G1 phase. However, recent studies have shown that the JNK and p53-p21 sig-
naling pathways mediate the entry of senescent cells into a permanent G2/M arrest. These
cells are not only in a senescent state but also secrete pro-inflammatory cytokines/growth
factors [35–37]. In our study, a larger number of ALDHHigh MDA-MB-231 cells were in
the G2/M (34.40 ± 1.93%) and S phases (9.38 ± 1.43%) of the cell cycle as compared to
ALDHLow cells (8.93 ± 0.49% and 2.81 ± 0.48%, respectively). ALDHLow sub-populations
were shown to predominantly exist in the G0/G1 phase (88.25 ± 0.44%), whereas there were
significantly fewer ALDHHigh sub-populations in that phase (56.21 ± 3.33%) (Figure 5A).
Even larger differences in the number of cells present in the G2/M phase were observed
among the MDA-MB-468 ALDHHigh and ALDHLow cells (Figure S6). In the same line of
evidence, ALDHHigh MDA-MB-231 cells were also shown to exhibit a higher expression of
senescence markers. ALDHHigh sub-populations displayed ~2-fold and ~1.5-fold higher
content of β-galactosidase and lipofuscin, respectively, than ALDHLow cells (Figure 5B,C).
Furthermore, ALDHHigh MDA-MB-231 (Figure 5D,E) and MDA-MB-468 cells (Figure S7)
were shown to possess a larger lysosomal mass compared to their ALDHLow counterpart.
Given the inflammatory property of senescent cells, as demonstrated in various studies, we
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evaluated numerous inflammatory markers in the MDA-MB-231 sub-populations. Our data
showed that cells with high ALDH exhibited a greater gene expression of the toll-like recep-
tor 3 (TLR3), which has recently been shown to be linked to senescence [38–40] (Figure 5F).
However, TLR4 was downregulated in ALDHHigh MDA-MB-231 cells (Figure 5F). Interest-
ingly, the expression of the inflammatory markers Interleukin 6 (IL-6) and Interleukin 8 (IL-
8) was prominently upregulated in ALDHHigh sub-populations compared to ALDHLow

cells (Figure 5F). To further investigate the inflammatory profile of the ALDH-high popula-
tion, we performed RNAseq, carried out by Novogene (UK) Company Limited (Cambridge,
UK), on the ALDHHigh vs. low cells (n = 4 biological replicates). Differentially expressed
genes (DEGs) are included in Figure S8A. The top four upregulated differentially expressed
genes (DEGs), SAA2, UBE2C, CEMIP and ANXA8L1, have been associated with increased
inflammation, cancer progression, metastatic potential and overall poor survival outcomes
of various cancers including breast cancer [41–44]. DO and DisGeNet enrichment anal-
yses outlined associations with various infections/diseases (Figure S8B,C). Interestingly,
GO, KEGG and Reactome enrichment analyses highlighted a significant upregulation of
inflammatory-linked pathways, including inflammatory response (GO), cytokine–cytokine
receptor interaction (KEGG) and Interferon signaling (Reactome) in the ALDHHigh cells.
Taken together, these data suggest that increased levels of ALDH in MDA-MB-231 cells are
linked to a pro-inflammatory phenotype.
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Figure 4. ALDHLow MDA-MB-231 cells are more efficient at generating mammospheres and colonies.
Mammosphere assay demonstrated that ALDHLow sub-populations generated larger mammospheres
at greater quantity than ALDHHigh sub-populations (A,B). Similar results were observed in colony
assay by even greater degree (C,D). Experiments were performed at least 3 times independently. Data
significance is presented as ** p ≤ 0.01 and **** p ≤ 0.0001.

3.5. ALDHHigh Sub-Populations Have Larger Mitochondrial Mass and Are More
Metabolically Active

As previously mentioned, cancer cells that undertake EMT changes also go through
metabolic reprogramming. This metabolic rewriting in CSCs is believed to occur si-
multaneously with the EMT process and is associated with rapid ATP production and
a glycolytic phenotype while retaining functional mitochondria. These changes have
also been linked with enhanced cell migration ability and increased stemness [20,21].
In our study, ALDHHigh sub-populations demonstrated a larger mitochondrial mass
(~1.5-fold, Figure 6A,B) and a similar abundance of mitochondrial DNA (mt-
DNA) (Figure 6C,D) as compared to ALDHLow cells. Such increased mitochondrial mass
was correlated with increased ATP content in ALDHHigh sub-populations (Figure 6E).
ECAR measurements for assessing glycolytic function demonstrated that ALDHHigh
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cells exhibited increased glycolysis, glycolytic capacity and glycolytic reserve compared
to ALDHLow sub-populations (Figure 6F). OCR differences were also observed in the
two ALDH sub-populations, with ALDHHigh cells showing increased mitochondrial
respiration features and higher levels of ATP production of spare respiratory capacity
and basal OCRs (Figure 6G).
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Figure 5. ALDHHigh MDA-MB-231 cells display a more senescent phenotype than ALDHLow sub-
populations. A large segment of ALDHHigh cells were observed to be in the G2/M phase of the cell
cycle, while ALDHLow cells were predominantly observed to be in the G0/G1 phase, as analyzed
via flow cytometry (A). The senescent/aging markers β-galactosidase and lipofuscin were also
observed to be present at a higher degree in ALDHHigh sub-populations. Senescent/aging markers
were analyzed via flow cytometry, and a visual representation is displayed via microscopic imaging
(B,C). The lysosomal mass of ALDHHigh cells was also shown to be greater than that of ALDHLow

sub-populations, as measured by flow cytometry and visualized via the fluorescence imaging of
Lysotracker Deep Red (D,E). Senescence and inflammation genes measured using RT-qPCR were
also observed to be increased in ALDH-high populations (TLR3, IL-6 and IL-8) with the exception of
TLR4 (F). Experiments were performed at least 3 times independently. Data significance is presented
as * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 and **** p ≤ 0.0001.
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Figure 6. ALDHHigh MDA-MB-231 cells have greater mitochondrial mass and are more metabolically
active than ALDHLow sub-populations. Lysosomal mass was greater in ALDHHigh sub-populations
than ALDHLow sub-populations, as quantified with Lysotracker deep red via flow cytometry and
visualized via immunofluorescent imaging (A,B). ALDHHigh cells also had a higher abundance
of mitochondrial DNA, as measured via qPCR and visualized via immunofluorescence imaging
(C,D). ATP production measured using CellTiter-Glo® 2.0 (E) and glycolytic function and mito-
chondrial respiration parameters measured using Seahorse XFe-96 Metabolic Flux Analysis were
also significantly greater in ALDHHigh sub-populations (F,G). Experiments were performed at least
3 times independently. Data significance is presented as * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 and
**** p ≤ 0.0001.

3.6. ALDHHigh Cells Possess More Migratory Features, While ALDHLow Cells Are
More Proliferative

In order to assess the migration potential of cells, a scratch assay was performed on
the two ALDH sub-populations. ALDHHigh cells displayed a higher migration capacity,
with the initial gap created by the scratch being significantly repopulated by cells after 16 h
as compared to ALDHLow sub-populations. By 24 h, the gap in the layer of ALDHHigh

cells was almost entirely covered by cells (6.72 ± 0.79% cell-free area in ALDHHigh vs.
34.77 ± 2.41% in ALDHLow cells, Figure 7A,B). In addition to migration, another phe-
nomenon of cancer cells is increased proliferation. To evaluate the proliferative capacity of
our cells, we undertook an SRB assay, demonstrating that while ALDHHigh cells adopted a
more migratory phenotype, ALDHLow sub-populations exhibited a greater proliferative
potential. After an incubation period of 10 days, ALDHLow cells demonstrated a higher
rate of proliferation than ALDHHigh sub-populations (Figure 7D).
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Figure 7. ALDHHigh MDA-MB-231 cells display more migratory features, while ALDHLow sub-
populations are more proliferative. The percentage of cell-free area was significantly reduced in
ALDHHigh cells after 16 and 24 h compared to the ALDHLow sub-populations, as observed via
a scratch assay (A,B). ALDHHigh cells had a higher gene expression of MHC class I molecules
(HLA-A and HLA-C) compared to ALDHLow cells, with the exception of HLA-B (C). ALDHLow sub-
populations had greater proliferative ability after 10 days compared to ALDHHigh sub-populations, as
measured by SRB absorbance assay (D). Experiments were performed at least 3 times independently.
Data significance is presented as * p ≤ 0.05, ** p ≤ 0.01 and *** p ≤ 0.001. Value p > 0.05 were
considered not significant (ns).

Another feature of the tumorgenicity of cells is their expression of major histocompati-
bility complex (MHC) class I molecules. MHC class I molecules have immunosuppressive
features in MSCs, helping them to avoid natural killer cell-mediated cytotoxicity. However,
cancer cells demonstrate a downregulation of their MHC class I molecules, a feature associ-
ated with more aggressive tumorgenicity [45–47]. In this study, ALDHHigh cells exhibited a
high gene expression of MHC class I molecules (HLA-A and HLA-C), in concomitance with
their capacity to adopt a more mesenchymal phenotype compared to ALDHLow cells, as
demonstrated above (Figure 7C).

3.7. Azithromycin Shows Anti-Cancer Potential Against MDA-MB-231 Breast Cancer Cells
In Vitro

For decades, Azithromycin has become a widely used FDA-approved macrolide
antibiotic for treating various types of bacterial infections. However, in recent years,
several studies have shown that it possesses anti-cancer effects by targeting mitochondrial
activity and inhibiting the autophagy of multiple cancer cell lines [48,49]. In our study,
Azithromycin showed efficiency in targeting MDA-MD-231 cells, including both ALDHHigh

and ALDHLow sub-populations, as well as a heterogenous (unsorted) population of MDA-
MD-231 cells. The viability of MDA-MB-231 cells was reduced upon their treatment with
Azithromycin (for 6 days), even at a low concentration of 25 µM, as compared to hTERT
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BJ-1 or MRC-5 fibroblast cell lines. Higher concentrations of 50 µM, 100 µM and 200 µM of
Azithromycin demonstrated even more effects on MDA-MD-231 breast cancer cell lines vs.
fibroblasts (Figure 8A,B).
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Figure 8. ALDH-sorted MDA-MB-231 cells and unsorted heterogenous populations showed higher
sensitivity to Azithromycin than hTERT-BJ-1 or MRC-5 fibroblast cell lines. After 6 days, the cell via-
bility of MDA-MB-231 ALDH-sorted sub-populations and MDA-MB-231 heterogenous populations
significantly decreased and reached the lowest concentration (25 µM) compared to untreated controls
and continued to decrease further with higher concentrations of Azithromycin (A). The cell viability
of fibroblast cell lines hTERT-BJ-1 and MRC-5 remained similar to that of the control after 6 days of
Azithromycin treatment, with the exception of hTERT-BJ-1 cells, whose cell viability significantly
decreased at the highest concentration of 200 µM (B). Experiments were performed at least 3 times
independently. Data significance is presented as ** p ≤ 0.01 and *** p ≤ 0.001.

4. Discussion

In the present study, we demonstrated that high levels of ALDH in CSCs have a
positive correlation with CSCs’ potential to undertake the EMT process and adopt a mes-
enchymal phenotype. The sub-population of CSCs with high ALDH content possessed
increased levels of stemness markers and senescence characteristics. ALDHHigh cells also
demonstrated higher metabolic activity and migration potential. Conversely, ALDHLow

sub-populations displayed a greater proliferative ability and more efficiency in producing
mammospheres and colonies.

The EMT process has been notoriously associated with tumor initiation, metastasis
and therapeutic resistance. It is believed to be a key process in the differentiation of
epithelial cells into CSCs and considered a major driver of cancer progression [5,6]. To
distinguish CSCs in tumors, multiple biomarkers have been identified to differentiate them
from other cancer cells. One of these markers is ALDH, a group of enzymes responsible
for oxidizing aldehydes and removing toxins from cells to maintain their survival [12,13].
In this study, we demonstrated that CSCs can be selected from a heterogenous breast
cancer epithelial cell population using ALDH as a biomarker. Cells segregated for their
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high ALDH content (ALDHHigh) demonstrated an increased expression of pluripotency
markers (Nanog and Sox2), senescence characteristics (G2/M arrest, lysosomal mass, β-
galactosidase and lipofuscin expression) and MSCs markers (Vimentin, CD90, CD105),
underscoring their high potential for stemness and the mesenchymal transition, i.e., EMT,
compared to ALDHLow sub-populations.

Over the last few decades, MSCs have often been praised as favorable candidates for
various clinical applications, with studies demonstrating the safety of these applications.
This is mainly due to the immunomodulation features of MSCs via the expression of MHC
class I molecules which assist them in avoiding immune rejection by the host, protecting
them from natural killers [50,51]. However, in recent years, the clinical safety of using
MSCs has been disputed. Indeed, while some subsets of MSCs exhibit anti-tumorigenic
characteristics [52–54], other MSC sub-populations have been shown to contribute to
cancer development/progression by migrating into tumor sites and developing cancer-
initiating properties. They have been associated with immunosuppressive characteristics
and expanded more specifically in metastatic tumors [55]. Moreover, these MSC subsets
have been linked with senescence features or late passaging in culture and present an
altered immunophenotype from other MSCs, as well as higher OCRs [56,57]. In our
study, we showed that ALDHHigh cells not only seemed to possess more mesenchymal
phenotype characteristics but also displayed increased senescence. In recent years, it has
been discovered that cells resistant to chemo/radiotherapy can develop therapy-induced
senescence with increased stemness and ALDH expression. Furthermore, therapy-induced
senescent cells can acquire a senescence-associated secretory phenotype (SASP), which
can contribute to a pro-tumorigenic environment. These cells have been characterized by
increased lysosomal activity, including that of senescence-associated lysosomal enzyme
β-galactosidase and lysosomal lipoprotein aggregates like lipofuscin, and do not proliferate
or have low cell division potential. However, SASP cells have also been demonstrated
to remain metabolically active and secrete various biologically active substances such as
growth factors like vascular endothelial growth factor (VEGF), connective tissue growth
factor (CTGF) and insulin-like growth factor-binding proteins (IGFBPs). The secretion of
these agents can alter microenvironments to promote the active proliferation of neighboring
cells and is believed to play a critical role in tumor progression, metastasis, angiogenesis
and therapy resistance [58,59]. Furthermore, our data demonstrating the inflammatory
signature of our ALDHHigh CSCs are in accordance with those of previously described
studies outlining the capacity of CSCs to secrete the pro-inflammatory cytokines TLRs
(TLR3) and ILs (IL-6 and IL-8), and genes associated with cell aging and inflammation
were also upregulated in ALDHHigh sub-populations. In our study, TLR4 was surprisingly
downregulated in ALDHHigh cells. Indeed, the upregulation of TLR4 has been associated
with increased breast cancer metastasis and a high proliferative activity and cell senescence
of tumors. TLR4 is also known to be upregulated in cells secreting pro-inflammatory factors
such as IL-6 or IL-8 [60,61]. Our result showing that TLR4 was downregulated in ALDHHigh

cells contradicts the previously shown correlation of TLR4 with cancer development and
metastasis, suggesting that TLR4 may have a regulatory role in cancer development through
the modulation of cell proliferation and tumor growth, as opposed to cell migration or
metastasis. Although the study of the specific role of TLR4 is outside the scope of the
current study, determining the significance of TLR4 levels and the conflicting roles in tumor
progression opens up an interesting avenue for further investigation.

ALDHHigh sub-populations also displayed larger mitochondrial mass and activity
and showed a migratory phenotype, similarly to the tumorigenic MSC subsets detailed
above. Altogether, these findings suggest that the senescent/pro-tumorigenic MSC subsets
identified in various studies over the years can potentially be cancer epithelial cells that
have undergone the EMT process and adopted various MSC or MSC-like features like those
reported in this study.

To isolate CSCs, various studies have used CD44 and ALDH as key biomarkers. In-
deed, a high expression of ALDH and CD44 has often been associated with CSCs. The
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ALDEFLUOR™ kit used to isolate CSCs in this study has previously been shown to select
cells expressing high levels of ALDH1A1, ALDH3A1, ALDH1A3 and ALDH2 isoforms,
which are closely linked to breast cancer stem cells [62–64]. In line with our results shown
here, cells isolated using these biomarkers have been correlated with increased vimentin
expression and stemness potential [7,8,18]. Vimentin and ALDH expression has also been
linked to greater efficiency in producing mammospheres and colonies [9,19]. With respect
to this latter characteristic, our data, on the contrary, showed that ALDHHigh cells were
less efficient in generating mammospheres and colonies, despite overexpressing stemness
markers. ALDHLow sub-populations exhibited higher proliferative potential, which might
be a reason for their superior capacity at generating mammospheres and colonies in our
study. Another interesting characteristic observed in cancers and tumor cells is the altered
expression of MHC molecules, presenters of antigens to effector immune cells. MHC class
I molecules have been shown to be decreased in cancer cells as a mechanism of evading
the immune system to promote tumor progression, as well as migration/invasion [65,66].
However, in MSCs, in spite of evidence pointing to their low MHC content responsible
for their low immunogenicity, some studies have shown opposite results in that the high
expression of MHC class I in MSCs is usually associated with their survival against the
immune system, more specifically against natural killer cell cytotoxicity [46]. Interestingly,
our results herein are in line with this latter notion and demonstrated that CSCs with
high ALDH content, shown to have a mesenchymal phenotype, displayed an upregulated
expression of MHC class I genes compared to ALDHLow cells. As a further validation of
the invasiveness of our CSCs, very likely undertaking an EMT process, we outlined their
increased capacity to migrate. This contradicts recent studies related to the downregulation
of MHC class I genes in cancer cells and the immunoregulatory features of MSCs which
suggest that the expression of MHC class I genes is key to escaping the immunosurveil-
lance of natural killer cells [45–47,50]. This area needs further exploration to gain a more
conclusive understanding of the role of MHC class I molecules in the immunomodulation
of cancer cells and more specifically of CSCs and MSCs.

In this report, we also investigated the potential therapeutic effects of Azithromycin on
breast CSCs. Over the last few years, several studies have demonstrated that Azithromycin
possesses anti-cancer properties by targeting mitochondria and autophagy mechanisms in
tumor cells [48,49,67]. Azithromycin was shown to inhibit cell survival and the proliferation
of several cancer cell lines derived from breast (MCF-7), lung (A549) or colon cancer (SW480
and SW620) [49,67,68]. Our data further validate the therapeutic potential of this antibiotic
in tumors by demonstrating its anti-cancer effect on MDA-MB-231 cells, decreasing their
viability. Interestingly, Azithromycin is also known for its effect on the mesenchymal
transition of airway epithelial cells, a crucial process in the pathology of numerous airway
diseases, such as asthma, chronic obstructive pulmonary disease and lung cancer [69,70];
thus, its influence on the EMT process of CSCs is highly likely and should be more deeply
investigated in this context.

5. Limitations

While this study provides valuable insight into various aspects of ALDH in CSCs,
certain limitations of this research should be acknowledged. The reliance on in vitro models
does not fully replicate the in vivo environment, and various details of these findings may
not be fully translational in such a complex setting. CSCs demonstrate a variety of markers
across cancer cell types, as well as different forms of cancers. While we demonstrated
that the two different breast cancer cell lines used exhibit some of the same features when
sorted for their ALDH content, similar findings may vary when compared to cell lines
derived from other tumorigenic tissues. While it is promising that Azithromycin was
demonstrated to be able to target both ALDH sub-populations, the mechanisms behind
this must be investigated further. The results of this study should be reviewed, taking
these limitations into account, and additional studies are required to better understand
some of the mechanisms related to proliferation and enhanced mammosphere generation
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from ALDHLow sub-populations and the relationship that inflammation/senescence has
to ALDHHigh sub-populations. Future work should focus on better understanding these
mechanisms and identifying which ALDH isoforms are more highly expressed in these
sub-populations. Lastly, in vivo experiments should be conducted to validate the mes-
enchymal/migratory phenotype that ALDHHigh-sorted cells displayed and obtain a greater
understanding of their metastatic potential.

6. Conclusions

In summary, breast cancer stem cells expressing high ALDH demonstrated MSC-
like characteristics associated with EMT with enhanced stemness potential and migratory
ability. Furthermore, these cells exhibited increased levels of senescent biomarkers than
ALDHLow sub-populations, including β-galactosidase and lipofuscin; a larger lysosomal
mass; and upregulated inflammatory genes. Moreover, ALDHHigh sub-populations had a
greater expression of MHC class I molecules which are known to be important regulators of
immunogenicity. Nevertheless, ALDHLow sub-populations still demonstrated a higher ca-
pacity for proliferation and the generation of mammospheres and colonies than ALDHHigh

sub-populations. This study supports the fact that these ADLH sub-populations possess
significant differences, yet both can be targeted by Azithromycin in vitro at doses that are
not cytotoxic to multiple non-cancerous fibroblasts, opening up interesting avenues for
further investigation.
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