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Abstract 27 

Little is known about how zoonotic virus infections manifest in wildlife reservoirs. However, a 28 

common health consequence of enteric virus infections is gastrointestinal diseases following a 29 

shift in gut microbial composition. The sub-Saharan hipposiderid bat complex has recently 30 

emerged to host at least three coronaviruses (CoVs), with Hipposideros caffer D appearing 31 

particularly susceptible to Hibecovirus CoV-2B infection. In this study, we complement body 32 

condition and infection status data with information about the gut microbial community to 33 

understand the health impact of CoV infections in a wild bat population. Of the three CoVs, only 34 

infections with the distantly SARS-related Hibecovirus CoV-2B were associated with lower body 35 
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condition and altered the gut microbial diversity and composition. The gut microbial community 36 

of infected bats became progressively less diverse and more dissimilar with infection intensity, 37 

arguing for dysbiosis as per the Anna-Karenina principle. Putatively beneficial bacteria, such as 38 

from the genera Alistipes and Christensenella, decreased with infection intensity, while 39 

potentially pathogenic bacteria, namely Mycoplasma and Staphylococcus, increased. Infections 40 

with enterically replicating viruses may therefore cause changes in body condition and gut 41 

dysbiosis with potential negative health consequences even in virus reservoirs. We argue that 42 

high-resolution data on multiple health markers, ideally including microbiome information, will 43 

provide a more nuanced picture of bat disease ecology.  44 

 45 

Keywords: coronavirus, microbiome, Chiroptera, Anna-Karenina principle, Ghana.  46 
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Introduction 47 

A stable and diverse gut microbiome is widely understood to indicate host health [1–3] and 48 

determine host fitness [4–6]. Perturbations can lead to idiosyncratic and unstable configurations 49 

of the gut microbial community (i.e., dysbiosis following the Anna-Karenina principle: ‘all healthy 50 

microbiomes are similar; each dysbiotic microbiome is dysbiotic in its own way’) [2, 7], and 51 

impair metabolic and immunological functions provided by the gut microbiota [8–10]. A possible 52 

though not immediately visible health consequence of a virus infection is the reshuffling of the 53 

host-associated gut microbiota and gastrointestinal disease [11–13]. However, compared with 54 

humans or mice we know very little about how the microbiota of wildlife responds to viral 55 

challenges [14–17], and even less is known about how the microbiota of pathogen reservoir 56 

hosts copes with virus infections.  57 

Bats count among the best studied virus reservoirs albeit rarely showing signs of disease [18–58 

23]. Compared with the physiological and behavioral responses to infections (e.g., [24, 25]), our 59 

knowledge about how the gut microbial community of bats respond to infections is limited [26]. 60 

Their short gut transit times [27, 28] and their supposedly low level of phylosymbiosis [29, 30] 61 

even brought into question whether bats rely on their gut microbiota [31, 32]. However, the 62 

enlarged digestive area by villi in bats offers niches for microbiota in bats [33] and bat gut 63 

microbes are enriched in genes supporting nutrient acquisition [34–38] and immunity [39, 40]. 64 

Moreover, the study by Liu et al. (2022) attests to a potential role of bat gut microbiota in 65 

pathogen tolerance. The researchers transplanted the gut microbiota from wild Great 66 

Himalayan roundleaf bats (Hipposideros armiger) into antibiotic-treated mice, and found a rapid 67 

engagement with cytotoxic innate and adaptive immune pathways, culminating in tolerating a 68 

challenge with the influenza virus H1N1 [40]. By contrast, the microbiota shifted towards a 69 
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bacterial community dominated by pathogenic taxa in wild Jamaican fruit bats (Artibeus 70 

jamaicensis) infected with an enteric Astrovirus [41]. To date, the work by Wasimuddin and 71 

colleagues (2019) remains the only example to document gut microbial dysbiosis following a 72 

virus infection in wild bats, although this shift had no repercussions on host body condition. This 73 

paucity of studies investigating bat-microbiome-virus interactions greatly limits our 74 

understanding of the role of gut microbiota in resisting, tolerating and clearing virus infections.  75 

Coronaviruses (CoVs) count among the most diverse viral families discovered in bats globally 76 

with at least five now known to have crossed species boundaries and spilled over into humans 77 

causing mild to severe respiratory tract infections [21, 42, 43]. In humans and non-bat animal 78 

hosts, some of these viruses alter the composition of the gut microbial community [44–47], 79 

modulating the host’s immunological response to the infection [48]. Given that CoVs replicate 80 

enterically in bats [49], CoV infections could also feasibly alter their gut microbial community in 81 

bats. Cave-dwelling, sub-Saharan roundleaf bats (genus: Hipposideros), which form a diverse 82 

species complex [50], have recently emerged as ancestral hosts to the Alphacoronavirus HCoV-83 

229E, which causes mild cold symptoms in humans [43]. Furthermore, hipposiderids host at 84 

least two Betacoronaviruses, provisionally termed CoV-2B and CoV-2Bbasal [43, 51, 52]. 85 

Interestingly, the viruses show uneven infection patterns among the co-inhabiting Hipposideros 86 

species: CoV-229E is most prevalent among Hipposideros (H.) caffer C, whereas H. caffer D is 87 

likely the main reservoir host to both Betacoronaviruses [51]. Moreover, immune genes involved 88 

in adaptive immunity were associated with susceptibility of H. caffer D to either SARS-related 89 

Betacoronavirus [53]. Yet, knowledge about whether the body condition and gut microbiota of 90 

such reservoir species changes with CoV infection is lacking.  91 
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In this article, we explore the link between two host health markers, i.e., body condition and gut 92 

microbial community, and infections with either of three distinct CoVs. First, we assessed 93 

whether the body condition of Sundevall’s roundleaf bat (H. caffer D) infected with either of 94 

three distinct CoVs (i.e., the Hibecoviruses CoV-2B and CoV-2Bbasal and the Duvinacovirus CoV-95 

229E) declined. A change in body condition is an important health indicator in bats [54], 96 

although rarely reported so far (but see: [19, 23]). Second, we test whether the diversity and 97 

composition of the gut microbiota found in uninfected bats differed from that of bats positive 98 

for either of the three CoVs, and whether the change correlates with infection intensity. 99 

Because H. caffer D was suggested to be the main reservoir to both SARS-related 100 

Betacoronaviruses [51, 53], we hypothesize that only these infections affect body condition and 101 

microbiota. The hypothesis-driven approach and virus screening down to species level sets our 102 

work apart from previous research [41]. In addition, linking dysbiosis with infection intensity 103 

adds a quantifiable dimension to the Anna-Karenina principle [7]. We leverage virus infection 104 

and body condition information from 591 adult bats collected from five cave sites in Ghana 105 

between 2010 and 2012 and high quality 16S rRNA microbiome data from a subsample of 218 106 

bats (nuninfected=46; nCoV2B=41; nCoV2Bbasal=70; nCoV229E=61). Our results demonstrate that enterically 107 

replicating viruses can alter the body condition and gut microbial community even in virus 108 

reservoirs.   109 
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Material & Methods 110 

Sampling design 111 

Sampling protocols and methods were described in detail elsewhere [51]. Briefly, bats were 112 

captured at five different cave sites in central Ghana, West Africa: Buoyem 1 (N7°72’35.833” 113 

W1°98’79.167), Buoyem 2 (N7°72’38.056” W1°99’26.389), Forikrom (N7°58’97.5” 114 

W1°87’30.299), Kwamang 1 (N6°58’0.001” W1°16’0.001) and Kwamang 2 (N7°43’24.899” 115 

W1°59’16.501) over 12 sampling events spread evenly over the span of two years (September 116 

2010-August 2012). Each sampling event consisted of mist net trapping at the cave entrance one 117 

hour after dusk until dawn for two, non-consecutive nights. H. caffer D was identified 118 

molecularly by sequencing the cytb gene from 2mm wing punches collected at sampling [50, 51, 119 

53]. The species nomenclature of the H. caffer complex remains unresolved throughout the 120 

Afrotropics, but here we use H. caffer D, as an interim species name [50, 55]. Additionally, fecal 121 

pellets were collected from bats held individually in clean bags until defecation, and stored in 122 

RNAlater (Life Technologies, USA) at -80 °C for subsequent virus and microbiome screening [55]. 123 

Body mass (g) and forearm length (mm) were taken and used to calculate the body condition 124 

index (as body mass/forearm length) for non-pregnant adults. This relationship between body 125 

mass and forearm length can be used as proxy to estimate the impact of infections generally 126 

[54] and in bats in particular [23]. A higher body condition index implies bats have more fat 127 

reserves, possibly indicating superior health [26]. The Wildlife Division of the Forestry 128 

Commission of the Ministry of Lands, Forestry and Mines granted Research (A04957) and ethics 129 

permit (CHRPE49/09/CITES). 130 

 131 

Virus screening 132 
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Approximately 20mg of the fecal material was suspended in 500 µl RNAlater stabilizing solution 133 

(QIAGEN, Hilden, Germany) and homogenized via vortexing before extracting and purifying viral 134 

RNA with the MagNa Pure 96 system (Roche, Penzberg, Germany) [43, 56]. Elation volumes 135 

were set at 100 µl. Subsequently, a real-time reverse transcription-PCR assay was designed to 136 

detect several Alphacoronaviruses and Betacoronaviruses, as described previously [43, 52, 55, 137 

57]. In each PCR run, in vitro transcribed and photometrically quantified RNAs (IVTs), generated 138 

from TA-cloned periamplicons using the T7-driven MEGAscript (Life Technologies, Heidelberg, 139 

Germany), were used as positive controls and calibrators to ensure run-to-run consistency [51, 140 

58]. A total of four CoVs were described: A MERS-related Betacoronavirus termed 2C exclusively 141 

found in samples originating from Nycteris macrotis [55, 57], the Alphacoronavirus CoV-229E-142 

like as the closest known ancestral form to the HCoV-229E [43], and two distantly SARS-related 143 

Betacoronaviruses, named CoV-2B and CoV-2Bbasal [52, 55]. Genome-level analysis according to 144 

recent taxonomical amendments assigned both Betacoronaviruses to the subgenus Hibecovirus, 145 

which were previously included in the genus Sarbecovirus, and the Alphacoronavirus to the 146 

subgenus Duvinacovirus (author C.D., own unpublished observations). Our focal species H. caffer 147 

D hosts both Hibecoviruses and the Duvinacovirus CoV-229E-like [55]. Notably, H. caffer D is 148 

thought to be particularly susceptible to infections with the Hibecovirus 2B [53, 55], which hints 149 

at the species’ role as main reservoir to this virus. After viral screening, we recorded the 150 

infection status (as category, i.e., positive for CoV-229E-like, CoV-2B, or CoV-2Bbasal) and 151 

infection intensity estimated based on cycle threshold (CT) value for each sample. Low CT-values 152 

imply a more acute infection, and were previously found in H. caffer D infected with Hibecovirus 153 

CoV-2B compared with closely related hipposiderids [55]. 154 

 155 
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16S rRNA sequencing and bioinformatics 156 

A subset of 221 fecal samples representing each infection status with roughly similar sample 157 

sizes was chosen for 16S rRNA sequencing. Because of the confounding effect of co-infection 158 

[59], samples from bats with more than one virus infection were not included. Bacterial DNA 159 

was extracted from the fecal material as per instructions of the NucleoSpin Soil Kit (Macherey-160 

Nagel, Germany). This includes a bead-beating step to mechanically lyse bacterial cells during 161 

two 3-minute pulses with ceramic beads using the SpeedMill PLUS (Analytik Jena, Germany). 162 

After centrifugation, the supernatant was transferred to new collection tubes just prior to 163 

precipitation. We followed the protocol for the remaining steps. We included ten extraction 164 

blanks and six standardised communities (ZymoBIOMICS Microbial Community DNA Standard, 165 

Zymo Research, Germany). 166 

We amplified the V4 region of the 16S rRNA gene using the 515F-806R primer pair (Fwd: 5’-167 

GTGCCAGCMGCCGCGGTAA-3’; Rvs: 5’- GGACTACHVGGGTWTCTAAT-3’) [60] and added Illumina 168 

adaptor sequences using the Fluidigm Access Array for Illumina Sequencing (Access Array 169 

System for Illumina Sequencing Systems, © Standard Bio Tools, USA). Post purification 170 

(NucleoMag NGS clean-up and size select, Macherey-Nagel, Germany) and quantification 171 

(QuantiFluor dsDNA System, Promega, USA) the normalized pooled sample library was 172 

sequenced as paired-end run on the Illumina MiSeq platform at the Institute for Human 173 

Genetics, University Hospital of Bonn. A total of nine PCR controls were included. 174 

The reads were processed with the DADA2 plug-in in QIIME 2 (v2021.8.0, Bolyen et al., 2019), 175 

removing primers, denoising reads, detecting and removing chimeras, merging paired-end 176 

reads, and differentiating between single amino acid sequence variants (ASVs, Callahan et al., 177 

2016). ASVs were then assigned their taxonomy using SILVA (v138) as reference database [63]. 178 
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ASVs unassigned at the phylum level or identified to originate from chloroplast or mitochondrial 179 

sequences were excluded from subsequent analyses. An unrooted, phylogenetic tree was build 180 

using Mafft [64] and FastTree [65]. The tree was rooted in Dendroscope [66] using an archaeon 181 

sequence (accession number: KU656649) as the outgroup, which was later removed. Metadata 182 

including each sample’s sex, age, location, infection status, the CT-value of the respective 183 

infection and sampling period, the taxonomy and ASV counts, and the phylogenetic tree were 184 

imported into the Rstudio interface of R (v4.3.2, R Core Team, 2022) using the ‘phyloseq’ 185 

package (v1.46.0, McMurdie & Holmes, 2013). All sample processing and statistical analyses 186 

were performed in Rstudio.  187 

We first confirmed the community composition of the six standardized microbial community 188 

references, which showed no large deviation in amplification across the extraction runs from the 189 

expected community composition (Supplementary Figure 1). Next, we pruned unassigned ASVs 190 

at the phylum level, ASVs with fewer than 10 reads and phyla with fewer than 0.3% total reads 191 

across all samples leaving us with 4,852 ASVs from an original of 10,975. Employing the 192 

prevalence-based contamination identification functions from the ‘decontam’ R package (v1.16) 193 

with the default P*-threshold set to 0.1 [69], we identified a possible 163 taxa (3.3%) from the 194 

10 extraction blanks and 165 taxa (3.4%) from the 9 PCR blanks. These taxa were removed. 195 

Finally, the decontaminated phyloseq object contained 4,531 taxa compiled from 7,161,284 196 

reads. We plotted alpha-diversity rarefaction curves for each sample with the rarecurve function 197 

from the ‘vegan’ R package (v2.6-4, Oksanen et al., 2022). Based on the curves (Supplementary 198 

Figure 2), two fecal samples below a sequencing depth of 5000 reads were eliminated from 199 

downstream analyses (including all controls) and one samples missing age information. Hence, a 200 
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total of 218 high-quality fecal samples with on average 32,849 reads (±11,198 standard 201 

deviation; range: 8,815-62,295 reads) remained. 202 

 203 

Statistical analysis  204 

Log-transformed body condition was compared using a linear mixed effect model including 205 

sampling location, host sex and infection status while accounting for capture period as random 206 

effect on 591 adult H. caffer D. Post-hoc pairwise comparisons were performed with the 207 

‘lmerTest’ package (v.3.1-3, Kuznetsova et al., 2017). The analysis was repeated for body mass, 208 

which yielded similar results [72].  209 

Alpha-diversity metrics (i.e., Observed ASVs, Shannon, and Faith’s Phylogenetic diversity) were 210 

calculated employing the ‘phyloseq’ (v1.46.0, McMurdie & Holmes, 2013) and ‘picante’ package 211 

(v1.8.2, Kembel et al., 2010) for samples rarefied to the sequencing depth of the sample with 212 

the lowest reads (i.e., 8815 reads, Supplementary Figure 2, Schloss, 2023; Weiss et al., 2017). 213 

While observed ASVs measures actual bacterial ASV richness, Shannon diversity index also 214 

accounts for evenness, and Faith’s Phylogenetic diversity considers abundance and phylogenetic 215 

proximity between ASVs. The effect of sampling locations, host sex, host age and CoV infection 216 

status on each metric was then estimated using a linear mixed effect model with capture period 217 

as random effect. The observed ASV richness was log-transformed, and Shannon diversity index 218 

and Faith’s Phylogenetic Diversity were square-rooted to meet normality assumption. 219 

Subsequently, we assessed whether each alpha-diversity index correlated with infection 220 

intensity (measured as CT-value). 221 

To assess inter-sample differences, we first calculated unweighted and weighted Unifrac-222 

distances as microbial beta-diversity indices on the rarefied data agglomerated to genus level. 223 
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Both distances take phylogenetic distance between ASVs into account, but whereas weighted 224 

Unifrac considers reads as proxy for ASV abundance, and, thus, represents the structure of a 225 

microbial community, unweighted Unifrac treats ASVs as either absent or present and, hence, 226 

epitomizes the composition of a microbial community. We used each index separately as 227 

response variable in a PERMANOVA to determine changes in centroid position associated with 228 

sampling location, host sex, host age and CoV infection status and PERMUtest to assess 229 

differences in distance to centroid. Following from this, we extracted the unweighted and 230 

weighted distances as matrix from all infected samples and calculated the average distance to 231 

other samples in the same infection category. The average distance, therefore, denotes how 232 

dissimilar a particular sample is from others. Finally, we correlated the average distance 233 

between samples with infection intensity (measured as CT-value). 234 

In order to understand which bacterial genera differed between infection status, we used joint-235 

species distribution modelling. Compared with traditional abundance-based analyses (e.g., 236 

ANCOM), joint species distribution models incorporate correlations between bacterial taxa 237 

when predicting their abundance with respect to the explanatory variable [76]. Since taxonomic 238 

databases remain biased towards identifying microbial taxa from common model organisms, the 239 

taxonomic resolution for wildlife gut microbiota at the species level is lacking [77, 78]. As to 240 

avoid spurious results, we agglomerated reads at the genus level and restricted our analysis to 241 

genera with a prevalence >50% (i.e., common core, Risely, 2020). The abundance was centered 242 

log-transformed (clr, Quinn et al., 2019). Finally, we constructed a generalized linear latent 243 

variable model (GLLVM) using the ‘gllvm’ package [76]. We evaluated multivariate microbial 244 

abundance data using the joint model with the same model structure as for testing alpha- and 245 

beta-diversity, meaning that sampling location, host age, sex and infection status, were kept as 246 
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main explanatory variables and capture period was used as random effect. Additionally, we 247 

accounted for sequencing depth and specified a negative binomial distribution for our response 248 

variable.  249 

For those genera that were identified to occur more or less frequent in samples from bats 250 

infected with Hibecovirus CoV-2B, we wanted to ascertain whether their abundance was linked 251 

to infection intensity when compared to uninfected bats. In other words, we aimed to 252 

understand whether there is a linear or non-linear relationship with CT-value. We constructed 253 

generalised additive models with the clr-transformed abundances (i.e., reads) as response and 254 

sampling location, sex and age as categorical explanatory variables. The Hibecovirus 2B CT-value 255 

was included as smooth term. Sequencing depth was included as smooth term as way to control 256 

for differences in sequencing performance between samples. Model fit was assessed using 257 

gam.check() function of the ‘mgcv’ package [81] and we visualized the model results using 258 

plot_smooths() from the ‘tidymv’ package [82]. 259 

 260 

Results 261 

Body condition 262 

Only individuals infected with the Hibecovirus CoV-2B had a significant lower body condition 263 

than uninfected bats and those infected with the Duvinacovirus CoV-229E-like (Table 1). Bats 264 

infected with the other Hibecovirus CoV-2Bbasal show a non-significant tendency for a lower 265 

body condition than uninfected bats (Table 1c). Sex had no significant influence on body 266 

condition, the highest body condition was found in the cave Forikrom.  267 

 268 

Gut microbial community composition 269 
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The gut microbial community was dominated by Bacillota (67.0%; formerly known as Firmicutes) 270 

represented mainly by members of bacterial class Bacilli, and Pseudomonadota (27.2%; formerly 271 

known as Proteobacteria) by enlarge ascribed to Gammaproteobacteria (Figure 1A). The 28 272 

common core genera (i.e., found in more than 50% of samples) made up 86.2% of reads per 273 

sample (±15.3% standard deviation) with 71.2% reads belonging to Lactococcus, Streptococcus, 274 

Enterococcus, Gemella and Paeniclostridium. Hierarchical clustering showed a weak similarity in 275 

the unrarefied gut microbial composition of samples with shared infection status (e.g., CoV-229E 276 

infected bats; Figure 1B).  277 

 278 

Alpha- and beta-diversity 279 

When comparing (rarefied) gut microbial alpha-diversity, infection status appeared as the single 280 

best explanatory variable (Supplementary Table 1). Post-hoc testing confirmed our prediction in 281 

that infections with Hibecovirus CoV-2B altered the gut microbial diversity (Figure 2A; 282 

Supplementary Figure 3A, B): microbial diversity was lower for bats infected with CoV-2B than 283 

for uninfected, Hibecovirus CoV-2Bbasal or Duvinacovirus CoV-229E-like-infected bats 284 

irrespective of the alpha-diversity index at hand (F3,214=4.40, p=0.005; Supplementary Table 1 for 285 

Observed ASVs and Shannon Diversity Index). This prompted us to test whether recorded rt-PCR 286 

cycle threshold (CT) values – a proxy for infection intensity – altered alpha-diversity. Indeed, the 287 

CT-values of bats infected with Hibecovirus CoV-2B were positively correlated with alpha-288 

diversity (Figure 2B). In other words, alpha-diversity declined with infection intensity. However, 289 

there was no change observed in alpha-diversity with infection intensity for infections caused by 290 

the other two CoVs (Figure 2C, D). 291 
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In addition, the centroids of the (rarefied) gut microbial beta-diversity in bats infected with CoVs 292 

shifted away from the centroid of uninfected bats analyzed (Figure 2E; unweighted Unifrac 293 

measuring composition: R2=0.043, F=3.32, p=0.001; weighted Unifrac measuring structure: 294 

R2=0.026, F=2.04, p=0.028; Supplementary Figure 4). The unweighted Unifrac distances 295 

calculated from samples of Duvinacovirus CoV-229E-like infected bats were on average less 296 

dispersed than uninfected and Hibecovirus CoV-2B infected bats, and Hibecovirus 2Bbasal 297 

infected bats were less dispersed than uninfected bats (Supplementary Figure 4). Samples did 298 

not differ in dispersion when beta-diversity was calculated as weighted Unifrac distances 299 

(Supplementary Figure 4). Host sex and age had no effect on the gut microbial composition and 300 

structure, whereas sampling location explained some variation in unweighted Unifrac 301 

dissimilarity between samples albeit less than infection status (Supplementary Table 2). 302 

Substituting the categorical infection status term once more with the continuous CT-value, we 303 

discovered that unweighted Unifrac distances negatively correlated with increased infection 304 

intensity only in Hibecovirus CoV-2B infected bats (Figure 2F-H), but had no effect on weighted 305 

Unifrac distances (Supplementary Table 3). 306 

 307 

Joint-species distribution modelling and generalized additive models 308 

For a more detailed understanding about which gut bacterial members varied between 309 

infections we then employed a joint species distribution model on the most common bacterial 310 

genera. Of the 28 core genera, ten varied significantly between uninfected and CoV-2B infected 311 

bats (Figure 3A; Supplementary Table 4). Among others, bacteria of the genus Mycoplasma and 312 

Staphylococcus were more abundant in the gut microbial community of CoV-2B infected bats. 313 

Christensellaceae R-7 group and Alistipes were less frequently detected in infected bats. By 314 
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contrast, fewer genera were associated with the other two CoV infections (Supplementary Table 315 

4). Noteworthy is that the abundance of Gemella declined in all infected bats. Few genera 316 

differed between locations or among the sexes, whereas several genera were found more or 317 

less abundant in subadults than in adults (Supplementary Figure 5). 318 

We predicted that several of these genera either decrease or increase with CoV-2B infection 319 

intensity, and constructed generalized additive models to test for linear and non-linear 320 

relationships with the CT-values. As expected, Mycoplasma and Staphylococcus were most 321 

frequent in samples from bats with the lowest CT-values and declined linearly in abundance in 322 

relation to uninfected bats (Figure 3B, C). Vice versa, members of the genera Christensellaceae 323 

R-7 group, Alistipes, and Candidatus Solerferrea, by comparison, were less prevalent at low CT-324 

values when compared to uninfected bats (Figure 3F, G, H; Supplementary Table 5). Other 325 

genera, including the fourth and fifth most common core genera Gemella and Paeniclostridium, 326 

showed no significant linear change with infection intensity (Figure 3E, I, Supplementary Table 327 

5). 328 

Discussion 329 

Bats host a variety of viruses, but few records of health repercussions exist [18, 83, 84]. We 330 

tested whether infections with either of three bat CoVs altered body condition and changed the 331 

gut microbial community in wild H. caffer D, and predicted to observe the most prominent 332 

responses to infection with the Hibecovirus CoV-2B, which this bat species seems susceptible to 333 

[51, 53]. Our observations yielded three insights: 1) The impact on body condition and the gut 334 

microbial community seems to be virus dependent with CoV-2B infections linked to reduced 335 

body condition and microbial diversity while the other Hibecovirus CoV-2Bbasal and the 336 

Duvinacovirus CoV-229E-like had no detectable effect; 2) the gut bacterial diversity declined and 337 
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the community composition became more dissimilar among the more severely CoV-2B infected 338 

bats; and 3) the gut microbial community of CoV-2B infected bats was enriched with potentially 339 

pathogenic bacterial genera and depauperated of health-associated taxa. These findings 340 

showcase how pathogen reservoirs, and specifically bats respond to virus infections but also 341 

underscore that responses are likely specific to the co-evolutionary relationship between host 342 

and virus.  343 

H. caffer D infected with the distantly SARS-related Hibecovirus CoV-2B presented a lower body 344 

condition, a reduced gut microbial diversity and a shift in gut microbial composition. A reduction 345 

in body condition was also seen in Hendra virus-positive Black flying foxes (Pteropus alecto, [19]) 346 

and CoV-positive Lyle’s flying foxes (P. lylei, [23]). This weight loss may not actually be caused by 347 

the infection but rather due to an increased probability of infection during periods of seasonal 348 

weight loss in flying foxes [24]. Seasonality in CoV shedding is also known from some studies but 349 

absent in others (e.g.,[85, 86]). Seasonal variation in insect prey could similarly explain changes 350 

in the gut microbiota [87]. However, we accounted for sample period statistically and would 351 

otherwise expect to see similar results for individuals infected with any of the other two CoVs, 352 

which tend to have overlapping periods of high prevalence [55]. This is not the case. Infections 353 

with the most recent ancestor to the HCoV-229E and the more basal Hibecovirus demonstrated 354 

no apparent differences in body condition or gut microbial community. Host responses to 355 

infection are therefore likely virus dependent. Furthermore, gut dysbiosis may not even 356 

translate into changes in body condition. For example, in Astrovirus infected Jamaican fruit bats 357 

body condition remained unaffected in spite of a reshuffling of the taxonomic gut microbial 358 

profile [41]. This raises the possibility that gut microbial dysbiosis is an invisible and often 359 

overlooked health marker in epidemiological studies on bats.  360 
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Unlike the previous work on the impact of Astrovirus infections on the gut microbial community 361 

[41], we demonstrated that alpha- and beta-diversity correlated with infection intensity. These 362 

findings imply a quantifiable dimension to the Anna-Karenina Principle [7] where viral infection 363 

intensity governs the level of gut microbial idiosyncrasy. During the latent infection with the 364 

simian immunodeficiency virus chimpanzees also show little to no differences in their gut 365 

microbial composition, but the gut microbial composition was severely changed in apes dying 366 

from an AIDS-like immunopathology [11]. The gut microbial community of patients with 367 

hepatitis C also progressively changes with disease severity [88], and hamsters and macaques 368 

clinically infected with SARS-CoV-2 showed trends towards higher gut microbial dissimilarity 369 

over the course of the disease [45, 46]. Thus, our finding that microbial diversity and 370 

dissimilarity scales with infection intensity is likely. Nevertheless, without repeated samples 371 

from the same bat we cannot be certain at which time point of the infection (i.e., pre-, post- or 372 

during CT-peak) the sample was taken [26], and the observation remains correlational. 373 

The gut microbial community consisted largely of Bacillota and Pseudomonadota, closely 374 

matching the composition of other insectivorous bats [29, 35, 89]. Yet, among the 28 core 375 

genera many showed varying abundances dependent on infection status. Several presumably 376 

beneficial bacteria belonging to the order of Bacteroidales and Clostridiales declined in 377 

abundance in CoV-2B infected bats. Members of these bacterial orders were depleted in 378 

patients with more severe Covid-19 symptoms compared to patients presenting only mild 379 

symptoms [90]. The abundance of several members of the Christensenellaceae R-7 group were 380 

also negatively correlated with SARS-CoV-2 viral load and inflammatory markers in macaques 381 

[46]. At the same time, potentially pathogenic bacteria become enriched in CoV-2B infected 382 

bats. The genus Mycoplasma, which features bacterial species pathogenic to humans (e.g. 383 

D
ow

nloaded from
 https://academ

ic.oup.com
/ism

ecom
m

un/advance-article/doi/10.1093/ism
eco/ycae154/7925803 by guest on 31 January 2025



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

 

 

19 

 

Mycoplasma pneumoniae), livestock (e.g., Mycoplasma bovis) and wild animals (e.g., 384 

Mycoplasma ovipneumoniae, [91]), was more abundant in CoV-2B positive bats and increased 385 

linearly with infection intensity. Mycoplasma was also common in Jamaican fruit bats infected 386 

with an Astrovirus [41, 92]. An open question remains whether such taxonomic changes render 387 

the gut microbial community functionally incapacitated, which is ideally addressed with multi-388 

omics.  389 

Our line of argument rests on the assumption that a more dysbiotic state marked by a loss of 390 

overall bacterial diversity, increased idiosyncrasy, and an enrichment of potentially pathogenic 391 

members at the expense of beneficial bacteria is a consequence of the Hibecovirus 2B infection. 392 

Equally feasible is that stress altered the gut microbial diversity initially and diminished its ability 393 

to withstand subsequent colonialization by Hibecovirus 2B and, hence, increase the hosts 394 

susceptibility to the virus (e.g., nutritional stress [93, 94], asynchronous co-infections [59] and 395 

human disturbance [95]). This explanation is challenged by the finding that infections with the 396 

Duvinacovirus and Hibecovirus 2Bbasal reach similar intensities, regardless of variations in the 397 

host’s gut microbial diversity. Without repeated sampling from bats as they progress through 398 

the infection and a functional profile of gut symbionts, we are unable to test whether the 399 

observed changes in the taxonomic memberships are due to the infection, or even whether they 400 

have ramifications for microbiome-mediated metabolic and immunological functions [17, 26, 401 

96], and ultimately, host fitness [5]. Ideally, future studies could non-invasively probe for 402 

physiological markers that play a role in mediating host immunity and communicating with gut 403 

bacteria (e.g., short chain fatty acids, IgA/IgG, mucin; [97, 98]), and new multi-omics approaches 404 

may provide a higher resolution of the diversity of pathogens infecting bats and other hosts [99, 405 

100]. 406 
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Taken together, our results demonstrate a link between infection with the Hibecovirus CoV-2B 407 

and changes in the gut microbial community of a putative virus reservoir. We provide evidence 408 

that the gut bacterial diversity declined and the community composition became more 409 

dissimilar among the more severely infected bats in line with expectations based on the Anna-410 

Karenina principle [7]. Furthermore, potentially pathogenic bacteria took hold, while common 411 

symbionts declined in the depauperated gut microbial community of acutely infected bats. If gut 412 

dysbiosis was a consequence of more severe infections, as we propose here, this might lead to 413 

poorer coverage of bacterial services hosts rely upon [13]. In turn, reservoir species, such as 414 

bats, may still suffer from viral infections via an phenotypically invisible health indicator – the 415 

microbiota [3, 31]. 416 

 417 

Data availability 418 

Metagenome data can be accessed from NCBI under BioProject no. PRJNA1096136. Meta data 419 

can be accessed from github 420 
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 704 

Table 1. Summary data, model results and pairwise comparisons of body condition (i.e., 705 

mass/forearm length; log-transformed) between cave location, sex and infection status in 706 

adult Hipposideros caffer D. Significant results are indicated in bold. 707 

 a) Body condition n BCI standard error 

uninfected 
 

104 0.218 0.002 

CoV-2B infected 
 

257 0.213 0.002 

CoV-2Bbasal infected 130 0.215 0.001 

CoV-229E-like infected 100 0.215 0.002 

  
   

  

b) Final model   dfs F-value p-value 

~ infection status 
 

3, 588 3.26 0.021 

~ location 
 

4, 588 8.92 <0.001 

~ sex 
 

1, 582 2.14 0.144 
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c) Pairwise comparison Estimate lower upper p-value 

uninfected vs 2B 0.030 0.008 0.052 0.008 

uninfected vs 2Bbasal 0.024 -0.002 0.049 0.066 

uninfected vs 229E 0.006 -0.020 0.032 0.648 

2B vs. 2Bbasal -0.006 -0.026 0.014 0.534 

2B vs. 229E -0.024 -0.045 -0.002 0.030 

2Bbasal vs. 229E -0.017 -0.041 0.006 1.450 

 708 

 709 

Figure 1. Microbiome composition and hierarchical clustering. A) The gut microbial 710 

composition of the 218 fecal samples from Hipposideros caffer D with known infection status B) 711 

loosely clustered by their (unrarefied) unweighted Unifrac distance-based dissimilarity. Infection 712 

status given as colored tiles (grey=uninfected; green=CoV-2Bbasal infected; blue=CoV-2B 713 

infected; yellow=CoV-229E infected). 714 
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 715 

Figure 2. Gut microbial alpha- and beta-diversity in relation to infection status and intensity. 716 

A) Differences in gut microbial alpha-diversity (i.e., Faith’s Phylogenetic diversity) based on 717 

infection status, and B-D) correlational link between alpha diversity and infection intensity of 718 

either CoV infection. E) Grouping of gut microbial composition based on beta-diversity (i.e., 719 

rarefied unweighted Unifrac distances calculated from reads agglomerated to bacterial genus), 720 

and F-H) correlational link between beta-diversity and infection intensity of either CoV infection. 721 

Asterix indicate level of significance: * < 0.05, ** < 0.01, *** <0.001. Colors reflect infection 722 

status (grey=uninfected; green=CoV-2Bbasal infected; blue=CoV-2B infected; yellow=CoV-229E 723 

infected) and larger points depict respective group centroids. 724 

 725 
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 726 

Figure 3. Variation in specific taxa abundance in relation to CoV infections. A) Generalized 727 

linear latent variable model indicating which common gut bacterial genera (prevalence > 0.5) 728 

are found significantly (* p < 0.05, dots colored red) more or less common in CoV-2B infected H. 729 

caffer D than in uninfected bats, and B-I) model estimates from generalized additive models 730 

demonstrating significant (in red) relationships between the abundance of bacterial genera and 731 

infection intensity. Abbreviations: Weissel=Weissella; Ureapla=Ureaplasma; 732 

Strepto=Streptococcus; Staphyl=Staphylococcus; Raoulti=Raoultibacter; Pectoba= 733 

Pectobacterium; Paenicl=Peniclostridium; Mycopla=Mycoplasma; Mycobac=Mycobacterium; 734 

Morgane=Morganella; Lactoco=Lactococcus; Lactoba=Lactobacillus;  735 

Lachnoc=Lachnoclostridium; Incerta=Incertae Sedis; Fusobac=Fusobacterium; 736 

Enteroc=Enterococcus; Dysgono=Dysgonomonas;; Clostri=Clostridium sensu stricto 1; 737 

Christe=Christensenellaceae R-7 group; Candida = Candidatus Soleaferrea; Bartone=Bartonella; 738 

Bactero=Bacteroides; Alistip=Alistipes; Acineto=Acinetobacter. 739 
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