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Abstract: High temperatures combined with heavy traffic load necessitate asphalt binder
modification to enhance its performance and durability. This research examines the effects
of polyphosphoric acid (PPA) on the physical, rheological, and chemical properties of
styrene-butadiene-styrene (SBS)-modified asphalt binders. Asphalt binders were prepared
by adding 3% SBS and varying PPA dosages of 0.3%, 0.6%, and 0.9% by weight of asphalt
cement. The experiment investigated the physical properties (penetration, softening point,
ductility, viscosity, and specific gravity), the rheological properties (the performance grad-
ing (PG), multi-stress creep recovery (MSCR), and linear amplitude sweep (LAS)), and
the microstructure and chemical composition of the modified asphalt binder. The results
demonstrated impressive improvements in rutting resistance and stiffness. Adding 3% SBS
and 0.9% PPA increased the rutting factor (G*/sin δ) by 165% and the high-temperature
PG from 74.2 ◦C to 93.6 ◦C compared to the virgin asphalt binder. However, the optimum
fatigue resistance was obtained by adding 0.3% PPA to the SBS asphalt binder. The mi-
crostructure and composition analysis revealed that using SBS and PPA together enhanced
binder homogeneity and reduced voids. Lastly, an Overall Desirability (OD) analysis
suggested the 3% SBS and 0.3% PPA to be the most effectively balanced formulation for the
demand of high temperature and heavy traffic conditions. However, further field studies
are recommended to validate the results under real-world conditions.

Keywords: polyphosphoric acid (PPA); SBS-modified asphalt; rheological properties;
MSCR; LAS

1. Introduction
High temperature and heavy traffic load present significant challenges to the per-

formance and durability of asphalt pavement infrastructures. These factors necessitate
continuous advancements in asphalt modification techniques to enhance its physical and
rheological properties, aiming to improve pavement resistance to rutting, cracking, and
aging under severe service conditions [1–3]. Among various modifiers, styrene-butadiene-
styrene (SBS) and polyphosphoric acid (PPA) have gained considerable attention due to
their unique and complementary properties [4]. SBS-modified binders have demonstrated
superior elasticity with a stable performance across a broader temperature range compared
to virgin asphalt binders [5]. Gao et al. [6] highlighted the effectiveness of SBS in reducing
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fatigue-induced cracking under repetitive loading. However, SBS-modified binders also
still face challenges, such as increased stiffness with aging, which deteriorates the flexibil-
ity of pavements [7–9]. In this situation, introducing complementary modifiers like PPA
into the SBS asphalt binder has attracted increasing interest. PPA, an inorganic acid, has
emerged as a promising additive to improve asphalt binder properties, particularly under
high-temperature conditions. Studies by Ramayya et al. [10] and Liang et al. [11] have
shown that PPA enhances binders’ stiffness, softening point, and resistance to permanent
deformation by altering binders’ chemical structure. Xiao et al. [12] reported that increasing
PPA content in asphalt binders resulted in higher rutting resistance, improved viscosity, and
greater elasticity. Moreover, PPA helps enhance the aging resistance of asphalt binders [6].
PPA is considered cost-effective, with only a very small amount of PPA needed to improve
the effectiveness of the properties of binders. With costs estimated at half or even less than
those of polymer modifiers, PPA has become a practical choice for large-scale applications,
where it has been adopted by many countries worldwide, such as the United States, where
16% of the asphalt is modified with PPA [13–15].

The synergistic combination of SBS and PPA has been explored in recent studies to
capitalize on their complementary effects. For example, Li et al. [16] found that combining
0.75% PPA with SBS improved the rutting resistance of asphalt binders by 120% compared
to SBS-modified binders alone. Wei et al. [17] noted that PPA dosages between 0.75% and
1.0% with 4% SBS balanced high-temperature stability with low-temperature flexibility,
optimizing binder resistance under diverse climatic conditions. Pamplona et al. [18] further
demonstrated that adding PPA improved recovery in the multi-stress creep recovery
(MSCR) test and enhanced fatigue resistance in the linear amplitude sweep (LAS) test.
These findings suggest that the combined use of SBS and PPA can address limitations
associated with individual modifiers, offering a promising pathway for improving asphalt
binder performance.

Despite these advances, there are still substantial gaps in understanding the combined
effects of PPA and SBS on asphalt binders, particularly in terms of their microstructural be-
havior and chemical interactions. While previous studies have examined their performance
at varying conditions, the mechanistic insights into how PPA structurally modifies SBS
within the asphalt matrix remain underexplored. This study aims to fill this gap by investi-
gating the progressive transformations in microstructure, phase interaction, and chemical
composition across different PPA dosages. Furthermore, the temperature-dependent effects
of PPA on asphalt properties, as noted by Pamplona et al. [18], underscore the necessity of
dosage optimization to achieve a balanced performance across diverse conditions. A key
aspect of this research is the integration of multi-criteria decision analysis to systematically
correlate binder modifications with performance enhancements. The study comprehen-
sively evaluates the synergistic effects of 3% SBS combined with varying PPA dosages
(0.3%, 0.6%, and 0.9% by weight of asphalt cement) on binder properties through detailed
physical, rheological, and chemical analyses.

The 3% SBS dosage, selected based on the average value used in Iraq, aligns with local
industry practices for enhancing binder performance under high annual temperatures and
increasing traffic loads [19,20]. The PPA used in this study has a 105% concentration of
H3PO4, chosen to mitigate risks such as foaming during mixing with asphalt cement [4]. By
integrating microstructural analysis with binder performance evaluations, this study aims
to develop an optimized asphalt formulation capable of withstanding extreme temperatures
and heavy traffic conditions.
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2. Raw Materials
2.1. Asphalt Cement

The asphalt cement used in this study was obtained from the Doura refinery, located
southwest of Baghdad. The physical properties of the asphalt cement, as shown in Table 1,
comply with the penetration grade of 40/50 in the specification [21]. The rheological
properties presented in Table 2 meet the Performance Grade (PG) 70-16 by the AASHTO
M320 standards.

Table 1. Physical properties of asphalt cement.

Test Unit ASTM
Designation Result Specification Limit [21]

Before the thin film oven test:
Ductility cm ASTM D113 110 Min. 100

Flashpoint ◦C ASTM D92 297 Min. 232
Softening point, ring, and ball. ◦C ASTM D36 50.1 ----

Specific gravity at 25 ◦C ---- ASTM D70 1.018 ----
Penetration at 25 ◦C, 100 gm, and 5 s 0.1 mm ASTM D5 49 40–50

Residue from thin film oven test
(ASTM D1754):

Ductility at 25 ◦C, 5 cm/min cm ASTM D113 60 Min. 25
Retained penetration, % of original % ASTM D5 62 Min. 55

Table 2. Rheological properties of asphalt cement.

Asphalt Cement Properties Temperature (◦C) Measurement Specification
(AASHTO M320-05)

Original

Flash Point (◦C) - 297 230 ◦C, min
Viscosity at 135 ◦C (Pa.s) - 741.2 3000 m Pa.s, max

DSR, G/sinδ at 10 rad/s (kPa)
64 3.4962

1.00 kPa, min70 1.6266
76 0.8114

RTFO Aged

Mass Loss (%) - 0.271 1%, max

DSR, G/sinδ at 10 rad/s (kPa)
64 7.1648

2.2 kPa, min70 3.1402
76 1.4623

PAV Aged
DSR, G.sinδ at 10 rad/s (kPa) 28 3499

5000 kPa, max25 5204
BBR, Creep Stiffness (MPa) −6 188 300 MPa, max

Slope m-value −6 0.371 0.3, min

2.2. Binder Modifiers (SBS and PPA)

SBS (commercial name, Kraton® D1192, Shanghai, China) is a linear block copolymer
consisting of hard polystyrene (styrene) end blocks and a soft, elastic polybutadiene middle
block [22,23], with a styrene content of 30% by mass. The properties of SBS are provided
in Table 3. Polyphosphoric acid (PPA), supplied by CDH (P) Ltd., is a liquid inorganic
compound with a H3PO4 equivalency of 105% and the chemical formula Hn+2PnO3n+1 [24].
The properties of PPA are summarized in Table 4. Figure 1 displays the physical state of
the two binder modifiers.
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Table 3. Properties of SBS.

Property Measurement

Specific Gravity 0.94
Bulk Density (25 ◦C, g/cm³) 0.4

Hardness, Shore A
(Measured on compression molded slabs) 70

Elongation at Break (%) 1000
Tensile Strength (MPa) 33
Solution Viscosity (Pa.s)

(Measured on 25% mass solution in toluene at 25 ◦C) 1.8

Total Styrene Mass Content (%) 30
Ashes (%) 0.31

Table 4. Properties of PPA.

Property Measurement

Physical State Liquid
Appearance Viscous liquid

Color Colorless, clear
Odor Odorless

Concentration of P2O5 (%) 85
Density at 25 ◦C (g/cm³) 1.93

Vapor Pressure at 25 ◦C (Pa) 2.66 × 10−6

Surface Tension (N/cm) 79 × 10−5

Specific Heat Capacity (J/g/◦C) 1.549
Boiling Point (◦C) 300

Viscosity at 25 ◦C (Pa.s) 0.84
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2.3. Blend Preparation Method

The asphalt modification followed a systematic approach, as described by Wei
et al. [17]. At first, the virgin asphalt was heated to 150 ± 1 ◦C until it was fully liquified.
Thereafter, the pre-weighed SBS particles, 3% by weight of the asphalt cement, were grad-
ually introduced into the asphalt at a rate of approximately 5 g/min and mixed using a
Jiffy head high-speed shear mixer at 4500 rpm for 30 min. The pre-measured PPA was
then added to the SBS-modified asphalt, and the mixture underwent additional high-speed
shear mixing for another 30 min. Figure 2 illustrates the mixing instrument and proce-
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dure. Finally, the prepared PPA and SBS-modified asphalt were poured into designated
containers for storage and subsequent testing.
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Figure 3. Overview of the experimental program.

3.1. Physical Tests

The penetration (at 25 ◦C) and softening point tests were conducted following ASTM
D5 and ASTM D36 standards, respectively, to evaluate the stiffness and thermal suscepti-
bility of the binders. The ductility test (at 25 ◦C) was performed following ASTM D113 to
measure the tensile properties and the maximum deformation (elongation) capacity until
break. Moreover, the rotational viscosity test (ASTM D4402) was used to evaluate the viscos-
ity at 135 ◦C, reflecting the binders’ workability. Also, the specific gravity was determined
according to ASTM D70 to assess the influence of modification on volumetric properties.
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3.2. Rheological Test

An oscillating shear test under high temperature was performed for unaged binders
using a dynamic shear rheometer (DSR) (Anton Paar - SmartPave 102e, as shown in
Figure 4). The testing procedure followed the AASHTO T315 standard, using a 25 mm
diameter plate and keeping a gap of 1 mm between the plate and the specimen. While
AASHTO T315 provides valuable insights into high-temperature performance, the low
shear strain level under high temperature cannot fully reflect binder behavior under broad
field conditions. To address this limitation, an additional multi-stress creep recovery
(MSCR) test and linear amplitude sweep (LAS) test was also performed.
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3.3. MSCR Test

The multi-stress creep recovery (MSCR) test was conducted in accordance with the
AASHTO T350 standard to evaluate the resistance of the rolling thin film oven (RTFO)-
conditioned asphalt binders to permanent deformation. The test was performed with DSR
using a 25 mm parallel plate with a 1 mm gap. The temperature was set at the high PG
temperature. The binder samples were subjected to a series of creep and recovery cycles at
two stress levels, i.e., 0.1 kPa and 3.2 kPa. In the test, samples were first subjected to the
0.1 kPa stress for 20 cycles, followed by an additional 10 cycles under 3.2 kPa, resulting in
30 cycles. Each cycle consisted of 1 s creep loading (stress τ) and immediately following
9 s recovery (rest). In total, the test lasted for 300 s. Figure 5 illustrates an example of an
MSCR test with three cycles of creeping stress of 0.1 kPa followed by another three cycles
of creep stress of 3.2 kPa. From the recorded strain history, we can work out the peak
strain (εp), recovered/elastic strain (εr), and non-recoverable/plastic strain (εnr) of each
cycle. Three other parameters were employed to characterize the viscoelastic behavior of
binders; they are the percent recovery (%R), non-recoverable creep compliance (Jnr), and
stress sensitivity (Jnr,diff), in terms of the definition equations below (Equations (1)–(3)).

%R =
εr

εp
× 100 (1)

Jnr =
εnr

τ
(2)
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Jnr =
εnr

τ
(3)
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3.4. LAS Test

The linear amplitude sweep (LAS) test was conducted to evaluate the fatigue resistance
of the modified asphalt binders under cyclic loading, following the AASHTO T391 standard.
The test was performed using the dynamic shear rheometer (DSR) at the intermediate
pavement temperature corresponding to the performance grade (PG) specified by AASHTO
M320. The binder samples were aged using the rolling thin-film oven (RTFOT, AASHTO
T240) and the pressure aging vessel (PAV, AASHTO R28) to simulate the aging in service.
The test was conducted using 8 mm parallel plates with a gap of 2 mm, as recommended by
AASHTO T315. The LAS test consists of two main stages: frequency sweep and amplitude
sweep. In the frequency sweep stage, a repetitive shear load of a constant amplitude of 0.1%
strain was applied across a range of frequencies from 0.2 to 30 Hz. The results were used to
calculate the undamaged material property parameter, α. In the amplitude sweep stage,
the repeated loads had a fixed frequency of 10 Hz, and meanwhile, the load amplitude
increased linearly by controlling the strain from 0% to 30%, given the cycles up to 3100 at
this test stage. Four key parameters—peak shear strain, peak shear stress, phase angle (δ),
and dynamic shear modulus (G*)—were recorded at a regular interval, 10 cycles, in both
stages. The viscoelastic continuum damage (VECD) model was applied to interpret the
LAS test results and predict fatigue life (Nf, as shown in Equation (4)) [25,26].

N f = A(γmax)
−B (4)

where γmax represents the maximum expected strain on the pavement, A indicates the
damage characteristics of the binder, and B describes the undamaged binder property
determined through amplitude sweep and frequency sweep tests, respectively.

3.5. Microstructure and Chemical Composition Tests

Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX),
and Fourier-Transform Infrared Spectroscopy (FTIR) were utilized to analyze the mi-
crostructural and compositional characteristics. Figure 6 shows the instruments. FTIR
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analysis was carried out using a BRUKER Alpha II device. SEM analysis was conducted at
a magnification level of 30,000.
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4. Results and Discussion
4.1. Physical Properties

Figures 7–11 illustrate the physical properties of the tested asphalt binders. Figure 7
shows that 3% SBS alone significantly reduces the penetration resistance by 30.61% of the
virgin asphalt binder (VA). Penetration further decreases with the addition of PPA, with
the PPA content increasing from 0.3% to 0.6% and then to 0.9%, but with a gradual slowed
reduction rate. The results indicate that both SBS and PPA help improve the stiffness of
binders, which agrees with what Li et al. [16] and Niu et al. [27] reported, where both
studies used softer grade asphalt (60/70) and different percentages of SBS and PPA. Figure 8
compares the softening point of binders, which shows an opposite trend to that in Figure 7,
where the 3% SBS addition gives a 14.17% increase in the softening point of the VA. With
the extra addition of the PPA, the softening point further increases with the increase in
the content of the PPA from 0.3 to 0.6 to 0.9%, but the rate of increase gradually slows
down. The results demonstrate that both SBS and PPA help enhance the thermal stability
of the binder. The results are comparable with those reported by Wei et al. [17], who used
two different penetration grades (60/70) and (80/90) asphalt and various percentages
of SBS and PPA. Figure 9 shows the measured ductility, where it can be seen that the
addition of 3% SBS alone increases flexibility by 18.18%. However, the PPA causes ductility
to decrease with its added content. The result is aligned with what was observed by Li
et al. [16] and Niu et al. [27], who conducted their tests at a lower temperature of 5 ◦C.
Figure 10 compares the measured rotational viscosity, where the results present a similar
trend as that of the penetration in Figure 7. The 3% SBS addition increases the viscosity
by 110.47% of the VA. The PPA addition generated a further increase of the viscosity in an
approximately linear trend with its added content but at a slowed-down rate. The result is
consistent with that reported by Hossain et al. [28] and Niu et al. [27]. Figure 11 compares
the specific gravity of all investigated binders, showing that SBS and PPA addition increases
the density of binders.
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4.2. Rheological Properties

Figure 12 presents the variations in two rheological properties, complex shear mod-
ulus (G*) and phase angle (δ), for all binders over a temperature range from 58 ◦C to
94 ◦C. The results show that adding 3% SBS significantly enhances the virgin asphalt
(VA) stiffness, particularly at lower temperatures, where an increase in G* is observed
compared to VA. However, at temperatures above approximately 80 ◦C, the effect of SBS
alone diminishes, indicating that while SBS enhances elasticity and stiffness, its effect is
temperature-dependent. The incorporation of PPA further improves the high-temperature
performance of the SBS-modified binders. The G* values increase progressively with
increasing PPA content (0.3%, 0.6%, and 0.9%), demonstrating improved stiffness and
resistance to deformation. Notably, the binder modified with 3% SBS and 0.9% PPA exhibits
the highest G* values across all tested temperatures, suggesting that the combination of SBS
and PPA provides a more thermally stable binder. However, the temperature sensitivity of
the modified binders varies, with VA showing the steepest decline in G*, indicating lower
resistance to temperature-induced softening. In contrast, SBS-modified binders with PPA
maintain higher G* values over a broader temperature range, confirming the ability of PPA
to enhance stiffness while stabilizing the binder at elevated temperatures.

The phase angle (δ) trends in Figure 12 further support the stiffening effect of SBS and
PPA. A lower δ value indicates a more elastic response, which improves rutting resistance.
Adding 3% SBS reduces δ compared to VA, signifying increased elasticity. Moreover,
incorporating PPA further decreases δ, particularly at lower temperatures, reinforcing
the positive influence of PPA in improving the elastic response of the binder. The binder
modified with 3% SBS and 0.9% PPA exhibits the lowest δ values across the temperature
range, confirming that higher PPA dosages contribute to enhanced elastic behavior and
delayed softening.
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Figure 13 compares the binders’ calculated rutting factor (G*/sin δ). The G*/sin δ

curves present a similar pattern as that of the G* curves in Figure 12. The binder VA exhibits
the lowest rutting resistance, which fails to meet the AASHTO M320 criterion of 1 kPa at
higher temperatures. In contrast, all the binders modified with 3% SBS and different PPA
percentages have improved higher G*/sin δ values at specific temperatures. Notably, the
results indicate that the binder with 3% SBS and 0.9% PPA improved the rutting resistance
compared with all other binders. It is also observed that the effective temperature range
extends when using the 3% SBS with an increasing content of PPA. The results are consistent
with the findings of other researchers (Li et al. [16], Wei et al. [17], Hossain et al. [28], and
Rossi et al. [5]).
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4.3. MSCR Results

Per the Superpave requirements, the MSCR test was conducted at 76 ◦C, correspond-
ing to the anticipated average 7-day maximum pavement temperature. Table 5 lists the
parametric results. It can be noticed that the non-recoverable creep compliance parameter,
Jnr, at both stress levels, 0.1 kPa and 3.2 kPa, decreases with the addition of modifiers and
the increase in the PPA content. Notably, the binder presents a significant decrease in the
Jnr values when PPA content increases from 0.6% to 0.9%. The lower the Jnr magnitude,
the better the rutting resistance. The stress sensitivity, Jnr,diff results also indicate that the
modifiers make the binder less sensitive to the applied load, i.e., the lower the Jnr,dif the less
the Jrn difference under different loads. The elastic recovery percentage (%R) represents
the proportion of strain recovered after unloading. The results show that the binder of
3% SBS and a higher PPA content possesses better elasticity. This characteristic is attributed
to the elastic property and molecular crosslink network of the SBS block in the modified
binder [29]. Meanwhile, adding PPA further improves the SBS block elasticity due to the
synergistic reactions between the two modifiers. Table 6 lists the grade classification of
binders and the specification in AASHTO M332. Referring to Tables 5 and 6, the 3% SBS
and 0.9% PPA binder can be classified as grade V, a high grade that meets the demands
for high-temperature and heavy-load applications, while the VA binder fails to meet the
lowest grade, S.

Table 5. MSCR parametric indices.

Asphalt Binder Jnr_0.1kPa (kPa−1) Jnr_3.2kPa (kPa−1) Jnr,diff (%) %R3.2 (%)

VA 3.3108 5.4661 65.1 0.22
3% SBS 3.1232 4.1976 34.4 0.57

3% SBS, 0.3% PPA 2.6378 3.4761 31.78 1.32
3% SBS, 0.6% PPA 2.4073 2.9906 24.23 3.55
3% SBS, 0.9% PPA 0.7049 0.8508 20.7 15.6

Table 6. AASHTO M332 pavement asphalt grades.

Paving Grade Test Temperature Requirements

S PG high temperature Jnr_3.2kPa ≤ 4.5.0 kPa, % R3.2kPa ≤ 75%
H PG high temperature Jnr_3.2kPa ≤ 2.0 kPa, % R3.2kPa ≤ 75%
V PG high temperature Jnr_3.2kPa ≤ 1.0 kPa, % R3.2kPa ≤ 75%
E PG high temperature Jnr_3.2kPa ≤ 0.5 kPa, % R3.2kPa ≤ 75%

Figure 14 shows the accumulated permanent strain through the MSCR tests. It can
be seen that the binder modifiers helped reduce the accumulated permanent deformation,
particularly the binder of 3% SBS and 0.9% PPA, which stands away with much-reduced
permanent deformation at all stages throughout the whole process. Moreover, all the MSCR
test results are in agreement with the findings by Cao et al. [30] and Rani et al. [31].

4.4. LAS Results

The fatigue resistance of the asphalt binders was assessed through LAS testing con-
ducted at 16 ◦C, an intermediate temperature condition. Figure 15 illustrates the tested
binders’ effective shear stress versus effective strain curves. The strain level at peak stress
serves as an indicator of material flexibility. The higher the strain levels, the more excellent
the resistance to fatigue damage. Additionally, the flatter the curve’s post-peak slope, the
more minor the accumulated fatigue damage. The results indicate that the SBS binder with
0.9% PPA has the highest effective shear stress. However, the SBS binder with 0.6% PPA
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shows the least accumulated fatigue damage. In general, all modified binders outperformed
the VA binder in terms of fatigue resistance and level of damage.
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The LAS results were further analyzed using the viscoelastic continuum damage
(VECD) model, which effectively models the complex fatigue behavior of asphalt binders.
Figure 16 illustrates the estimated fatigue life (Nf) vs the strain (γ) as calculated by
Equation (4). Table 7 compares the calculated fatigue life at two strain states, i.e., 2.5% and
5%, which reflects two pavement thickness situations, i.e., thick and thin, respectively.
The results show that the VA binder has the lowest fatigue life, while the SBS binder of
0.3% PPA achieved the highest fatigue of the two strains.
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Table 7. Fatigue life at two strain states.

Binder Type Strain Level (%) Nf

VA
2.5 4333
5.0 71

3% SBS
2.5 10,459
5.0 358

3% SBS, 0.3PPA
2.5 18,481
5.0 694

3% SBS, 0.6PPA
2.5 11,704
5.0 141

3% SBS, 0.9PPA
2.5 6639
5.0 107

The decline in the binder’s fatigue life at higher PPA dosages (0.6% and 0.9%) may
be explained by the fact that excessive PPA beyond 0.3% enhances stiffness, which trades
off flexibility to withstand repetitive cyclic loading. These findings are consistent with
previous similar studies [27,28] of other percentages.

4.5. Microstructure and Chemical Composition Analyses
4.5.1. EDX Analysis

The EDX analysis results are summarized in Table 8. The analysis focused on the key
elements, carbon (C), sulfur (S), oxygen (O), and phosphorus (P), to highlight the chemical
changes induced by the addition of SBS and PPA modifiers. The VA binder exhibits a
high carbon content (91 at.%, 79.16 wt.%), aligning with its hydrocarbon characteristic. It
also has a higher sulfur content (7.3% at.%, 17.14% wt.%). In addition, a small amount
of trace elements, such as aluminum (Al) and calcium (Ca), was also observed. With the
incorporation of 3% SBS, the carbon atomic content slightly decreased to 89%, reflecting the
partial replacement of hydrocarbons by the polymeric modifier. Oxygen content increased
slightly (2% at.%, 2.62% wt.%), likely introduced by the SBS composition. Significantly,
sulfur atomic content slightly decreased to 7% (18.21 wt.%), indicating minor chemical
interactions between the sulfur compounds in the binder and SBS.
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Table 8. EDX elemental composition of asphalt.

Sample Element at.% at.% Error wt.% wt.% Error

VA

C 91.00 0.60 79.16 0.52
Al 1.10 0.00 2.27 0.00
S 7.30 0.10 17.14 0.23

Ca 0.50 0.00 1.43 0.00

3% SBS

C 89.00 0.60 77.31 0.52
O 2.00 0.10 2.62 0.13
S 7.00 0.10 18.21 0.26

Ni 0.20 0.00 1.86 0.10

3% SBS 0.3% PPA

C 90.47 0.60 77.03 0.53
O 2.50 0.10 3.29 0.13
S 6.90 0.10 16.80 0.25
P 0.13 0.05 0.95 0.10

3% SBS 0.6% PPA

C 89.22 0.04 76.10 0.53
O 4.00 0.10 5.22 0.13
S 6.60 0.10 16.06 0.25
P 0.18 0.06 1.31 0.12

3% SBS 0.9% PPA

C 88.64 0.60 75.22 0.53
O 5.10 0.10 6.48 0.13
S 6.00 0.10 15.29 0.25
P 0.26 0.05 1.88 0.15

Including PPA alongside SBS led to further elemental changes, with an increase in the
phosphorus (P) content, reflecting the presence of PPA. The phosphorus content increased
progressively with higher PPA dosages, from 0.13 at.%(0.95 wt.%) at 0.3% PPA to 0.26 at.%
(1.88 wt.%) at 0.9% PPA. Simultaneously, oxygen content also increased proportionally,
reaching 5.1 at.% (6.48 wt.%) at the highest PPA dosage. This trend indicates increased
oxidation within the binder, likely due to chemical interactions between PPA and the
matrix. The sulfur content decreased gradually with the addition of PPA, dropping from
7 at.%(18.21 wt.%) in the 3% SBS sample to 6 at.%(15.29 wt.%) in the binder modified with
3% SBS and 0.9% PPA. This reduction suggests a redistribution or potential chemical
reaction involving sulfur during the modification process, which could contribute to
improved thermal and chemical stability.

The progressive increase in oxygen and phosphorus contents with higher PPA dosages
reflects the chemical contributions of PPA, which enhances oxidative stability and chemical
interaction within the binder matrix. The reduction in sulfur content with PPA addition may
indicate a shift in the binder’s chemical equilibrium, potentially enhancing its durability
under varying service conditions.

4.5.2. FTIR Results Analysis

The FTIR results, presented in Figure 17, provide valuable insights into the molecular
transformations occurring in asphalt binder upon modification with SBS and PPA. The
analysis is divided into five key zones based on wavenumber ranges. In Zone 1 (3200–
3700 cm−1), the hydroxyl (O–H) stretching region, a broad absorption band appears around
3430 cm−1, indicating the presence of hydroxyl or hydrogen-bonded functional groups.
This peak is relatively weak in VA, but with the addition of SBS, a slight increase in intensity
is observed, suggesting minor moisture absorption or weak hydrogen bonding interactions
introduced by the polymer. As PPA is incorporated, the peak becomes more pronounced,
particularly at 0.6% and 0.9% PPA, indicating a higher presence of phosphoryl-related
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functional groups (P=O) or hydroxyl functionalities generated through oxidation and
esterification reactions.
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In Zone 2 (2800–3000 cm−1), aliphatic C–H stretching vibrations dominate, with
two primary peaks at 2924 cm−1 (CH2 asymmetric stretch) and 2853 cm−1 (CH3 symmetric
stretch). These peaks are strong in VA and become more intense with SBS modification,
confirming the increased presence of aliphatic hydrocarbon chains contributed by the
polymer. However, when PPA is introduced, a gradual reduction in peak intensity is
observed, particularly at 0.6% and 0.9% PPA, suggesting chemical modifications in the
aliphatic structure, likely due to oxidation or polymer interactions. In Zone 3 (1550–
1750 cm−1), which includes carbonyl (C=O) and aromatic (C=C) stretching vibrations,
significant changes occur. The C=O stretching peak at 1702 cm−1, which is relatively
weak in VA, increases in intensity upon SBS addition, indicating oxidation effects or
potential interactions between the polymer and binder. As PPA content rises (0.3%, 0.6%,
and 0.9%), this peak intensifies further, suggesting the formation of ester bonds due to
esterification reactions promoted by PPA. Meanwhile, the C=C stretching peak at 1623 cm−1,
associated with the aromatic rings of asphalt, exhibits slight reductions in intensity with
PPA modification, indicating potential interactions with the aromatic structure. In Zone
4 (1000–1350 cm−1), the peaks correspond to sulfate (SO2), phosphate (P=O), and ester
(C–O–C) functionalities. The P=O stretching peak at 1311 cm−1, absent in VA, appears
and becomes increasingly pronounced with PPA addition, confirming the incorporation of
phosphate groups. Additionally, the C–O–C and S–C stretching peaks around 1160 cm−1

show noticeable intensity increases, suggesting esterification reactions and the formation
of sulfonated compounds, which modify the binder’s chemical structure.

In Zone 5 (below 1000 cm−1), characteristic peaks associated with polymeric structures
and functionalized asphalt components are present. The butadiene peak at 966 cm−1,
which appears prominently in SBS-modified asphalt, confirms the presence of polymer
units. However, as PPA content increases, this peak decreases in intensity, suggesting
possible interactions between PPA and butadiene units, leading to structural modifications
or polymer degradation. The styrene-related peaks at 874 cm−1 and 750 cm−1 also exhibit
intensity reductions, indicating potential alterations in the SBS polymer backbone due to
PPA addition.
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4.5.3. SEM Analysis

Figure 18 presents the SEM micrographs of all binders at a magnification of 30,000,
highlighting the microstructural evolution induced by SBS and PPA modification. The VA
binder (Figure 18a) exhibits a smooth and uniform matrix, indicative of its homogeneous
nature and minimal structural complexity. However, with the incorporation of 3% SBS
(Figure 18b), the binder’s microstructure becomes heterogeneous, with dispersed polymeric
domains forming an irregular, foam-like network. This microstructural transformation
is associated with the partial phase separation of SBS within the asphalt, contributing to
enhanced elasticity and improved deformation resistance.
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Figure 18. SEM images of: (a) AV, (b) 3% SBS, (c) 3% SBS + 0.3% PPA, (d) 3% SBS + 0.6% PPA, and
(e) 3% SBS + 0.9% PPA.
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Upon the addition of PPA, significant structural changes are observed. At 0.3% PPA
(Figure 18c), the polymeric domains become more fragmented and granular, suggesting
that PPA interacts with the SBS-modified binder by breaking down the foam-like net-
work into smaller, well-distributed polymeric clusters. This transformation aligns with
the known reaction mechanisms of PPA with asphalt functional groups, which enhance
polymer dispersion and binder stability. As the PPA content increases to 0.6% and 0.9%
(Figure 18d,e), the granular structures become progressively more compact, crosslinked,
and homogeneous. At 0.9% PPA, the polymer-modified binder forms densely packed,
agglomerated structures, signifying stronger chemical interactions between PPA, SBS, and
the asphalt matrix. This agglomeration likely results from the acid-induced reorganization
of asphaltenes and resins, promoting binder stiffness and rutting resistance. However,
excessive PPA content may increase localized rigidity, potentially affecting the flexibility
and fatigue resistance of the binder. These findings confirm that PPA not only alters the
dispersion of SBS within asphalt but also modifies the binder’s microstructural organiza-
tion, reinforcing its resistance to high-temperature deformation. The observed granular
refinement and structural densification further support the hypothesis that PPA enhances
the chemical interaction between SBS and the asphalt matrix, contributing to improved
performance properties.

5. Overall Desirability Analysis
Overall Desirability (OD) is a multi-criteria decision analysis method used to ascertain

optimal resolution against multiple objectives [32]. This study applied OD analysis to
evaluate and determine the most effective PPA level working with 3% SBS on the VA
modification. The analysis considers a range of criterial properties (X): penetration (X1),
softening point (X2), ductility (X3), the temperature for the unit rutting index (G*/sin
δ = 1 kPa) (X4), the non-recoverable creep compliance at 3.2 kPa (Jnr_3.2kPa) (X5), percentage
of recovery (%R) (X6), and the number of fatigue cycles to reach 2.5% strain (Nf) (X7). The
OD parameters can be normalized by either of two different approaches, i.e., the “larger-
the-better” following Equation (5) or the “smaller-the-better” following Equation (6).

x∗i (k) =
xi(k)− minxi

maxxi − minxi
(5)

x∗i (k) =
maxxi − xi(k)
maxxi − minxi

(6)

where i = 1, 2, . . ., m stands for the parameter id, m is the total number of the criterial
parameters; k = 1, 2, . . ., n stands for the modification id, n is the total number of the binder
modification types; maxxi is the maximum value of the ith parameter of all the binders from
VA to SBS and PPA modifications, and minxi is the minimum value of the ith parameter of
all binders.

Finally, the OD score is calculated in terms of Equation (7) for each modification type
or binder type:

γOD(k) = [x∗1(k)x∗1(k) . . . ..x∗m(k)]
1/m (7)

The higher the OD score, the more desirable the combination of all properties. Table 9
shows the OD parametric values and calculated OD scores. It is evident that the asphalt
binder modified with 3% SBS and 0.3% PPA achieves the highest OD score, reflecting
superior overall balanced performance characteristics across the evaluated indices.



J. Compos. Sci. 2025, 9, 78 20 of 22

Table 9. The original normalized values and OD of asphalt binders.

Test Parameter Binder Type VA 3% SBS 3% SBS,
0.3% PPA

3% SBS,
0.6% PPA

3% SBS,
0.9% PPA

Penetration, X1
(1/10 mm) Original Value (P) 49 34 30 27 25

Normalized Value (X1*) 0.000 0.625 0.792 0.917 1.000
Softening point, X2 (◦C) Original Value (SP) 50.1 57.2 58.5 59.7 60.5

Normalized Value (X2*) 0.000 0.683 0.808 0.923 1.000
Ductility, X3 (cm) Original Value 110 130 115 105 85

Normalized Value (X3*) 0.556 1.000 0.667 0.444 0.000
Rutting temp, X4 (◦C) Original Value 74.2 70.7 75.3 71.1 69.3

Normalized Value (X4*) 0.817 0.233 1.000 0.300 0.000
Jnr, X5 (kPa−1) Original Value 5.4661 4.1976 3.4761 2.9906 0.8508

Normalized Value (X5*) 0.000 0.275 0.431 0.536 1.000
% Recovery, X6 (%R) Original Value 0.22 0.57 1.32 3.55 15.6

Normalized Value (X6*) 0 0.023 0.072 0.217 1
Fatigue life, X7

(Nf, Cycles) Original Value 4333 10459 18481 11704 6639

Normalized Value (X7*) 0 0.433 1 0.521 0.163
Overall Desirability

(OD) 0 0.309 0.539 0.49 0

6. Conclusions
From the comprehensive reported study, the following main conclusions can be drawn

from what has been found:

1. This study provides new insights into the combined effects of SBS and PPA on the
physical properties of asphalt binders. While SBS alone enhances stiffness, adding
PPA further modifies the binder structure, resulting in a 20.8% increase in softening
point and a 48.9% reduction in penetration at 0.9% PPA. However, excessive PPA
content negatively impacted ductility, emphasizing the need for an optimized balance
to maintain flexibility.

2. The MSCR test demonstrated that the synergistic effect of SBS and PPA significantly
enhanced the binder’s rutting resistance, with Jnr3.2 reduced by 84.4% at 0.9% PPA, a
far greater improvement than SBS alone. Notably, the elastic recovery (%R) increased
by 70-fold compared to VA, confirming the modification’s effectiveness in high-traffic
applications. Unlike previous studies, this work quantitatively correlates the dosage-
dependent response of PPA on rutting performance, providing a refined approach to
binder optimization.

3. The LAS test revealed a 326% increase in fatigue life (Nf) at 0.3% PPA but a reduction
at 0.9%, demonstrating that excessive PPA may compromise fatigue resistance. These
findings highlight the trade-off between high-temperature performance and long-
term durability.

4. EDX analysis confirmed an increase in oxygen and phosphorus content with higher
PPA dosages, reflecting chemical modifications to the binder matrix. For instance,
oxygen content rose from 2% with 3% SBS to 5.1% with 0.9% PPA, while phosphorus
content increased from 0.13% at 0.3% PPA to 0.26% at 0.9% PPA. FTIR spectra indicated
the formation of new functional groups, such as P=O bonds, highlighting improved
rheological properties through chemical interactions.

5. The SEM analysis demonstrated the microstructural evolution of SBS-PPA-modified
binders. VA exhibited a smooth matrix, while the addition of 3% SBS resulted in
dispersed polymeric domains forming a foam-like structure. The incorporation of
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0.3% PPA refined this structure, reducing voids and enhancing polymer dispersion.
At higher PPA dosages (0.6% and 0.9%), the binder developed a more compact and
cross-linked network.

6. Based on the Overall Desirability (OD) analysis, the binder with 3% SBS and 0.3% PPA
achieved the highest OD score of 0.539, reflecting the best balance of properties across
all performance metrics, including penetration, softening point, ductility, rutting
resistance, elastic recovery, and fatigue life. This formulation is recommended as the
optimal modification level for SBS and PPA.

For the suggested optimum binder formation, further field studies are needed to
evaluate long-term performance under real-world conditions to assess the practical effect
of responding to traffic loads, environmental stresses, and aging.
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