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ORIGINAL ARTICLE

Piezoelectric transducer-assisted mass normalization of mode shapes in 
thin-walled structures

Seyed Morteza Hoseynia,b, Amirreza Aghakhanic, and Ipek Basdogana 

aMechanical Engineering Department, College of Engineering, Koc University, Istanbul, Turkey; bAcoustics Research Centre, University of 
Salford, Salford, UK; cInstitute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany 

ABSTRACT 
This paper introduces a robust and accurate, yet simple and straightforward technique for measur-
ing mass-normalization scale factor for each vibration mode of thin-walled structures using a 
piezoelectric transducer. The methodology relies on electromechanical impedance measurement 
and the charge frequency response function of a piezoelectric transducer attached to the structure 
which leads to the determination of the mass-normalized component of mode shape at the force 
location i.e. reference point. The scaling factor for each vibration mode is determined by compar-
ing the arbitrary mode shape with the mass-normalized one at the reference point.
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1. Introduction

Using vibrations to detect structural damage has become 
common in the field of structural health monitoring in 
recent years. This has led to significant research into 
practical modal analysis, as it offers an effective and cost- 
efficient approach [1, 2]. It involves the identification of any 
variations on structure’s modal parameters because any 
structural defect can alter the vibrational behavior of the 
system. One particularly promising approach is mode shape 
identification, which not only serves to detect the presence 
of damage but also facilitates discovering the specific loca-
tion of the defect by establishing a Damage Location 
Indicator using the curvatures of the normalized mode 
shape [3–5]. Damage characterization using modal identifi-
cation can be enhanced by artificial intelligence to determine 
not only the location but also the size of the damage on 
delaminated composite structures [6]. However, it is crucial 
to obtain the mass-normalized mode shape of the structure 
to ensure the accuracy and reliability of the analysis [7–9].

Avitabile [10] presented a thorough and detailed overview 
of various techniques employed in modal identification 
methods. Modal properties of a structure depend on the 
material and the geometry of the structure [11]. Modal iden-
tification refers to determining natural frequencies, modal 
damping, and mode shapes of the structure. This can be 
conducted with two different practical approaches. The 
availability of both input and output data leads to experi-
mental modal analysis (EMA) [12]. On the other hand, 
identification of modal parameters based on only the 

response of the structure refers to operational modal analysis 
(OMA). This approach is mostly used in large-scale struc-
tures where the source of the excitation is ambient vibration 
and difficult to be measured [12]. The response-based fre-
quency response function has been utilized to identify add-
itional poles of a structural system, aiding in structural 
analysis and localized diagnostics [13]. Modal analysis of 
rotating viscoelastic sandwich beams was investigated to 
explore the effects of rotation speed, thickness, core layer 
position, and shear modulus frequency dependence on 
dynamic characteristics under various boundary conditions 
[14]. An experimental modal analysis method has been pre-
sented for a plate structure using a roving inertial shaker. 
The superiority of this method to the roving hammer 
method was proved by determining higher number of 
modes with higher stability [15]. Experimental modal ana-
lysis of a single-link flexible manipulator have been investi-
gated based on several time-domain system identification 
approaches [16]. A novel approach for experimental vibroa-
coustic modal analysis has been developed to determine the 
modal parameters of a plate-cavity system. The frequency 
response function was acquired from the roving hammer 
test and nonlinear curve fitting was used to identify the 
modal parameters of the structure [17]. A machine learning- 
assisted automated operational modal analysis approach was 
introduced based on the output response of linear structures 
and validated for a tower [18]. Despite the claim that the 
EMA is more reliable approach for modal identification 
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[19, 20], it is proved that both approaches provide sufficient 
accuracy on obtaining modal parameters [21].

Mode shapes obtained with modal identification methods 
are arbitrarily scaled. However, there are unique eigenvec-
tors known as mass normalized mode shapes which repre-
sent unique properties of the structure and offer a valuable 
representation of the structure behavior [7]. Therefore, 
researchers are motivated to develop novel techniques for 
the mass normalization of the mode shapes. A sensitivity- 
based method for mass-normalizing operational mode 
shapes was presented [22]. This method involves adding 
known masses to a test structure and measuring the natural 
frequency shifts. It was applied to a beam-like structure [22] 
and a civil structure, namely a bridge [23]. Mass-change 
strategy was also implemented to experimental modal ana-
lysis aiming to mass normalize the displacement and strain 
mode shapes of a free-free beam [24]. A scaling factor deter-
mination method was developed based on changing both 
mass and stiffness of the structure which improves the mass 
normalizing of the first mode shape [25]. However, the 
value of additional mass and spring should be specified care-
fully to avoid significant changes in the mode shapes. 
Additionally, these methods are dependent on the nodal 
points of the vibration mode and requires performing sev-
eral experiments where in each test the mass or spring is 
located at different points of the structure [22]. A finite 
element-based approach was introduced to predict the scal-
ing factor of mode shapes obtained by operational modal 
analysis [26]. Although this approach predicts the mass nor-
malized mode shapes better when compared with the mass- 
change approaches, it requires precise knowledge of the 
material properties of the structure [26]. In another study, a 
mass normalization method was introduced which used just 
one sensor on a vehicle aiming to identify the mode shapes 
with high spatial resolution and to reduce the sensitivity to 
the road roughness [27]. A pair of single sensor and actu-
ator—either not collocated or collocated—was used to mass 
normalize the mode shape of a bridge structure based on 
input-output balance [28]. Input and output data was meas-
ured in time domain and pseudo-modal response was devel-
oped to estimate the mass normalized mode shapes.

The mass normalization methods are mostly developed 
for large-scale structures i.e. bridges and towers. In the case 
of thin-walled structures, a novel method is required to pre-
dict a scale factor without changing the mode shapes by 
adding extra mass to the structure. On the other hand, the 
conventional methodology for determining mass normalized 
mode shapes of structures by experimental modal analysis 
requires precise calculation of modal parameters which 
requires calculation costs. Therefore, in this paper, a new 
method is presented for thin-walled structures which avoids 
additional mass usage and reduces excessive calculations 
through complex equations. Unlike the methods introduced 
in the literature, this methodology consists of a few tests 
and does not require any information about the material 
properties of the structure. It is based on electromechanical 
impedance measurement and the charge response of a 
piezoelectric transducer attached to the structure. The 

piezoelectric transducers are thin films which do not have a 
significant effect on the dynamic of the thin-walled struc-
tures. The application of piezoelectric transducers have been 
studied for vibration control [29], structural health monitor-
ing [30], energy harvesting [31–34], human physiological 
signals monitoring [35], and mode shape identification of 
straight and curved beams [36]. The extraction of eigenvec-
tors using a piezoelectric transducer is limited to an arbi-
trary scale of mode shapes. However, this study introduces a 
new application of piezoelectric transducer which can be 
implemented on modal identification methods to mass nor-
malize the mode shapes of thin-walled structures i.e. beams 
and plates. It is applicable to the EMA where the input data 
can be measured. First, the structure is excited mechanically 
and the mechanical frequency response of the reference 
point i.e. force location, as well as the charge frequency 
response of piezoelectric is measured. In the second step, 
the electromechanical admittance of the piezoelectric 
attached to the structure is measured where there is no 
external mechanical excitation. The measured admittance 
provides information to obtain natural frequency, modal 
damping, and coupling factors of the system. Based on the 
identified parameters, the mass-normalized mode shape of 
the reference point can be easily obtained. The last step is to 
obtain the scaling factor considering the arbitrary mode 
shape and the mass normalized one at the reference point. 
Having the scaling factor of each vibration mode, the mass 
normalized mode shape of the entire structure at each mode 
can be obtained. The methodology is developed for a plate 
structure which can be used for beams as well.

2. Analytical background

The mechanical equation of motion for a piezoelectric inte-
grated with a plate structure in modal coordinate is as fol-
lows [37]:

d2gm tð Þ
dt2 þ 2fmxm

dgm tð Þ
dt

þ x2
mgm tð Þ − Hmvp tð Þ

¼ f tð Þum x0, y0ð Þ:

(1) 

where vp tð Þ is the piezoelectric voltage, um x0, y0ð Þ is the 
mass normalized mode shape at reference point, and x0, y0ð Þ
is the location of point force. xm; fm; and Hm are, respect-
ively, the natural frequency, the modal damping ratio, and 
the modal electromechanical coupling of the piezoelectric 
patch for the mth vibration mode. gm tð Þ is the time depend-
ent modal coordinate of the plate. By dividing Eq. (1) by 
Hm and subsequently multiplying the first, second, and third 
terms by Hm

Hm
; it can be reorganized as:

1
Hm

2
d2

dt2 −Hmgm tð Þ
� �

þ
2fmxm

Hm
2

d
dt

−Hmgm tð Þ
� �

þ
x2

m

Hm
2 −Hmgm tð Þ
� �

þ vp tð Þ ¼ −
f tð Þum x0, y0ð Þ

Hm

(2) 

The term −Hmgm tð Þ represents the charge response of the 
piezoelectric qm tð Þ [38] which describes how charge accu-
mulates in response to mechanical excitation. Equation (2)
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can be considered as equation of a second order circuit 
where the terms 1

Hm
2 ;

2fmxm
Hm

2 ; and Hm
2

x2
m 

are equivalent to 
inductance (Lm), resistance (Rm), and capacitance (Cm), 
respectively. Having substituted the equivalent electrical 
components and the charge response of piezoelectric into 
Eq. (2), the equivalent circuit equation of the piezoelectric 
can be obtained as: 

Lm
d2

dt2 qm tð Þ
� �

þ Rm
d
dt

qm tð Þ
� �

þ
1

Cm
qm tð Þ
� �

þ vp tð Þ

¼ −
f tð Þum x0, y0ð Þ

ffiffiffiffiffiffi
Lm
p (3) 

Short circuiting the piezoelectric electrodes, the piezoelec-
tric voltage will be zero i.e. vp tð Þ ¼ 0: Considering that 

1
LmCm
¼ xm

2; Fourier transform of Eq. (3) can be 
calculated as:

Rm ∙ jxmð Þ ∙ ~Q jxmð Þ ¼ −
~F jxmð Þum x0, y0ð Þ

ffiffiffiffiffiffi
Lm
p (4) 

Where ~Q ¼ F qmf g; and ~F ¼ Fff g are the Fourier trans-
forms of the piezoelectric output charge and force input, 
respectively. The ratio of output charge and input force in 
frequency domain represents the charge frequency response 
function (FRF) which is known as transfer function i.e. 
~H jxnð Þ ¼

~Q jxmð Þ

~F jxmð Þ
: The mass normalized mode shape of the ref-

erence point can be obtained by rearranging Eq. (4) as:

um x0, y0ð Þ ¼
Rm ∙ jxmð Þ

ffiffiffiffiffiffi
Lm
p ~H jxmð Þ (5) 

Identification of the equivalent electrical components can 
be conducted by measuring the admittance of the piezoelec-
tric using an Impedance Analyzer device [39]. On the other 
hand, the charge transfer function of the piezoelectric can 
be obtained by exciting the structure with a shaker and 
measuring the voltage output of the piezoelectric at open 
circuit condition i.e. the electrodes of the piezoelectric are 
connected by a resistive load higher than 1 MX [39]. Using 
any modal identification method, the arbitrary mode shape 
of structure, including arbitrary mode shape component of 
the reference point Um x0, y0ð Þ; can be obtained and the scal-
ing factor can be calculated as:

S:F ¼
um x0, y0ð Þ

Um x0, y0ð Þ
(6) 

Then the mass normalized mode shape of other degrees 
of freedom of the structure can be obtained as:

um x, yð Þ ¼ S:F � Um x, yð Þ (7) 

3. Experiments

The proposed method for mass normalizing the mode shape 
was validated through experiments involving a fully clamped 
aluminum plate (CCCC) as the host structure, to which 
three piezo-patch harvesters (T105-A4E-602, produced by 
Piezo Systems, Inc.) were attached (see Figure 1). The 

piezoelectric transducer at the center of the plate is short 
circuited during all the experiments and has only mechan-
ical contribution on the system. Material properties and 
dimensions of the plate and piezoelectric transducers are 
available at Table 1. Considering the nodal lines and mode 
shapes of each vibration mode, we conduct mass normaliza-
tion for the first and second modes using PZT-1 (PZT-2 is 
short circuited), while PZT-2 is applied for mass normaliza-
tion of the third mode (PZT-1 is short circuited). First, an 
experimental modal analysis was carried out to identify an 
arbitrary mode shape of the plate for the first three vibration 
modes, including the reference point as one of the measured 
degrees of freedom. The open circuit voltage FRF of the 
piezoelectric was measured and the charge FRF is calculated. 
The next step is to remove the shaker and measure the 
admittance of the piezoelectric to identify the equivalent 
electrical components of each vibration mode. The following 
sections provide detailed explanation of the procedure.

Figure 1. Experimental setup: (a) DAQ unit; (b) signal generator; (c) impedance 
analyzer; (d) PDV100 vibrometer; (e) shaker and a force transducer; (f) PZT-2; (g) 
PZT-1; (h) aluminum plate; and (i) clamping frame.

Table 1. Material properties and dimensions of experimental setup.

Property Aluminum Piezoceramic

Length (mm) X 580 72.4
Width (mm) Y 540 72.4
Thickness (mm) 1.9 0.267
Young’s modulus (GPa) 65.1 66
Mass density (Kg/m−3) 2575 7800
Piezoelectric constant (pm/V) – −190
Permittivity constant (nF/m) – 10.38

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 3



3.1. Experimental modal analysis

The experimental modal analysis of the plate was carried 
out considering 21 measurement points i.e. degree of free-
dom. The selection of test points was based on prior know-
ledge of the first, second, and third mode shapes of the 
plate. The structure was excited by a shaker with a force 
transducer (PCB 208C02) on the tip which measures the 
input force to the structure. The location of the input force 
i.e. reference point, is selected as x0, y0ð Þ ¼ 495, 85ð Þ mm 
which is away from the nodal lines of three first mode 

shapes and can excite corresponding vibration modes. The 
test points and the reference points are demonstrated on 
Figure 2.

The velocity FRF of the plate was measured by a PDV100 
vibrometer while a swept sine signal was generated to excite 
the shaker at frequency range that includes the first three 
resonance frequencies of the plate. The swept signal is set to 
a level which avoids any nonlinearity in the dynamic of the 
structure. The acceleration FRFs can be easily obtained from 
the velocity FRFs. The mode shape identification method 
used in this study is based on the amplitude of the imagin-
ary part of the acceleration FRF at resonance frequency [10]. 
The acceleration FRFs and their imaginary parts for all the 
test points are shown in Figure 3. It is worth noting that 
errors caused by noise and measurement inaccuracies can be 
minimized through careful calibration and averaging over 
repeated trials. However, the quality of measured FRFs 
should be ensured by checking the coherence and suffi-
ciently high signal-to-noise ratio.

In an identical manner, experiments are performed to 
acquire the acceleration FRF of the reference point. Figure 4
shows the imaginary part of the acceleration FRF which 
identifies the arbitrarily scaled mode shapes components of 
the reference point for the first three vibration modes. 
During this experiment, the open-circuit output voltage FRF 
of the piezoelectric is measured as well. Having the internal 
capacitance of piezoelectric C0ð Þ; the output charge response 
can be calculated from the open-circuit output voltage FRF 
[39]. It is worth noting that the mass normalizing process of 
first and second mode shapes has been carried out using 
PZT-1 where PZT-2 was used to mass normalize the third 
mode shape. Therefore, the voltage FRF of PZT-1 is 

Figure 2. The location of test points and the reference point for experimental 
modal analysis.

Figure 3. Acceleration FRF and its imaginary part for test points.
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measured around the first and second resonance frequencies 
whereas the voltage FRF of PZT-2 was measured around the 
third resonance frequency. The output charge FRF of the 
PZT-1 around the first and second resonance, and the out-
put of PZT-2 around the third resonance is shown in 
Figure 5.

3.2. Identification of the equivalent circuit components

The equivalent electrical components of the piezoelectric 
were identified based on measured admittance (Y) of trans-
ducer at each natural frequency. The value of measured 
admittance at each natural frequency can identify the 
equivalent resistor and internal capacitance of the piezoelec-
tric where the real and imaginary parts correspond to the 
admittance of the equivalent resistor and the internal capaci-
tance of the transducer, respectively. The value of the 
equivalent inductor can be determined by dividing the 
equivalent resistance by the difference between the frequen-
cies at which resonance and antiresonance of the admittance 
occur. A detailed explanation of equivalent circuit 

identification from the measured admittance of piezoelectric 
is available at [39].

The admittance measurement of the piezoelectric trans-
ducer was carried out using HIOKI IM3570 which is also 
capable of calculating the equivalent electrical properties of 
the piezoelectric transducers. Figure 6 demonstrates the 
measured admittance and the equivalent electrical properties 
of PZT-1 around the first and second vibration modes, and 
PZT-2 around the third vibration mode.

4. Results and discussion

The mass-normalized mode shape of the reference point for 
three first vibration modes were determined through Eq. (5), 
which required measurements of the parameters of equiva-
lent electrical components, charge FRFs, and resonance fre-
quencies. Having the mass normalized mode shape and the 
arbitrary mode shape of the reference point, the scaling fac-
tor was identified for each vibration mode following Eq. (6). 
The measured parameters of the system and the determined 

Figure 4. Imaginary part of acceleration FRF of reference point for (a) first mode, (b) second mode, and (c) third mode.

Figure 5. Output charge FRF of (a) PZT-1 around the first resonance, (b) PZT-1 around the second resonance, and (c) PZT-2 around the third resonance.
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scaling factor for each vibration mode is summarized at 
Table 2.

Multiplying the scaling factors with the arbitrary eigen-
vectors yields the mass-normalized mode shapes for every 
degree of freedom within the structure. These mass-normal-
ized mode shapes were obtained by applying each vibration 
mode’s scaling factor to the measured arbitrary mode shape 
at 21 different test points using experimental modal analysis 
(EMA). For validation purposes, a finite element model of 
the experimental setup is developed using ANSYS software. 
The FE modal analysis was carried out to obtain the mass 
normalized mode shapes of the structure. The results of 
finite element simulation and experimental modal analysis 
are compared in Figure 7. The experimental result of first, 
second, and third vibration modes are perfectly matched 
with the FE results.

The Modal Assurance Criterion (MAC) serves as a valu-
able tool for assessing the degree of similarity between 
modal vectors obtained through experimental modal testing 
and those derived from finite element analysis. As the MAC 
value approaches 1, it strongly suggests a high level of cor-
relation between the two vectors, while the MAC value near 
0, represents a strong indication that the two vectors are 

very uncorrelated. Figure 8 indicates the MAC metric of 
EMA and FE. The MAC value of EMA and FE eigenvectors 
at each vibration mode are close to one i.e. 0.98, 0.99, 0.96 
for mode1, mode2, and mode3, respectively. On the other 
hand, the MAC values of each vibration mode and other 
two vibration modes are near zero. This proves that the 
mode shapes are linearly independent where the orthogonal-
ity of them are satisfied. It can be concluded that the pre-
sented methodology to mass normalize mode shapes of the 
structure offers a robust and effective approach and provides 
accurate scaling factors.

The proposed methodology assumes linear system behav-
ior and moderate damping, which ensures accurate extrac-
tion of modal parameters. While experimental uncertainties 
and environmental factors may introduce minor variations, 
the approach remains applicable as each structure is treated 
as an independent system. To improve accuracy, careful sen-
sor placement, calibration, and appropriate signal processing 
techniques are recommended. Automating the measurement 
and processing steps could enhance efficiency, making the 
method more practical for applications such as structural 
health monitoring. Future research could focus on enhanc-
ing the methodology for highly damp or nonlinear systems 

Figure 6. Measured admittance of (a) PZT-1 around the first natural frequency, (b) PZT-1 around the second natural frequency, and (c) PZT-2 around the third natu-
ral frequency.
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Table 2. Measured parameters and identified mass normalizing scale factor.

Parameter Mode 1 Mode 2 Mode 3

Equivalent resistance 
Rm (X)

68,611.6 10,336.8 6108.6

Equivalent inductance 
Lm (H)

12,759.8 1201.4 1919.8

Resonance frequency 
xm ð

rad
secÞ

337.47 645.47 733.87

Charge FRF 
~H jxmð Þ ð

C
NÞ

1.308e − 6 1.46e − 6 3.69e − 6

Arbitrary mode shape of the reference point 
Um x0, y0ð Þ

3.1682 8.28 33.94

Mass normalized mode shape of the reference point 
um x0, y0ð Þ

0.268 0.281 0.3776

Scaling factor 0.08464 0.03391 0.011125

Figure 7. Comparison of mass normalized mode shapes obtained from experimental modal analysis and finite element simulation for three first vibration modes of 
structure.

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 7



which could further extend its applicability. Sensitivity ana-
lysis on experimental uncertainties and environmental influ-
ences would help refine the approach and improve 
reliability.

5. Conclusion

Mass normalized mode shapes as an invariant characteristic 
of structures offer a more precise depiction of a structure’s 
dynamic behavior. Identification of mass normalized mode 
shapes of a structure is challenging, and several methodolo-
gies have been presented to overcome this problem. 
However, the proposed methodologies have some draw-
backs. Mass-change methodology can affect the dynamic 
behavior of the structure which leads to inaccurate predic-
tion of the structure’s modal parameters. Moreover, the con-
ventional experimental modal analysis method requires 
precise calculation of the modal parameters and dealing 
with complex equations. Therefore, this paper presents an 
alternative approach which does not affect the dynamic 
behavior of the structure during the experimental measure-
ments. Additionally, the methodology avoids excessive calcu-
lations on the measurement data and provides a robust 
and straightforward approach to accurately predict mass- 
normalizing scale factors for each vibration mode of thin- 
walled structures, such as beams and plates. The presented 
methodology uses electromechanical impedance measure-
ment and the charge FRF of a piezoelectric transducer 
attached to the structure to acquire the mass normalized 
mode shape of the reference point (force location). By 
mechanically exciting the structure and measuring the 
mechanical response of the structure at the reference point, 
the arbitrarily scaled mode shape can be obtained. The scal-
ing factor for each vibration mode is then determined by 
comparing the arbitrary mode shape with the mass-normal-
ized one at the reference point, allowing for the computa-
tion of the mass-normalized mode shapes of the entire 
structure.

The presented methodology was examined by a fully 
clamped aluminum plate. The plate was excited by a swept 

sine input force to obtain the acceleration FRF of 21 test 
points. The imaginary part of the acceleration FRFs pro-
vided the arbitrarily scaled mode shapes of the structure. 
Similarly, the acceleration FRFs of the reference points and 
the charge FRFs of the piezoelectric patches are measured. 
An impedance analyzer was used to acquire the piezoelectric 
admittance and equivalent electrical properties. 
Subsequently, the component of the mass normalized mode 
shape at the reference point and the scaling factor for each 
vibration mode is calculated. Having the scaling factors, the 
mass normalized mode shapes of the structure are calcu-
lated. The results are compared with the mass normalized 
mode shapes obtained from a finite element analysis where 
a good agreement between the results is shown. In order to 
assess the degree of similarity between the modal vectors 
obtained through experimental modal testing and finite 
element analysis, modal assurance criterion (MAC) was cal-
culated. Based on the MAC values, it was proved that the 
proposed methodology predicts the mass normalized mode 
shapes accurately which provides a robust and accurate 
approach for mass normalization of the mode shapes in 
transversely vibrating structures.
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