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Systems biology and synthetic biology are emerging disciplines which are becoming increasingly utilised in several areas of
bioscience. Toxicology is beginning to benefit from systems biology and we suggest in the future that is will also benefit from
synthetic biology. Thus, a new era is on the horizon. This review illustrates how a suite of innovative techniques and tools can be
applied to understanding complex health and toxicology issues. We review limitations confronted by the traditional computational
approaches to toxicology and epidemiology research, using polycyclic aromatic hydrocarbons (PAHs) and their effects on adverse
birth outcomes as an illustrative example. We introduce how systems toxicology (and their subdisciplines, genomic, proteomic,
and metabolomic toxicology) will help to overcome such limitations. In particular, we discuss the advantages and disadvantages of
mathematical frameworks that computationally represent biological systems. Finally, we discuss the nascent discipline of synthetic
biology and highlight relevant toxicological centred applications of this technique, including improvements in personalised
medicine. We conclude this review by presenting a number of opportunities and challenges that could shape the future of these
rapidly evolving disciplines.

1. Introduction

Many areas of biological sciences and clinical medicine are
benefitting from applying the emerging disciplines of systems
biology [1–4] and synthetic biology [5]. Toxicology research
is not different and in recent years toxicological procedures
have begun to incorporate a wide array of computational
techniques and artificial biological approaches for assessing
the toxicological risk of chemicals. Historically, population-
based investigations of disease risk associated with environ-
mental exposures relied on statistical associations for causal
inference. The introduction of novel integrated approaches

when applied to toxicology investigations will sharpen our
ability to distinguish causally relevant events between envi-
ronmental exposures and disease outcomes. Systems biology
is such an approach.

Systems biology encompasses a discipline that investi-
gates the complexmechanisms underlying biological systems
by treating the behaviour of genes, proteins, biochemical net-
works, and physiological responses as integrated parts within
a whole system [6]. As a result the term systems toxicology
was coined to describe the application of systems biology
approaches to toxicological studies [7]. In practice this
approach involves collecting large data sets from an array
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2 Advances in Toxicology

of sources including genomic, biochemical, proteomic, and
metabolomic data. This data is then used to inform compu-
tational models that are capable of examining quantitatively
and qualitatively the behaviour of biological systems under
a wide variety of conditions [8, 9]. The major advantage
of this approach lies in the researcher’s ability to model a
multitude of complex biochemical events, many of which
occur simultaneously [10]. This contrasts with the reduction-
ist approach of studying biological systems by focusing on a
small component operating in isolation. Synthetic biology is
another approach that could change the face of toxicology. It
represents the interface between scientific disciplines such as
chemical and electrical engineering, biology, bioengineering,
and computational modeling. In fact computational model-
ing is the glue that joins together the fields of systems and
synthetic biology. Recent progress in this field has wit-
nessed the engineering of synthetic genetic circuits [11],
gene promoters [12], proteins [13], and a variety of synthetic
biomolecules [14].

This review briefly outlines some of the more traditional
approaches to toxicological research and will then discuss
recent developments in systems and synthetic biology which
are important for toxicology research. Systems biology and
synthetic biology which comprises modeling toxicological
effects using a mathematical framework and artificial cellular
networks/tissues, respectively, are the emerging face of tox-
icology research. In this review we primarily focus on the
role of computational modeling in the future of toxicology
research. The rationale for this focus is that it is increasingly
necessary to integrate the vast data generated from systems
toxicology into a cohesive computational framework [15].We
anticipate that such a framework will lead to an improved
understanding of how individual or combinations of toxi-
cants interact with intracellular, physiological, and whole-
body biological systems [15]. This paradigm shift could lead
to a reduction in the number of animals used in toxicant
risk assessment, allow for the illusive modeling of the effects
of complex mixtures, create a template for individual tox-
icological exposure assessment by age gender or genetic
background, and improve risk assessment in the future.

2. Traditional Approaches for Toxicant-Health
Outcomes Research

Some of themore traditional approaches to toxicology testing
and risk assessment have relied heavily on in vitro and in
vivo experiments to generate data to assess health outcomes.
Dose-response analysis investigations are commonly used
to study the biological effect of toxicants on a cell culture,
animal, or both over a period of time [16]. The types of
negative biological responses can range from molecular and
physiological perturbations, to alterations in the organism’s
behaviour to mortality. However, there exists a problem with
this method, as the response curve can alter significantly
when the species is changed.This is crucial because the utility
of any toxicological test depends on its consistency and its
potential to determine the extent of the hazard associated
with exposure to humans [16]. Not only are there problems

with integrating data from different species for one contam-
inant, but there are also issues when integrating data from
different chemicals in different species.

Toxicology studies investigating mixtures routinely
employ statistical techniques to fit mathematical functions
to toxicology data. These statistical techniques are based on
certain assumptions. For example, Chen et al. (2012) used
statistical nonlinear regressionmodels to estimate acrylamide
concentrations in French fries and the associated life-time
cancer risk [17]. Such methods are useful for identifying
statistical associations; however, empirical models have limi-
tations as they do not capture toxicant-toxicant interactions.
Also, they do not capture the interplay of such chemicals with
physiological or intracellular biological mechanisms or how
mechanisms are dependent on the level of toxicant exposures.
To address this issue, toxicology research employs a number
of mechanistic computational approaches. For example,
the well-established physiologically based pharmacoki-
netic/pharmacodynamic (PBPK/PD) approach is capable
of incorporating physiological mechanisms and predicting
the change rate in chemical amount in tissues, chemical
distribution, metabolic turn over, and the excretion rate of
toxicants in a wide variety of animals including humans; all
of this information is encapsulated in the output frommodel
simulations for a particular time course. A recent interesting
application of PBPK modeling was to investigate variations
in cytochrome P450-mediated pharmacokinetics between
Chinese and Caucasian populations [18]. The model was able
to predict plasma drug concentration-time profiles in both
population groups.

3. Single Exposures with Multiple Outcomes or
Multiple Exposures and Single Outcomes

One valuable translational aspect of toxicological studies is
their capacity to inform risk assessment to improve human
and ecological health. Risk assessment is directly dependent
on the empirical data generated, whether at a benchtop or
laptop. Current strategies for risk assessment are informed by
toxicity and exposure estimates and are limited by gaps in our
data and also areas of uncertainty. To deal with uncertainty,
such as how mixtures of chemicals with similar structures
or mechanisms of toxicity interact, assumptions have to be
made. For example, one might assume that two endocrine
disrupters, with similar chemical structures, would have an
additive effect on the endocrine system. Indeed, Miller et al.
found that coexposure to two endocrine disrupters, poly-
chlorinated biphenyls (PCBs) and polybrominated diphenyl
ethers (PBDEs), had additive effects on reducing thyroid hor-
mones in developing rats [19]. However, that data set, where
an assumed additivity was validated by experimental results,
pertained only to thyroid hormone reductions.Moreover, the
neurological effects of hypothyroidism are complex and often
times sex-specific [20]. Thus only looking at one biological
outcome in one sex for amixture of toxicantsmay bemislead-
ing in terms of understanding the total toxicological health
effect of themixture. In order to deal with this complexity, it is
vital that we employ new methodologies that are transparent
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based on clear assumptions, on a consistent mathematical
framework that can be shared readily across disciplines.

Understanding whether complex mixtures of chemicals
will have additive, synergistic, or antagonistic effects on bio-
logical pathways is critical for predicting toxicological conse-
quences on populations [21, 22]. Yet it also remains one of the
most difficult and often neglected areas of toxicology, simply
because it is neither cost nor time efficient to run the nec-
essary experimental conditions to consider every potential
mixture of contaminants in different situations. In this sce-
nario, computational modeling may offer hope for the future.
It is possible to predict the effects of new chemicals based on
their chemical properties that may be shared with previously
well-characterised chemicals. For example, the effects of
mixtures of PFOS have been characterised with respect to
structure-functional responses and T3 related activity in cells
[23], and such data may provide a useful building block to
use when simulating other similarmolecules using an in silico
frame work. The array of interactions that can be modelled
with respect to additivity, synergy, and antagonism is beyond
the scope of this review and is well discussed by Singh et al.
(2014) in their review [24]. However, it is clear that using
a mathematical based framework to anticipate and model
potential interactions of mixtures in silico is in essence one
of the resolvable problems that in silico toxicology processes
can offer.

4. Systems Level Thinking Is
Needed in Population-Based Investigations
of Health Outcomes

Extrapolating toxicological data to understanding human
health effects is a complex issue. Firstly, there are few meth-
ods to study human health effects resulting from exposure
mixtures of toxicants, likely partly because of the scant data
on mixtures of chemicals. As a result, epidemiologic risk
estimation of toxicantmixture exposure is based on in vitro/in
vivo toxicological equivalency factor (TEF). This approach
assumes interspecies equivalence in risk and that risks
are additive. However, polycyclic aromatic hydrocarbons
(PAHs), for example, can have synergistic or antagonistic
effects depending on the individual PAH compound studied
[25]. Secondly, toxicant effects on multiple organ systems
present a huge multiscale and temporal challenge. Many
different organs can be affected by PAHs. As a case in point,
prenatal exposure to PAHs through maternal inhalation is
associated with a wide range of fetotoxic effects, including
intrauterine growth restriction [26], preterm delivery [27],
DNA damage [28], shorter stature at the age of 3 [29], and
neurocognitive impairments during childhood. In addition,
some toxicological effects are only manifested some years
after exposure. For example, when a prenatally monitored
group of newborns were followed to school age, the pre-
natal PAH exposure further impaired neurodevelopmental
performances [30, 31] and increased the likelihood of asthma-
related symptoms [32].

Thirdly, a number of environmental toxicants, in particu-
lar an emerging class of endocrine-disrupting chemicals, are

observed to exert nonmonotonic dose response as well as
low dose effects, particularly when exposure occurs during
early life [33]. Lastly, the timing of exposure during pregnancy
influences the toxicity of the exposure. For example, exposure
to benzo[a]pyrene (B[a]P) is most detrimental to the brain
during the first trimester, whereas the fetal liver is most
vulnerable to the toxicant during the second trimester [34].
A systems biology centred approach would overcome such
temporal and tissue specific problems by integrating how the
toxicant impacts the temporal behaviour of cells, tissues, and
whole organs systems. With this comprehensive analysis the
behaviour of a toxic substance(s) can be inferred depending
on the species that it is interacting with. Thus, systems
toxicology, which integrates traditional techniques within
the system biology paradigm, provides us a means to tackle
some of the major challenges in the field of toxicology.
Recently, Warner and colleagues (2012) used a systems tox-
icology approach to examine the mechanisms which under-
pin species-specific sensitivity to 1,3,5-trinitroperhydro-1,3,5-
triazine (RDX), a neurotoxicant [35]. Toxicity was quantified
via transcriptional, morphological, and behavioural markers
in zebrafish and fatheadminnow fry exposed for 96 h to RDX
concentrations ranging from 0.9 to 27.7mg/L in zebrafish.
Using this holistic approach, it was established that zebrafish
and minnow fry had different degrees of sensitivity to
this neurotoxicant. More recently, Lu and colleagues (2014)
utilised the systems toxicology paradigm effectively when
they integrated traditional toxicology approaches with tran-
scriptomics and metabonomics to determine the mech-
anisms underpinning hepatic erythromycin estolate (EE)
injury [36]. Hepaticmicroarray analysis of the EE-treated rats
showed that differentially expressed genes had an augmented
ATP-binding cassette (ABC) transporter, cell cycle, and
p53 signaling pathways. Metabonomics analysis showed that
EE exposure could disrupt amino acid metabolism, lipid
metabolism, and nucleotide metabolism, which the authors
suggest is a result of the EE toxicological effects on the liver
through oxidative stress.

5. Systems Toxicology: Recent Applications

The last few years has witnessed a significant increase in
the use of systems biology centred approaches for toxicology
research. Such procedures involve incorporating the so-
called -omics techniques which include transcriptomics, pro-
teomics, and metabolomics. These are data rich techniques
that typically employmicroarray analysis,mass spectrometry,
and nuclear magnetic resonance (NMR) to generate a myriad
of quantitative data. Bioinformatics techniques are, in turn,
used to manage and archive this data while computational
systems modeling, in turn, utilises the information obtained
from these diverse sources to assemble mechanistic pathway
models that are capable of making quantitative and qualita-
tive predictions about the behaviour of toxicity pathways. In
this section, we describe recent examples of how each of these
“-omics” methods has been applied to toxicology research.
Moreover, we detail how this data is being used to fuel the
construction of novel toxicant centred computational mod-
els.
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4 Advances in Toxicology

5.1. Genomic Toxicology (Toxicogenomics). Toxicogenomics
seeks to apply global techniques to evaluate how the genome
is regulated during transcription and replication in response
to the exposure of a biological system to a toxic chemical.
For example, the discipline of transcriptomics has been
established as a technique that can be utilised in toxicological
research for over 15 years when DNA microarrays were first
proposed as a tool to be used in toxicology research [37]. The
field has progressed significantly in recent years and there has
been a plethora of studies that have examined gene expression
levels to determine transcriptomic responses to toxicants
[38, 39]. A recent interesting investigation by Song and col-
leagues (2013) studied the transcriptomic response of blood
cells in workers exposed to the volatile chemicals toluene and
trichloroethylene [40]. The analysis was able to establish a
unique transcriptomic signature that differentiated exposed
subjects from unexposed subjects, while 378 genetic markers
were identified predicting the exposure to each of the toxi-
cants [40].

System-wide studies have been changing as new tech-
niques become available; sequencing has changed the way
genome-wide toxicology data is generated. Where microar-
rays have previously been used to generate expression pro-
files, RNA collection followed by deep sequencing (RNA-
seq) has enhanced several toxicological studies [41–43]. For
example, a recent study by Yang and colleagues (2014) used
RNA-seq to elucidate themolecular effects of crotonaldehyde
exposure on macrophage-like cells [44]. Analysis of the tran-
scriptome revealed that the expression of 342 genes was sig-
nificantly altered (173 genes upregulated and 169 genes down-
regulated) in the first timepoint in the study. The categories
of genes affected by crotonaldehyde exposure included oxida-
tive stress, apoptosis, immune response, and inflammatory
response pathways.

Epigenetic modifications made to DNA are a result of
exposure to an environmental change, altered expression, and
structure of theDNAand canbe inherited. For example,DNA
methylation can be due to a number of toxicants, natural and
synthetic, and is observed in a genome-widemanner through
sequencing. MeDIP-seq (methylated DNA immunoprecip-
itation followed by deep sequencing) was used in a study
by Cheng et al. (2014) to examine the changes in the methy-
lome of the lungs before and after exposure to environmental
irritants to better understand the role betweenDNAmethyla-
tion and asthma [45]. Researchers found that 213 genes were
differentially methylated, 83 of which mapped to the refer-
ence genome. Further analysis of the 83 candidates revealed
the transforming growth factor beta (TGF𝛽) signalling path-
way as one of the epigenetically altered regions, providing link
between DNA methylation and asthma. Though sequencing
the methylome is a new field, it is beginning to provide new
insights into toxicological research [46].

A significant challenge for this field is to use tran-
scriptomic signatures such as those used to identify gene
regulation events that are linked mechanistically to the mode
of action of a toxicant. To this end a recent project called the
Comparative ToxicogenomicsDatabase (CTD; http://ctdbase
.org/) seeks to investigate the impact of toxin exposure on
human health by using data from curated scientific literature

to understand the interactions of toxins with genes and
proteins and then looking for disease associations [47].More-
over, toxicology studies may also benefit from using Reac-
tome (http://www.reactome.org), an open-data resource of
human pathways and reactions [48].

5.2. Proteomic Toxicology (Toxicoproteomics). Proteomics is
the global quantification and analysis of proteins. Toxicopro-
teomics is the application of proteomic techniques to isolate
proteins whose behaviour or normal function is detrimen-
tally affected by exposure to a toxicant. There are a number
of subdisciplines within proteomics and many examples of
their successful application to toxicology research. For exam-
ple, protein profiling/quantification has been ubiquitously
applied to many areas of toxicology. For instance, in a recent
ecotoxicology study, a liquid chromatography-tandem mass
spectrometry- (LC-MS/MS-) based proteomic approach was
used to identify and quantify differentially expressed hepatic
proteins from female fathead minnows exposed to fadrozole,
an inhibitor of estrogen synthesis [49].

Other investigations have used functional proteomics to
characterize changes in enzyme activity as a result of toxicant
exposure. For example, Chen and colleagues (2012) utilised
functional proteomics to investigate the inhibition of plant
growth by mercury exposure and were able to demonstrate
time dependent changes in the activity of a cluster of antioxi-
dant enzymes including enzymatic activity of superoxide dis-
mutase (SOD), ascorbate peroxidase, catalase, and peroxidase
as a result of exposure to mercury [50]. Proteome mapping
has also been used to investigate changes to proteins exposed
to toxicants. A recent study by Hispard and colleagues
(2011) utilised hepatic proteome maps from control and rats
exposed to cadmium to highlight the reduction in SOD in
the exposure rodents [51]. Structural proteomics involves the
large-scale analysis of protein structures, with the overall
goal of constructing a complete three-dimensional reference
map of the proteome and has been applied to toxicological
research [52]. In addition, posttranslational modifications to
proteins such as protein phosphorylation status have been
determined in response to toxicant exposure [53]. Thus there
is vast body of proteomics based data available that could be
integrated into a mathematical framework to understand the
systemic effects of toxicant exposures on proteins.

5.3. Metabolomic Toxicology (Toxicometabolomics). Metabo-
lomics involves globally profiling the metabolism of an
organism.Metabolomics focuses on a plethora of metabolites
that are collectively referred to as themetabolome. In contrast
to proteomics and transcriptomics, metabolomics focuses on
analysing molecules of low molecular weight that character-
ize metabolic activity such as free fatty acids (FFA), amino
acids, carbohydrates, and certain lipids [54]. The application
of metabolomics techniques to toxicology is referred to as
toxicometabolomics [55]. A recent study used metabolomics
analysis in mice to examine the hypothesis that two of
the metabolic intermediates of trichloroethylene (TCE)
were involved in liver toxicity by activating peroxisome
proliferator-activated receptor 𝛼 (PPAR𝛼), a key receptor
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Figure 1: The steps involved in constructing a computational systems model from hypothesis generation to generating a model, validating it
using laboratory based experiments and testing hypothesis.

involved in fat metabolism. TCE exposure resulted in a
decrease in urine of metabolites involved in fatty acid metab-
olism, resulting from altered expression of PPAR𝛼 tar-
get genes [56]. Other recent toxicometabolomic uses have
included testing for the metabolic response to low-level
toxicant exposure in a novel renal tubule epithelial cell system
[57] andmetabolomic profiling of in vivo plasma responses to
dioxin-associated dietary contaminant exposure in rats [58].

5.4. Computational Systems Modelling. Computational mod-
eling is the epicentre of systems biology and incorporates a
wide variety of quantitative techniques that can aid toxicology
studies (Figure 1). The model can quantitatively represent
the components of a particular cellular pathway and how
it responds to toxicant exposures. Computational systems
modeling integrates with other disciplines under the systems
biology umbrella, as quantitative data from diverse fields
including genomics, metabolomics, and proteomics can be
utilized to informmodel construction and refinement. There
is an established rationale for using computational models.
Biological pathways are intrinsically detailed and intrinsically
complicated. This level of detail gives rise to networks of
interacting nodes. Many of the nodes interact in a nonlinear
fashion and often communicate with each other via sophisti-
cated feedback or feedforward loops.This places a significant
cognitive burden on the human brain to retain this level of

complexity and detail. Thus, it is highly improbable that one
can reason about such complex systems by human intuition
alone. Therefore, computational systems modeling offers a
complimentary means of dealing with this complexity. At the
centre of all computational models is mathematics and there
are many theoretical frameworks which can be adopted to
deal with the complexities of temporal variation in physio-
logical responses.The theoretical framework that is employed
will depend on the nature of the system to be modelled.
Table 1 details the different modeling approaches and gives
examples of where these approaches have been applied to
toxicology research in recent years.

5.5. Standards for Model Exchange in Systems Biology.
Although several standards exist, the Systems Biology
Markup Language (SBML) is the leading exchange format for
the exchange of biological models and has been in exis-
tence since 2002 [66]. Models encased in this format are
becoming increasingly common. Its increasing significance is
emphasized by the growth of models encased in the SBML
framework. This framework format is designed specifically
to enable the portability of a computer model regardless of
what computing tool has been used to develop themodel.The
BioModels database which was established to act as a repos-
itory for SBML models has been published in peer reviewed
journals. This database now consists of both a curated and
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noncurated section [67]. Curated models are both syntacti-
cally and semantically correct while the latter are syntactically
correct but awaiting semantic verification. We noted that no
toxicologicalmodel is in this database and proposed that such
a platform provides an easy-to-use approach for toxicologists
to begin to integrate their data on a systems level.

5.6. Utilizing Adverse Outcome Pathways (AOPs)Modeling. A
significant challenge in biological modeling is to ensure that
a model is a valid mechanistic reflection of the underlying
biological processes that it describes. This is difficult as gaps
in our understanding are commonplace. The last few years
have witnessed the advent of AOPs [68, 69]. An AOP is a
theoretical structure that provides links between biological
events which lead to adverse health consequences. In practice
an AOP consists of a series of events connected together
in a linear but holistic fashion, for example, toxicantin-
itiator→molecular ignition event→ altered cellular path-
way→ altered tissue behavior→ organ system disfunction→
adverse outcome. Therefore in essence AOPs are essentially
a means of providing an unambiguous (where possible
mechanistic) representationwhich is informedby our current
understanding of a biological pathway and how a pertur-
bation to that pathway could have an adverse outcome at
the level of a whole organism or even population level [69].
The AOP approach has been applied to a number of areas
including drug-induced cholestasis [70], skin sensation, and
respiratory allergies [71]. In terms of skin sensation a recent
AOP has been developed by Maxwell et al. (2014) which
linked together amodel of total haptenated protein andCD8+
and a cell response model [72]. The goal of this AOP is
to establish the quantitative relationship between the toxin
that an individual is sensitive to and the magnitude of the
corresponding immune response [72]. The steps involved
in assembling an AOP involve deciding on the information
that needs to be included for that particular pathway. The
information includes the details of the molecular initiation
event through to organism effects. This information is then
summarized in the form of a flow chart that depicts the AOP
from the molecular ignition even to its effect on the whole
organism or population with relationships between the vari-
ous entities represented by arrows (see above) that illustrate
the nature of the interaction. The weight of the interaction is
then established before a confidence evaluation is determined
[68]. There are a number of online resources and software
tools which can help when developing and AOP. These
include eChemPortal, which archives substances on chemical
substances http://www.echemportal.org/echemportal/. Path-
way information can also be obtained by using WikiPath-
ways which was established as a curated resource that
housed the details of a diverse range of biological pathways
http://wikipathways.org/index.php/WikiPathways [73]. The
Toxin and Toxin Target Database (T3DB) is also a useful
resource that archives the details of >3000 toxins and also
contains toxin target information http://www.t3db.org/ [74].
The construction of AOPs could be further facilitated by the
development of additional software tailored specifically to
their needs. Moreover, some of the existing computational

systems biology tools could be adapted to suit the nature of
the AOP framework.

5.7.The Exposome. The idea of an exposome is a concept that
fits neatlywithin a systems biologyway of thinking.The expo-
some takes into account the toxic effects of both intrinsic and
extrinsic chemical activities. This view of a biological system
considers both the internal environment as a set of chemical
activities that have the potential to cause damage, for exam-
ple, oxidative stress. This is in addition to external stressors
such as environmental exposure to toxic chemicals.The expo-
some encapsulates both these sources of biological damages
from conception onwards [75]. It is suggested that the impact
of toxicants on a broad range of physiological parameters of
health could be measured to give a profile of the exposome
over time.This could involvemeasuring toxic chemicals, such
as reactive electrophiles, metals, metabolic products, hor-
mones and their derivatives, and chronic organic compounds
[76]. However, it must be emphasised that this concept is
very much in its infancy; however, it is likely to become a
prominent feature of toxicant focused studies in the years to
come.

6. Synthetic Biology: Current and Potential
Applications to Toxicology Research

Synthetic biology is a nascent discipline that is provoking a
readjustment of the boundaries between the physical sciences
and the biological sciences [5].The aim of this new discipline
is to engineer novel biological entities from genes [77] and
to generate virtual organs to improve health [78]. These syn-
thetic biological entities can be the result of a reconfiguration
and reassembly of preexisting biological systems. There are a
number of recent examples whereby toxicology has come into
contact with this area. In this sectionwewill discuss these and
will also highlight areas of toxicology that could benefit from
synthetic biology in the future.

6.1. Synthetic Biological Circuits and Synthetic Bacteria. Syn-
thetic biological circuits are engineered systems designed to
evaluate the effect that an input has on the output. In a
toxicogenomics study, these synthetic gene circuits permit
the impact of an environmental influence on transcription to
be assessed. Recent relevant examples relating specifically to
toxicology research involved the construction of a synthetic
mammalian gene circuit that detected the EthR-O(ethR)
interaction in human cells and produces quantitative reporter
gene expression readout. Challenging of the synthetic net-
work with compounds of a rationally designed chemical
library revealed 2-phenylethyl-butyrate as a nontoxic sub-
stance that abolished EthR’s repressor function inside human
cells, in mice, and within M. tuberculosis where it triggered
depression of ethA and increased the sensitivity of this
pathogen to ethionamide [79]. Another example of a syn-
thetic biological circuit was demonstrated by Moser et al.
(2013) when the detection of methylating chemicals by the
E. coli Ada protein was performed in S. cerevisiae [80]. In
this study, the Ada protein detection system, which normally
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identifies methyl adducts on the DNA backbone in bacteria,
was tuned for a lower detection threshold, associated with
a reporter construct, and transferred into yeast. They found
that not only does the sensing mechanism work correctly
in a eukaryotic cell, but, at a 28𝜇M detection-threshold for
methyl iodine, it is also suitable for detecting methylating
compounds at concentrations found in environmental sam-
ples. Advanced DNA cloning methods have been applied
to toxicology. For example, a synthetic bacterium has been
engineered that is capable of degrading the herbicide atrazine.
Briefly this involved screening a pool of synthesized RNAs
that were capable of binding the toxin. The RNAs were,
in turn, incorporated into the regulatory region of cheZ, a
chemotaxis gene. Those cells that expressed this gene were
then isolated, which was indicated by motility. When cheZ
was expressed in the engineered strain as a result of atrazine,
flagellar rotation is properly regulated, allowing cells to
display chemotaxis. As the engineered cells degrade atrazine,
they generate a gradient of the herbicide, which encouraged
the bacteria to migrate to a concentration gradient at a rate
which is depended on cheZ [81]. More recently, Zhao and
colleagues (2014) reported the use of the synthetic Deg-On
system (a system consisting of two plasmids) that converts
proteasomal degradation of the transcriptional regulator
TetR into a fluorescent signal, which translates ubiquitin
proteasome system (UPS) activity to a readable signal [82].
According to the authors by connecting UPS activity to a
fluorescence signal, this engineered circuit will have a num-
ber of applications, including screening for UPS activating
molecules and selecting for mammalian cells with different
levels of proteasome activity. One potential application of this
might be in toxicant studies as UPS activation can be used
as a means of detecting toxicant exposure; for example, it
is well known that exposure to arsenic trioxide activates the
UPS system [83, 84]. Synthetic bacteria have been engineered
that is capable of degrading the herbicide atrazine. Briefly
this involved screening a pool of synthesized RNAs that were
capable of binding the toxin. The RNAs were, in turn, incor-
porated into the regulatory region of cheZ, a chemotaxis gene.
Those cells that expressed this gene were then isolated, which
was indicated by motility. When cheZ was expressed in the
engineered strain as a result of atrazine, flagellar rotation is
properly regulated, allowing cells to display chemotaxis. As
the engineered cells degrade atrazine, they generate a gradient
of the herbicide, which encouraged the bacteria to migrate to
a concentration gradient at a rate which is dependent on cheZ
[81]. To conclude this section, synthetic biological circuits
and synthetic bacteria could offer significant future benefits
for toxicology studies. Their potential remains open to con-
siderable debate as we await the development of additional
methodologies and circuitry that are specifically designed to
deal with toxicant detection.

6.2. Computational Software, Standards, and Resources for
Toxicology. Computational modeling is the glue that joins
together the fields of systems and synthetic biology.Modeling
within the synthetic biology context plays a pivotal role in the
design stages of the biological entity that is to be engineered
[85, 86]. Moreover, the utility of modeling extends to being

able to predict the dynamics of a network under a variety of
different parameters and diverse environments. As a conse-
quence, a wide range of computational software applications
has been created to deal with these two key stages in the
engineering process. For example, TinkerCell is a computer-
aided design (CAD) software tool for synthetic biology which
combines a visual interface with an application programming
interface (API) [87]. This permits developers to exchange
their code with others via a central repository (http://www
.tinkercell.com/). GenoCAD is a design of synthetic DNA
sequences based on grammatical models of the genetic part
(http://genocad.org/). Synthetic Biology Open Language
(SBOL; http://www.sbolstandard.org/) is a data exchange
standard for descriptions of genetic parts, devices, modules,
and systems. A list of software applications that supports this
standard can be found at http://www.sbolstandard.org/sbol-
standard/software-tools-using-sbol/. In terms ofDNAassem-
bly, there are a large number of DNA assembly methods,
and two of the most commonly used standards are BioBricks
assembly (http://biobricks.org/) and Gibson assembly which
is underpinned by the joining of DNA sequences in a single
isothermal reaction. There are also a number of resources
available for synthetic biology, including the registry of stan-
dard biological parts (http://parts.igem.org/Main Page). A
collection of parts is a source of components for the con-
struction of novel biological systems. Moreover, there is
also the Standard Biological Parts Knowledgebase (SBPkb)
(http://www.sbolstandard.org/libsbol/sbpkb).

7. Problems Associated with Integrating Data

Sequencing results from system-wide studies often generate
a large amount of data that often require specific computer
programs for analysis. Some researchers can deftly switch
between the benchtop and laptop to analyze data. However,
many need assistance in extracting answers from the ques-
tions asked of the large datasets and this becomes a roadblock.
There are websites which function as exchanges for guide-
lines and tools to help analyzing sequencing data; some
examples are GenePattern (http://www.broadinstitute.org/
cancer/software/genepattern) [88], USCS Genome Bioinfor-
matics [89] http://genome.ucsc.edu/cite.html, and HOMER
(http://homer.salk.edu/homer/ngs/index.html). One site, in
particular, the Galaxy Server http://www.usegalaxy.org, has
become a particularly well-known reference site, an analysis
tool, and a place to share programs to help appreciate large
sets of data [90–92]. The aforementioned websites have now
become useful resources to help reduce difficulties with
analyzing sequence data, thus enabling more researchers to
use systems approaches to address research questions. We
anticipate similar problems in the field of toxicology research,
whereby it is unlikely that a benchtop scientist will have the
computational knowledge to use to begin integrating their
data with that extracted from the literature to understand
the systemic effects of toxicant exposures. It is also a chal-
lenge from a computational systems biology perspective to
incorporate data from a diverse array of sources which often
originates from different spatial and temporal scales. For
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10 Advances in Toxicology

example, this data may include everything from gene expres-
sion data tometabolites to chemical dose or concentrations of
exposure. Integrating this data is a significant barrier for the
future success of computational systems toxicology. Recent
examples from other areas of bioscience could provide the
template for this area. For example, Chen and colleagues
(2014) have developed a multiscale mathematical model of
immunogenicity for therapeutic proteins [93, 94].Themodel
was assembled using key biological mechanisms, including
antigen presentation, activation, proliferation, differentiation
of immune cells, secretion of antidrug antibodies (ADA),
and in vivo disposition of ADA and therapeutic proteins.
The model has three scales: a subcellular level representing
antigen presentation processes by dendritic cells; a cellular
level accounting for cell kinetics during humoral immune
response; a whole-body level accounting for therapeutic
protein in vivo disposition. This is a multiscale template that
could in theory be applied to toxicology-focused dynamic
computational models.

8. Limitations of Systems/Synthetic Biology
and Future Opportunities

Systems and synthetic biology has a number of limitations.
Solving these challenges will go a longway towards determin-
ing how effectively these new disciplines continue to integrate
with toxicology research. A major current limitation of
systems biology focuses on the calibration of computational
models [95]. This has significant implications for toxicology
research as evaluation of risk is paramount and exceptionally
sensitive models undermine their potential utility. However,
mechanistic computational systems modeling will likely be
applied more widely once optimization techniques to cali-
brate systemsmodels and inference techniques such Bayesian
computational methods are employed. Fortunately, recent
initiatives have focused on addressing this key limitation
of computational systems models. Recently, computational
biology has seen the application of a broad range of both opti-
mization and inference techniques applied to this area [77, 96,
97] including most notably the introduction of approximate
Bayesian techniques [98]. It also has to be recognised that,
in order for computational systems to adequately represent
toxicant interactions with biological systems, it is necessary
to accept that these interactions take place at a variety of
temporal and spatial scales. This is true if one considers that
rates of reactions can vary dramatically from microseconds
for cellular processes to years for whole organisms. This is
also the case when spatial scale is considered as we are dealing
with nanometre cellular structures through meters for whole
organisms. A number of projects have attempted to address
this issue but a resolution of the problem remains very much
in its infancy.

A significant limitation of synthetic biology from a
toxicology perspective is that no synthetic structure has
been constructed yet that is sufficiently biologically detailed
enough to represent how a toxicant or group of toxicants
might interact with a whole organ system. There is a need
for a novel means of quantifying the toxicity of natural

and synthetic chemicals on organ and whole body systems.
Limitations also extend to the assembly of synthetic genetic
components as these are often drawn out process.

If one considers the potential future opportunities of
these disciplines, then personalised medicine is a buzzword
that is worth considering, and one might acknowledge that
personalised toxicology has similar connotations. However,
systems biology holds the promise of personalised toxicology.
Consider, for example, how adjusting a model may be
achieved to reflect the different activity of CYP enzymes for
drug metabolism, in addition to aging-related alterations in
enzyme activity that could be simply achieved. In such a sce-
nario, it would be possible to predict toxicological exposure
effects not only for a given population but also for a single
individual and thus reducing large datasets into personalised
simulations. Thus historical methods of prediction, such as
the lifetime average daily dose of a compound, could be
improved, to generate lifetime toxicological effects across sys-
tems. Such approaches will be heavily dependent on assump-
tions, which will need to be clearly stated and readily under-
standable by interested parties. However, with the expected
influence that cheaper methods of gene sequencing will have
on personalised medicine, one can expect that similar influ-
ences will be found on individuals requesting personalised
toxicological reports, not only for drug metabolism but
also for environmental exposures. It is highly probable that
systems and synthetic biology approaches are the next natural
phase for toxicology development. Approaches like the AOP
are primed to evolve into systems and synthetic biology
integrating methods. AOPs could provide the schematic and
mechanistic underpinning of developing cohesive systems
toxicology methods.

9. Discussion

In the last decade systems biology has embedded itself within
bioscience research. In recent years its impact is beginning to
be increasingly felt by those conducting toxicology studies.
Systems toxicology is a novel discipline that seeks to use
traditional toxicology approaches in conjunction with the
systems biology paradigm to provide an integrated interpre-
tation and understanding of biological processes from the
molecular to the systemic and to use these to assess disease
risk. Broadly the aims of this approach are to improve our
understanding of the mechanisms of toxicity, to use dynamic
computational models to predict the toxicity of unknown
compounds or long-term effects of exposure and to use this
nascent approach to improve public health and protect the
environment for the betterment of society. There are many
recent worthwhile examples of how toxicant studies have
benefitted from adopting this integrative way of probing
biological systems. This has given rise to the term sys-
tems toxicology and its -omic centred subdisciplines of
toxicogenomics, toxicoproteomics, and toxicometabolomics.
Recently, these techniques have been applied ubiquitously
in toxicology research ranging from studies that have deter-
mined unique transcriptomic profiles to volatile chemical
exposure to investigations that used metabolomic profiling
to examine in vivo plasma responses to dioxin-associated
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dietary contaminant exposure in rodents. Computational
systems biology is perhaps the least utilised systems biology
technique to date. Currently, there is a paucity of toxicology
themed computational models available in the BioModels
database, an archive formodels encased in SBML, the leading
exchange format for systems biology. This is an interest-
ing note as toxicology investigations have historically used
mathematical modeling to assess the health risk to toxicant
exposure. Therefore, it is surprising that some of the mod-
eling approaches routinely used in systems biology, such as
stochastic intracellular modeling, have not been explored
more widely in toxicology research. We are currently using
our previously published work which examined the impact
of PCB’s and PDBE’s on T4 levels in rodents as a template for
the assembly of a comprehensive mechanistic computational
model.

This review also uncovered various examples of how the
nascent area of synthetic biology, a discipline whose goal is
to design and assemble novel synthetic biological entities, is
also beginning to impact toxicology research. For instance, it
is apparent that this newfield has been used to benefit toxicol-
ogy research by the design and engineering of novel bacteria
organisms, which express genes that are capable of degrading
harmful chemicals such as the herbicide atrazine. In terms
of the future application of synthetic biology to toxicology
research, we suggest an ambitious endeavour, encouraging
the development of a synthetic liver, capable of mimicking
the actions of glucuronidation.There are clear advantages and
benefits to the development of such a synthetic construct,
for instance, a reduction in the number of rodents used in
toxicology studies and a reduction in the cost of these inves-
tigations. However, such a project has a number of limitations
and obstacles to overcome before it can come to fruition.
For instance, it would be necessary to improve our under-
standing further of the biological mechanisms that underpin
glucuronidation. Moreover, it would be necessary to develop
our knowledge of how toxicant-toxicant interactions impinge
on the behaviour of the pathway. Such a system would have
huge potential and without doubt would impact the way
toxicant studies are conducted in the future.
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