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Abstract

The electric power system is one of the most important critical infrastructures of a
country. Recently, the number of natural and man-made disasters is increased, which can
impose extensive damages and costs to the power system. A resilient power system can
withstand against, adapt to and recover from these disasters. Power system resilience is
quantified by mathematical tools which are called “resilience metrics”. Currently, a lot of
resilience metrics are proposed in the power system literature. In this paper, based on
the extensive research in the critical infrastructure resilience literature which specifically
concentrates on the “area-based” resilience metrics, a new area-based resilience metric is
proposed which can measure the power system resilience considering the government
policymaker criteria, which are rarely noticed before. The proposed and conventional
area-based resilience metrics are evaluated based on the real data from the 2012 Superstorm
Sandy in the USA, which led to significant damage to the power distribution system. The
simulation results show that the proposed area-based resilience metric is very simple, can
successfully address actual power system performance curves and is more meaningful and
tangible than the conventional area-based metrics for the government policymaker. The
proposed area-based resilience metric has also a general form and can be used for other
critical infrastructures.

1 INTRODUCTION

In recent years, the number of natural and man-made disasters
has been gradually increased, which can lead to extensive
damages and costs in the power systems. For instance, the
Superstorm Sandy hit the USA in October 2012 and its
estimated damage cost was more than $70 billion. The
Superstorm Sandy affected more than 8 million customers (i.e.
more than 20 million people) and the duration of electricity
outage was approximately 10 days. The transmission network
suffered little damage, but the distribution network damage was
significant [1]. In another case, the Ukrainian electric power
system suffered a cyber-attack in December 2015, which left
225,000 people without electricity for up to 6 h [2].

Accordingly, the “resilience” concept has been extensively
developed and used in the power system literature in order to
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cope with these disasters. While a wide range of definitions
are proposed for the power system resilience [3–29], there
is currently no consensus on it. In this paper, based on
the definitions which are presented in [18, 20, 30], the
following definition has been applied (which is not necessarily
comprehensive) [31]:

“The power system resilience is the ability of this system
to withstand disasters (low-frequency high-impact incidents)
efficiently while ensuring the least possible interruption in the
supply of electricity, sustain critical social services, and enabling
a quick recovery and restoration to the normal operation state.”

In addition, three resilience components can be considered
based on the above definition: withstand, adaptation, and
recovery [31]. The “withstand” component is the ability of
the power system when a disaster occurs to withstand against
the disaster in such a way that the system performance is
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approximately not reduced. The “adaptation” component is the
ability of the power system during the disaster to implement
some tools to minimise the effect of the disaster on the system
performance, with special attention to the critical loads. The
“recovery” component is the ability of the power system after
the disaster to return the system performance to the normal
state as soon as possible using the restoration activities. A
resilience enhancement strategy may improve one or more
resilience components. These resilience enhancement strategies
are discussed in detail in many well-established references [5, 6,
14].

Evaluation of the resilience level of the power system
is a complicated problem. The “resilience metrics” are
mathematical tools for quantifying the power system resilience.
By measuring the resilience level of the power system and
using cost-benefit analysis, appropriate resilience enhancement
strategies can be determined [16, 19, 23, 25, 32, 33]. Although
many resilience metrics are proposed in the power system
literature [3, 15, 16, 19, 20, 26, 28, 30, 34–52], a standardised
and universally accepted set of resilience metrics is still lacking.

In [31], a “conceptual framework” is presented
which divides the power system resilience metrics into
“non-performance-based” and “performance-based” groups,
based on the independence/dependence on the “power system
performance”, which is the direct output quantity of a power
system. The performance-based metrics are also divided into
“performance” and “consequence (outcome)” groups, where
the former is directly related to the power system performance
and the latter is related to the effect of the power system on
the diverse features of the society. The performance metrics are
divided into “power”, “duration”, “frequency”, “probability”
and “curve” groups, whereas the consequence (outcome)
metrics are divided into “economic”, “social”, “geographic”
and “safety and health” groups. The current power system
resilience metrics are then assigned to the framework’s groups.

Since power system resilience metrics which are used
in the literature mostly belong to the “performance-based”
group, we here concentrate on these metrics, although there
are other references in the literature that implement the
“non-performance-based” resilience metrics [50, 53, 54]. Our
extensive research in the power system resilience literature
shows that there are two main sources for proposing the
“performance-based” resilience metrics:

1.1 Reliability Metrics

Some well-established references have been used these metrics
[28, 33, 38, 40, 43–46, 48–51, 55–57], where they can
belong to different groups in the “conceptual framework”,
such as “power”, “duration”, “frequency”, “probability” and
“economic”. However, the resilience and reliability of the power
systems are completely different concepts. The power system
resilience is related to the disasters (low-frequency high-impact
incidents), whereas the power system reliability is related to the
normal events (high-frequency low-impact incidents) [16, 19,
22, 25, 29]. In addition, the reliability metrics usually cannot

consider all temporal aspects of the disaster effect on the
power system. Thus, we believe that using the reliability metrics
for quantifying the power system resilience is a controversial
problem and is not recommended [31].

1.2 Metrics based on the critical
infrastructure resilience approaches

These metrics usually implement the power system
performance curves and belong to the “curve” group in
the “conceptual framework”, where the system performance
is usually the supplied load or the number of customers
with power. For instance, the slope of different parts of the
performance curve can be used as a resilience metric. A
special type of these metrics, which we call them “area-based”
resilience metrics, are of prominent importance. These metrics
include a set of similar metrics which calculate the area beneath
the performance curve, the area beneath a special part of the
performance curve, or the area between the real and ideal
performance curves (the so-called “resilience triangle” or
“resilience trapezoid”), which can be calculated in normalised
forms [26, 36, 38, 42, 47, 58, 59]. Since we concentrate on these
metrics, more clarification regarding the critical infrastructure
resilience is needed.

Critical infrastructures are those systems and assets (both
physical or virtual) and emergency response systems, that
modern economy has become increasingly dependent on
to sustain our daily lives [60]. In [4], the U.S. government
classifies those critical infrastructures into 16 groups, including
“Chemical”, “Commercial Facilities”, “Communications”,
“Critical Manufacturing”, “Dams”, “Defense Industrial Base”,
“Emergency Services”, “Energy”, “Financial Services”, “Food
and Agriculture”, “Government Facilities”, “Healthcare and
Public Health”, “Information Technology”, “Nuclear Reactors,
Materials, and Waste”, “Transportation Systems”, and “Water
and Wastewater Systems”. It is obvious that the power systems
belong to the “Energy” group based on this classification.

Although the resilience is a relatively new concept in the
power system literature, this concept has been extensively
used from a long time ago in the critical infrastructure
literature. The evaluation and quantification of the critical
infrastructure resilience have a widespread literature which
is reviewed in [61]. In our opinion, a thorough study and
analysis of the most important references concerning critical
infrastructure resilience quantification is required in order
to obtain an in-depth view regarding the power system
resilience quantification and to propose new power system
resilience metrics.

This paper concentrates on the “area-based” resilience
metrics which are used in the critical infrastructure resilience
literature, and their application in the power system resilience
assessment. After an extensive and in-depth literature survey
regarding these metrics, which now are extensively used in
the power system resilience literature, we identified some
important drawbacks. These drawbacks have great importance
for the resilience evaluation in the actual power systems
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and can make essential obstacles for considering government
policymaker expectations. The government policymaker have
some expectations which are determined on behalf of the
community benefits and are more important than the electric
utility benefits. From the government policymakers’s viewpoint,
the power system resilience metric must be defined in such
a way that violating their expectations can be seen in a
tangible and meaningful manner, which can be lead to funding
and performing proper resilience enhancement strategies. We
summarise these expectations in five points which we call them
the “government policymaker criteria”.

Then, we propose a new “area-based” resilience metric for
the power systems. The proposed resilience metric, which is
based on the critical infrastructure resilience approaches, is very
simple, can effectively consider the government policymaker
criteria and can also be used for quantifying the resilience
in other critical infrastructures due to its general form. The
proposed and conventional area-based resilience metrics are
then evaluated based on the real data from the 2012 Superstorm
Sandy in the USA, which shows the usefulness of the
new resilience metric in addressing the actual power system
problems.

The rest of this paper is organised as follows. In Section 2, a
literature review and analysis is done regarding the application
of the area-based resilience metrics in the critical infrastructure
resilience literature, and the identified drawbacks of these
metrics are also described. In Section 3, the proposed
area-based resilience metric is presented in detail. The metric’s
advantages compared with the existing area-based metrics and
its effectiveness in applying the government policymaker criteria
are also mentioned. In Section 4, the proposed and conventional
area-based resilience metrics are evaluated using the real data
from the Superstorm Sandy, and different scenarios (base
case, sensitivity analysis) are analysed. Finally, conclusion and
references will be presented.

2 THE AREA-BASED RESILIENCE
METRICS FOR THE CRITICAL
INFRASTRUCTURES: A REVIEW AND
ANALYSIS

In this section, the “area-based resilience metrics” application
in the critical infrastructure resilience literature is surveyed
first. Then, the drawbacks and limitations of those metrics are
analysed. Based on this analysis, we will be able to propose our
new area-based resilience metric in Section 3.

2.1 Literature review

The “area-based” resilience metrics were first introduced in [62],
where the performance (quality, functionality) of the system
after an earthquake is defined according to Figure 1 and
is expressed in percent. In this figure, the sudden decrease
in the system performance is related to the nature of the
earthquake phenomena.

FIGURE 1 The performance (quality) of a critical infrastructure versus
time and the concept of “resilience triangle” [62, 63]

Then, the resilience metric is defined by Equation (1), which
means the area between the real and ideal performance curves
in the recovery period.

R = ∫
t1

t0

[
100 − Q(t )

]
dt (1)

Where R is the resilience metric (loss of resilience), Q is the
performance (quality) of the critical infrastructure, and t0 is the
beginning time of the recovery period. Besides, t1 is the ending
time of the recovery period, where the system performance
returns to the normal performance (i.e. the performance before
the earthquake). It should be noted that this resilience metric is
general and can be used against disasters other than earthquake.

In [63], the area between the real and ideal performance
curves is approximated by a triangle, the so-called “resilience
triangle”, which is shown in Figure 1. This resilience triangle
represents the loss of performance after the disaster and the
pattern of recovery over the time. The resilience triangle sides
include the loss of performance and the recovery time. Thus,
the resilience enhancement strategies must reduce those sides,
or in other words, the size (area) of the resilience triangle.

One important drawback of the aforementioned metric is
that the effect of the system size is not considered, and the
resilience of different systems, or one system with different
resilience strategies, cannot be compared. However, these
aspects are essential for the resilience evaluation. Thus, the
“normalisation” is implemented for considering those aspects.
The first effort is done in [64, 65], where it is assumed that
the critical infrastructure performance is defined according
to Figure 2. Then, the resilience metric (R) is defined by
Equation (2), which means the “normalised” area beneath the
performance curve.

R = ∫
t0E+TLC

t0E

Q(t )
TLC

dt =
∫ t0E+TLC

t0E
Q(t ) dt

TLC
(2)

Where Q is the system performance (in percent), TLC is the
control time (which will be introduced later in this section),
and t0E is the time of disaster occurrence. This means that the
resilience metric is the average performance in the control time
period. It is worth noting that in [66], the above formula is
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2822 RAOUFI AND VAHIDINASAB

FIGURE 2 The performance of a critical
infrastructure and its associated resilience metric [64,
65]

used without “normalisation”, i.e. the term TLC is eliminated
from the denominator of Equation (2), which means that the
resilience metric is defined merely as the area beneath the
performance curve.

In Equation (2), it is assumed that only one disaster happens
in the control time. However, in [66, 67], it is assumed that
multiple disasters may happen in the control time, which can
be of different types or the same type with different intensities.
These disasters can also be in uncoupled (one disaster happens
when the recovery from the previous disaster is completed)
or coupled (one disaster may happen when the recovery
from the previous disaster is not completed) forms. In these
situations, the resilience metric is defined as the average (or
the weighted linear combination of) normalised area related to
all disasters (based on Equation (2)), considering the number
of disasters during the control time, the number of different
disaster intensities during the control time and the probability
that a disaster with a given intensity happens in the control
time. Besides, in [68], it is assumed that the system consists
of several interdependent critical infrastructures. Then, the
resilience metric for each critical infrastructure is defined by
Equation (2), and the resilience metric for the whole system
is defined as the weighted linear combination of each critical
infrastructure resilience metric.

It is obvious that the above normalised resilience metric
is dependent on the control time (TLC), whether it is used
considering a single disaster or multiple (uncoupled or coupled)
disasters. In [64, 65], it is stated that TLC usually is the life
cycle or life span of the system which can be determined by
the system owner or the society. We however believe that this
quantity is very important and needs more clarification. In our
opinion, the “control time” is used for two reasons:

1) As it can be seen from Figure 1, the final performance
is equal to the initial performance. Thus, the upper limit
of integral in Equation (1) is the time where the system
performance reaches to the initial performance. However,
Figure 2 shows that the final performance may be smaller
than the initial performance and the upper limit of integral
cannot be defined as before. Thus, for the resilience
evaluation in these situations, an appropriate time must be

considered at which all of the recovery efforts have been
finished. This quantity, which also will be used in Equation
(2) for determining the denominator and the upper limit of
integral, must be defined by the system owner or the society.

2) When multiple disasters (uncoupled or coupled) must be
considered, an appropriate time duration is needed where
the disasters occurring within it will be used for the resilience
evaluation. This concept is implemented in resilience metrics
equations in [67, 69].

Thus, there is a need for a “duration” or “period” in order
to consider the above two points, which is called the “control
time” in the critical infrastructure resilience literature, and can
alternatively be called as the “period of study”.

In Equation (2), the area beneath the system performance is
normalised by the control time. However, in [70], the number
100 (constant desired performance in percent, which means
the performance after the disaster returns to the performance
before the disaster) is added to the denominator of Equation
(2). Thus, the resilience metric is defined by Equation (3), which
means that the area beneath the real performance curve is
“normalised” by the area beneath the ideal performance curve,
which has a better meaning from the dimension aspect.

R = ∫
t0E+TLC

t0E

Q(t )
(100TLC)

dt =
∫ t0E+TLC

t0E
Q(t ) dt

100TLC
(3)

In [71, 72], considering multiple disasters in the control time,
Equation (4) is presented as the area-based resilience metric,
which is more general than Equation (3).

R =
∫ t0E+TLC

t0E
Q(t ) dt

∫ t0E+TLC

t0E
TQ(t ) dt

(4)

Where TQ(t ) is the ideal (target) performance curve, which
usually is a horizontal line (Figure 3), but it may have another
form and varies with time. The shape of the area between the
real and ideal performance curves can also have a form different
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RAOUFI AND VAHIDINASAB 2823

FIGURE 3 The concept of “resilience trapezoid” for a critical
infrastructure [73]

from the triangle. In fact, according to Figure 3, a “resilience
triangle” can be converted to a “resilience trapezoid”. This
shape can be more complicated if multiple disasters occur in the
control time, or the degradation and rise of performance curve
are not linear. This formula can also be used in an expected
form in order to calculate the net effect of disasters [71, 73].
The Equation (4) can also be calculated separately for the
performance degradation period and the recovery period [74].

There are other area-based resilience metrics in the critical
infrastructure literature. In [75, 76], the area between the
performance curves with and without recovery actions is
defined as “dynamic resilience”. In [60, 77–79], the area between
the real and ideal performance curves (systemic impact) and the
area beneath the recovery effort curve (total recovery effort) are
computed. Then, the normalised weighted linear combination
of these two quantities is defined as a resilience metric. This
method is used for a SISO (single input single output) system,
where the input is the recovery effort curve and the output is
the system performance curve. Then, in [80, 81], this method is
extended for MIMO (multiple input multiple output) systems,
where the system has multiple recovery effort curves (inputs)
and multiple performance curves (outputs). Thus, the systemic
impact is first computed for each output, and then the weighted
sum of these quantities is defined as the final “systemic impact”.
In addition, the total recovery effort is first computed for each
input, and then the weighted sum of these quantities is defined
as the final “total recovery effort”. For each output, the systemic
impact can be computed as before, or based on the square of the
difference between the real and ideal performance curves. For
each input, the total recovery effort can be defined as before, or
based on the square of the recovery effort curves.

In [82–86], the previous area-based resilience metrics are
converted into time-dependent metrics which are called the
“space-time dynamic” resilience metrics. This means that in
both the numerator and the denominator of Equation (4),
the upper limit of the integral is not the end of the “period
of study (control time)”, but is the “current time”, and the
metric is dependent on the current time. It is assumed that
one disaster have several effects on the system that each
of them are described by a distinct performance curve. The
“space-time dynamic” resilience metric is then computed for

each performance curve and the geometric mean of these
quantities is presented as the final resilience metric of the
system. Then, in [69, 87–90], this metric is generalised to
consider interdependent infrastructure systems and multiple
disasters, where the resilience metric may be deterministic
or probabilistic, and the disasters may occur simultaneously
or sequentially.

2.2 Literature analysis

After an extensive and in-depth survey in the critical
infrastructure resilience literature, we infer that the area-based
resilience metrics have some important drawbacks that rarely
considered in the critical infrastructure resilience literature,
and to the best of the authors’ knowledge, have been never
considered in the power system resilience literature. Our
remarks about these types of resilience metrics are mentioned
in the subsequent sections.

2.2.1 The shape of the performance curve

Since the critical infrastructures provide vital services for the
society, their loss of service, which means loss of performance
in our terms, have extensive negative impacts on the various
aspects of the society such as political, social and economic
aspects. The governments usually want to prevent those
negative impacts or compensate them as soon as possible.
When a disaster occurs, the government expects that the
critical infrastructure services remain for the most parts of the
society as much as possible. In addition, for those parts of
the society that the critical infrastructure is failed to service,
the government expects that the loss of service is short
and the service is restored as soon as possible. Thus, the
government policymaker wants that any resilience analysis and
evaluation considers these expectations.

For considering those government policymaker’s
expectations, some parameters must be defined for the
performance curve of an actual critical infrastructure.
A “degraded performance limit” is first defined for the
performance curve that if violated, the critical infrastructure
strongly will be in danger. This parameter shows the
government expectation to provide critical infrastructure
service for the most parts of the society as much as possible.
In addition, a “critical time” is defined for the performance
curve, which means the period that the critical infrastructure
performance is below the “degraded performance limit”. This
parameter shows the government expectation that the loss of
service is as short as possible for those parts of the society that
the critical infrastructure is failed to service. Finally, a predefined
period which is called “desired recovery time” is considered
after which the critical infrastructure performance must be
recovered at least to the “desired recovered performance”.
These parameters show the government expectation that
the service is restored as soon as possible for those parts of
the society that the critical infrastructure is failed to service.
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FIGURE 4 Two distinct performance curves with different shapes and
the same resilience metrics [64]

The government determines the aforementioned parameters
based on the impact of the loss of service in each critical
infrastructure on the political, social and economic aspects of
the society. Thus, the government policymaker expects that the
aforementioned parameters must be considered in the critical
infrastructure resilience evaluation.

In the conventional area-based resilience metrics (Section
2.1), the shape of the performance curve is completely
neglected, i.e. violations of the “degraded performance limit”
and the “desired recovered performance” are not considered.
These important drawbacks have been noticed in only a few
references [64, 90–94]. For example, Figure 4 shows that
two distinct performance curves with different initial loss and
different recovery time have the same area between the real
and ideal performance curves. This means that, according
to Equation (2), these performance curves have the same
resilience metrics [64]. Thus, the conventional area-based
resilience metrics ignore the extent of limit violations and
the corresponding damages and costs to the society, which is
unacceptable from the viewpoint of government policymaker.
For instance, Figure 4(a) shows a condition where the most
parts of the society experience loss of service and the service
is however restored very soon, which may cause severe impacts
in only a few sections of the society (e.g. large industries). By
contrast, Figure 4(b) shows a condition where some limited
parts of the society experience loss of service for a long
time, which may cause very severe consequences (e.g. social
unrest or riots) in those parts of the society. Thus, it is
obvious that these two performance curves are completely
different in terms of political, social and economic aspects
from the government policymaker’s viewpoint, although their
conventional area-based resilience metrics are the same.

In the critical infrastructure resilience literature, only a few
references tried to consider the aforementioned problems in the
area-based resilience metrics. The most important effort is done
in [92], where the violations of “degraded performance limit”
and “desired recovery time” are considered. The resilience
metric is defined first using Equation (2), where the resilience
triangle is multiplied by a variable multiplier (1 − 𝛼). Then, if
a “degraded performance limit” violation exists, the resilience
metric is computed using the real and limited performances,
and the difference of these quantities will be added to the
final resilience metric using a variable multiplier 𝛿. Finally, if
a “desired recovery time” violation exists, the resilience metric
is computed using the real and limited recovery times, and the
difference of these quantities will be added to the final resilience
metric using a variable multiplier 𝛾. The three variables
(𝛼, 𝛿, 𝛾) must also meet some constraints and are computed
based on an optimisation problem. Thus, this method is very
complicated and simpler methods are needed for considering
the government policymaker expectations in the area-based
resilience metrics.

There are other resilience metrics in the critical infrastructure
resilience literature that consider some of the aforementioned
drawbacks but do not belong to the area-based resilience
metrics. In [64], the ratio of the “critical time” to the “control
time” is presented as a resilience metric. In [95], the ratio
of the desired to real recovery times is used for defining
a resilience metric. In [96], the common probability of the
performance limit violation and the recovery time violation is
presented as a resilience metric, although the extent of violation
is not considered. In [97], the critical time is presented as
a resilience metric. In [98], the “marginal performance” is
defined as the difference between the performance and its
limit, and then the resilience metric is defined as the ratio
of the post-disaster marginal performance to the pre-disaster
marginal performance.

2.2.2 The final versus initial performances

In most of the area-based resilience metrics, an ideal
performance curve is defined which usually has the form of a
horizontal line. It means that the final performance after the
recovery is equal to the initial performance before the disaster.
However, this is not true for the actual critical infrastructures.
The ideal performance curve may have a shape different from
the horizontal line and maybe hardly estimated for a complex
system [71, 99]. In addition, the final performance may be
smaller than, equal to or greater than the initial performance [64,
75, 82, 100, 101]. For example, 5 months after the Superstorm
Sandy, 10% of customers in Rockaway (a peninsula of Long
Island, New York) were without power [102], which means that
the final performance was smaller than the initial performance
(more examples will be shown in Section 4). By contrast, the
state of infrastructures after the 2010 Haiti earthquake was
improved [103], which means that the final performance was
greater than the initial performance. If the initial performance
of the system is relatively low and a disaster occurs, it may
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RAOUFI AND VAHIDINASAB 2825

be required to consider the future system requirements and
increase the final performance beyond the initial one, which may
be temporal or permanent [62, 77, 79].

The full service recovery of the critical infrastructure has a
great importance for the governments, and if the service (i.e.
performance) cannot be fully recovered in the control time
(period of study), it causes extensive negative consequences
(political, social and economic) in those parts of the society that
experience loss of service for a long time. Thus, the government
policymaker expects that this important factor must be included
in the critical infrastructure resilience evaluation. In addition, if
the critical infrastructure is enhanced and the final performance
is greater than the initial performance, it must be included in the
critical infrastructure resilience evaluation. Thus, considering
the relation between the final and initial performances must be
added to the government policymaker expectations mentioned
in Section 2.2.1.

In the critical infrastructure resilience literature, only a few
resilience metrics consider this problem. The most important
work is [104], which uses the ratio of the final to initial
performances in a composite resilience metric. Another notable
work is [101], where the difference between the final and worst
performances is divided by the difference between the initial
and worst performances and is used for building a resilience
metric. In [95], the ratio of the recovered performance to the
demand performance is used for defining a resilience metric.
In [105], the time where the performance curve returns to the
𝛼% of initial performance is presented as a resilience metric,
which can be used when the final and initial performances are
different. In [38], the time of recovery to 𝛼% of the initial
performance is compared with a specified limit, which can be
used for the resilience evaluation.

3 PROPOSING THE NEW AREA-BASED
RESILIENCE METRIC

In the previous section, the application of the area-based
resilience metrics in the critical infrastructure literature is
analysed from the government policymaker’s viewpoint. In this
section, we propose a new and simple area-based resilience
metric for the power system resilience evaluation based on the
critical infrastructure resilience approaches and considering the
aforementioned government expectations. Before presenting
the mathematical description of the new resilience metric, it
is convenient to show the government expectations using a
tangible example related to the power systems. It should be
noted that all the values mentioned in the following example
are hypothetical and for illustration purpose only.

Assume that a power system is exposed to a disaster (such
as hurricane) in a country. The government’s main goal is
that most of the customers have power during the disaster,
and if some of these customers lost their service, their power
must be returned as soon as possible. This is an important
government policy that prevents or reduces the extensive
negative consequences (political, social and economic) on the
society. Thus, the government wants that most of the customers

(at least 80%) must have power during the disaster. In addition,
the government expects that the outage duration for the
customers without power (at most 20% of the customers)
must be as short as possible. The government also wants
that the power is restored to the most of the customers in
a short period of time (at least 95% of the customers have
power within 3 days). Finally, the government expects that all
of the customers which have power before the disaster must
have power after the restoration activities are finished. These
are government expectations, and all disaster management
activities must be accomplished with the aim of meeting these
expectations. However, this may be impossible in some cases,
and the above-mentioned limits may be violated. Thus, the
government policymaker wants that these limit violations must
be considered in the resilience evaluation and analysis process.

Thus, the government expectations regarding a critical
infrastructure, which are expressed in Section 2.2, can be
considered using five criteria related to the critical infrastructure
performance curve, which we call them the “government
policymaker criteria”. These criteria, which will be used for the
critical infrastructure resilience evaluation (e.g. for the power
system resilience evaluation), are summarised as follows:

Criterion 1: The relation between the final and initial
performances must be considered in the resilience evaluation,
because the final performance may be smaller than, equal to or
greater than the initial performance.

Criterion 2: The minimum performance must be greater
than or equal to the “degraded performance limit”.

Criterion 3: The “critical time”, which means the period
that the critical infrastructure performance is below the
“degraded performance limit”, must be included in the
resilience evaluation.

Criterion 4: At the “desired recovery time”, the critical
infrastructure performance must be greater than or equal to
the “desired recovered performance”. The “desired recovery
time”, which is determined by the government policymaker,
is the ending time of the duration starting from the disaster
occurrence time, at which it is expected that the most of
recovery activities are completed.

Criterion 5: If one limit is violated, the extent of the limit
violation must be considered in the resilience evaluation.

However, regarding the application of criterion 1 in the actual
power systems, it should be noted that the final performance
is equal to or smaller than the initial performance, and usually
is not greater than the initial performance. This paper mainly
concentrates on the fact that the final performance may be
smaller than the initial performance, which can be seen from the
actual power system performance curves during the Superstorm
Sandy (see Section 4).

Now, the mathematical representation of the proposed
area-based resilience metric is presented. It is assumed that the
system performance curve for a critical infrastructure (e.g. a
power system) has a typical form similar to Figure 5, where
the disaster occurs at t = 0. After the disaster occurrence, the
system performance first is not reduced (withstand component
of the resilience). Then, the system performance is considerably
reduced in a short time and the system performance remains
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2826 RAOUFI AND VAHIDINASAB

FIGURE 5 A typical system performance curve for a critical
infrastructure (e.g. a power system)

low for some duration, where the critical loads must be
supplied with available tools (adaptation component of the
resilience). Finally, after the disaster, the restoration activities
are implemented in order to return the system performance to a
stabilised and normal operating state, which may be less than the
system performance before the disaster (recovery component
of the resilience). In Figure 5, the real performance curve
variations assumed to be linear, but it can be in other nonlinear
forms. Then, our proposed area-based resilience metric (R) is
defined according to Equations (5) to (10).

R = C ×

⎛⎜⎜⎝
∫ TLC

0
Q(t ) dt

∫ TLC

0
TQ(t ) dt

⎞⎟⎟⎠ (5)

C = C1 ×C2 ×C3 ×C4 (6)

C1 =
Qf

Qi
(7)

C2 =

⎧⎪⎨⎪⎩
1 Qmin ≥ Qmin,l
Qi − Qmin,l

Qi − Qmin
Qmin < Qmin,l

(8)

C3 =

{
1 Qmin ≥ Qmin,l
TLC − ΔTcr

TLC
Qmin < Qmin,l

(9)

C4 =

⎧⎪⎨⎪⎩
1 Q(Trd) ≥ Qd(Trd)

Q(Trd)
Qd(Trd)

Q(Trd) < Qd(Trd)
(10)

In Equation (5), similar to Equation (4), the ratio of the area
beneath the real performance curve (Q(t )) to the area beneath
the ideal performance curve (TQ(t )) in the “control time”
period (TLC) is used (see our points regarding the control time in
Section 2.1). However, this quantity is multiplied by a coefficient
C , which is added for correcting the previous area-based

resilience metric by considering all government policymaker
criteria. The coefficient C is made by the multiplication
of the coefficients C1 to C4, for characterising government
policymaker criterion 1 to 4, respectively. The coefficients C1
to C4 also consider criterion 5. All coefficients are defined in
normalised forms and have no dimension. The coefficients C2
to C4 are smaller than or equal to one, but the coefficient C1
may be smaller than, equal to or greater than one. Thus, the
coefficient C may also be smaller than, equal to or greater than
one. It is worth noting that in the power systems, as mentioned
before, the final performance is smaller than or equal to the
initial performance and therefore, the coefficients C1 and C are
smaller than or equal to one.

The coefficients C1 to C4 are defined as follows:

3.1 The first coefficient (C1)

This coefficient characterises “criterion 1” and “criterion 5”
and shows the ratio of the final to initial performances. In this
coefficient, Qf is the final performance after the recovery and
Qi is the initial performance before the disaster. If the final
performance is smaller than, equal to or greater than the initial
performance, this coefficient will be smaller than, equal to or
greater than one (as mentioned before, this coefficient will be
smaller than or equal to one for the power systems).

3.2 The second coefficient (C2)

This coefficient characterises “criterion 2” and “criterion 5”
and shows that to which extent the degraded performance limit
is violated. If the worst performance after the disaster (Qmin)
is greater than or equal to the degraded performance limit
(Qmin,l ), the limit is not violated, the correction is not needed
and the coefficient is equal to one. However, if the degraded
performance limit is violated, this coefficient is defined as
the ratio of the permissible performance loss to the real
performance loss. The more the limit is violated, the more C2
will be decreased.

3.3 The third coefficient (C3)

This coefficient characterises “criterion 3” and “criterion 5” and
represents the time duration at which the degraded performance
limit is violated. If the worst performance after the disaster
(Qmin) is greater than or equal to the degraded performance limit
(Qmin,l ), the limit is not violated, the correction is not needed
and the coefficient is equal to one. However, if the limit is
violated, the duration of degraded performance limit violation,
or the violated duration time (ΔTcr ), is computed first. Then,
C3 is defined as the ratio of the non-violated duration time (the
control time minus the violation duration time) to the control
time. The more the violated duration time increases, the more
C3 will be decreased.
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RAOUFI AND VAHIDINASAB 2827

3.4 The fourth coefficient (C4)

This coefficient characterises “criterion 4” and “criterion 5” and
represents the speed of performance recovery after a predefined
period. In this coefficient, Trd is the desired recovery time,
Qd (Trd ) is the desired performance at the desired recovery
time (desired recovered performance), and Q(Trd ) is the real
performance at the desired recovery time. If after the “desired
recovery time” (Trd ), at least performance is recovered to the
“desired recovered performance”, the correction is not needed
and the coefficient is equal to one. However, if this requirement
is not met, C4 is defined as the ratio of the real to desired
performances at the “desired recovery time”.

It can be seen from Equations (5) to (10) that the proposed
area-based resilience metric depends on the three following
parameters:

1) degraded performance limit (Qmin,l );
2) desired recovery time (Trd );
3) desired recovered performance (Qd (Trd ));

These parameters must be determined in each country by
the government policymaker considering the various aspects
of the society (political, social, economic etc.) and the disaster
properties. Thus, any disaster management activity and any
resilience evaluation study in the different parts of the country
must be accomplished based on the coordinated and identical
goals (parameter values) which are made by the government
policymaker at the national level.

The proposed resilience metric can consider the resilience
enhancement strategies indirectly through their effect on the
system performance curve. Thus, it can be used to compare the
resilience of a power system with and without applying a specific
resilience enhancement strategy, or to compare the resilience
of a power system when alternative resilience enhancement
strategies are implemented. The proposed resilience metric
combines the advantages of the area-based resilience metrics
with the advantages of considering the government policymaker
criteria, which is a new idea. This metric is very simple
compared with the area-based resilience metric presented in
[92], and considers the variations of the performance curve
with time, which is not considered in [38, 64, 95–98, 104,
105]. To the best of the authors’ knowledge, no reference
in the critical infrastructure resilience literature or the power
system resilience literature summarised and considered all of
those government policymaker criteria, whereas all of them
are applied in the proposed resilience metric. Although the
new area-based resilience metric is essentially developed for
the power system resilience evaluation, the metric formulation
is completely general and it can be used for quantifying the
resilience in other types of critical infrastructures.

4 SIMULATION RESULTS

In order to compare the new and conventional area-based
resilience metrics in the power systems, a power system

performance curve is needed. This performance curve may be
obtained from the historical data of the previous disasters (for
the resilience evaluation in the past), or may be predicted using
the modelling and simulation (for the resilience evaluation in the
future). We here select the first approach for the two following
reasons:

1) The simulation results for an actual power system which is
exposed to an actual disaster are more tangible for the reader.

2) Although our study is dedicated to the resilience evaluation
of the power system, which is only one of the critical
infrastructures of the society, the actual power system
performance curve is the net effect of the various factors
which exist before, during and after the disaster, including
the disaster management activities and the interdependence
with the other critical infrastructures.

Thus, we evaluate the proposed area-based resilience metric
using a prominent actual case: The U.S. power system during
the Superstorm Sandy. The Superstorm Sandy hit the US east
coast from October 28 to November 7, 2012 and led to
significant damage to the power distribution system. The path
of the Superstorm Sandy was completely different from the
previous hurricanes since 1851, and the weather predictions
regarding Sandy’s path and intensity were inaccurate. Thus,
the utilities were not sufficiently prepared for the Superstorm
Sandy, which led to extensive power outages in the 21 U.S. states,
including Connecticut, Delaware, District of Columbia, Illinois,
Indiana, Kentucky, Maine, Maryland, Massachusetts, Michigan,
New Hampshire, New Jersey, New York, North Carolina, Ohio,
Pennsylvania, Rhode Island, Tennessee, Vermont, Virginia and
West Virginia. During the Superstorm Sandy, approximately
8 million customers (20 million people) were without power
within those 21 states, and the worst situation was in states
such as New Jersey, New York, Connecticut and West Virginia
[1, 106, 107]. The resilience analysis of the U.S. power system
during the Superstorm Sandy is done in some previous works
[106, 108, 109] from different viewpoints, and we present our
resilience evaluation from an independent and new viewpoint.
We present our resilience evaluation for a base case first
(Section 4.1), and then sensitivity analysis is done for the three
parameters which are related to the government policymaker
criteria (Section 4.2).

4.1 The resilience evaluation for the
Superstorm Sandy: Base case

For the U.S. power system, we define the ratio of “the
number of customers with power” to “the total number
of customers served” as the system performance, which is
expressed in percent. In other words, the system performance is
the proportion of customers with power which is expressed in
percent. The customer outage data for all 21 impacted states are
taken from U.S. DOE official reports during the Superstorm
Sandy (from October 28 to November 7, 2012), where two
reports are available for each day [107]. The above-mentioned
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2828 RAOUFI AND VAHIDINASAB

FIGURE 6 The system performance curve during the Superstorm Sandy
in New Jersey

FIGURE 7 The system performance curve during the Superstorm Sandy
in New York

system performance is defined based on the data available in
these reports. However, if the required data are available, the
system performance may be defined in other forms, such as
the ratio of “the supplied load” to “the total demand”, or the
ratio of “the weighted sum of the supplied loads” to “the total
demand” where the weight coefficients are computed based on
the load importance. The duration of the control time, or the
period of study (TLC), is 235 h. The total number of customers
served for all 21 impacted states are taken from the EIA data in
2012 [110].

Figure 6 shows the performance curve for New Jersey,
which is one of the most severely impacted states during the
Superstorm Sandy. It can be seen that at the end of the period of
study, the final performance is approximately 90% (i.e. 10% of
customers are not recovered yet) and the worst performance is
approximately 33%. Figure 7 shows the performance curve for
New York, which is another severely impacted state during the
Superstorm Sandy. It can be seen that at the end of the period
of study, the final performance is approximately 97% (i.e. 3% of
customers are not recovered yet) and the worst performance is
approximately 74%. Figure 8 shows the performance curve for
Connecticut, which is another severely impacted state during the
Superstorm Sandy. It can be seen that at the end of the period of
study, the final performance is 100% (i.e. all customers are fully
recovered) and the worst performance is approximately 61%.

However, there are other states with limited or minor
damages. Figure 9 shows the performance curve for the total

FIGURE 8 The system performance curve during the Superstorm Sandy
in Connecticut

FIGURE 9 The system performance curve during the Superstorm Sandy
for all of 21 impacted states

of 21 impacted states. It can be seen that at the end of the
period of study, the final performance is approximately 99%
(i.e. 1% of customers are not recovered yet) and the worst
performance is approximately 87%. Table 1 shows the most
important characteristics of the system performance curves
for each impacted state and the total of 21 impacted states.
It can be seen that when an actual power system is exposed
to an actual disaster, some practical issues are appeared in
the system performance curves. In fact, the final performance
may be different from the initial performance, and the worst
performance after a disaster may be very large. Thus, it is
required to consider these practical issues (i.e. the government
policymaker criteria in Section 3) in resilience evaluation, as we
proposed in our new resilience metric.

For the resilience evaluation, as a base case, it is assumed that
Qmin,l = 80%, Trd = 5 days (120 h) and Qd(Trd) = 95%. These
quantities are selected based on in-depth analysis of the data
which are presented in [15, 38, 92, 96, 102, 106, 108, 109]. In
Table 2, the old resilience metric (RIOld, based on Equation
(5) with C = 1) and the new resilience metric (RINew, based
on Equations (5) to (10)) are computed for each of the 21
states and the total of 21 states. It can be seen that the new
and old resilience metrics are the same for 15 states, but they
differ for the other 6 states and the total of 21 states. The
difference is related to the states with the most severe situation
where the government policymaker criteria are violated. The
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RAOUFI AND VAHIDINASAB 2829

TABLE 1 The System performance curve characteristics for the impacted
states during the Superstorm Sandy

State

Total

customers

Worst

performance (%)

Final

performance (%)

Connecticut 1609735 61.07689 100

Delaware 451908 90.01191 100

District of
Columbia

258099 98.61177 100

Illinois 5694834 99.97982 100

Indiana 3118574 99.70422 100

Kentucky 2229989 99.62426 100

Maine 795598 88.59638 100

Maryland 2468101 87.39841 100

Massachusetts 3109560 90.41434 100

Michigan 4784786 97.47874 100

New Hampshire 710119 80.00448 100

New Jersey 3957980 33.92359 90.31973

New York 8057158 73.96187 97.01724

North Carolina 4893389 99.68394 100

Ohio 5502168 95.1415 100

Pennsylvania 5974108 78.78324 99.90471

Rhode Island 495200 76.45557 100

Tennessee 3189570 99.93353 100

Vermont 360456 95.0177 100

Virginia 3671544 95.02087 100

West Virginia 1016833 73.27339 97.90978

Total (21 states) 62349709 86.84165 98.95683

new resilience metric is always smaller than or equal to the old
one (i.e. the coefficient C is smaller than or equal to one) and
the amount and percentage of the difference are also provided.
The most difference is in states such as New Jersey, Connecticut,
New York and West Virginia.

However, the old resilience metric variations are in a relatively
narrow interval within the 21 states. The value of RIOld
in the New Jersey and New York, as the most impacted
states during the Superstorm Sandy, is 0.698451 and 0.881341,
respectively, whereas in Illinois, as a state with minor damage,
RIOld is 0.99999. This small difference between the severe
and nearly intact states may be less meaningful and tangible
for the government policymakers who are concerned with the
power system resilience evaluation, and their criteria cannot
be applied using RIOld. By contrast, RINew variations are in
a relatively broad interval within the 21 states. The value of
RINew in the New Jersey and New York, as the most impacted
states during the Superstorm Sandy, is 0.041875 and 0.458073,
respectively, whereas in Illinois, as a state with minor damage,
RINew is 0.99999. This large difference between the severe
and nearly intact states is more meaningful and tangible for
the government policymakers, and they can find their criteria
applied using RINew.

TABLE 2 The old and new resilience metrics for the impacted states
during the Superstorm Sandy (base case)

State RIOld RINew C
RI

decrease

RI

decrease

(%)

Connecticut 0.875655 0.290035 0.331221 0.58562 66.87788

Delaware 0.991525 0.991525 1 0 0

District of
Columbia

0.998696 0.998696 1 0 0

Illinois 0.99999 0.99999 1 0 0

Indiana 0.999726 0.999726 1 0 0

Kentucky 0.999668 0.999668 1 0 0

Maine 0.987892 0.987892 1 0 0

Maryland 0.979389 0.979389 1 0 0

Massachusetts 0.98673 0.98673 1 0 0

Michigan 0.996438 0.996438 1 0 0

New
Hampshire

0.967866 0.967866 1 0 0

New Jersey 0.698451 0.041875 0.059954 0.656576 94.0046

New York 0.881341 0.458073 0.519745 0.423268 48.02546

North Carolina 0.99974 0.99974 1 0 0

Ohio 0.988425 0.988425 1 0 0

Pennsylvania 0.945449 0.861235 0.910927 0.084214 8.907313

Rhode Island 0.956459 0.762398 0.797105 0.194061 20.28949

Tennessee 0.999966 0.999966 1 0 0

Vermont 0.996052 0.996052 1 0 0

Virginia 0.993846 0.993846 1 0 0

West Virginia 0.910868 0.543046 0.596185 0.367822 40.38147

Total (21

States)

0.951493 0.935621 0.983318 0.015873 1.668183

4.2 The resilience evaluation for the
Superstorm Sandy: Sensitivity analysis for the
government policymaker criteria

As mentioned before, the government policymaker criteria are
considered in the new resilience metric. This metric uses three
important parameters, including the degraded performance
limit (Qmin,l ), the desired recovery time (Trd) and the desired
recovered performance (Qd(Trd)), which must be determined
by the government policymaker. In this section, we perform
a sensitivity analysis for these parameters to show their effect
on the proposed area-based resilience metric, and the flexibility
provided for the government policymakers to consider and
apply their criteria. We consider three policies for selecting those
parameters:

1. Easy policy;
2. Normal policy;
3. Hard policy;

The base case analysis presented in Section 4.1 is based on the
“normal policy” for the three aforementioned parameters. The
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2830 RAOUFI AND VAHIDINASAB

TABLE 3 The parameter values for the sensitivity analysis

Qmin,l (%) Trd (days)

Qd(Trd )

(%)

Easy policy 70 7 90

Normal policy

(base-case)

80 5 95

Hard policy 90 3 99

TABLE 4 The sensitivity analysis results for Qmin,l (degraded
performance limit)

RINew

State RIOld Easy policy

Normal

policy Hard policy

Connecticut 0.875655 0.515185 0.290035 0.110709

Delaware 0.991525 0.991525 0.991525 0.991525

District of
Columbia

0.998696 0.998696 0.998696 0.998696

Illinois 0.99999 0.99999 0.99999 0.99999

Indiana 0.999726 0.999726 0.999726 0.999726

Kentucky 0.999668 0.999668 0.999668 0.999668

Maine 0.987892 0.987892 0.987892 0.846656

Maryland 0.979389 0.979389 0.979389 0.743548

Massachusetts 0.98673 0.98673 0.98673 0.98673

Michigan 0.996438 0.996438 0.996438 0.996438

New Hampshire 0.967866 0.967866 0.967866 0.412267

New Jersey 0.698451 0.095845 0.041875 0.007459

New York 0.881341 0.758253 0.458073 0.140452

North Carolina 0.99974 0.99974 0.99974 0.99974

Ohio 0.988425 0.988425 0.988425 0.988425

Pennsylvania 0.945449 0.943652 0.861235 0.344163

Rhode Island 0.956459 0.956459 0.762398 0.334006

Tennessee 0.999966 0.999966 0.999966 0.999966

Vermont 0.996052 0.996052 0.996052 0.996052

Virginia 0.993846 0.993846 0.993846 0.993846

West Virginia 0.910868 0.850178 0.543046 0.20815

Total (21 states) 0.951493 0.935621 0.935621 0.623406

parameter’s values for the three policies are shown in Table 3.
These quantities are selected based on in-depth analysis of the
data which are presented in [15, 38 92, 96 102, 106 108, 109]. For
each sensitivity analysis, it is assumed that only one parameter
is changed and the other two parameters are according to the
normal policy (base case).

The sensitivity analysis results for parameters Qmin,l , Trd and
Qd(Trd) are presented in Tables 4– 6, respectively. It can be seen
that RINew for the easy policy is greater than or equal to the
normal policy, and for the normal policy is greater than or equal
to the hard policy. In addition, if the normal policy replaced by

TABLE 5 The sensitivity analysis results for Trd (desired recovery time)

RINew

State RIOld Easy policy

Normal

policy Hard policy

Connecticut 0.875655 0.321965 0.290035 0.233122

Delaware 0.991525 0.991525 0.991525 0.991525

District of
Columbia

0.998696 0.998696 0.998696 0.998696

Illinois 0.99999 0.99999 0.99999 0.99999

Indiana 0.999726 0.999726 0.999726 0.999726

Kentucky 0.999668 0.999668 0.999668 0.999668

Maine 0.987892 0.987892 0.987892 0.987892

Maryland 0.979389 0.979389 0.979389 0.979389

Massachusetts 0.98673 0.98673 0.98673 0.98673

Michigan 0.996438 0.996438 0.996438 0.996438

New Hampshire 0.967866 0.967866 0.967866 0.938737

New Jersey 0.698451 0.050221 0.041875 0.032347

New York 0.881341 0.49956 0.458073 0.412258

North Carolina 0.99974 0.99974 0.99974 0.99974

Ohio 0.988425 0.988425 0.988425 0.988425

Pennsylvania 0.945449 0.862054 0.861235 0.785797

Rhode Island 0.956459 0.762398 0.762398 0.720736

Tennessee 0.999966 0.999966 0.999966 0.999966

Vermont 0.996052 0.996052 0.996052 0.996052

Virginia 0.993846 0.993846 0.993846 0.993846

West Virginia 0.910868 0.56965 0.543046 0.470787

Total (21 states) 0.951493 0.941568 0.935621 0.894753

the easy policy, it is possible that some or all of limit violations
in the normal policy are removed, which means that RINew may
be the same as RIOld. This case can be seen in Table 4 for
Rhode Island. By contrast, if the normal policy replaced by the
hard policy, it is possible that some or all of limits are violated,
although they are not violated in the normal policy. This means
that RINew may be the same as RIOld for the normal policy,
but they are different for the hard policy. This can be seen in
Table 4 (Maine, Maryland and New Hampshire), Table 5 (New
Hampshire) and Table 6 (Ohio).

However, there are other states where RINew is always
equal to RIOld and this is not changed under the easy,
normal and hard policies for three parameters, including
Delaware, District of Columbia, Illinois, Indiana, Kentucky,
Massachusetts, Michigan, North Carolina, Tennessee, Vermont
and Virginia. In these states, the final performance is the same
as the initial performance, and the worst performance is usually
high, as it can be seen from Table 1.

It is obvious that in actual power systems, determining the
three parameters related to the proposed area-based resilience
metric (Qmin,l , Trd and Qd(Trd)) is not straightforward. For
example, if Qmin,l is selected according to the easy, normal and
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TABLE 6 The sensitivity analysis results for Qd(Trd ) (desired recovered
performance)

RINew

State RIOld Easy policy

Normal

policy Hard policy

Connecticut 0.875655 0.306149 0.290035 0.278317

Delaware 0.991525 0.991525 0.991525 0.991525

District of
Columbia

0.998696 0.998696 0.998696 0.998696

Illinois 0.99999 0.99999 0.99999 0.99999

Indiana 0.999726 0.999726 0.999726 0.999726

Kentucky 0.999668 0.999668 0.999668 0.999668

Maine 0.987892 0.987892 0.987892 0.987892

Maryland 0.979389 0.979389 0.979389 0.979389

Massachusetts 0.98673 0.98673 0.98673 0.98673

Michigan 0.996438 0.996438 0.996438 0.996438

New Hampshire 0.967866 0.967866 0.967866 0.967866

New Jersey 0.698451 0.044201 0.041875 0.040183

New York 0.881341 0.483521 0.458073 0.439565

North Carolina 0.99974 0.99974 0.99974 0.99974

Ohio 0.988425 0.988425 0.988425 0.987472

Pennsylvania 0.945449 0.862054 0.861235 0.826438

Rhode Island 0.956459 0.762398 0.762398 0.760827

Tennessee 0.999966 0.999966 0.999966 0.999966

Vermont 0.996052 0.996052 0.996052 0.996052

Virginia 0.993846 0.993846 0.993846 0.993846

West Virginia 0.910868 0.56965 0.543046 0.521105

Total (21 states) 0.951493 0.941568 0.935621 0.897818

hard policies (70%, 80% and 90%, respectively), all disaster
management activities must be done considering the selected
policy. Then, an easy policy needs less cost for the disaster
management activities, and the social unrest may however be
more probable. By contrast, a hard policy needs more cost
for the disaster management activities, and the social unrest
may however be less probable. Thus, a normal policy which
compromise between these two aspects (and the other required
aspects) may be convenient. However, it should be noted
that the parameters given in Table 3 are hypothetical and for
illustration only, and the values assigned to the normal policy
must not be interpreted as our recommendations. In fact,
determining these parameters is a complicated problem which
needs extensive studies by the national government agencies
considering the various aspects of the society (political, social,
economic etc.) and the disaster properties.

According to the simulation results, it can be inferred that
the proposed area-based resilience metric is very simple, can
address the practical issues which are related to the actual power
systems and disasters, and is more tangible and meaningful for
the government policymakers since their criteria can be applied
in the resilience evaluation in an easy and flexible manner.

5 CONCLUSION

In this paper, it is shown that the most important power system
resilience metrics are taken from the critical infrastructure
resilience literature, which have a very long history. The paper
concentrates on the “area-based” resilience metrics, which are
reviewed first based on the critical infrastructure resilience
literature. Then, some drawbacks and problems regarding those
metrics are mentioned, which are related to the practical issues
that exist in the actual critical infrastructures (e.g. in the actual
power systems) and are very important from the government
policymaker’s viewpoint. Considering a critical infrastructure
performance curve, the government policymaker expectations
means that the system performance curve must be limited in
terms of the worst performance and the time duration it takes
in the impermissible performance. In addition, the relation
between the final and initial performances must be considered,
and after a predefined duration from the disaster occurrence, a
minimum performance must be recovered. These government
expectations are summarised in five points for the power system
resilience evaluation, which we call them the “government
policymaker criteria”.

Then, a new area-based resilience metric is proposed to
consider the aforementioned government policymaker criteria
in the power system resilience evaluation. In this metric, the
conventional area-based resilience metric is multiplied by four
coefficients that correspond to the government policymaker
criteria. The proposed area-based resilience metric is evaluated
using the real data that shows the effect of the Superstorm
Sandy on the power system in the 21 U.S. states. The new
and old (proposed and conventional) area-based resilience
metrics are then computed and compared with each other.
The sensitivity analysis is also accomplished for the three
parameters which are related to the government policymaker
criteria (degraded performance limit, desired recovery time,
desired recovered performance) by considering three policies:
easy, normal and hard. The simulation results show that the
new area-based resilience metric is very simple, can address
the performance curve issues regarding an actual power system
which is encountered with an actual disaster, and is more
tangible and meaningful for the government policymakers since
their criteria can be applied easily and flexibly in the power
system resilience evaluation.

Although the new area-based resilience metric is proposed
for the power system resilience quantification, it has a general
form that is not restricted to this infrastructure type. Thus,
the proposed area-based resilience metric can be used for the
resilience quantification in other types of critical infrastructures.
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