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Abstract
Computational modelling is a key component of systems biology and integrates with the other tech-
niques discussed thus far in this book by utilizing a myriad of data that are being generated to quan-
titatively represent and simulate biological systems. This chapter will describe what computational 
modelling involves; the rationale for using it, and the appropriateness of modelling for investigating 
the aging process. How a model is assembled and the different theoretical frameworks that can be 
used to build a model are also discussed. In addition, the chapter will describe several models which 
demonstrate the effectiveness of each computational approach for investigating the constituents 
of a healthy aging trajectory. Specifically, a number of models will be showcased which focus on the 
complex age-related disorders associated with unhealthy aging. To conclude, we discuss the future 
applications of computational systems modelling to aging research. © 2015 S. Karger AG, Basel

Aging has intrigued and troubled scholars since the beginning of civilization. It is 
a process that can be described generally as the changes that take place during the 
life span of an organism which progressively renders them more likely to die. The 
alterations that bring about a gradual increase in the probability of mortality in-
volve all aspects of biology, from molecular mechanisms to whole-body physiolog-
ical systems. Moreover, there is little doubt that aging is modulated extrinsically by 
diet, while intrinsically the velocity of aging also appears to be shaped by a wide 
variety of genetic mutations. For instance, mutations to daf-2/daf-16 regulate life 
span in the nematode [1], while the FOXO3A genotype has been strongly linked 
with variations in human longevity [2]. Paradoxically, genetic homogeneity does 
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not mean the velocity of aging will be the same, as genetically identical species can 
display a variety of aging rates [3]. Furthermore, evolution has given rise to sig-
nificant life span variations between different species [4]. Aging is also seen as cen-
tral to the understanding of many disease states; for example, in certain tissues the 
accumulation of senescent cells can lead to cancer via a pro-inflammatory response 
[5], while neurodegeneration underpins the progression of Alzheimer’s (AD) and 
Parkinson’s disease [6]. Moreover, free radical damage has been implicated in a 
variety of disease pathologies from cardiovascular disease (CVD) to dementia. His-
torically, biologists have investigated the complexities of aging using conventional 
wet laboratory techniques; however, it is increasingly recognized that to fully ap-
preciate the uniqueness of aging, systems biology approaches are a necessity [7]. A 
fundamental aspect of systems biology is computational systems modelling, a pro-
cedure which involves the development of in silico models. Such models are ideal 
for describing the innate complexity and dynamics of aging. However, it is often 
misunderstood as to what exactly computational systems modelling is. It is not 
statistical data analysis, the three-dimensional visualization of proteins or database 
mining; instead, it involves using a computer to quantitatively represent the com-
ponents of a biological system of interest. How the components interact based on 
current biological understanding is described with mathematical equations. The 
computer then simulates the interactions between the components to give an over-
all graphical account of the dynamics of the system [8]. Thus, computational sys-
tems modelling can be easily integrated with other disciplines under the systems 
biology umbrella, as quantitative data from diverse fields including genomics, me-
tabolomics and proteomics can be utilized to inform model construction and re-
finement. Moreover, model predictions can be used to direct the future design of 
wet laboratory experiments and also give insights into how a biological system will 
behave under a wide-variety of different conditions. For instance, the proposed ef-
fects of the aging process can be incorporated into a model by including something 
as straightforward as the age-associated decline in the activity of the key enzymes 
of the cellular pathway of interest. Despite the clear advantages outlined above, the 
utility of modelling to aging research can often be overlooked, or traditional ger-
ontologists can be sceptical about the validity of the model or the modelling pro-
cess generally. Thus, it is important to extend further the rationale for using com-
putational systems modelling and why it is central to improving our understanding 
of the aging process.

Rationale for Using Systems Modelling for Aging Research

As outlined, computational models are capable of the quantitative representation 
and analysis of biological systems, something that is not always possible to achieve 
in a wet laboratory for a number of reasons. Firstly, biological systems are both in-
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herently detailed and inherently complex. This level of detail and complexity gives 
rise to a diverse web of overlapping metabolic networks which are comprised of 
multiple connections between each node in the network. Many of the nodes inter-
act in a non-linear fashion and often communicate with each other via sophisti-
cated feedback or feed-forward loops. This places a significant cognitive burden on 
the human brain to retain this level of complexity and detail. For instance, if the 
activity of NAD+ dependent deacetylases, commonly referred to as sirtuins are ex-
plored, such complexity becomes apparent as the seven mammalian sirtuins per-
form numerous interrelating actions and modulate a number of pathways connect-
ed to age-related disease [9]. Likewise, the mammalian target of rapamycin (mTOR) 
pathway is equally complex. This system is known to regulate life span in model 
organisms, and recently has been suggested as a central intracellular regulator, 
mechanistically connecting aging, oxidative stress and cardiovascular health [10]. 
Thus, it is highly improbable that one can reason about such complex systems by 
human intuition alone and as such computational modelling offers a complimen-
tary means of dealing with the complexity associated with aging. Another reason 
for using the systems approach is to identify and unravel molecular and biochemi-
cal hubs that are key regulators, whose robust dynamics ultimately impact the 
health of tissues and whole-organ systems. To this end, computational systems bi-
ology is beginning to accommodate the representation of biological systems in a 
multi-scale way [11, 12]. This type of representation contrasts with many conven-
tional methodologies which focus on a small manageable component of a biological 
system. This is particularly significant for aging, as the most probable way to gain 
a deeper understanding of this intriguing phenomenon is to investigate the syner-
gistic behaviour of cells, tissues and organ systems. The next section will explore 
further the advantages of computational systems biology compared to convention-
al approaches to studying aging.

Advantages over and Interactions with Conventional Techniques

There are many conventional approaches that can be used to study aging. These 
experimental methodologies have been valuable in aiding our understanding of the 
aging process and will have a role to play in future aging research; however, such 
methodologies have limitations. If for example longitudinal studies are examined, 
this approach certainly has value; however, it can be resource intensive, expensive 
and time consuming. Most significantly, this approach will not offer immediate 
benefits for an aging Western population which urgently requires remedies to dis-
eases such as dementia, which almost half of the oldest old (those ≥85 years) in the 
USA and UK suffer from [13]. Cross-sectional studies, where individuals of varying 
ages from a population are assessed at the same time point are not as costly as lon-
gitudinal investigations. However, distinguishing cause and effect in cross-section-
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al studies from straightforward association is inherently difficult. As an example, 
recent evidence has indicated an association between the decline in global DNA 
methylation and age in humans. DNA methylation is an epigenetic mark that plays 
an important role in gene expression, gene imprinting and transposon silencing. 
Paradoxically, advancing age has been associated with the hypermethylation of cer-
tain genes, which can result in age-related disease [14]. If a cross-sectional study 
was conducted to examine DNA methylation status in a cohort of individuals, this 
phenomenon would more than likely be apparent. However, it would be challeng-
ing to disentangle its causes, as a wide variety of intrinsic and extrinsic factors are 
conjectured to modulate DNA methylation. These factors include a methyl-defi-
cient diet, genetic polymorphisms within the folate pathway and age-related altera-
tions to the activity of DNA methyl transferases, the family of enzymes responsible 
for transferring methyl groups to the DNA molecule [14]. It is possible that hetero-
geneous individual combinations of these factors could independently result in the 
methylation paradox and a cross-sectional study would not be able to unravel this. 
The significance of biological heterogeneity is further emphasized by the knowl-
edge that clonal populations of cells display significant phenotypic variations. This 
phenomenon is suggested to arise from stochasticity or noise in gene expression 
[15]. Aging researchers need to be acutely aware of biological stochasticity and that 
simulations by computational systems models are capable of representing both in-
ter-individual and inter-cellular stochasticity [16]. When studying aging, it is also 
important to take account of the ethical considerations, for instance dietary inter-
vention studies are regularly employed to explore potential nutrients that could 
modulate the aging trajectory; however, there is a moral imperative to consider 
here. For example, rodents are routinely used to investigate dietary regimes in ag-
ing research; but it could be argued that it is unethical to overuse animals in studies 
of this nature. Significantly though, model organisms have helped to reveal that 
caloric restriction (CR) can extend life span [17]. However, this raises the issue of 
whether such findings can be translated to humans, as many difficulties surround 
these investigations, not least that extended timeframes are needed to decipher the 
optimal regime most beneficial to healthy aging. It is also important to be cautious 
when making inferences about the potential effects of CR in humans. We need only 
look to the disciplines of toxicology and pharmacology to recognize that the phys-
iology of animals does not always translate well to humans. Thus, an in silico hu-
man representation of CR would be worth establishing prior to any trial of CR in 
humans, as modelling could help to reveal any potential dangers of this regime. 
This is not improbable as computational systems models are currently used to study 
the long-term effects of diet on the pathological signatures that characterize un-
healthy aging [18]. Thus, computational systems modelling can overcome a variety 
of challenges by providing a framework for aging-centred questions that are unsuit-
able to test with conventional approaches.
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Computational Systems Modelling Approaches for Aging Research

Modelling approaches differ significantly from traditional in vivo or in vitro tech-
niques used to study aging. Firstly, a model can be used as a cheap and rapid test bed 
for hypothesis exploration. For example, computational models have long been used 
for testing life history theories that attempt to frame aging within an evolutionary 
template [19]. Moreover, no matter what framework is used, constructing a model can 
improve or augment our understanding of the age-related process under examina-
tion. This is a result of having to consider the system of interest in an unambiguous 
and precise fashion using mathematics; and there are several mathematical frame-
works which can be adopted to deal with the complexities of aging. The theoretical 
framework that is employed will depend on the nature of the system to be modelled. 
Importantly however the model needs to encapsulate the biological essence underpin-
ning the aging process under consideration, and the framework that is employed 
should be directly informed by biological evidence and not by modeller bias for a par-
ticular approach.

Ordinary Differential Equations and Partial Differential Equations

This approach treats biological systems as reaction networks, which can be repre-
sented mathematically by ordinary differential equations (ODEs). ODEs are known 
as ordinary because they depend on one independent variable (time), and it uses the 
assumption that biological species exist in a well-mixed compartment, where con-
centrations can be viewed as continuous. It also assumes that large numbers of mol-
ecules are involved in reactions and that the average behaviour of the population of 
molecules is not influenced by variability [20]. ODEs can be coded on the computer 
and an algorithm solves them numerically to produce a deterministic output. They 
are the most common mathematical framework used in computational systems bi-
ology; however, they are unsuitable for modelling transport processes, diffusion, 
molecular spatial heterogeneity and stochasticity. The latter of these limitations is 
important for aging research as intracellular processes such as oxidative stress are 
often viewed as stochastic events. Recent examples of ODE models that have been 
employed in aging research include deterministic models used to represent apopto-
sis [21], immunosenescence in humans [22], and cardiac ventricular dimension al-
terations during aging in mice [23]. In contrast to ODEs, partial differential equa-
tions (PDEs) are multivariable functions with partial derivatives. Not as ubiquitous 
as ODE models, the main advantage of PDEs is the ability to handle both spatial and 
temporal dependencies. This is best demonstrated by a recent model of tumour 
growth, which included cell age, cell size, and the mutation of cell phenotypes [24]. 
Moreover, it also incorporated proliferating and quiescent tumour cells indexed by 
successively mutated cell phenotypes of increasingly proliferative aggressiveness. 
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The model was able to structure tumour cells by both cell age and cell size. A dis-
advantage of PDE models is that they can be computationally intensive and thus 
slow [20].

Stochastic Reaction Networks and Probability-Based Models

Stochastic reaction models attempt to represent the discrete random collisions be-
tween individual molecules, which is vital when considering that random accumula-
tion of cellular damage has long been implicated with intracellular aging. This type of 
reaction is suggested to take place if the molecules exist in small numbers or there are 
fluctuations in their behaviour, for instance variations in cellular free radical levels. 
Stochastic simulations treat molecule reactions as random events. Computationally, 
this approach involves an algorithm treating each reaction in the model as a probabil-
ity/propensity function, e.g. reactions have different probabilities of occurring, which 
can be altered based on the reaction type. A stochastic algorithm is not concerned with 
average behaviour, rather the probabilistic formulation determines firstly when the 
next reaction occurs and secondly what reaction it will be [16]. Due to its historical 
connection with the free radical theory of aging, mitochondrial/oxidative stress mod-
els are commonplace. Recently, a stochastic systems model was used to simulate mito-
chondrial function and integrity during aging [24]. The model demonstrated that cy-
cles of fusion/fission and cell degradation are required to maintain optimal levels of 
mitochondria, even during periods of stochastic damage [25]. Another recent model 
by Kowald and Kirkwood [26] examined the accumulation of mitochondrial DNA de-
letions with age in post-mitotic cells. Computer simulations were used to study how 
different mutation rates affect the extent of heteroplasmy. The model showed that ran-
dom drift works for life spans of around 100 years, but for short-lived animals, the re-
sulting degree of heteroplasmy was incompatible with experimental observations [26]. 
Another recent stochastic model focused on the age-related factors that contribute to 
neurodegeneration by investigating the potential role of glycogen synthase kinase 3 
and p53 in AD [27]. The model was able to predict that high levels of DNA damage 
leads to increased activity of p53 [27]. A model based on the same field of study by Tang 
et al. [28] illustrates the complementary nature of computational modelling and wet 
laboratory experimentation. The authors used fluorescent reporter systems imaged in 
living cells and computer modelling to explore the relationships of polyQ, p38MAPK 
activation, generation of reactive oxygen species, proteasome inhibition and inclusion 
body formation. Several other probability/stochastic network models have attempted 
to replicate the dynamics of telomere erosion. For instance, a computational model 
was able to explore the idea that telomere uncapping is the main trigger for cellular 
senescence [29]. A more recent stochastic model made the assumption that cell divi-
sion in each time interval is a random process whose probability decreases linearly with 
telomere shortening [30]. Computer simulations of this model were also able to pro-
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vide a qualitative account of the growth of cultured human mesenchymal stem cells 
[30]. Variability in biological systems can also be represented with a bayesian network 
(BN). BNs are a type of probabilistic network graph, where each node within the graph 
represents a variable. Nodes can be discrete or continuous and are connected to a prob-
ability density function, which is dependent on the values of the inputs to the nodes 
[31]. Recently, a special type of BN called a dynamic BN was applied to the Baltimore 
Longitudinal Study of Aging. The advantage of this approach over conventional BNs 
was its ability to model feedback loops. The model showed that interactions among 
regional volume change rates for a mild cognitive impairment group were different 
from that of a ‘normal’ aging cohort [32]. A limitation of BNs is that they are entirely 
probabilistic and do not represent biological systems mechanistically.

Petri Net Models, Boolean Networks and Agent-Based Models

Petri nets are a directed bipartite graph, with two types of nodes, called places and tran-
sitions, which are represented diagrammatically by circles and rectangles, respectively. 
Circles represent ‘places’ while rectangles represent ‘transitions’. Places and transitions 
are connected via arrows/arcs. Each circle or place contains a number of tokens which 
is a kin to a discrete number of biochemical molecules, while the stoichiometry is in-
dicated by the weight above the arrow/arc. Tokens can be both consumed and pro-
duced within the Petri net, while a Petri net functions by input-output firing at the 
‘transitions’ within the network. The ‘firing’ of transitions is a kin to a biochemical 
reaction taking place. The firing of ‘transitions’ is controlled incrementally using time 
steps. There are many different variants of Petri net, including coloured, hybrid, con-
tinuous and stochastic, each having a slightly different mode of operation. Petri nets 
are ubiquitously employed to study genetic regulatory networks [33]. From an aging 
perspective, a recent Petri net model involved modelling the high osmolarity glycerol 
signalling pathway, an important regulator of several transcription factors that re-
spond to oxidative stress [34]. The model focused on Saccharomyces cerevisiae and was 
able to successfully integrate key signalling, metabolic and regulatory processes in a 
systems orientated fashion. Boolean network models are also comprised of nodes that 
can either be in an ‘on’ or ‘off’ state. The dynamics of the model are acted out by a se-
ries of time steps, with the state of each Boolean variable being updated at each time 
step. Similar to Petri nets, Boolean models are regularly employed to examine gene 
regulatory networks. A recent example of a Boolean model relevant to aging research 
described the behaviour of the apoptosis network. The model provided insights into 
the interactions between pro- and anti-apoptotic factors [35]. Agent-based models 
have been increasingly used in aging research also [36]. This is a rule-based approach 
which is used to investigate biological systems using clusters of independent agents 
whose behaviour is underpinned by simple rules. These agents are capable of interact-
ing with one another through space and time. Agent-based models have been applied 
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to many areas of aging research, including signalling pathways, and immune respons-
es. An agent-based model has recently been used to model the NF-κB (nuclear factor-κ 
light chain enhancer of activated B cells). The model incorporated individual mole-
cules, receptors, genes and structural components such as actin filaments and cytoskel-
eton, while providing a detailed outline of this network [37].

Model Building

The steps in model building in aging research are presented in figure 1.

Step 1: Selecting a System to Model, and Step 2: Checking for Previous Models

Increasingly, modellers are becoming part of the infrastructure of modern wet labo-
ratories, and in theory computational modelling should directly compliment the 
other systems biology techniques outlined in this book thus far. Therefore, the direc-
tion the computational model takes should be informed by the overall research focus 
of the wet laboratory and should also be integrated with other laboratory experi-
ments [38]. Once an aging-focused system is identified, it is necessary to determine 
whether the model will simply describe the systems of interest or whether it will fo-
cus on predicting the behaviour of the system (a hypothesis-driven model). This 
decision should be determined by the goals and motivations of the research team. 
The team will then be required to decide on the components of the model. This is 
an abstract process, and it is not possible to include every biological species or reac-
tion. As a rule of thumb, model boundary points should be informed by the idea or 
hypothesis that is under consideration. It is also important to perform a literature 
search to determine if the system of interest has been modelled previously. This step 
can be facilitated by the BioModels database, an archive of published peer-reviewed 
systems models (http://www.ebi.ac.uk/biomodels-main). Models archived in the 
BioModels database are coded in the model exchange framework, the Systems Biol-
ogy Markup Language (SBML; http://sbml.org/Main_Page). If no suitable model 
exists, it will be necessary to develop a list of biological species and to determine how 
they interact with each other before visually displaying their interactions in a net-
work diagram.

Step 3: Network Diagram Construction, and Step 4: Deciding on a Mathematical 
Framework

A network diagram is necessary to outline precisely how the biological species interact 
and to illustrate model boundary points. A variety of approaches can be used to do this, 
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and recently an attempt has been made to standardize how network diagrams are repre-
sented using a framework called Systems Biology Graphical Notation [39] which could 
become the standard means of representing models diagrammatically in the future. To 
illustrate the network building process, an example of an elementary model of the mTOR 
signal cascade was developed (fig. 2). The purpose of including this diagram was firstly 
to illustrate the precise nature of network diagrams. Secondly, the diagram emphasizes 
that one must abstract when model building. For example, the mTOR signal cascade is 
a complex network, with >50 components; thus, it was necessary to be selective in order 
to identify key hubs in the pathway. The network diagram (hypothetical model) com-
mences with the extrinsic stimulation of P13K by growth factors such as those from the 

Hypothesis(1)

Check for
existing models

(2)

Use existing
model

Network
diagram

(3)

Mathematical
framework

(4)

Select
software tool

(5)

Set initial
conditions

(6)

Model
simulation(7)

Model
validation

(9)

Hypothesis
exploration

(8)

Revisit hypothesis

Further wet lab
experiments

(10)

Fig. 1. The 10 steps involved in the modelling process; the process is cyclic with wet laboratory ex-
perimentation generating a hypothesis which in turn can be tested by constructing a model; the 
model in turn feeds further wet laboratory experimentation. 
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insulin-like growth factor family. This is significant from an aging perspective as CR 
inhibits the activation of this pathway. AKT is activated by P13K in a manner which de-
pends on the rate at which P13K has been activated (reactions are indicated by arrows, 
with their kinetic reaction rates indicated by the symbols k1–k10). Both P13K and AKT 
have degradation rates. From an ageing perspective it would be worthwhile investigat-
ing how changes to these rates impact the system as a whole. Alterations to the levels of 
AKT have been implicated in the progression of age-related diseases such as cancer and 

Extrinsic signal 

P13K

k2

AKT

k1

Activation
signal

PRAS40

PRAS40Phos

mTOR

k5

Phosphorylation
rate  

Cell
metabolism

Metabolic activation 

Degradation 

k9
Inhibition  

Cell

k4

k3

k6

k7

k8

Signal degradation

k10

SignalRates can be changed 
to reflect aging, 

dietary restriction or 
the inclusion of 

resveratrol 

Fig. 2. Diagrammatic representation of mTOR signalling for illustrative purposes. Arrows represent 
stimulation or conversion reactions; while feedback inhibition is represented by T-shaped arrows. 
k1–k10 represent kinetic reaction rate constants for each of the steps in the model. k1 = Rate of acti-
vation of P13K; k2 = rate of activation of AKT; k3 = degradation rate of P13K; k4 = degradation rate of 
AKT; k5 = rate of PRAS40 phosphorylation; k6 = rate of PRAS40 degradation; k7 = inhibition of mTOR 
signal; k8 = mTOR signal input; k9 = metabolic activation; k10 = metabolic signal degradation; P13K = 
phosphoinositide 3-kinase; AKT  = protein kinase B; PRAS40  = proline-rich AKT1 substrate 1; 
 PRAS40Phos = phosphorylated PRAS40.
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type 2 diabetes; therefore, this is another aspect of the model that could be explored from 
an intrinsic aging perspective. Dietary regimes associated with longevity could also be 
investigated; for example, it would be straightforward to incorporate the effects of CR 
on this pathway or to include the proposed inhibitory effects of the phenolic compound 
resveratrol. 

Step 5: Identify a Suitable Modelling Tool, and Step 6: Setting the Initial Conditions/
Parameters

There are many software tools available to build models of biological systems. Ex-
amples include commercial software packages such as Mathematica and MATLAB, 
while non-commercial tools include Copasi (http://www.copasi.org), CellDesigner 
(http://www.celldesigner.org/) and PyCml (https://chaste.cs.ox.ac.uk/cellml/). Until 
recently, it was necessary to learn how to programme competently to construct a 
computational model, which made the discipline inaccessible to many bioscience re-
searchers. Recently, significant progress has been made, and many tools now come 
with a graphical user interface (GUI), for instance Copasi [40] and CellDesigner have 
intuitive GUIs. If the model is kinetic based, setting the initial conditions and param-
eters involves establishing the initial concentrations of the various biological species 
and giving each rate law a value. There are many online resources which can be uti-
lized to help with this process. For example, BRENDA (http://www.brenda-enzymes.
org/) and SABIO-RK (http://sabio.h-its.org/) archive the details of a wide variety of 
kinetic data including Vmax and Kcat values which can be used to inform model pa-
rameterization.

Step 7: Model Simulation, and Step 8: Model Validation/Parameter Inference

The output from a simulation will depend on the type of mathematical framework 
that underpins the model. For example, a deterministic solution will always have the 
same output for a given set of initial conditions and parameters. A stochastic simula-
tion will not produce the same output given a set of initial conditions and parameters. 
Output from the model can be compared with appropriate time course data to com-
pare the dynamics of the system with its biological counterpart. The sensitivity of the 
model can also be explored by making adjustments to the model parameters/initial 
species concentrations. If the model does not compare well to the behaviour of the 
biological system, it will be necessary to ‘fine tune’ the parameters to ensure the be-
haviour of the model is consistent with the dynamics of the biological system. Certain 
software tools are capable of optimizing a parameter set (or sets) which is consistent 
with the experimental output. For example, the software tool Copasi has a number of 
inbuilt statistical techniques to facilitate parameter optimization.
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Step 9: Hypothesis Examination, and Step 10: Further Wet Lab Experimentation

If the output of the model appears to be a realistic interpretation of the dynamical be-
haviour of the system, the model can be used as a predictive tool. If the model does 
not appear to be a realistic interpretation, one can refine the research question/mod-
el; thus, model building is a cyclic process that involves continual revalidation and 
re-evaluation of the model. If satisfied with the model it can be coded in an exchange 
format and several exist for computational models, including the Cell Markup Lan-
guage (Cell-ML; http://www.cellml.org/) and SBML (http://sbml.org/Main_Page). 
Presently, SBML is the leading exchange format in systems biology and has been 
evolving since 2000 thanks to an international community of software developers and 
users.

Computational Systems Models of Aging – From Cell to Whole Body

As outlined, the aging process is inherently complex with a multitude of overlapping 
relationships that communicate over several different levels. This complexity is a direct 
result of the underlying multi-scale interconnectivity and interplay of a diverse range of 
molecular, biochemical and physiological processes. There is no doubt that aging and 
age-related diseases are a manifestation of the dysregulation and dysfunction of these 
systems. As a result of the multi-scale nature of biological systems, various different lev-
els of abstraction have been used to create models of a diverse array of processes relating 
to aging. In the main, systems computational models are cellular in nature; however, 
recently several aging researchers have come to the conclusion that cellular models, al-
though important are an insufficient means of representing the holistic nature of the 
aging process and its interaction with age-related pathologies. Consequently, several 
whole-body computational systems models have been developed. It is not possible to 
discuss every model; therefore, selections have been restricted to those that illustrate 
eloquently the diversity and utility of whole-body systems models which have been ap-
plied to aging research. For instance, a recent whole-body systems model of cholesterol 
metabolism was used to explore the interaction of this system with intrinsic aging. The 
model was able to show that changes to intestinal cholesterol absorption due to the ag-
ing process could result in a rise in low-density lipoprotein cholesterol (LDL-C), a key 
pathological signature of CVD. Moreover, the model also showed that decreasing the 
rate of hepatic clearance of LDL-C from half its initial value by age 65 years can result 
in the significant elevation of LDL-C [18]. Other age-related whole-body models have 
focused on brain aging and dementia. For example, a novel whole-body computational 
model integrated specific brain regions associated with AD together with the physio-
logical regulation of the stress hormone cortisol. The rationale underpinning the mod-
el was to investigate the possible role elevated levels of cortisol have in damaging the 
hippocampus, the brain region which is the core pathological substrate for AD. The 
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model was able to replicate the in vivo aging of the hippocampus. Moreover, both acute 
and chronic elevations in cortisol increased aging-associated hippocampal atrophy and 
concomitant loss in the activity of the hippocampus. The model was also used to inves-
tigate potential interventions such as physical activity which could be used to mitigate 
the effects of aging and cortisol damage to the hippocampus [41].

Conclusions

Computational systems modelling is a novel integrated approach that provides a pow-
erful foundation for gaining an in-depth understanding of how human metabolism is 
perturbed by aging. This chapter has highlighted the rationale for using computation-
al systems models. The steps involved in the model building process were also outlined, 
and a wide variety of models from cellular to whole body were discussed that empha-
sized the utility of modelling to aging research. It is highly probable that in future years 
computation systems modelling will be further embedded within systems biology. This 
is something that the aging research community will benefit from as coming years of-
fer the possibility of models being connected together to create a holistic picture of the 
aging process from genes through to whole organ systems. Such models could focus 
on multi-scale responses to nutrients or physical activity over extended time frames. 
In order to achieve this goal, there is little doubt innovative collaborations are a neces-
sity. As this chapter has highlighted, building computational models is a highly collab-
orative effort that requires considerable interaction between several disciplines. Thus, 
it is not a process that should occur in isolation as it needs to be firmly integrated 
within the systems biology paradigm. Working together mathematicians, computer 
scientists and experimental biologists will be able to provide valuable insights into how 
robust biological systems break down due to the aging process. Such insights will no 
doubt contribute to the development of strategies which help to prolong healthy life 
and delay age-related diseases such as CVD and dementia.
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