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ABSTRACT Planning of the electric distribution networks is complex and about upgrading the system
to satisfy the demand and constraints with the best economic plan. The planning alternatives include
the expansion of substations, installing new distributed generation (DG) facilities, upgrading distribution
feeders, etc. In the modern networks, distribution planners must gain the confidence of the reversibility
of the investment where renewable energy resources (RERs) inject clean and cost-effective electrical
power to respond to the rising demand and satisfy environmental standards. This paper is an exhaustive
review on the distribution network expansion planning (DEP) including the modelling of DEP (possible
objective functions, problem constraints, different horizon time, and problem variables), optimization model
(single/multi-objective), the expansion of distributed energy resources (DERs), problem uncertainties, etc.
We discuss the requirements of integrated energy district master planning to avoid conflicts between the
goal of independence of district planning on energy, e.g. heat and electricity, and that of dependencies on the
local electric utilities regarding instant power balance and stability services. Finally, we describe the primary
future R&D trends in the field of distribution network planning.

INDEX TERMS Distribution expansion planning, distributed energy resources, multi-objective optimiza-
tion, decomposition optimization, uncertainty handling.

I. INTRODUCTION
Distribution networks start from distribution substations to
the service entrance of the electricity consumers, includ-
ing distribution substations, primary feeders, distribution
transformers, and secondary systems [1]–[3]. The existing
distribution networks can only serve the requirements and
standards of past decades and are not able to meet renewed
duties and upcoming challenges. Distribution systems and
loads will be subject to dramatic changes over the next 20
to 50 years. To name a few of the changes, we can men-
tion customers’ expected services, the reliability level of the
system, the characteristic of the new loads, marginal costs,
and existing numerous DG generators.

The associate editor coordinating the review of this manuscript and
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We can classify the planning horizon for the distribution
network expansion planning (DEP) problems into short-term,
long-term, and horizon year planning. Short term planning
typically contains 1-4 years, while the long-term and horizon
year planning periods are 5-20, and more than 20 years,
respectively [4].

Rapidly increasing of the electricity loads, forces power
system authorities to perform expansion planning schemes
periodically. The aim of a generic DEP is to site and size
distribution substations, DGs, and distribution feeders to opti-
mally meet the future demands, in a timely and cost-effective
manner, while responding to all the constraints and technical
requirements [5]–[8].

An optimum DEP can bring economic advantages for the
planners, and also enhance the satisfaction level of electric
customers, which is crucial in the restructured power market
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FIGURE 1. Distribution expansion planning: a graphical abstract.

environment [5], [9]. Several researchers introduced Differ-
ent mathematical and meta-heuristic optimization methods to
find an optimal solution to DEP whose complexity can be
increased due to problem dimensionally. The added complex-
ity can also be caused by making complicated decisions on
the allocation of transformers and substations, finding feed-
ers’ routing for the primary and secondary systems, the time
of investment, choice of complex objective functions, and
different uncertainty resources [8], [10], [11].

Feeders’ reinforcement, the expansion of distribution sub-
stations, and also the installation of distribution alternatives
such as new feeders, substations, transformers, and typi-
cally open switches, are conventional DEP decision options.
In recent years, the researchers and stakeholders are focused
on expansion planning of DGs, and purchasing their gener-
ated power [12], [13], due to the advantages including eco-
nomic benefits, reliability improvement, ancillary services,
emission reduction, postponing and reducing other expansion
requirements in both the transmission and distribution levels,
and socio-political acceptance [14]–[17].

Moreover, in reliability and service quality of DEP, allocat-
ing protective devices and automatic/manual switches, cost-
effectively is a significant trend [18]. In recent years, many
researchers have developed optimization algorithms to assign
the sectionalizing switches optimally.

Sectionalizing switches are generally utilized in medium-
voltage distribution systems with the aim of improving ser-
vice reliability. Plug-in Electric Vehicles (PEVs) integration
is one of the other subjects of interest due to their capabil-
ities to incorporate in the ancillary service market, partici-
pate in demand response programs, integrate into microgrids,
as well as their ability to generate reactive power [19]–[21].
With the rising penetration of PEVs, we can improve the

general system performance along with the consumption of
fuel-based resources [19]. At the same time, high penetra-
tion of DGs may cause some problems in the conventional
distribution networks with HV/MV substations as the sole
power sources [22], [23], which we must consider in estab-
lishing a reliable and cost-effective operation of distribution
networks [24].

Traditional and non-traditional DGs (in different studies
the ‘‘distributed’’ part is also called dispersed, decentralised,
district or with some modifications embedded, local, and on-
site generation) must provide economically viable solutions
and reliable services to consumers [25].We usually divide the
DG units into traditional combustion generators (e.g. diesel
reciprocating generators and natural gas turbines), and non-
traditional generators (e.g. fuel cells, storage devices and
RERs such as wind turbines and photovoltaic units) [1].
In a DEP programming problem, binary variables describe
installing new feeders and distribution substations, chang-
ing the type of conductors, and upgrading the capacity of
resources (RERs). Limited sources of fossil fuels and its
environmental hazards, make the RERs as a dominant choice
in the planning decisions [26], [27] with the low investment
risk and flexibility [27]–[30]. Fig. 1 shows an illustration of
different aspects of a DEP problem.

II. DISTRIBUTION EXPANSION PLANNING MODEL
A. VARIABLES
The decision variables of a DEP problem are generally,
the place, size, and investment scheduling to install new
equipment or upgrade the pre-existed facilities, as well as
the number, state (open/close), and location of switches.
DG owners make decisions on the location, size and the
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type of DGs to install based on geographical conditions, fuel
resources, and feasibility of using RERs like wind turbines,
photovoltaic panels, biomass, etc. [31].

In a design problem, we must determine the suitable diam-
eters of lines and conductor options (e.g. underground cables,
overhead line conductors) based on the required voltage
levels. Here, lines’ reinforcement is aimed to increase the
capacity of pre-existed substations and distribution feeders or
to install new ones if required [32].

A generic DEP is inherently a complex mixed-integer
non-linear programming problem with continuous and dis-
crete (binary) variables [1]. Binary variables represent
installing new feeders and distribution substations, changing
the type of conductors, and upgrading the capacity of distri-
bution substations. Continues variables represent the amount
of voltage level in each bus, power flow from the feeders, gen-
erated power with DGs, injected power from the substations,
and curtailed load (see Fig. 2).

B. MAIN OBJECTIVE TERMS
Themost crucial objective function for the network expansion
problem is the cost of investment and operation terms [33].
The investment cost (or fixed cost) is all the cost related
to system upgrade (by installing a new instrument and
enhancing the capacity of the existing facilities) [32]. The
operation cost (or variable cost) is all the cost related to
operational and maintenance costs of the system during the
whole planning period, e.g. cost of power losses, cost of
curtailed loads, and cost of DGs’ power generation [15],
[16], [27], [29], [30], [32], [34]–[37]. To simplify planning,
we convert fixed and variable costs to the annualized Net
Present Value (NPV).

Several studies proposed approaches to determine the deci-
sion variables of the DEP problem optimally and minimize
various cost terms [12], [13], [15], [16], [27], [38]–[44].

As both types of costs are monetary expenditures, they
can be aggregated together by considering the discount rates
to compute the present value of all the cost terms [45].
With discount rates, different time cost terms can be trans-
formed to the current values and joined together to cre-
ate a single cost function. Moreover, the cost of fault
frequencies, i.e. number of faults ([15], [28], [39], [45]–[48]),
and the cost of not-served energy, i.e. duration of the
faults [39], [47]–[50], [52]) can be aggregated as the reli-
ability cost function to be minimized to enhance the reli-
ability level of the network. As discussed in the literature,
the consideration of energy not-supplied (ENS) as a reliability
index is essential [7]–[10], [12], [13], [17], [30], [32],
[34]–[36], [40], [44], [53]–[66]. By allocating the sectional-
izing switches on the distribution feeders or installing new
branches, the load points are fed with new routes. Hence,
the load points could be de-energized if any permanent fault
occurred or when maintenance services are planned to be
executed [12], [13], [15], [50], [61], [67], [68]. Switching
actions with sectionalizing switches can isolate some faults,
and we can use tie-lines to maintain the supply to some

FIGURE 2. Commonly used variables in the distribution expansion
planning problem.

feeders when faults occur in an upstream branch. Accord-
ingly, in a reliability-driven DEP, the main goal is to minimize
the unwanted load shedding in the case of an outage occur-
rence, based on the socio-economic priority of customers.

System planners focus on environmental issues these days
more than before and follow several rules and protocols,
e.g. Kyoto protocol, to reduce the impact of hazardous envi-
ronmental factors [27]. Researchers now consider emission
rate as one of the objective functions in the DEP prob-
lems [26], [27], [37], [44], [69]–[72], and reducing the pollu-
tion rate by using clean energy resources is standard practice
by network planners.

Fig. 3 and 4 show the normalized versatility of objective
functions used in the different references, and constraints
and objective functions of distribution planning, respectively.
Table 1 show the completeness of the references in covering
various constraints and objective variables.

C. CONSTRAINTS
We typically define DEP as an optimization problem with
several constraint variables, including:

a) Power balance: this constraint guarantees active and
reactive power generation and consumption equity in each
time step.

b) Voltage level: For stability reasons, voltage deviation
must be kept within some boundaries within a voltage profile.
Distribution companies (DISCOs) will generally provide the
standard voltage profile for the customers [73].
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FIGURE 3. Summary of objective functions used in the references.

FIGURE 4. Objective functions and constraints used in the DEP problem.
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TABLE 1. Objective functions and constraint of references in chronological order.
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FIGURE 5. Objective functions and constraints used in the DEP problem.

c) Power flow: the power flow of the distribution feeders
must bewithin the permissible capacity of the branches where
we formulate the constraints with a set of inequality equa-
tions.

d) Controlling active and reactive output power of DG
facilities: A threshold must be set for the active and reac-
tive power generation of the DG units. Since the reactive
power of DGs can affect the voltage profile and power
losses, for the best allocation of DGs in the network, we
must take into account their reactive capabilities in planning
studies [74], [75].

e) Penetration limit of DGs: the generated power with DGs
must also be within a set limit. Typically, the penetration
level of DG units is ∼ 30-40 % of the main substation
rating [26], [75].

f) Substation capacity: the loading of substations must also
be within a permissible interval [73].

g) Radiality: due to the operational issues, distribution
feeders must be operated with a radial configuration. One of
the necessary conditions to construct a radial network is the
equality between the total number of branches and the num-
ber of buses mines one. However, other considerations must
be further made to guarantee the connectivity and radiality of
the network [24], [36], [52].

h) Total investment: the total amount of financial resources
is limited for installing new instruments and increasing the
existing facilities that will affect the expansion plan of the
systems [76].

i) Power factor regulation: The amounts of power factors
must satisfy the related standards [2], [44], [77].

j) Power losses: the power losses of the network are one of
the most critical considerations and consist of the losses of
the feeders, as well as the transformers [1], [65], [70].

k) Logical constraints: these constraints determine how the
network must operate, e.g. only one type of equipment can be
chosen among all options [60], [74].

Fig. 5 shows the normalized number of constraints used in
the literature. There are some additional constraints such as
Reliability constraint [69], [78], Capacity of energy storage

units [17] and load shedding [32], [34], [48], [79], electric
vehicle charge station constraint [80] and DG emission limi-
tation [27].

As noticed from Fig. 5, most papers have studied the
voltage drop, load balance, and feeders’ loading capacity
constraints. At the same time, a limited number focused
on other constraints like DGs’ reactive capability and the
penetration level of DGs. Note that the main aim of the
DEP studies is to provide the customers’ load. Since some
of the references have used the separate load flow to give
the customer’s load, we do not bring such references under
the category of power balance constraint. Power loss is an
essential measure in distribution systems and is considered
as an objective function in many papers, and that’s why
power loss has less share in Fig. 5 compared to the other
constraints.

D. THE MODELING OF THE DEP
The planner models a DEP problem to optimally deter-
mine the decision variables. The modelling targets highly
depend on the desired accuracy, possible assumptions to
simplify the problem, the available tools and the algorithms,
etc. An extract representation of a generic optimization
is:

Minimize or Maximize f (x)

Subject to A(x) <= b

in which, x, and f (x), denote the decision variables, and the
objective function of the problem, respectively.

Furthermore, A(x) <= b describes a set of inequality
constraints. The decision variables must be continuous or
discrete (integer). Here, f and A can accept both continuous
or mixed-integer functions of the vector of decision vari-
ables with explicit/implicit or linear/ nonlinear presentation.
The type of variables and functions will then determine the
name of the optimization problem (for example, a problem
with mixed continuous and integer variables is called mixed-
integer programming [81]).
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E. THE PROGRAMMING STRATEGIES
We categorize the programming approach for the DEP prob-
lem as the dynamic, static, and pseudo-dynamic program-
ming.

A dynamic approach is about expansion planning decisions
for multiple years in a single time snapshot.

In a static approach, a horizon time with a constant load is
considered as the demand of the horizon year. In this type
of programming, we do not determine the time of expan-
sion activities by solving the problem, but we can get some
useful information about the expansion requirements. The
other disadvantage is that it will not give practical results
for all the considered horizon time, as the results for each
stage depends on the system configuration in the previous
step. The other approach is to make separate decisions in
each stage individually. This type of problem is named as
a pseudo-dynamic problem that will optimize the problem
for each stage, and put the results as the input data of
the next stages. This way of programming is also called
as semi-dynamic, semi-static, quasi-static or quasi-dynamic
plannin [35], [81].

F. EMERGING ACTIVE DISTRIBUTION NETWORKS
Recent developments in operational controlling and moni-
toring schemes such as advanced control techniques, com-
plicated information and communication technologies, along
with emerging multi-career energy systems (MCE) and
demand response programs, passive dummy distribution net-
works have been changed to active and dynamic systems in
the form of Active Distribution Networks (ADNs). Accord-
ingly, ADN planning (ADNP) in contrast with conventional
DEP comes with new objectives and concepts [127].

Due to the low penetration rate of DERs in conventional
distribution networks, coordinated planning and operation
was not an obligation, and the uncertainty risk analysis was
not a necessity. However, conventional DEPs conduct a fit-
and-forget method based on deterministic frameworks. An
ADNP shall coordinate 1) planning and operation, 2) run
probabilistic planning (in replace of deterministic one),
3) integrate uncertainty risk control methods, and 4) con-
sider multi-time resolution modelling to respond to the high
penetration rate of DERs in ADNs [122]. Big data resource
management may be required to deal with real-time measure-
ment and information received by several sensors in the dis-
tribution network, weather data and consumption behaviour
of customers. Generally, ADNP considers allocating new
optimization framework.

III. DISTRIBUTION EXPANSION PLANNING
PROGRAMMING
A. MATHEMATICAL VS. HEURISTIC
As illustrated in Fig. 6, we categorize the optimization
methods in existing DEP literature into three groups: math-
ematical programming methods, heuristic evolutionary algo-
rithms (EAs) and hybrid algorithms.

B. MATHEMATICAL PROGRAMMING
If the decision variables are a mixture of continuous and
integer variables, the optimization problem is called a
mixed-integer programming (MIP) problem. Linear pro-
gramming (LP) methods are dimensionally scalable, com-
putationally tractable and robust methods [11], where the
optimality of the final solution can be mostly guaranteed.

If the optimization problem has non-linear functions (as the
problem constraints or the objective functions), the problem
is known as non-linear programming (NLP). Such techniques
are also utilized in 3DEP problems [4], [33], [74], [87].

The MIP problems with non-linear objective functions or
constraints, the problem is called mixed-integer non-linear
programming (MINLP) [30].

Some references have employed an Ordinal Optimiza-
tion (OO) method for solving the optimization problem with
minimum computational burden [2].

Dynamic Programming (DP) is another mathematical
method introduced in 1950 and copiously used to solve the
multi-stage power system problems. DP does not need to
linearize the objective function. However, this technique has
a high computation complexity for solving the large-scale
optimization problem [128].

Generally, DEP is a large-scale, complicated optimiza-
tion problem in which the complexity will dramatically be
increased with the size of the problem [8] and take long pro-
cessing time. As a remedy, researchers proposed the decom-
position methods to find the optimum solution within a finite
number of iterations. To reduce the calculation time, J. F.
Benders proposed Bender’ decomposition in 1962 [129]. The
disadvantage of this technique though is the complexity of
implementation [128].

Dantzig–Wolfe decomposition (DWD) is developed by
George Dantzig and Philip Wolfe to solve the LP problems
with specific features known as complicated constraint prob-
lem [130]. DWD generates a problem consisting of [131]:

X A master problem (MP) to make decisions on binary
variables, e.g. capacity expansions and on a base opera-
tional scheduling.

X A series of Sub-problems (SP) based on mixed-integer
single period column generation

Besides, reference [132] introduced the primal-dual
interior-point (PDIP) method. Also, a modified PDIP tech-
nique was proposed in [80] to decide on the size of electric
vehicle charging.

C. HEURISTIC AND EVOLUTIONARY OPTIMIZATION
Several researchers proposed heuristic EAs to optimise
the complex optimisation problems directly. Besides the
ease of implementation, we hardly can guarantee the
global optimality of the solution. Meanwhile, the solu-
tion point is close enough to an optimum solution. Sev-
eral researchers employed heuristic algorithms despite their
inherent randomness [120]. The numerous heuristic evolu-
tionary algorithms have been introduced including Genetic
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FIGURE 6. Different kinds of optimization techniques in the DEP problem.

Algorithm (GA), fuzzy system, Artificial Immune Sys-
tems (AIS), Tabu Search (TS), Imperialistic Competi-
tion Algorithm (ICA), Particle Swarm Optimization (PSO),
Learning Automata (LA), Simulated Annealing (SA), Ant
Colony (AC), Harmony Search Algorithm (HSA) [125], Arti-
ficial Bee Colony (ABC), expert systems (ES), Gravitational
Search Algorithm (GSA), Human Behaviour-Based Opti-
mization (HBBO) [126], branch-exchange (BE) algorithm,
etc. [133]–[142], [88], [143]–[147].

GA is an evolutionary-based method, developed by Hol-
land in the middle of 80s and inspired by the natural selection
and regeneration law concepts [133]. Compared to classi-
cal optimization approaches, heuristic algorithms (such as
GA) can optimize complex and large-scale problems. Fur-
thermore, the implementation of different types of objective
functions and constraints is easily possible (no matter of
being continuous, discrete, linear or non-linear). Even though
GA needs high computational process and cannot ensure
finding a globally optimum solution, it is applicable in the
planning problem. In fact, the aim of the planning problem is
to search a good solution with an acceptable optimality gap
and computational tractability rather than searching a global
optimum point [12], [148]. A major shortcoming of GA is
that obtaining a global solution cannot be rigorously proven
mathematically [13], [26], [99].

The concept of the fuzzy logic was proposed by Lotfi
A Zadeh [134] to deal with uncertainty problems and soft
computing. In fuzzy logic, fuzzy variables employ the mem-
bership functions to model the uncertainties by assigning
a degree of membership (or truth which is between 0 and
1) [149], [150]. Researchers use fuzzy logic extensively to
solve the optimisation problem in power systems. By inspir-
ing from theoretical immunology, AIS introduced by Farmer,

Packard and Perelson [135]. In comparison with other evolu-
tionarymethods, AIS can determine a single optimal solution,
as well as delivering all the local optimum points that are
stored through the optimisation process [96].

A heuristic method, TS, also proposed by Glover and
Hansen [136] to solve the combinatorial problemwithin a rea-
sonably short time. The main advantage of this method is the
need for less iteration to achieve the desired results [1], [101].

By inspiring from the imperialistic competition, Atashpaz-
Gargari and Lucas introduced ICA [137]. In this algorithm,
finding a global solution starts with empires competing where
each empire rules by an imperialist and several colonies. The
competition continues in a way that empires gradually lose
their colonies, and a solution is found when a single empire
survives. The corresponding colonies to this final empire gain
the same cost as the imperialist of this empire [151]. The
authors in [112] discussed an example of using ICA in DEP
problem.

PSO is a popular population-based heuristic algorithm
inspired by bird flocking and a fish schooling that at first
proposed by Kennedy and Eberhart [138]. The advantage
of PSO is the ease of implementation, simple conceptual
structure, and less computational bookkeeping [49].

LA is adaptive decision-making machines, introduced by
Narendra and Thathachar [139]. LA performs its current
action according to the previous experiences from a virtual
environment. By learning the way to select the best action
among several actions (by repeated interactions with the envi-
ronment), the performance of the LA will be improved [73].

SA is among reliable optimizer algorithms that firstly sur-
veyed byKirkpatrick, Gelatt, andVecchi [140]. Conceptually,
the SA is based on the annealing of the solids. The objec-
tive function is considered as the energy function, and the
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optimization procedure is based on cooling strategy of a high-
temperature material to freeze point and finding the global
optima.

Marco Dorigo proposed AC algorithm, which is inspired
by the behaviour of ants to find the nearest path from the
nest to the food sources using a chemical substance called
pheromone [141]. The authors in [152] extend the AC to
present the ant colony system algorithm (ACS). Compared
to AC, ACS shows a more reliable solution in engineering
problems [91].

ABC is a population-based method that was introduced by
Karaboga [142]. It is based on food (called nectar) finding
a strategy of real bees and sharing the information of food
sources with other members of the hive [40].

The authors in [37] proposed Honey-bee mating (HBM)
method inspired by the process of marriage in real honey-bee.

The ES methods are also used in DEP problems and
are based on human experience and knowledge [88],
[143]–[145].

The GSA is a heuristic method proposed in 2009. It shows
better results compared to GA and PSO, and it’s a sim-
ple but powerful algorithm for optimization [147]. The
authors in [146] developed a BE method to solve the
single-period DEP, and it has been used in the past few
years to cope with the complexity and time and opti-
mal planning of MV networks [85], [77]. Besides all the
heuristic methods and evolutionary algorithm mentioned
above, researchers proposed novel Evolutionary Algorithms
(EA) [42], [54], [94], [115], [153], [154].

D. HYBRID ALGORITHM
Hybrid algorithms are also proposed to solve the DEP
problem by combining different techniques (PSO and OO,
PSO and SFL, etc.) that could achieve better solutions
with less computational burden [9], [37]. In [16], a Multi-
Objective (MO) hybrid technique is proposed by using
Immune GA (IGA) with the combination of a fuzzy algo-
rithm. Fuzzy algorithm is implemented to select the best
solution among several Pareto solutions. The authors in [116]
present a hybrid SA and MINLP method to solve the DEP
problem by considering the presence of DG units. A hybrid
TS and Benders decomposition method is proposed in [114]
with the advantage of combining mathematical programming
and meta-heuristics techniques, and less computation time.
A hybrid Decimal Codification Genetic Algorithm (DCGA)
and LP method are proposed in [41] to optimize the plan-
ning of the sub-transition system. The authors in [77] also
proposed a hybrid multi-objective GA and primal and dual
interior point algorithm to solve a wind turbine alloca-
tion problem. Fig. 7 shows a complete list of single and
multi-objective optimization methods and their citations.

E. MULTI-OBJECTIVE OPTIMIZATION
In many applications, there are different or conflicting objec-
tive functions to be satisfied by the optimization process.
As mentioned, a DEP problem is a multi-objective (MO)

optimization problem with different goals, including mini-
mizing investment cost, power losses, and pollution emission
as well as maximizing reliability level. The MO problems
will result in a set of solutions instead of one solution where
each solution has some advantages compared to others [155].
Hence, the decision-maker must pick a solution as the best
solution. The classical methods are the approaches to convert
all the objective functions into one function to be optimized
as a Single-Objective (SO) problem. In this type of methods,
different objective functions may be aggregated to construct
one objective function, or one of the functions is the pri-
mary objective function, and the remaining objectives are the
problem’s constraints. In this way, we can optimize a single
objective function while all the constraints are fulfilled.

Fig. 8 shows the frequency of single and multi-objective
DEP programming in different references. As noticed,
SO optimization methods appeared more than MO meth-
ods, in DEP problems. Furthermore, heuristic algorithms
and hybrid methods are the most and the least implemented
approaches, respectively.

The weighted aggregation technique is one of the
approaches to convert the MO problems into the SO
problems using a function operator to the objective vec-
tor [7], [12], [26], [71], [102], [103]. A linear summation
of the objective functions is a simple method among others.
However, the main concern is the values of the weighting
coefficients. Dynamic Weighted Aggregation (DWA) [156],
is an augmented weighted MO method in which the weights
are altered incrementally. In addition, the goal programming
(or goal attainment) is a technique with the aim of minimizing
the deviations from the specified goals [157]–[159].

The ε-constraint is another approach that optimizes one
of the objectives, while other objectives are considered as
problem restrictions bound by some allowable range ε [7],
[15], [52], [160]. Such methods generate a Pareto front
by running the optimization problem iteratively and renew-
ing weights. Generally, the optimization results are local
nadir points. Note that the overall efficiency of the solu-
tion highly depends on efficiency of the SO solver on the
efficiency [161]. Despite their ease of implementation, their
efficiency depends on the characteristics of the Pareto curve.

F. ARTIFICIAL INTELLIGENT TECHNIQUES
Some intelligent algorithms can directly find the Pareto solu-
tions by simultaneously optimizing the individual objective
functions. One of the advantages of the population-based
methods is to evaluate multiple potential solutions in a single
iteration. Moreover, such methods provide more flexibility
for the decision-maker, especially if there is no information
about the priorities of the decision-maker. However, one of
the key challenges is the search of the optimum Pareto-front
and maintain the diversity of the populations (to prevent
premature convergence) [162].

Evolutionary computing is primarily proposed for the sim-
ulation of biological evolution procedures. A population is
a set of individual solutions that are generated to solve the
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FIGURE 7. Single and multi-objective optimization methods and their.

optimization problem. In each iteration, the fittest individuals
are selected, and then by using some operations, the next
generation (new solutions) is generated. EAs have been suc-
cessfully applied to cases with complicated objectives such
as discrete, non-differentiable objectives or objectives for
which, no standard analytical solution exists [163]).

The authors in [9], [42], [54], [153] use Pareto-ranking
to determine the probability of proliferation of an individual
and to find the set of non-dominated or nadir individuals
in the population. They use a niching mechanism to avoid
the convergence of the optimization procedure to a single
region of the Pareto front. In an iterative process, the next
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FIGURE 8. Percentage of references for single and multi-objective optimization.

generation of the population is generated based on mutation
and crossover rules.

Multi-Objective GA (MOGA) is a simple and effi-
cient method implemented by Fonseca and Fleming
(1993) [15], [45], [51], [69], [102]. Non-dominated Sorting
Genetic Algorithm (NSGA), is another method that utilizes a
layered classification technique [57]. The NSGA introduced
by Srinivas and Deb (1994) and its improved version, NSGA-
II, used in [16], [27], [68]. Zitzler and Thiele’s suggested
Strength Pareto Evolutionary Algorithm (SPEA) approach
with the combination of elitism and the concept of non-
domination. SPEA stores non-dominated point during the
iterations using an external archive. The authors in [57]
investigate the performance of NSGA and SPEA in the
planning problem of distribution systems. SPEA-II, however,
incorporates density information to assign a fine-grained
fitness function [49].

In the Multi-objective PSO (MOPSO) method, the opti-
mum solutions obtained by the particles in different iterations
create a set of non-dominated solutions. Since the DEP is a
MO problem; numerous strategies have been introduced to
specify the Pareto solutions (such as SPEA-II basedMOPSO,
hybrid PSO, and SFL method) [8], [10], [120], [164].

In [40], the ABC algorithm is used to solve the DEP and
unit commitment problems.

TS algorithm improves the searching strategy using a
memory mechanism which benefits historical records. The
Multi-Objective Tabu Search (MOTS) method is presented
in [56], [60] to optimize the multi-objective DEP.

G. DEALING WITH UNCERTAINTIES
Due to the different kinds of uncertain parameters (like
economic or technical; controllable or uncontrollable;
non-stochastic or stochastic; and measurable or unmeasur-
able), the way of modelling the uncertainties is a difficult

task [81]. The main uncertainties in the DEP problem are:
load level [7], [12], [13], [30], [44], [55], [96], [112], [154],
the location of load points [89], [154], tax for demand [96],
energy price [27], [112], price of purchasing electricity
from DG [4], investment cost [154], and power supplied
by DG [7], [12], [13], [26], [30], [61], [112]. The unavoid-
able impacts of uncertainty resources in real-world problems
force planners to consider the effects of such resources in
the decision making using probabilistic tools [120]. Fig. 9
lists the uncertainty parameters and Fig. 10 illustrates the
frequency percentile graph of papers considering different
types of uncertainty parameters. In the following, we briefly
discuss several methods in the literature to deal with uncertain
parameters.

H. PROBABILISTIC VS. DETERMINISTIC
As mentioned, the problems with all known or specific input
data are considered as a deterministic problem. In real prob-
lems, however, uncertain resources substantially impact the
quality of the results. Among many methods to handle uncer-
tainties, probabilistic methods enumerate the uncertainty
parameter affecting the results by generating scenarios out
of probability distribution function (pdf), which is extracted
from historical data. In power system studies, we can model
the uncertain parameters in wind-turbine power outputs and
solar radiations by generating PDFs of these uncertain param-
eters.

Two main well-known methods to generate PDFs are
numerical and analytical techniques. Numerical techniques
estimate PDFs using Monte Carlo Simulation (MCS), and
analytical ones apply arithmetic calculations on PDFs of
uncertain parameters. MCS is mainly based on sample gen-
eration to mimic the long run of an uncertain parameter.
In this regard, different MCS techniques use different sam-
ple generation methods such as Latin hypercube sampling
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FIGURE 9. Uncertainty parameters and approaches for dealing with them.

FIGURE 10. Frequency percentile graph of papers considering different uncertainty parameters.

and Markov chain [165]. However, the main shortcoming of
MCS is computational intractability in models with several
uncertainty parameters due to generating numerous samples.
Thanks to sample reduction methods and chance-constrained
optimizations, the computational efficiency of MCS is
enhanced [25].

On the other hand, analytical techniques utilize sev-
eral methods to generate efficient samples such as
linearization-based and PDF approximation techniques. Pop-
ular linearization techniques are convolution, cumulants,
expansion of Taylor series, and first-order second-moment
methods [166]. Well-known PDF approximation methods are
also point-estimate and unscented transformation methods.

I. STOCHASTIC PROGRAMMING
Stochastic Programming (SP) allocates a specific probability
to a set of scenarios representing the uncertain parameter.
Although scenario generation drastically considers the inher-
ent nature of uncertain parameters, computational efficiency
is reduced by the increasing number of scenarios. Researchers
proposed scenario-reduction techniques to enhance tractabil-
ity; to name a few, backward and forward scenario reduc-
tion, clustering methods, interval programming, Taguchi’s
orthogonal testing array, and in the context of DEP we
can mention the works in [123], [124], [118], [167]–[173].
In [123], a framework is proposed to solve a stochastic DEP
problem, and in [167], a coordinated stochastic DEP and
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renewable expansion planning are presented considering
demand response and storage systems. The authors con-
sider power transfer capacity as an uncertainty resource in
a stochastic DEP problem in [170]. In [118], multi-stage
stochastic optimization is proposed to consider both gener-
ation and network expansion planning in a DEP problem.

J. ROBUST OPTIMIZATION
Unlike scenario-based optimizations, where PDF information
of uncertain parameter is a prerequisite, the robust optimiza-
tion deals with uncertain parameters using bounded intervals.
The two end sides of bounded intervals known as respective
ranges are extracted based on a specific confidence inter-
val (CI) range (e.g. 90%, 95%). Robust optimization is a
PDF free scenario. However, the optimality of the worst-case
solution is retained at the cost of the conservativeness of the
results [174].

In [175], authors propose a robust DEP model which
is adaptively adjustable to uncertainty realizations and can
make optimal decisions on sizing and siting of conventional
DGs and wind-based DGs with feeder installation schedules.
In [121], DEP and PEV charging allocation are considered
jointly in a robust optimization framework against the uncer-
tainty of electricity demand modelled with polyhedral uncer-
tainty set. Authors in [176] proposed resilience enhancement
in a DEP problem using robust optimization and minimizing
the damage to the distribution system in the face of natural
disasters.

The information gap decision theory (IGDT) is a more
specific feature of robust optimization which evaluates the
deviations between the realizations and the approximations
of the uncertain parameters. A risk-averse decision maker
maximizes robustness function to decide robustly against
unfavourable disparities of the uncertain parameter. Oppo-
sitely, a Risk-seeker decision-maker minimizes Opportunity
function to benefit from the favourable divergence of the
uncertain parameter from the expected value [177].

The method is applied to solve DEP in many papers. For
instance, in [178], DEP is solved while considering uncer-
tainties from renewable generations and load. The authors
in [179] investigate voltage stability, and voltage congestion
constrained problems in distribution systems with a high
penetration rate of renewables using IGDT platform.

IV. URBAN DISTRICT PLANNING
In recent years, zero energy buildings (ZEB) has been playing
a significant role in performing energy management sys-
tems of distribution network, facilitating renewables integra-
tion, and enhancing energy efficiency. However, European
standard EN15603:2008 recommends replacing conventional
yearly weighted primary energy balance in ZEBs with finer
time resolutions such as monthly or shorter time intervals for
energy balance. This can be realised by accurately designing
energy-efficient generation in combination with renewables,
virtual and real energy storage systems, and seamless inte-
gration with heating demand to prevent localised emissions

and better air quality. In this regard, the zero-energy dis-
trict (ZED) concept is proposed to spatiotemporally smooth
demand and generation for augmented efficiencies in energy
consumption of electricity, heating, and transportation [180].
In the last decade, district planning is increasingly adopted
once we have witnessed the benefits of ZEDs. Beyond the
conventional sustainability principles, district planning now
includes versatile measures such as high penetration rate of
DERs, ultra-low energy buildings, multi-career energy sys-
tems, district integrated heating systems and transportation.
District planning starts with a district master plan including
standards and guidelines for site design key urban architec-
tural elements, allocating signage and landscaping. In com-
mon practices, however, district planning designs do not
engage electric utilities and regulators in the planning pro-
cess. As a result, the goal of district planning toward inde-
pendency in energy procurement may conflict with that of
dependencies on the local electric utilities regarding instant
power balance and stability services. As a remedy, local
utilities and regulators engage in developing ZED’s unique
operating code for the technical and regulatory solutions.
In this regard, recent academic researches that consider the
joint DEP and ZED planning structures are briefly discussed
in the upcoming section [181].

A. PLANNING VS. OPERATION
In the context of district planning, the primary objectives
are allocating new distribution feeders optimally, upgrad-
ing existing network and siting and sizing of energy stor-
age systems and DERs. Meanwhile, operation scheduling
determines optimal generation dispatch for energizing the
expected demand. The added value of integrating these two
optimization problems is that the expansion planning results
construct the basis of the operational problem, and day-to-
year-time span operation problem will decide on installing
a new component or reinforcing the existing grid. More-
over, there is an increasing tendency to encounter operational
constraints for dealing with intra-hour/hourly intermittency
and variability of non-dispatchable resources during expan-
sion planning. Disregarding variability impacts may cause
increased wear and tear costs owing to frequent voltage
deviations on load-tap changers. From ZED point of view
with almost a unique climate regime, minute time resolution
scheduling may have an essential influence on operational
situations. Considering the ZED requirements, the objectives
are minimizing annual net electricity import, carbon emis-
sions, system losses and voltage fluctuations. Besides, due to
unbalanced low-voltage lines which in single or two phases,
we require considering AC power flow in an operational
model to capture reactive power changes.

B. MULTI-MICROGRID WITH MULTI-ENERGY SYSTEMS
Microgrids, with their different scales (e.g. from a large grid
size to a small aggregator), can play an essential role in con-
structing a self-sufficient district. However, multi-microgrids
can enhance the flexibility of districts by adding the

34762 VOLUME 8, 2020



V. Vahidinasab et al.: Overview of Electric Energy Distribution Networks Expansion Planning

complexity of an intermediate control layer. This flexibility
can alleviate stresses on overflowed branches or overvolt-
age situations [182]. Moreover, multi-energy systems can
add values in the context of sustainability-oriented ZED,
such as reaching carbon neutrality, reduced water consump-
tion, and energy security during high impact events [183].
Seamless integration of electricity, water, heating, cooling,
and gas local networks is required to obtain a holistic
approach. As stated in – an integrated power flow instead of
optimal power flow should be considered. In such an oper-
ational problem, an efficiency conversion matrix is applied
to replace the power balance equation and optimally sched-
ule resources. In the literature, co-optimization of both
multi-microgrids and multi-energy systems are suggested to
grab the advantages of both models.

C. DISTRICT PLANNING AND DEP
As mentioned, in a district master plan, electric utility among
other serving utilities (e.g. heating-cooling, and gas) should
be engaged in, to both proactively confront operational chal-
lenges and move toward high efficient energy systems. In this
field, some papers consider both power system infrastructure
planning and building energy management facilities such as
demand response programs called a grid-to-building inte-
grated plan. From ZED’s standpoint, once the infrastructure
allocation is done, finer time resolution operational schedul-
ing problem must be carried out to analyze near real-time
operation situation (e.g. enabling demand response, charging
status of electric vehicle parking lots, heat ventilation and air
conditioning (HVAC) optimal setpoints) [184]. In this level,
power system operation information can be feed iteratively
back to the building operations level. Note that in practice,
building-to-grid (B2G) feedback requires installing building
sensors, control devices and several communication layers to
pre-processing the collected data, post-processing sensitivity
and economic analyses.

V. CONCLUSION AND SUMMARY
This paper reviews the various aspects related to DEP prob-
lem. It considers explicitly system development, the horizon
of development, problem constraints, the required variable
types in the planning of distributed systems, optimization
algorithms, single and MO nature of the problem, as well
as the uncertain variables and methods to deal with them.
We discussed in detail the conflicts between district planning
goals to move toward zero energy district and conventional
DEP limitations.

The presented survey of the DEP problem in this paper
opens new avenues for further studies in this field. DEP
problems can be classified into subjects (but not limited to)
objective functions, constraints, variables, and optimization
methods. We presented a comprehensive literature survey
(around 130 references from1990 until 2019) and reviewed
several methods and their enhancements to solve a DEP
problem. We studied several optimization methods used in
solving a DEP problem with different objective functions

and constraints. These important general conclusions can be
made, cf. Fig. 6:

(1) Compared with AI techniques, analytical/mathematical
methods yield more accurate results. However, due to the
presence of integer variable and inherent nonlinearities,
the conventional methods may become less efficient and
demand for more computational time. In practice, AI tech-
niques can resolve these issues.

(2) GA has been extensively used to obtain the local opti-
mum solution (near-global solution). However, useful meth-
ods like AC have been not applied as much as GA-based
algorithm in the literature of DEP. Note that Fuzzy set
theory has been proved helpful to model uncertainties in
DEP problems and must be investigated further in coming
years.

(3) Hybrid techniques are suitable to reduce computational
time in the process of searching optimum solutions a compar-
atively short duration.

(4) Optimization problems are mainly a tradeoff between
the precision of solutions and reliability and the duration of
the solving procedure.

(5) The integration of DGs with the DEP problem can
provide better expansion plans that are more economical and
reliable. Furthermore, due to pollution, renewable energy
resources will replace fossil-based supplies.

The complexity of the distribution systems is the main
DEP problem. Several constraints must be fulfilled, including
power balance, voltage profiles, branches capacity, DG lim-
its, radiality constraint, network loss, as well as pollution
emissions. Therefore, the researchers divided the DEP prob-
lems into sub-parts and proposed various solutions to tackle
specific problems. In any case, we must have adequate details
of the DEP models to achieve a realistic solution. As the
trend suggests, the future optimization problems must take
into account electricity supply, the integration of RERs, and
heat networks to provide more optimal solutions.

Future directions in this field can be including:
X A whole-system approach for multi-vector expansion

planning of the distributed energy systems;
X Using a system-of-systems framework for coordinated

expansion planning of the distribution networks with
other energy distribution networks like gas distribution,
district heating and cooling, traffic and water distribu-
tion.

X Application of new convexification techniques to solve
the complex non-convex expansion planning of the dis-
tribution grids of the future.

X DEP with focusing on mitigating variability impacts
regarding the increasing penetration rate of RES aside
from uncertainty impacts while considering versatile
time scales (i.e. hourly and sub-hourly time scales for
operational purposes).

X Application of local energy/ reserve markets in DEP
problem considering community microgrids for energy/
reserve procurement through new local settlement
mechanisms.
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