
 

Ret-gadgets in RISC-V-based Binaries Resulting in Traps for 
Hijackers 

Toyosi Oyinloye1, Lee Speakman2 and Thaddeus Eze1 
1University of Chester, Chester, UK 
2University of Salford, Manchester, UK 
t.oyinloye@chester.ac.uk 
l.speakman@salford.ac.uk 
t.eze@chester.ac.uk 

Abstract: The presence of instructions within executable programs is what makes the binaries executable.  However, 
attackers leverage on the same to achieve some form of Control Flow Hijacking (CFH).  Such code re-use attacks have also 
been found to lead to Denial of Service (DoS).  An example of code re-use attack is Return Oriented Programming (ROP) 
which is caused by passing input crafted as chained sequences of instructions that are already existing as subroutines in the 
target program.  The instructions are called gadgets and they would normally end with ret.  The ret instructions enable the 
flow of hijacked execution from one set of instruction to another within the attacker’s control.  There could however be 
exceptions depending on the structure of the chained gadgets  where the chained gadget fails to run its course due to inability 
of specific gadgets to replace the value in the return address (ra) register. The dangers of chained gadgets are not a new idea 
but the possibility for an attacker’s gadget chain to fall into a trap during a ROP attack is not commonly addressed.  In addition 
to this, recent studies have revealed that understanding the behaviours of gadgets would be useful for building information 
base in training machine learning (ML) models to combat ROP.  This study explains the behaviour of certain ROP gadgets 
showing the possibility of occurrence of a loop in execution during exploitation.  A sample program which accesses gadgets 
from the GNU C library (glibc) is used to demonstrate the findings.  Gadgets identified with this possibility are poor for 
chaining as they do not contain instructions to load or move new values to the ra register and would produce unreliable 
exploits.  This would result in a trap for the chained gadgets instead of arbitrary code execution, and DoS on the path of the 
user.  This implies that the impact that a ROP chain could have on a targeted process does not only rely on the underlying 
system architecture but also on relies on the structure of the chained gadget.  In this paper, the RISC-V architecture is the 
focus, new gadget finders (scripts are available) are presented, and sample of chained gadgets are analysed on a RISC-V -
based binary.   

Keywords:  RISC-V; Return Oriented Programming; Denial of Service; Ret-gadgets; Code-reuse; Control Flow Hijack 

1. Introduction 

Ret-gadgets are the weapons of warfare in ROP (Shacham, 2007) attacks and as long as vulnerable programs 
remain, it is important to seek ways of providing protection for vulnerable programs.  In the effort to protect 
vulnerable programs, it would be valuable to further examine the weapons of attack based on their underlying 
architectures and behaviour of the attack vectors.  This would empower stakeholders to better understand what 
they are fighting against. Attackers of software have developed various techniques for CFH.  While buffer 
overflow remains a fundamental route to complex attacks, further exploitations are made feasible due to 
executable instructions in the programs.  Existing code content in executables offer functionality to the program 
but on the other hand, could become dangerous tools in the hands of hijackers.  Existing code ending with ret 
referred to as gadgets are used by attackers to circumvent basic protection techniques like DEP/NX (Microsoft, 
2018) and ASLR (Pax Team, 2003).  The gadgets reside as subroutines in the text or shared library section of the 
original program.  As the gadgets lie within, they can be accessed throughout the runtime of the program and 
are ready tools that attackers use for code-reuse attacks.   

Code reuse attacks involve the use of existing code within executables to perform tasks that are different from 
the original intention of the programmer.  Code reuse attacks could occur as CFH via buffer overflow which 
escalates into ret-to-libc and then ROP.  The ret-to-libc could occur when attackers pass addresses of existing 
functions as input into a target while ROP could begin and end successfully with a chain of gadgets ending with 
ret, jump or a call as input via buffer overflow.  A malicious input could be used in a buffer overflow followed by 
redirection of control flow to an injected malware or to an unintended destination within the target program.  
If the attacker passes an input that only contains addresses and values, they can achieve a ROP attack.  The first 
address redirects execution to a different instruction and once that instruction is executed, it returns to fetch 
the next address to be executed until a full-blown ROP is achieved.  A ROP chain would not always lead to a 
complete ROP attack but would still inhibit the purpose of the running process.  This is because the completion 
of a ROP attack depends on the level of complexity of chaining the gadgets, as well as the behaviour of the 
gadgets that are included in the ROP chain.  Availability of gadgets within a binary depends on the way the 

291 
Proceedings of the 18th International Conference on Cyber Warfare and Security, 2023

mailto:t.oyinloye@email.com
mailto:l.speakman@salford.ac.uk
mailto:t.eze@chester.ac.uk


Toyosi Oyinloye, Lee Speakman and Thaddeus Eze 
 

 

system architecture interprets the executable binary.  The forms of the gadgets would then determine the 
possible variations in sequences of chained gadgets and ultimately the outcome of the ROP attack.   

The possibility of complete ROP on different architectures has been demonstrated in various studies but the 
gadgets that are used in achieving the ROP are not widely studied particularly for the RISC-V architecture. For 
example, studies (Shacham, 2007; Checkoway et. al, 2010, Bletsch et al., 2011, Carlini & Wagner, 2014) on 
implementation of ROP attacks and possible means of mitigations for ROP (Abadi et al., 2005; Nui, 2014 )have 
been presented with regards to programs built and run on the X86 and ARM CPUs.  This is justifiable as X86 and 
ARM have been the commonly implemented systems for computer devices and smart devices respectively.  In 
recent times, RISC-V, a new CPU architecture, has been developed and is fast gaining popularity particularly 
among producers of electronic voting machines, smart devices, personalised health management systems, etc. 
(IIT Madras, 2020), and recently laptop computers (RISC-V Community News, 2022).  While the possibility of ROP 
across different architectures has been established, the complexity of ROP chaining, the variety of possible 
outcomes, and behaviour of ROP gadgets particularly on the RISC-V-based binaries are not yet widely explored.  
For this reason, this study focuses on the RISC-V architecture.  Understanding the behaviour of various gadgets 
would be valuable for predicting the feasibility of a ROP attack on any architecture.  

Gu and Shacham (2020), and Jaloyan et al. (2020) revealed that the underlying architecture of the executable 
program could impact the feasibility of ROP.  The CPU interpretation of instructions could generate new 
instructions that could be useful as gadgets but  not detectable by existing protections.  In addition to this, the 
existing protections have not reasonably considered vulnerability of RISC-V-based binaries.  Apart from the 
knowledge of underlying dangers of ROP on RISC-V, recent study by Koranek et al. (2022) also presents models 
that were developed with focus on ROP gadgets as valuable resource for ML towards detection of possible ROP.  
Understanding of the behaviour of gadgets would be useful in this regard.  

A sample C program compiled in RISC-V was examined and two new gadget finders were built in the process of 
this study.   The program is then exploited as the target for ROP attack with focus on gadget getpid which exists 
in glibc.  The C program can access glibc during execution which indicates that the event presented here can be 
replicated in any other Linux on RISC-V-based binary.   In addition to this, we highlight how the characteristics 
of ret instructions may vary as they tend to behave in line with the operations that they were originally built to 
perform.  Secondly, we highlight that the addresses that are stored as return address require to be overwritten 
with the next destination in a ROP execution on the RISC-V-based binaries.  The form of ret instruction that is 
encountered in the ROP chain would determine the next step that the ROP execution would take.  This could be 
a success and progressive ROP attack or a failed attack which results in a trap for the hijacker, and a DoS for the 
user.  With reference to these findings, we demonstrate entrapped ROP on the target.  The outcome of this 
study is valuable information that could be harnessed for building ML technique towards detection of malware 
and CFH.   

As software exploitation via ROP is an on-going challenge in software securities, existing mitigations for DoS 
caused from ROP is discussed.  The remainder of this paper is structured as follows:  Section 2 discusses related 
works.  Section 3 presents details on the approach adopted in this study.  Section 4 discusses the selected ret 
gadgets that were extracted from the sample program and our implementation of ROP using the gadgets.  
Section 5 discusses the findings.  Section 6 is a conclusion and brief on future works. 

2. Related works 

There are previous studies which have discussed the use of ret gadgets for software exploitation in form ROP 
via CFH.  One of the major studies around the concept of gadgets that resulted in turing complete ROP was 
presented by Shacham (2007) where ret-to-libc and Return Oriented Programming(ROP) were demonstrated.  
Shacham’s study was demonstrated on the X86 architecture with the use of large combination of short 
sequences of instructions to achieve a ROP, while substantial tasks towards ret-to-libc were achieved using 
whole blocks of functions existing in libc library.  Shacham’s gadgets were extracted from X86 executable 
program through static analysis and using Galileo’s algorithm.  Similarly, other studies have presented variations 
of ROP on X86 in form of Jump Oriented Programming (Bletsch et al., 2011)  and Call Oriented Programming 
(Carlini & Wagner, 2014)).  While the gadgets used by Bletsch et al. consist of sequences of indirect jump 
instructions, gadgets used by Carlini and Wagner consist of instructions that end with indirect calls.   

This study adopts methods from Shacham (2007), first by using static analysis via objdump tool and other Linux 
commands that are useful for static analysis, to fetch available gadgets but in addition, dynamic analysis via gdb 
was used to enable a view of the process during the implementation of the ROP exploits.  We highlight the 

292 
Proceedings of the 18th International Conference on Cyber Warfare and Security, 2023



Toyosi Oyinloye, Lee Speakman and Thaddeus Eze 
 

 

behaviour of specific gadgets which are available in glibc to demonstrate ROP based on chained sequences of 
instructions on a different CPU, which is RISC-V.  Similarly to Bletsch et al., (2011) and Carlini and Wagner (2014), 
the gadgets in this study include jump oriented gadgets and gadgets ending with indirect calls.   

Study by Checkoway et al.(2010) presents implementation of ROP using gadgets without returns on X86 and 
ARM architectures.  According to Checkoway et al., there are two properties that make it possible for return 
instructions to be misused as gadgets in chained malicious input.  First, the possibility of transferring control of 
execution via indirect jumps, and secondly, their ability to update processor state such that subsequent flow of 
execution is not transferred back to the same location.  This study agrees with Checkoway et al.’s statement on 
these properties as a violation of the second property would effectively cause a loop in the execution which we 
consider in this study as a trap for the hijacker’s malicious code.  Apart from entrapping the ROP, it is also 
observed that this would lead to a DoS for the user.  Checkoway et al. presented instruction sequences that 
behave similarly to returns.  This was achieved by inserting gadgets that contained instructions that could act as 
trampoline for the ret without return instructions.   

In this study, a similar method to that of Checkoway et al. (2010) is applied through the use of sequences of 
instructions called chargers or linker gadgets.  The gadget that would then carry out the needed task of full 
exploitation is termed as functional gadget.  In the implementation done in this study, the order of the sequence 
of instruction was a deliberate plan of inserting the no-return gadgets within the gadget chain to show how the 
loop is established.  The terms chargers, linkers and functional gadgets were adopted from the theoretical plan 
for ROP on RISC-V by Deac (2022).  Also, while Checokway et al., made use of the same algorithm as Shacham, 
the gadgets in this study were extracted using newly written scripts for use within RISC-V system. 

Other similar works that studied exploitation of executable binaries via ROP are Gu and Shacham (2020), and 
Jaloyan et al. (2020) which both revealed that RISC-V is prone to a turing complete exploit via ROP.  According 
to Gu and Shacham (2020), this could be achieved if an attacker uses gadgets retrieved from glibc in forming 
ROP chains.  Jaloyan et al. (2020) also identified that the underlying structure of RISC-V could be an opportunity 
for attackers to retrieve gadgets that are not detectable by existing gadget finders or analysis tools.  For this 
reason, there could exist hidden gadgets in the Control flow which would not be considered in the development 
of existing ROP mitigation techniques.  Although this study does not emphasize on this fact, it is important to 
note that such gadgets continue to threaten the security of software.  

A recent study by Koranek et al. (2022) also focused on ROP on RISC-V to proffer solutions towards detection of 
ROP on RISC-V by using deep learning (DL) models to distinguish features from execution trace.  Koranek et al. 
analysed branch patterns in ROP as valuable information towards ROP detection.  They presented models that 
were capable of predicting the classification of execution trace thereby enabling detection of possible ROP 
exploits.  This study relates with Koranek et al.’s goals to contribute to malware detection and detection of 
possible ROP exploits.  According to Koranek et al., DL and ML have been found to be useful for detecting 
malware particularly with the complexity of malware evolution that we are currently facing.  The more 
information that is obtained and analysed from numerous samples of programs, the more empowered the ML 
training, testing and validation would be. The sample shown in this paper involves code from glibc which is 
normally accessible to any executable running on the Linux system.  The form of exploit demonstrated can be 
replicated on other vulnerable executable programs compiled on RISC-V system.  Results presented in this study 
would be valuable input for building ML development/training algorithms towards detection of ROP and other 
CFHs.   

3. Approach to the study 

In this study, technical steps were taken to acquire sequences of instructions, identify viable sequences of 
instructions, and build gadgets chains.  Further steps include exploiting the target program with the chained ROP 
input to record and analyse specific outcomes of passing chained gadgets.   We began by compiling the sample 
C program that were written purposely for the study of software exploitation.  The programs are vulnerable to 
buffer overflow and ROP.  We compiled the program statically such that the libraries are included within the 
executable program, the optimisation was set to 0.  This is to give us more access to all the available sequences 
of gadgets, and lots of options to choose from.  The program was compiled with gcc and analysed on the platform 
where it was compiled.   

Once the program was compiled into executable, further steps were taken towards selecting/analysing viable 
gadgets using two new gadget finders, deliberately chaining gadgets in specific order, and passing the chained 
gadgets as input into the target to mount ROP.   These steps were achieved based on possibility that selected 

293 
Proceedings of the 18th International Conference on Cyber Warfare and Security, 2023



Toyosi Oyinloye, Lee Speakman and Thaddeus Eze 
 

 

gadgets would give an outcome that is different from the original purpose of the target.  The selected gadgets 
were chained together tin the exploitation phase. gdb was used for dynamic analysis for observing execution 
and recording of the outcome of each exploit. 

The behavioural pattern of each gadget chain was recorded highlighting specific order of chained gadgets that 
lead to traps for the ROP input, such that the execution continues to loop over the last bunch of instructions.  It 
was identified that depending on the carefulness of the attacker with crafting the gadget chains, there could be 
three different possibilities.  The input might cause the target to crash, or fall into a trap, or allow a complete   
execution of the instructions held in the gadgets addresses without the user knowing.  All demonstrations in this 
paper were run on Linux RISC-V (RV64) architecture.  RISC-V is not yet operational on computers.  The study 
system is an emulated Linux Fedora RISC-V64 which was built on a QEMU emulator.  The emulator resides on a 
Linux Fedora computer system. 

3.1 Gadget finders 

There were no RISC-V gadgets finders accessible during the course of the study, so we wrote two new scripts as 
gadget finders which made a variety of gadgets available.  One of the gadget finders could find sequences of 
instructions ending with ret while the other could find sequences of instructions ending with jal or jalr.  
Instructions ending with ret is a general concept in execution but the jal and jalr are peculiar to RISC-V.  jal and 
jalr both end up being interpreted as call to a function based on the return address.  The gadget finders, 
RETGadget and JALRGadgets were written in Linux scripts specifically for RISC-V-based programs.  They make 
use of static analysis tool objdump and other linux command line tools for extracting specific sequences of 
instructions.  Extracted output get written into text files from which further analysis were done. 

3.2 Extracting and Selecting gadgets 

To extract gadgets from the sample program, the program was passed as argument to each of the gadget finders.  
Gadgets that could fit into the target frame were selected from the output files.  Some of the extracted ret  
gadgets have attributes as identified by Checkoway et al. (2010) in the two conditions: (i) To transfer control 
flow via indirect jump,  (ii) Overwrite previous return address to ensure that control flow is not transferred to 
the same location but some ret gadgets do not fulfil the second condition.  Although they are not valuable for 
achieving a full ROP, they can be used to cause a DoS.  These group of gadgets are the ones that result in the 
loop in the execution flow, whereby the rest of the gadget chain is trapped and unable to fulfil the purpose of 
the attacker.  Aside from gadgets ending with ret, other variety of gadgets that were aimed for were those 
ending with jal and jalr.  These gadgets are useful to give the attack chain more capacity and control  They are 
useful for passing new values onto the stack to overwrite values initially held in general purpose registers.   

3.3 Crafting the ROP chains 

Once useful gadgets were selected, we mapped out ROP chains in various order based on the theoretical 
approach by Deac (2022).  ROP on RISC-V is complex especially compared to ROP on x86.  The stack on RISC-V is 
managed a bit differently and manoeuvring along the stack via a ROP chain requires lots of gadgets in the input 
byte stream.  In addition to this, on RISC-V, ra (return address) register holds different values from time to time 
during execution.  For this reason, lots of manipulations can be done to redirect the flow for as long as the ra 
register can constantly be overwritten.  According to Deac (2022), the charger gadgets can be passed along with 
desired values in order to store new values and addresses in available registers, making it possible to achieve 
the ROP.  The goal is to create a fake frame, particularly in form of a function epilogue.  This tricks the process 
into assuming that the previous function has been completed and then returns to the stack to fetch the address 
of next instruction, in which case, execution jumps to another fake frame as crafted by the attacker.  This would 
go on until the execution encounters an instruction that halts the execution.   

The outcome that each of the gadget chains achieves depends on the intention of the attacker.  For this study, 
some of the gadget chains were crafted such that the execution falls into a loop to show how the attacker’s 
input is trapped, causing a DoS.  Other options of chained gadgets are also demonstrated to show how the 
gadget chain could be executed to completion in two different categories.  In all cases demonstrated in this 
study, two classes of gadgets classified by Deac (2022) were chained sequentially as functional gadgets, and 
charger gadgets. The functional gadgets will hold the instructions for the actual attack or purpose, while the 
chargers (linkers) gadgets will load the registers with addresses of the functional gadgets and other useful values. 
The linkers are the ones responsible for creating the fake frame that introduces a fake epilogue to the preceding 

294 
Proceedings of the 18th International Conference on Cyber Warfare and Security, 2023



Toyosi Oyinloye, Lee Speakman and Thaddeus Eze 
 

 

function, while each of the functional gadgets would be called from the new fake frame.  With the functional 
gadget, lots of other exploits or further creation of fake frames could be achieved.  For this reason, viable ROP 
chains for RISC-V would normally be longer than that of x86. 

3.4 Passing the input 

The input is passed as byte streams stored in a file.  As the sequence in which gadgets are crafted in RISC-V would 
determine the outcome of the exploit, specific sequences that enable the outcome that are desired in the 
context of this study are used.  This has a lot to do with the value of the ra register that gets overwritten from 
time to time as execution steps into and out of library functions or other functions that get called within a 
function. The branching pattern can only be detected during dynamic analysis and remain undetectable to users 
as no feedback is written to standard output.  

4. Ret Gadgets on RISC-V and implementation of ROP  

In this section we demonstrate the compilation of the sample program, extraction of gadgets, selection of 
gadgets, and implementation of ROP using input crafted from combination of gadget sequences formed using 
the selected samples.  The outcome for each exploit is also discussed.  This results in three categories of ROP.  
The first category makes use of a gadget that enable the ra to be overwritten as well as ending with ret.  The 
second category uses a gadget ending with jalr instruction which could be harnessed in performing some exploits 
or just manipulating registers.  The third category are gadgets that do not overwrite the ra and thus lead to a 
loop in the execution.  The ret gadgets works more efficiently within fake epilogues but the jal or jalr can be 
used more flexibly.  For this reason, the linker gadgets were built out of ret instructions.  However, gadgets with 
ret that don’t have an instruction to load a fake ra, can lead to a trap or it could end in some unexpected 
behaviour of the executable.  The jal/jalr instructions, unlike the ret would enable the jump and link of execution 
to address held in the specified register.  The order in which the gadgets are arranged in the chain would also 
affect the outcome of the exploit. 

4.1 Compiling the programs 

The program was compiled using gcc compiler and optimisation set to 0 to keep the code as large as can be and 
increase the possible available gadgets.  The sample program is small but compiling it statically ensures that the 
libc code are also held in the resultant executable, making it larger than would normally be, and further 
increasing the number of available gadgets.  The stack protection is bypassed in ROP, so the program was 
compiled with default setting including stack protections.  The -g flag is also included to enable optimal dynamic 
analysis using gdb. 

$ gcc  stack_exploit_2.c  –o stack_ex_s  –g  –O0 --static  

4.2 Extracting the gadgets 

The compiled executable was passed as arguments while running each of the gadget finders.  The new gadget 
finders extracted 26 jalr  gadgets, 89 jal gadgets and 1,657 ret gadgets.  Screenshots of the extracts for jalr and 
ret gadgets are shown in figures 1 and 2.   

 

Figure 1: Extracted gadget ending with jalr 

The gadget in figure 1 begins with instruction li a4, 0 to load an immediate value of 0 into a general-purpose 
register a4 which would normally be used by the process to store a function argument.  The next instruction mv 
a3,s0 will copy the content of register s0 into register a3.  Registers in the range of s0-s11 would normally hold 
values that persist after function calls.  s0 is the saved frame pointer and value in there should have been used 
to keep track of the stack.  The next three lines of instruction are move instructions, copying the content of each 
of the saved registers s4,s3, and s2 into a2, a1 and a0 respectively.  The instructions are useful for ROP if exploit 
values have been passed earlier on into those s0,s4,s3, and s2 registers.  The last line of instruction is the jump 
and link register jalr s1 which would write the value in s1 into ra, and then pass execution to the instruction in 

295 
Proceedings of the 18th International Conference on Cyber Warfare and Security, 2023



Toyosi Oyinloye, Lee Speakman and Thaddeus Eze 
 

 

there.  Both jal and jalr instructions would pass new values to ra.  Jal would pass a label and jalr would pass 
value stored in the stipulated register into destination register rd which is further interpreted as ra.  This shows 
that jal and jalr gadgets are more useful as functional gadgets.  As mentioned earlier, a charger gadget would be 
useful to control the registers before these types of gadgets can be applied as functional gadgets.  The charger 
would preferably be a gadget ending with ret.  An extract of gadget ending with ret is shown in figure 2.   

 

Figure 2: Extracted gadgets ending with ret 

The gadget in figure 2, ends with ret and begins with a ld ra,24(sp) load instruction. This is useful for taking 
control of the stack particularly the ra register which ultimately determines the branch pattern of the process.  
In other words, it can be triggered as a fake frame to trick the process into executing like a normal function.  
With the first load instruction, we can overwrite the value in ra with the address of the functional gadget that is 
shown in figure 1.  The mapping on the stack for the value to be written to ra reserves a position of 24 bytes 
from the top of the stack for this.  So that when we pass our input into the process, we must ensure that the 
address of the functional gadget is positioned correctly in the chain to get it stored in that location.  Other values 
can be passed along with the new ra, and strategically linked to the chain to ensure that they are written into 
the current location on the stack which will enable the writing of new values to the registers s0, s1, and a0.  The 
fourth instruction is li (load immediate) which loads 1 into a0.  The line of instruction addi sp,sp,32 deallocates 
the stack before the return is triggered. 

4.3 Chaining the gadgets for specific goals 

Several forms of gadgets were extracted.  The type of gadgets available in a target program depends on the 
original purpose of the process itself and the CPU’s way of interpreting the instructions.  It is noteworthy to 
mention that library code is accessible to all the executables and gadgets can be fetched from there as well.  
Each category of gadgets that we have observed shows possible variations in the behaviour of gadgets.  The ret 
gadgets, when they are used within fake frames, would have to return to address that is held in ra.  While this 
is effective for establishing branching pattern, it could limit the instruction and restrict the flexibility in the 
manoeuvring for the attack. On the other hand, gadgets ending with jal or jalr can be used more flexibly.  In 
demonstrating ROP here, we show how these instructions can be used with regards to their distinct advantages 
for changing values held on the stack and inside useful registers and then changing the behaviour of the process.  
Portions of the constructed input were also featured in recent work by Oyinloye et al. (2022).  However, specific 
highlight here is on gadgets with ret that do not contain any instruction to load a fake ra, thereby leading to a 
trap for the input.  Three examples of chained sequence of gadgets are demonstrated in the following 
subsections. 

4.3.1 Chained sequence to create a fake frame 

The ROP chain here is made of a charger and a functional gadget exit to show how target could be exploited 
with a safe exit at the end.  This was passed as input that effectively hijacks execution and invokes an abrupt 
end.  This also demonstrates the use of the linker beginning with an instruction to load a new address into ra 
register as the choice of gadget for the first element in the sequence. In figure 3, the charger creates the fake 
frame with values loaded or copied from one location or register to the other.  Once execution is redirected, the 
new values are loaded into specified register s1, which was duplicated into a0, another register s0,  and then 
new value for return address is written into ra.  In this case, it points to the exit instruction.  

296 
Proceedings of the 18th International Conference on Cyber Warfare and Security, 2023



Toyosi Oyinloye, Lee Speakman and Thaddeus Eze 
 

 

 

Figure 3: Chaining gadgets to build fake frame and exit abruptly (Oyinloye et.al., 2022) 

This input in the first instance, overwrites the original ra with the address of the charger so that the fake frame 
will be running in a different address with different sp in the target process.   Within the charger frame, a new 
ra is loaded with the address of exit using the ld ra,24(sp) instruction at the top of the charger.  Other registers 
are loaded with junk using the charger and the input is passed into the stack of the target via the buffer.  This 
results in an abrupt stop in execution. 

4.3.2 Chained sequence to invoke a functional gadget 

In this category, the ROP chain is extended by including a sequence of instructions ending with jalr and then an 
exit.  For this example, we use a different charger.  This is so that there could be more registers to manipulate 
by writing new values into them and then using a functional gadget to invoke the address that is written from 
the charger.  This demonstrates how a functional gadget can be worked into the ROP to perform more exploit.  
The input passes values into ra & s0-s2.  In the new frame, which is created by the charger gadget, ra will be the 
address of the functional gadget.  s0 and s1 are filled with junk.  The address of exit is then written to s2, to be 
called later from the functional gadget.  The functional gadget duplicates the value in s1 into a0 and then s0 into 
s3 as shown in figure 4.  This step is useful for the attacker to pass values into the registers that they might find 
useful for the exploit. 

 

Figure 4: Chaining gadgets to invoke a functional gadget 

297 
Proceedings of the 18th International Conference on Cyber Warfare and Security, 2023



Toyosi Oyinloye, Lee Speakman and Thaddeus Eze 
 

 

4.3.3 Chained sequence to invoke a loop 

ROP might not always end safely.  The chained example in 4.3.2 can be transferred into a loop instead of exit if 
a gadget that does not include an instruction to overwrite the previous ra is inserted somewhere in the chain.  
When the functional gadget getpid (figure 5) was attached just after the jalr gadget, the program crashes 
because the ra returns back into the next instruction after 0x0000000000037d2c.  On the other hand, when the 
jalr gadget was taken out of the chain and the getpid gadget was chained directly to the charger, the return 
instruction directs execution back to the top of the getpid gadget and continues in a loop as shown in figure 6.  
This was observed in gdb but when the ROP chain was passed into the target at the command line, the execution 
only appeared to the user as if it was hanging.  The execution did not crash but the process was not ending 
normally, resulting in a DoS. 

 

Figure 5: Extracted gadget getpid 

 

 

Figure 6: Chaining gadgets to invoke a loop 

5. Discussion 

The three categories of gadgets examined have shown different possible outcomes of ROP attacks based on the 
types of gadgets, the behaviours of each of the gadget, and the order in which the gadgets are chained.  It could 
result in a full-blown exploit, a crash, or a loop.  As for the ret gadgets, the expected operations are to pull 
address from the ra and jump into the address that was pulled to continue execution.  This is what usually entails 
for return instructions but the peculiarity in RISC-V is that ra is a caller saved register.  This means that upon 
each call to a subroutine, the return address is stored in the ra register.  For this reason, the ROP chain needs to 
be crafted such that the intended return address for each subroutine is specified as demonstrated in figures 3 
and 4.  From the example in figure 6, it is highlighted that if the gadget does not include instructions to overwrite 
the value of ra then the execution would return to the value which has remained in the ra forming a loop in the 
execution.  The same outcome was observed for getgid samples and could be for any gadget that does not 
enable the ROP chain to supply a new ra.  The getpid and getgid gadgets exist in glibc and if used in this manner 
could become dangerous for the target.   

None of the outcomes observed in section 4 is desirable on the path of the user.  A loop in execution with no 
feedback to the user, is dangerous and could linger before it is identified.  For the attacker, if they intended to 
achieve further exploits, passing execution to such gadgets would become an entrapment that truncates further 
execution of the ROP chain.  The main finding here is that gadgets have peculiar behaviour based on the type of 
instruction at the end, the possibility of overwriting the ra, and the order in which the gadgets are chained.  This 

298 
Proceedings of the 18th International Conference on Cyber Warfare and Security, 2023



Toyosi Oyinloye, Lee Speakman and Thaddeus Eze 
 

 

could be used in predicting the outcome of a ROP attack.  Since the sample gadget used to cause a loop in 
execution here was picked from glibc, it is evident that this understanding could cut across other programs in 
the Linux environment and can be used broadly as information for training ML models in recognising possible 
ROP attacks.   

Exploitation via ROP is still a challenge in software securities.  Possible mitigation for the DoS demonstrated here 
is demonstrated by Oyinloye et al., (2022) using a watchdog monitoring process.  The watchdog monitoring is 
based on timing-out depending on the log taken from the previous function epilogue.  According to Oyinloye et 
al., the watchdog monitoring system can identify a looping ROP and stop or prevent DoS.  A full exploit which 
would normally end undetected can also be stopped particularly if it extends reasonably for the watchdog to 
trace the time lapse after the last legitimate function.  From the study, it is observed that ROP chains in RISC-V 
would require to be longer for any reasonable exploit to be achieved.  It is considered that such long chain might 
be traceable by the watchdog monitoring process before a full exploit is achieved. 

6. Conclusion and future works 

ROP on RISC-V is not straightforward.  The behaviour of gadgets in a RISC-V based process would result in 
different outcomes.  While there are existing mitigations, it is important to consider the behaviour of gadget 
chains particularly when they access glibc.  More vulnerable programs can be evaluated in order to obtain 
valuable information which could be harnessed in building algorithms for ML towards intrusion detection. More 
samples of exploitation might also reveal further interesting details.  Future works would compare gadgets 
extracted from various programs that are known to be vulnerable to ROP including remotely executed programs.  
These programs can be compiled on RISC-V and X86, and then exploited with various sequences of ROP chains 
to observe the outcomes.  A comparison of the behaviours of similar gadgets on these two platforms would be 
useful in providing a cross platform information for ML/DL models or other Control Flow Integrity concepts for 
combatting ROP.  Extracts from the new gadgets will also be analysed to identify the reliability of the gadgets 
for ROP attacks.  This would involve considerations under different compilers as well as different system 
architectures. 

References 

Bletsch, T., Jiang, X., Freeh, V. W., and Liang, Z., 2011. Jump-oriented programming: a new class of code-reuse attack. 
Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security, March.pp. 30-40. 

Carlini, N. and Wagner, D., 2014. ROP is still dangerous: breaking modern defenses. SEC'14: Proceedings of the 23rd USENIX 
conference on Security Symposium, August.p. 385–399. 

Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A-R., Shacham, H., and Winandy, M., 2010. Return-oriented programming 
without returns. CCS '10: Proceedings of the 17th ACM conference on Computer and communications security, 
October.pp. 559-572. 

Deac, B., 2022. InfoSec Write-ups. [Online] Available at: https://infosecwriteups.com/return-oriented-programming-on-
risc-v-part-1-dd9817b52d2b[Accessed 25 06 2022]. 

Gu, G. and Shacham H., 2020. No RISC No Reward:Return-Oriented Programming on RISC-V. 29 July. 
IIT Madras, 2020. IIT Madras, Indian Institute of Technology Madras. [Online] Available at: 

https://www.iitm.ac.in/happenings/press-releases-and-coverages/iit-madras-develops-and-boots-moushik-
microprocessor-iot[Accessed 08 July 2022]. 

Jaloyan, G-A., Markantonakis, K., Akram, R. N., Robin, D., Mayes, K., and Naccache, D., 2020. Return-Oriented Programming 
on RISC-V. ASIA CCS '20: Proceedings of the 15th ACM Asia Conference on Computer and Communications Security, 
October.p. 471–480. 

Koranek, D.F., Graham, S. R., Borghetti, B.J., and Henry, W. C., 2022. Identification of Return-Oriented Programming Attacks 
Using RISC-V Instruction Trace Data. IEEE Access, Volume 10, pp. 45347-45364. 

Microsoft Coporation, 2018. Microsoft Documentation. [Online] Available at: https://docs.microsoft.com/en-
us/windows/win32/memory/data-execution-prevention[Accessed 22 April 2020]. 

Oyinloye, T., Speakman, L., Eze, T., and O'Mahony, L., 2022. Watchdog Monitoring for Detecting and Handling of Control 
Flow Hijack on RISC-V-based Binaries. International Journal of Advanced Computer Science and Applications(IJACSA), 
13(8). 

Pax Team, 2003. ASLR documentation. [Online] Available at: https://pax.grsecurity.net/docs/aslr.txt[Accessed 22 April 
2020]. 

RISC-V Community News, 2022. RISC-V.org/blog. [Online] Available at:https://riscv.org/blog/2022/07/deepcomputing-and-
xcalibyte-open-pre-orders-for-first-native-risc-v-development-laptop-quantities-limited-xcalibyte-and-deep-
computing/[Accessed 31 August 2022]. 

Shacham, H., 2007. The geometry of innocent flesh on the bone: return-into-libc without function calls (on the x86). ACM 
conference on Computer and communications security, pp. 552-561. 

299 
Proceedings of the 18th International Conference on Cyber Warfare and Security, 2023


	Oyinloye-IWS-050



