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Abstract
Extracorporeal membrane oxygenation (ECMO) is an established technique for managing severe cardiorespiratory failure. 
However, it is invasive and requires profound analgo-sedation during initiation and often throughout the therapy. Managing 
sedation in venovenous (VV) ECMO patients is particularly challenging due to the impact of ECMO circuits on pharma-
cokinetics and specific patient requirements. This can lead to unpredictable sedative effects and require multiple drugs at 
higher doses. Additionally, sedation is usually managed with traditional scoring methods, which are subjective and invalid 
during neuromuscular blockade. These uncertainties may impact outcomes. Recent clinical practice increasingly focuses on 
reducing sedation to enable earlier physiotherapy and mobilisation, particularly in patients awaiting transplants or receiving 
mechanical circulatory support. In this context, processed electroencephalogram-based (pEEG) sedation monitoring might 
be promising, having shown benefits in general anaesthesia and intensive care. However, the technology has limitations, and 
its benefits in ECMO practice have yet to be formally evaluated. This review provides insights into the challenges of ECMO 
sedation, including pharmacokinetics, unique ECMO requirements, and the implications of inadequate sedation scores. 
Finally, it includes a brief overview of the practicality and limitations of pEEG monitoring during VV-ECMO, highlighting 
a significant research gap.
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Introduction

The utilisation of venovenous extracorporeal oxygenation 
(VV-ECMO) to treat refractory respiratory failure in adults 
has steadily increased over the past two decades, reach-
ing 51,137 registered cases in the European Life Support 
Organisation’s (ELSO) database by the end of January 
2024 [1]. Management of sedation during VV-ECMO can 
be challenging, with different depths of sedation required at 
various stages of the patient’s treatment. The current ELSO 
guideline recommends deep sedation for the first 12–24 h 
with lighter sedation as the patient becomes more stable [2].

The pharmacodynamics of analgesic and sedative medi-
cations can differ among patients based on age, sex, dis-
ease progression, and other coexisting medical conditions. 
To achieve the desired level of sedation for VV-ECMO, it 
may be necessary to administer multiple sedative drugs. 
ECMO circuits impact the pharmacokinetics of each 
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medication to varying degrees [3]. As a result, maintaining 
the appropriate depth of sedation throughout VV-ECMO 
can be a complex process.

While this review focuses on VV-ECMO, allowing for 
a more in-depth discussion of the associated challenges 
and offering practical insights tailored to VV-ECMO 
management, there is a substantial crossover of consid-
erations for VV and VA-ECMO. Pharmacokinetic con-
siderations and the potential use of processed electroen-
cephalogram (pEEG) monitoring apply to both treatments. 
Still, the sedation goals usually differ due to the distinct 
patient populations, clinical scenarios and sedation targets 
involved.

Depth of sedation is traditionally monitored using 
observer-dependent traditional scoring methods based on 
clinical assessments [4–6]. However, the Neurocritical 
Care Society's recent international expert consensus panel 
strongly recommends processed electroencephalogram 
(pEEG) sedation monitoring for ECMO patients under 
neuromuscular blockade [7]. While traditional EEG meth-
ods are often complex and impractical for routine clini-
cal use, requiring specialised knowledge to interpret data, 
pEEG monitoring is easier, independent from observer 
bias and can continuously represent and objectively assess 
the pharmacodynamics of sedative agents. The bispectral 
index (BIS) device is the most widely used and exten-
sively studied EEG-based monitor in clinical practice [8]. 
It has also received a recommendation from the Society of 
Critical Care Medicine (SCCM), which was published in 
the Pain, Agitation/Sedation, Delirium, Immobility (reha-
bilitation/mobilisation), and Sleep (disruption) (PADIS) 
guideline [9].

Evidence regarding pEEG sedation monitoring during 
general anaesthesia and intensive care sedation is growing 
[7, 10]. This review aims to answer the question of whether 
processed EEG monitoring during VV-ECMO could offer 
benefits when considering and exploring various chal-
lenges of ECMO sedation. The objectives are to examine 
the literature to find potential advantages and disadvan-
tages of pEEG sedation monitoring during VV-ECMO 
treatment and to provide an overview of current sedation 
practices in ECMO. The review aims to explore the role 
of pEEG in optimising sedation strategies, addressing the 
limitations of traditional sedation scoring systems, and 
evaluating the clinical evidence supporting its capacity 
to enhance patient outcomes through objective, real-time 
assessments of sedation depth. Furthermore, it seeks to 
identify gaps in current research, propose directions for 
future studies, and discuss practical considerations for 
integrating pEEG into ECMO management protocols. This 
review hopes to lay the groundwork for evidence-based 
practices and adopt innovations in ECMO care by synthe-
sising existing knowledge.

Methods

A literature search was conducted using multiple data-
bases, including Medline (Medical Literature Analysis and 
Retrieval System Online by U.S. National Library of Medi-
cine), EMBASE (Excerpta Medica dataBASE), CINAHL 
(Cumulative Index to Nursing and Allied Health Literature), 
the Cochrane Library (https:// www. cochr aneli brary. com/) 
and Web of Science. The literature search aimed to explore 
the potential practicality, limitations, advantages, and disad-
vantages of using processed EEG for sedation monitoring in 
intensive care settings and to understand the challenges of VV-
ECMO sedation. The following terms and Boolean operators 
were searched in the title and abstract fields: “extracorporeal” 
or “ECMO” or “Extracorporeal Membrane Oxygenation” 
and “BIS” or “bispectral index” or “pEEG” or “processed 
electroencephalogra*” or “processed EEG”. A second search 
included “extracorporeal” or “ECMO” or “Extracorporeal 
Membrane Oxygenation” and “Narcotrend” or “entropy” or 
“SedLine” to find other processed EEG monitors in ECMO 
practice. This structured search could not identify any relevant 
papers that met the criteria for a systematic review regarding 
using pEEG sedation monitoring in the VV-ECMO popu-
lation. Therefore, subsequent searches were conducted to 
comprehensively explore the applicability and implications 
of pEEG sedation monitoring in this specific context. These 
extended searches included terms and Boolean operators such 
as “extracorporeal” or “ECMO” or “Extracorporeal Membrane 
Oxygenation” combined with the term “sedat*.” Furthermore, 
we investigated trends in processed EEG monitoring in critical 
care settings using terms like “BIS” or “bispectral index” or 
“pEEG” or “processed electroencephalography” or “processed 
EEG,” along with terms such as “intensive care” or “critical 
care” or “ventil*”. The search criteria did not include any 
restrictions on publication date. The references of the identi-
fied papers were thoroughly screened, and relevant literature 
was included in the analysis.

Due to the lack of specific studies investigating pEEG 
sedation monitoring in VV-ECMO, conducting a system-
atic or scoping review to summarise the literature would be 
inappropriate. Instead, we opted for a narrative review to 
comprehensively map the relevant literature and identify key 
factors related to pEEG sedation monitoring in VV-ECMO. 
In approaching the topic, we considered two major themes: 
sedation during VV-ECMO treatment and the potential role 
of pEEG monitoring in VV-ECMO care.

https://www.cochranelibrary.com/
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Theme 1: sedation during VV‑ECMO 
treatment

Sedation and analgosedation (administration of analgesic 
agents with significant sedative effects) are integral compo-
nents of patient care in ECMO settings. The aim is to ensure 
patients are comfortable, pain-free, and experience minimal 
anxiety while maintaining a safe and manageable environment, 
thereby likely avoiding delirium. These objectives are in line 
with the principles outlined in the 2018 PADIS guideline [9] 
and with the eCASH concept (early Comfort using Analgesia, 
minimal Sedatives and maximal Humane care) proposed by 
Vincent et al. in 2016 for general intensive care [11].

Considerations about deep sedation

During the initial phase of VV-ECMO, patients are, by defini-
tion, in established organ failure and are often very unstable. 
Therefore, early light sedation goals may not apply to patients 
receiving VV-ECMO. Most VV-ECMO runs are conducted 
in patients with ARDS when respiratory volumes are usually 
minimal and decrease further in the early phase of VV-ECMO 
treatment. The secretion burden is typically significant, with 
frequent bronchospasm, and there may be considerable air-
way bleeding. Under such conditions, the potential respira-
tory benefits of light sedation are unlikely to be realised, and 
lighter sedation may not be achievable. Moreover, despite 
conflicting results in the literature [12–14], these patients are 
also often treated in the prone position and require substantial 
cardiovascular support to manage systemic vasodilation, pul-
monary vasoconstriction, or right heart strain. It, therefore, 
remains common to manage the early phase of ECMO treat-
ment with heavy sedation [5, 6]. This traditional tendency 
towards heavy sedation may have also resulted from concerns 
that lightly sedated patients were more likely to move and dis-
lodge cannulae or breathe against the ventilator, increasing 
their intrathoracic pressure and causing issues with ECMO 
circuit flow. Fortunately, experience has shown that these 
fears are largely unfounded. Indeed, there is a growing trend 
to reduce sedation as soon as the patient’s condition allows 
and ultimately wean sedation entirely while still delivering 
VV-ECMO in some instances [15, 16]. These recent develop-
ments have concerned moving away from the traditional use 
of heavy sedation, which may be throughout the entire ECMO 
treatment; however, during the first few days or occasionally 
weeks, patients are profoundly sedated [5, 17].

Considerations about light sedation

Recent studies in the general critical care cohort have 
shown that unnecessarily deep sedation is associated with 
an increase in unpleasant delusional memories, nightmares, 

hallucinations, morbidity and mortality [18–22]. Therefore, 
as soon as patients are stable enough, the recommendation in 
general critical care is to achieve light-level analgosedation 
with daily sedative interruptions [2, 9]. It should be noted 
that there is no universal definition for deep or light-level 
sedation; however, a score of −3 or below on the widely 
used Richmond Agitation-Sedation Scale (RASS) is usually 
considered deep or profound sedation. (A brief description 
of the three most commonly used sedation scores is found 
in the supplementary material number 1). There have also 
been some dissenting studies regarding the benefits of daily 
sedation holds [23]. While evidence in the ECMO popula-
tion is lacking, some ECMO-specific considerations must 
be considered; moving towards lighter sedation in modern 
ECMO care seems beneficial [24]. Indeed, it has been shown 
that awake ECMO might be advantageous in specific patient 
populations, particularly in the “bridge-to-transplant” sce-
nario [25–27], when planned and semi-elective VV-ECMO 
support is initiated [28–36].

A recent systematic review by Belletti et al. [37] sug-
gests that awake ECMO is a feasible option, particularly 
in the bridge-to-lung transplantation scenario, resulting 
in a low expected failure rate and common complications 
such as delirium, agitation, worsening respiratory failure, 
and bleeding. However, further studies need to establish 
optimal timing, impact on survival and selection criteria 
[37]. There have also been reports of selected cases and 
case series where awake VV-ECMO was used for patients 
with acute respiratory distress syndrome (ARDS) [38–45]. 
Galante et al. reported a series of 25 awake VV-ECMO 
cases when 6.8% of 365 COVID-19 patients were treated 
as awake, resulting in shorter ECMO runs and an overall 
survival rate of 76% [45]. VA-ECMO or other extracorpor-
eal mechanical circulatory support might also be suitable 
for awake extracorporeal support [46]. VA-ECMO dura-
tion is typically shorter, and patients can be extubated early 
after mechanical support and gradually taken off sedation, 
potentially avoiding delirium [47]. This approach helps them 
remain alert throughout their treatment, enabling ongoing 
verbal communication, oral intake of nutrients, and partici-
pation in physiotherapy sessions to prevent muscle atrophy 
[48–50]. Various cannulation techniques and unique ECMO 
configurations facilitate mobilisation and awake physical 
and psychological rehabilitation [16, 51–56], preserving 
the beneficial effect of spontaneous breathing on respira-
tory mechanics [57].

Considerations about the awake approach

Although the awake approach may yield morbidity and 
mortality benefits [37, 58], it is essential to acknowledge 
the potential complications associated with this approach. 
Maintaining patient compliance with therapy is crucial in 
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awake ECMO. A case study by Haneke et al. highlights 
the risk of accidental device removal in awake patients, 
which can have devastating consequences. Although the 
presented patient survived an accidental decannulation, 
in similar cases, there is a risk of severe exsanguination 
or death due to the cessation of essential extracorporeal 
life support [39]. Similarly, mobility during ECMO treat-
ment can lead to a sudden reduction in ECMO flow or 
bleeding issues [59]. Furthermore, anxiety, agitation due 
to inadequate analgosedation, or delirium can contribute to 
hyperventilation with self-inflicted lung injury, potentially 
resulting in long-term psychological and physiological 
consequences [33, 60]. Timofte et al. reported an uncon-
ventional yet seemingly effective approach to managing 
high respiratory drive and associated hyperventilation, 
known as "drowning syndrome” in VV-ECMO. They 
administered neuromuscular blocking agents, leading to 
adaptive periodic paralysis, also requiring some degree of 
sedation [61]. It is important to note that awake patients 
may require occasional profound sedation for tracheos-
tomies and bronchoscopies for airway clearance, even 
though they are mostly awake while receiving ECMO 
therapies [62].

pEEG monitoring could potentially guide the initial or 
subsequent phases of deep sedation and might benefit the 
following phase of controlled sedation lightening.

Challenges of VV‑ECMO sedation

The challenges associated with VV-ECMO sedation can 
be attributed to the challenges related to patients’ physiol-
ogy, requirements specific to VV-ECMO, pharmacokinetic 
effects of ECMO circuits and the shortfalling role of tra-
ditional sedation scores.

Considerations related to abnormal physiology

ECMO patients exhibit dysfunction of other organs in 
addition to their respiratory failure. Their renal function 
is often compromised, and renal replacement therapy is 
not uncommon. There may be liver impairment, and gas-
trointestinal absorption is frequently suboptimal. These 
factors can affect the absorption, metabolism and excretion 
of sedative medications. Similarly, sepsis is often a com-
plicating factor and may result in pyrexia, hyperdynamic 
circulation, hypoalbuminemia, capillary leak, and elevated 
levels of inflammatory proteins. These factors also signifi-
cantly impact the pharmacokinetics of sedative drugs. It is 
worth noting, however, that these features are not exclusive 
to VV-ECMO and are commonly observed in general criti-
cal care settings [63].

Considerations specific to VV‑ECMO care

While most VV-ECMO circuit configurations can allow 
patient movement without negatively impacting gas 
exchange [64], there are specific situations where sudden 
drops in blood flow through the circuit can result in rapid 
oxygen desaturation [65]. Although such issues can often 
be managed with fluid administration [66], there are occa-
sions, particularly in the presence of elevated intrathoracic 
or intraabdominal pressures or prone positions, where deep 
sedation and muscle relaxation become necessary.

VV-ECMO patients may also require frequent and poten-
tially painful procedures such as bronchoscopies, line or 
drain insertions, and tracheostomies. Often, these procedures 
occur under anaesthesia, and these periods of profound seda-
tion may combine, resulting in prolonged periods of deeper 
sedation. Similarly, if patients cannot be managed safely 
with lighter sedation, heavier sedation may be required to 
prevent the accidental removal of a life-saving device.

Although lightening or cessation of sedation may become 
feasible as the course progresses to facilitate patient mobi-
lisation [4, 17, 67, 68], deep sedation in the early phase of 
VV-ECMO requires considerably higher doses of sedatives 
than in the case of non-ECMO patients, frequently requir-
ing a combination of multiple sedatives [69–71]. Therefore, 
continuous sedation monitoring could be essential when 
managing multiple agents to achieve sedation targets.

Pharmacokinetic considerations

ECMO significantly influences the pharmacokinetics of sed-
ative drugs, exacerbating sedation challenges [3, 67, 72–77]. 
Ex vivo studies investigating the various sedative agents in 
ECMO circuits have shown sequestration of lipophilic and 
protein-bound sedatives, such as midazolam, propofol, dex-
medetomidine and fentanyl and its derivatives, which may 
suffer significant loss within the ECMO circuits [78–91]. 
These studies used different circuits with varying materi-
als, coatings, and drugs for various durations. Therefore, 
summarising the studies here is impractical and is not the 
focus of this review. Nevertheless, it must be noted that 
significant drug loss was consistently observed. This phe-
nomenon might explain the requirement for higher doses of 
lipophilic sedatives like fentanyl derivatives and midazolam 
in clinical practice [3, 67, 72–76]. In contrast, hydrophilic 
morphine demonstrates less sequestration. Protein depos-
its in the oxygenators can also contribute to the trapping 
of protein-bound agents [90]. Dexmedetomidine suffers at 
least 50% loss in vitro ECMO circuits [83], and Dallefeld 
et al. [86] concluded that this loss is due to extraction by the 
oxygenator [86].

Extracorporeal circulation, as an extension of the human 
circulatory system, induces haemodilution, leading to an 
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increased volume of distribution and, subsequently, lower 
plasma concentrations of drugs. Large ECMO cannulas 
in the inferior vena cava may contribute to liver and kid-
ney congestion. Furthermore, ECMO may adversely affect 
hepatic cytochrome pathways. However, additional research 
is needed to understand this impact fully [72, 75, 76].

While pharmacokinetic research provides valuable 
insights into understanding the factors influencing seda-
tion, it is essential to note that pharmacokinetic studies are 
often of limited assistance in guiding sedation practices [92]. 
pEEG monitoring could allow the sedative effect of medica-
tions to be formally quantified, facilitating the titration of 
medications and circumnavigating some of the pharmaco-
logical and physiological complexities.

Volatile sedation Several studies have assessed the potential 
benefits of volatile sedation with sevoflurane or isoflurane 
inhalation during ECMO support [93–97]. However, these 
studies have limitations, such as small sample sizes and het-
erogeneity in patient populations [95]. The opioid-sparing 
effect, swift recovery from sedation, and the opportunity for 
early neurological assessments following volatile sedation 
may present advantages akin to those observed in general 
critical care [98, 99]. Nevertheless, the studies concluded 
that volatile sedation is feasible but does not significantly 
affect primary and secondary outcomes such as mortality, 
length of stay, ECMO duration, or delirium [96, 97]. The 
reliability of volatile agents' minimum alveolar concentra-
tion (MAC value) as a reliable indicator of sedation depth 
is uncertain due to the altered respiratory mechanics of 
patients receiving ECMO. Moreover, despite advancements 
in scavenging systems, the inherent risks of occupational 
exposure and the associated environmental impact (such as 
the greenhouse gas effect) may attenuate the attractiveness 
of this approach [100, 101].

Role of sedation scores

Surveys conducted by Buscher et al. in 2013, Marhong 
et al. in 2017 and Dzierba et al. in 2019 have shown that 
sedation practices during ECMO care vary considerably 
worldwide [4–6]. However, most departments use the same 
observer-dependent scoring systems for sedation monitoring 
in ECMO as in other ICU patients. These tools include the 
Richmond Agitation Sedation Scale (RASS), Ramsay Seda-
tion Scale (RSS), Riker Sedation-Agitation Scale (SAS), 
and, less frequently, other scales [4–6]. (See supplementary 
material 1).

These sedation scores are subjective and not capable of 
continuous real-time monitoring. They provide isolated 
snapshot values for assessing agitation and response to stim-
ulation rather than the depth of sedation per se. Moreover, 

the reactions required for their use might be prevented by 
neuromuscular blockade.

Sedation scores may result in oversedation, as evidenced 
by a recent study by Favre et al. on general ICU patients 
[102]. In this study, the RASS score between − 5 and − 4 
was targeted while treating clinicians were blinded to pEEG 
data. pEEG monitoring in the form of Patient State Index 
(PSI) by the SedLine® monitor (Masimo, Irvine, CA, USA) 
was found to be below 25 (indicating EEG suppression) for 
half of the total monitored time. A low PSI was associated 
with delirium, potentially negatively influencing the dura-
tion of mechanical ventilation and lengthening the ICU stay 
[102].

pEEG monitoring could allow reliable, real-time and con-
tinuous assessment of sedation depth in VV-ECMO care. 
However, no published studies have analysed the benefits of 
pEEG for sedated patients receiving ECMO.

Figure 1 illustrates the relationship between the widely 
used sedation score, RASS, and the most popular processed 
EEG monitor, Bispectral Index (BIS), in the context of seda-
tion depth and monitoring.

Theme 2: potential role of pEEG monitoring 
in VV‑ECMO care

pEEG-based sedation monitoring is most reliable in deep 
sedation [103]. A recent general critical care study con-
ducted by Idei et  al. concluded that pEEG parameters, 
specifically the Patient State Index (PSI) measured by the 
SedLine® (Masimo, Irvine, CA, USA), can accurately dis-
tinguish between deep and light sedation with high sensi-
tivity and specificity, and correlate well with RASS meas-
urements [104]. pEEG monitoring allows for objective and 
continuous sedation assessment, which can help prevent 
inappropriate light or profound sedation in ICU patients 
[104]. The National Audit Project 5 (NAP5) audit in the 
United Kingdom highlighted the issue of intraoperative 
awareness during total intravenous anaesthesia in operat-
ing theatres and mandated depth of anaesthesia monitoring 
during surgical procedures [105]. Based on this reasoning, 
it would be rational to recommend monitoring sedation lev-
els using pEEG monitors, particularly when ECMO patients 
undergo interventions, transfers, or procedures where aware-
ness is unwanted and more likely.

The usefulness of pEEG monitoring outside deep sedation 
is unclear, and the effects on required sedative drug doses 
in critical care patients have not been convincingly dem-
onstrated. In Bass et al.’s small retrospective cohort study, 
no significant differences in sedation or analgesia require-
ments were found between BIS-guided and RASS-guided 
intensive care patients ventilated for ARDS [106]. However, 
in this study, almost all BIS patients (99%) required deep 
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sedation (BIS < 60), while nearly half of the RASS-guided 
cases needed only light sedation (RASS ≥ − 3), which may 
make the comparison biased [106]. In a smaller randomised 
control trial that included only 50 lightly sedated (BIS > 70) 
patients from a very heterogeneous ICU cohort, Weather-
burn et al. found no difference in sedative drug requirements 
when pEEG was used [107]. However, these results should 
be interpreted with caution because of the small number of 
patients and the heterogeneity of their cohort. In contrast, 
Olson et al. reported that pEEG monitoring was associated 
with receiving reduced doses of propofol and opioids in 
lightly sedated (RASS − 2) general critical care patients 
[108]. In their prospective randomised trial that included 
300 patients, there was, however, an unexpected increase 
in the doses of sedatives required if dexmedetomidine and 
benzodiazepines were chosen as sedatives. The study found 
no significant improvement in clinical outcomes associated 
with pEEG monitoring [108]. This study corresponded well 
with the authors’ previous study involving 67 neurocritical 
care patients [109]. In a recent randomised controlled trial, 

Huespe et al. found that BIS-guided sedation significantly 
reduced the sedative doses in deeply sedated critical care 
patients while maintaining higher levels of EEG activity 
[110]. However, BIS guidance did not improve delirium-free 
and coma-free days overall, except in a subgroup of patients 
with deep sedation lasting more than 24 h, in which the 
BIS-guided group experienced significantly more delirium-
free and coma-free days (median, 1 day [IQR, 0–9 days] vs 
median, 8 days [IQR, 0–13 days]; P ¼ 0.04). The target BIS 
range in the BIS-monitored arm was 40–60, while the target 
RASS score in the clinical assessment group was between 
− 4 and − 5 [110]. Notably, the improved subgroup closely 
resembles the ECMO population.

A systematic review by Shetty et al. found insufficient 
evidence to draw conclusions regarding the effects of BIS 
monitoring for sedation on clinical outcomes or resource uti-
lisation in critically ill mechanically ventilated adults [111]. 
However, it is essential to note that no specific research has 
been conducted to explore the potential sedative-sparing 
effects of pEEG monitoring during ECMO therapy.

Fig. 1  Relationship between the Richmond Agitation Sedation Scale 
(RASS) and the Bispectral Index (BIS) in the context of sedation 
depth and monitoring. (In light sedation, BIS monitoring is imprac-
tical due to motion artefacts and the ease of verbal assessments and 
patient communication. BIS monitoring is also ineffective for assess-
ing agitation. In deep sedation, sedation scoring becomes more sub-
jective; spontaneous movements might be misinterpreted as inade-

quate sedation depth, often leading to increased sedative doses. When 
patients reach an RASS score of − 5, and often at − 4, only pEEG 
monitoring can detect oversedation due to excessive sedative admin-
istration. Additionally, all scoring methods employ physical stimuli 
that may inevitably disrupt sleep patterns, temporarily decreasing the 
depth of sedation.)
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Clinicians and nurses caring for patients receiving ECMO 
must divide their attention among multiple tasks [112, 113]. 
The cognitive load is high, and a protocolised approach to 
titration of sedatives based on real-time parameters, such 
as the pEEG parameters, may alleviate some of this burden 
and reduce nursing workload by saving time otherwise spent 
assessing sedation scores hourly. While it is crucial to main-
tain documented sedation score targets, adjusting sedative 
doses based on pEEG parameters may require less frequent 
scoring.

In the future, pEEG-guided closed-loop sedative admin-
istration systems could be integrated into clinical practice, 
reducing the need for human intervention in sedation admin-
istration. However, it is essential to note that these systems 
are still in the developmental stage. They are not currently 
available for patient care and have not been designed for 
ECMO care [114, 115]. (The features of the most commonly 
used pEEG sedation monitors are summarised in supplemen-
tary material number 2.)

Potential advantages of using pEEG monitoring 
in ECMO

Acute neurological complications, such as intracranial 
haemorrhages, ischaemic strokes, and seizures, occur in 
approximately 10% of the VV-ECMO and 15% of VA-
ECMO populations, respectively [116]. Such complications 
may result in sudden changes in pEEG values, prompting 
further tests to determine the diagnosis [117, 118]. However, 
it is also essential to recognise that the effects of neuro-
logical injuries on regional blood flow, often in the frontal 
region, may reduce the sensitivity and utility of available 
pEEG monitors in assessing sedation depth [119]. Peluso 
et al. observed that 38% of ECMO patients with severe EEG 
background abnormalities were significantly associated with 
adverse neurological outcomes and mortality [120]. On the 
other hand, studies suggest that in those patients who suffer 
prolonged hypoxia or circulatory arrest, there is potential to 
use pEEG for neuro-prognostication [121–124]. Combining 
pEEG with near-infrared spectroscopy (NIRS) monitoring in 
VV-ECMO patients might optimise sedation depth by align-
ing it with brain activity and cerebral oxygenation demand 
[125].

A significant proportion of VV-ECMO patients (60–98%) 
may experience delirium [126, 127]. Also, oversedation in 
critical care has been associated with an increased risk of 
delirium [21, 128]. However, evidence regarding the ben-
efit of pEEG monitoring to prevent delirium is conflicting. 

Nevertheless, a recent systematic review and meta-analysis 
by Sumner et al. suggested that pEEG monitoring may help 
prevent excessive intraoperative anaesthesia, potentially 
reducing postoperative delirium incidence [129]. However, 
the included trials and their statistical and clinical meth-
ods were very heterogeneous, and the primary result of this 
meta-analysis did not show a statistically significant benefit 
[129]. Despite some methodological concerns, the included 
ENGAGES (Electroencephalography Guidance of Anesthe-
sia to Alleviate Geriatric Syndromes) trial in 2019 did not 
support pEEG monitoring to reduce delirium [130, 131]. 
Also, the recent ENGAGES—Canada large prospective 
multicentre randomised trial has failed to demonstrate that 
pEEG decreases delirium in an elderly cardiac surgical pop-
ulation [132]. Research on the ECMO population is lacking.

Light sedation might also worsen delirium. A recent ret-
rospective registry study by Sun et al. found an increased 
delirium incidence in lightly sedated adult patients receiv-
ing VV-ECMO for severe COVID-19 ARDS. The authors 
hypothesised that inadequate light sedation might have exac-
erbated pain and discomfort, leading to patient-ventilator 
dyssynchrony and, ultimately, adverse delirium incidence 
[126].

Jarry et al. demonstrated that pEEG-guided anaesthe-
sia in cardiac surgeries with extracorporeal cardiopul-
monary bypass resulted in reduced inotropic and vasoac-
tive drug doses upon ICU arrival, lower anaesthetic and 
opioid requirements during surgery, decreased central 
venous pressures, reduced fluid needs and intraoperative 
bleeding, and a shorter duration of mechanical ventilation 
[133]. While extrapolation from other studies and differ-
ent patient populations can lead to false conclusions, it may 
also highlight trends and lacking evidence. Similar benefits 
of pEEG-guided sedation during VV-ECMO have yet to be 
investigated.

pEEG monitoring in sedated VV-ECMO patients could 
prevent unnecessarily profound and inadequate light seda-
tion. However, further research is needed to determine if this 
approach can reduce the incidence of delirium, lower drug 
doses, or lead to more favourable physiological parameters 
in the VV-ECMO population.

Possible barriers to pEEG monitoring in VV‑ECMO 
sedation

pEEG monitors are designed to measure electrical sig-
nals from the frontal brain structures that may not repre-
sent the accurate anatomical structures contributing to 
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consciousness. These signals can be susceptible to inter-
ference from external sources. One common type of inter-
ference is electromyographic (EMG) artefacts, which can 
arise from non-paralysed patients who are shivering or mov-
ing. Interestingly, EMG signals may be necessary to derive 
accurate BIS numbers, as suggested by a study conducted 
on healthy volunteers by Schuller et al. [134]. This finding 
has important implications for patients under neuromuscu-
lar blockade. In such cases, deeper pEEG numbers may be 
necessary to ensure that patients are adequately sedated and 
to prevent the risk of recollections and inadvertent aware-
ness. However, high muscular activity in the intensive care 
unit can lead to an overestimation of BIS, resulting in falsely 
higher readings that may eventually cause BIS-induced 
oversedation [135]. In addition, pEEG sedation monitoring 
may become less accurate as age increases [136]. Addition-
ally, sources of electrical interference, such as warming 
blankets, pneumatic mattresses, and mechanical and ECMO 
pumps, may also affect the accuracy of EEG readings [137]. 
pEEG devices from various manufacturers may also show 
different tendencies despite processing the same EEG signal, 
as was recently published by Hight et al. [138].

Ketamine as an adjunct in ECMO analgosedation may 
offer several benefits with minimal drawbacks [139–144]. 
However, it does not necessarily reduce sedatives or opi-
oids [141]. Unfortunately, the administration of ketamine 
can lead to an artificial increase in the commonly used BIS 
numbers. This effect can be attributed to the drug’s ability to 
elevate the cerebral metabolic rate or increase theta activity 
within the EEG power spectrum [145, 146]. Therefore, when 
ketamine is used, it is crucial to interpret pEEG values cau-
tiously and consider alternative monitoring methods, such 
as sedation scores, to assess sedation levels accurately. As 
mentioned above, Olson et al. reported that pEEG monitor-
ing increased dexmedetomidine and benzodiazepine require-
ments, which might be attributed to the various electrophysi-
ological effects of these agents, besides the light sedation 
targets and perhaps the anti-anxiety and anti-delirium effects 
of these medications [108].

Noxious stimuli may also affect pEEG parameters. How-
ever, at best, this surrogate is challenging to assess reliably, 
and more effective nociception monitors are available [147, 
148]. Critical care staff must also be aware that targeting 
pEEG levels in ECMO sedation will not necessarily guar-
antee immobility, which might occasionally be necessary.

Figure 2 summarises the potential advantages, barriers 
and uncertainties regarding pEEG sedation monitoring in 
VV-ECMO care.

Strengths and limitations

The strengths of this narrative review include the substantial 
literature search and a comprehensive approach to mapping 
evidence, as well as the identification of knowledge gaps, 
theories, and key factors related to the concept of VV-ECMO 
sedation and pEEG sedation monitoring in VV-ECMO care. 
While this review primarily addresses VV-ECMO sedation, 
it also includes relevant details from studies related to gen-
eral ICU and VA-ECMO populations when discussing trans-
ferrable concepts to ensure a comprehensive overview. The 
limitations are the lack of specific studies investigating the 
pEEG monitoring during VV-ECMO and the wide variety 
of literature providing information about ECMO and pEEG 
sedation monitoring separately.

Conclusion

Sedation during VV-ECMO therapy poses several chal-
lenges. VV-ECMO alters the pharmacokinetics of seda-
tives, and the unique needs of this patient population make 
it difficult to accurately assess, conduct and monitor sedation 
using traditional scoring methods. Although pEEG moni-
toring is gradually becoming a standard clinical practice in 
general critical care, there is no established evidence for its 
use in VV-ECMO therapy. Despite the lack of hard evidence, 
using pEEG for sedation monitoring in ECMO care has been 
advocated and supported in the literature [7, 113, 149–151]. 
Given its proven utility in other populations and the absence 
of significant contraindications, the authors believe pEEG 
monitoring should be routinely implemented in all ECMO 
cases. However, while it has never been considered inef-
fective or unsafe, nationally endorsed ECMO guidelines in 
the United Kingdom have yet to recommend pEEG-based 
sedation monitoring specifically for ECMO care.

Therefore, there is a clear need for further research to 
clarify the advantages and limitations of pEEG monitor-
ing in this setting. Future research should aim to estab-
lish optimal and safe pEEG targets for ECMO sedation, 
develop protocols that minimise the use of sedatives and 
opioids facilitating sedation weaning, and correlate specific 
pEEG changes with neurological outcomes and age-related 
changes. Integrating pEEG with other monitoring methods, 
such as near-infrared spectroscopy, may be particularly 
beneficial. In the future, machine learning or artificial intel-
ligence-based models that synthesise multiple physiologi-
cal signals (e.g., pEEG, ECMO parameters, near-infrared 
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Fig. 2  Potential roles and barriers of pEEG sedation monitoring in ECMO. The benefits and barriers of pEEG sedation monitoring in VV-
ECMO may differ in their impact, with some aspects being more significant than others
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spectroscopy, vital signs, and blood gas data) might have 
the potential to improve outcome predictions. Finally, addi-
tional studies are needed to evaluate the cost-effectiveness 
of pEEG and its impact on clinical workflows in resource-
intensive ECMO settings.
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