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ABSTRACT

As to the sphere of smart water management and managing water Internet of Things (IoT) systems, water condition safety for drinking is very

important. The proposed methodology, known as the Smart Water Consumption Monitoring System (SWCMS), is based on the WaterNet data-

set acquired from a standard data repository for training the selected machine learning (ML) models. For water quality parameters such as

temperature, turbidity, pH, and some chemical concentrations, the system uses real-time sensors. At the testing phase, information received

from the sensors is time-stamped, and with the utilization of applicable ML approaches, potential challenges; assessment of water quality is

processed. This encompasses the employment of advanced instruments for the detection of water quality with concentration on pH and

other chemical values through a detection accuracy rate of over 95% on any other signs of abnormalities. This processed information is

further availed with the timestamps to the consumers’ mobile phones through a user interface application for real-time awareness and

timely response. With the aid of timely information about their drinking water, the SWCMS increases the water safety parameter by 90%

and the overall consumer awareness by 92.5%, thereby creating an effective health parameter among the public.
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HIGHLIGHTS

• The SWCMS uses sensor data and ML models to monitor sump water tanks, assessing key attributes like temperature, turbidity, pH, and

chemical content.

• This proactive monitoring enhances public health and safeguards communities from potential hazards.

• The SWCMS aims to deliver critical insights into drinking water quality and potential pathogen presence for consumers.
1. INTRODUCTION

In the recent research arena, the field of smart water management has gained much attention and progress thanks to the

incorporation of Internet of Things (IoT) (Mishra 2023) applications and machine learning (ML) concepts. The advance-
ments made here have led to better means and ways of using technology in monitoring, quality, distribution, and
consumption of water. The scarcity and pollution of freshwater bodies across the world called for the design and implemen-

tation of intelligent systems that would enhance the use of water to the maximum safety level (Nasir et al. 2022). Smart
devices, such as those based on IoT, can proactively monitor and detect different parametric qualities of drinking water in
real time. On the other hand, there are ML algorithms that can detect possible issues with water quality and predict possible
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and

redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
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future trends (Lowe et al. 2022). This has, therefore, made IoT/ML a potent tool in management and solving water issues,

making it an important field of study.
However, smart water management has so far not benefited from enough investigative work revealing the best ways of

inspecting and evaluating the quality of drinking water, especially at home. There are many traditional water monitoring sys-

tems that are challenged due to the following reasons: the systems do not offer actual contextual data, real-time analysis, and
appropriate feedback to consumers (Xu et al. 2022). These systems normally involve testing performed at some intervals, and
this can be costly, time-consuming, and may involve some errors from the testers. However, the existing solutions do not align
smoothly with the consumer applications as they were marketed and implemented mostly in business contexts, thus reducing

their effectiveness. This indicates the need for solutions that integrate real-time data acquisition, robust data processing, visu-
alization tools, and interfaces to produce meaningful information on water quality and usage for consumers (Talukdar et al.
2023).

To fill the said research gap, this study develops another methodology named the Smart Water Consumption Monitoring
System (SWCMS), which has the potential to monitor sump water tanks and review the current condition of drinking water
through the use of smart sensors and ML algorithms (Ajayi et al. 2022a). Using the WaterNet data set from IEEE Dataport

(Ajayi et al. 2022b; Silva 2022), the SWCMS uses a multi-layered cascade generalization (CG) to improve the detection accu-
racy and conditional dependability of water quality predictions. The system needs to pass through two levels of cascading
architecture, which include long short-term memory (LSTM), convolutional neural networks (CNN), and random forest

(RF) in the first level. Next, such basic-level model outputs are combined and passed to the second-tier models like gradient
boosting machines (GBMs) and stacked denoising autoencoders (SDAE) to enhance the detection. The last decisions of the
model, together with timestamps, are sent to the consumer’s mobile phone, and hence, consumers gain real-time awareness
about the environment, which in turn can prompt action.

The rationale for this study arises from the imperative of safeguarding residents’ supply of safe water in homes since it can
be very risky because water quality in homes can be very disparaging as a result of such factors as degraded infrastructure,
contamination, and lack of monitoring (Manjakkal et al. 2021). Thus, the core investigation of this study is to create an

intelligent system that can thereby monitor water quality, learn from its results, and instantaneously give feedback to
the consumer to make the proper decisions regarding water use. New SWCMS development, including design, implemen-
tation, and assessment of the effectiveness of the system, will aim to promote water safety, raise public awareness, and

consequently decrease the number of water-borne diseases. This approach guarantees the system’s comprehensiveness
and, at the same time, provides its users with the most convenient interface by utilizing advanced sensors, ML models,
and mobile applications.

Thus, the importance of this study is related to its capacity to change the approach to detect the conditions of the quality of

drinking water. Regarding concerns within the scope of smart water management, the SWCMS fulfils a number of significant
tasks due to real-time data analysis for water quality assessment. First, it painted the picture of a solution that can easily be
implemented in different dwellings and maintain a reliable survey of water quality. Second, the incorporation of sophisticated

ML methods improves the reliability of the system and increases the efficiency of the detection of anomalies’ presence and the
prognosis of future trends. Third, the utilization of an awareness mechanism in real-time helps the consumer to be informed
on any given incident and take necessary action to avoid health complications. In conclusion, this study makes a modest con-

tribution toward the objective of practicing sound and secure water use throughout the world based on prior research due to
the water crisis and related issues that have been identified as significant in the general population’s health and the
environment.

The following strategic goals of the SWCMS concept have been identified as the core objectives of the system:

• The SWCMS, with effective sensor data and efficient ML models, is intended to continuously oversee sump water tanks and

detect/evaluate/record important attributes of the water, such as temperature, turbidity, pH, and other vital chemical con-
tent. The system’s desire to achieve a detection accuracy rate of more than 95% allows for the immediate detection of any
chemical pathogens in water quality. This preemptive monitoring significantly improves the health of communities and pro-
tects the population from potential threats.

• The SWCMS intends to provide consumers with vital information concerning the quality of drinking water and the pres-
ence of potential pathogens. In the context of the analyzed framework, such data are time-stamped and made available to
consumers for real-time informational awareness. In this way, the ultimate goal of the system is to enhance consumer
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awareness and also water safety parameters to the maximum extent, thereby raising the health parameters among the

public.

However, the proposed methodology is evaluated with the utilization of a well-defined ‘WaterNet’ dataset from IEEE Data-

port (Ajayi et al. 2022b), which can help future research to build upon the present work. In a real-time testbed, it is imperative
to introduce certain routines, such as checking and calibrating sensors frequently, to produce accurate results of water quality.
Calibration eliminates variability that is often caused by the drift of the sensor, while maintenance removes variability that

emanates from fouling, impacting the performance of the instrument to produce accurate data at different time intervals.
Last but not least, the research offers an extensive assessment of the SWCMS and references the effectiveness and relevance
of the model to water safety and relevant populations’ health concerns.

The paper is formatted as follows. Commencing with a comprehensive introduction of the paper, the discussion is followed

more specifically by a set of reviews of existing work to build the framework for conducting research. Next, the section on
methodology describes the dataset that has been utilized, the data pre-processing process, and the CG process in which it
has been incorporated, including Layer 1, comprising lower-level models; intermediate fusion, which is Layer 2 and Layer

3 concerning higher-level models. The performance evaluation and discussions come next, during which the findings are scru-
tinized and expounded. Last, the paper discusses the study’s implications as a precise conclusion and concerns for further
research.
2. RELATED WORK

Manjakkal et al. (2021) and Lakshmikantha et al. (2021) used low-cost sensors, along with smart algorithms for structural
health monitoring (SHM) of pipes using standardized data analysis and prediction. This strategy entails the improvement

of the data scope and comparability across the strata of all water bodies across the world. However, some limitations are
the absence of any clear protocol for data collection, spatial–temporal characteristics, and the need for enhanced
and denser sensor systems. These challenges call for a constant enhancement of strategies in sensor placement and infor-

mation processing in order to achieve effective water quality monitoring (WQM). Lakshmikantha et al. (2021) and
Garrido-Momparler & Peris (2022) described IoT-based synchronous water quality meandering at low cost. The base
approach of the core methodology involves using sensors to quantify the pH, turbidity, conductivity, and temperature of

water. These sensors are interfaced with an Arduino microcontroller that forwards the measured information to a cloud
server for constant evaluation. Hence, the study aims to offer a cheap and effective method for the achievement of undesir-
able water safety. Nonetheless, some of its limitations include the constant dependence on Internet connection throughout
the analysis and data collection process, and possible difficulties in calibrating and/or maintaining the sensors that are used

during the measurements. Garrido-Momparler & Peris (2022) and El-Shafeiy et al. (2023) concentrated on the connectivity of
smart sensors within the IoT infra and cloud computing for monitoring the concerned subjective conditions, especially water
quality. The fundamental method used for managing these applications consists of using smart sensors with portability and

low-power consumption that have the ability to independently transfer information to cloud processing systems and analytics
for higher-level evaluation. This will help improve the frequency and accuracy of environmental monitoring. However, some
of the major drawbacks are associated with power consumption, price, and common problems that arise in interactions

between different systems, which can be solved only by establishing the generally accepted rules of their functioning and cor-
responding protocols of communication. To identify outliers in water quality data, El-Shafeiy et al. (2023) and Syrmos et al.
(2023) put forward multiple convolutional networks (MCN)–LSTM; a complex approach that uses both MCNs and LSTM.

The core methodology is based on deep learning, which implies the analysis of time series acquired by a network of IoT-based
sensors that consider both spatial and temporal characteristics. The major concern here is to ensure that early and accurate
signals of fluctuating or negative data are checked for water quality. However, a major disadvantage of this method is that it is
computationally intensive and requires large amounts of data for testing, which at times is not feasible. More work is rec-

ommended to fine-tune these requirements and to increase practical relevance. Syrmos et al. (2023) and Chinnappan et
al. (2023) developed a systematic approach for an efficient IoT architecture used for real-time water monitoring via long-
range wide-area network (LoRaWAN) with the help of the ML algorithm. The core technique includes employing flow

meters and different water quality sensors to measure consumption rates and quality features, wireless data transfer by LoR-
aWAN, and employing cloud computing and different ML predictive models. This system is intended to strengthen water
management altogether, both in the urban and rural areas, by offering information concerning the use of water and quality
om http://iwaponline.com/hr/article-pdf/56/2/136/1535432/nh2025097.pdf

025



Hydrology Research Vol 56 No 2, 139

Downloaded from http
by guest
on 14 March 2025
in real time. A limitation of this approach is that the sensors have to be calibrated from time to time, and their maintenance is

also an act that may add to the operation costs and complicate the system. Chinnappan et al. (2023) and Shahra &Wu (2023)
proposed an IoT architectural model for real-time chlorine level checks and forecasts in water sources. The basic working
style consists of measuring the values of temperature, flow, and chlorine level using sensors, processing them through Rasp-

berry Pi microcontroller, sending the information to the cloud, and applying the fuzzy logic-based decision tree (FL-DT)
technique for prediction. Its goal is to maintain a constant supply of safe drinking water by regularly checking the amount
of chlorine. However, they rely on pure data quality and availability, which can be a constraint, and the system requires a
lot of computational power. However, the work should be directed to improve these aspects to increase the practicability

and expansibility of the framework. Shahra & Wu (2023) and Rana et al. (2023) developed a dynamic methodological frame-
work for solving the optimal sensor placement problem for near-actual monitoring of water contamination in the Water
Distribution System. At the core of the plan, an evolutionary algorithm (EA) is applied to identify the strategies for placing

sensors with reference to different contamination situations, with objectives of shortest detection time and wider coverage.
The study then proves the usefulness of such an approach through the use of case studies such as the Battle of the Water
Sensor Network and a real-life case backdrop in Madrid. However, the limitation was observed in terms of the density of

the EA and its computation, where substantial resources would be needed, and perhaps the algorithm would not be scalable
for larger networks. Rana et al. (2023) and Jallow (2024) described a method using artificial neural networks (ANN) and
LSTM models for water quality prediction and monitoring. These models are developed using seven critical constraints,

namely dissolved oxygen, temperature, conductivity, pH, turbidity, total dissolved solids (TDS), and chlorides. The emphasis
is put on the appropriate classification and prognosis of the water quality index (WQI), with prominent rates of success shown
via measures such as the mean absolute error (MAE) and mean squared error (MSE). Nonetheless, some disadvantages of this
study are high computational complexity, the need for extensive data for training and testing the models, and the need for

further optimization and application to real-life case scenarios. Jallow (2024) and Ruiz-Moreno et al. (2023) introduced a
new concept called learning from observations to improve water efficiency and life-artificial intelligence, which has utilized
ML strategies along with microscopic cameras and bioluminescent sensors with the intent of improving a way of assessing

water quality. The main approach involves sampling water, using sensors to determine adenosine triphosphate (ATP) and
nitrate, as well as using TensorFlow Javascript to devise the ML models. According to this theoretical framework, ATP
levels and bacterial concentration are expected to be strongly related exclusively. However, the dimensional approach of

the study is yet in the conceptual stage and does not present real-world application, which is a weakness of the study.
3. METHODOLOGY

In the real-time scenario, the data are processed at the SWCMS, which receives constant updates on the water quality
measurements from different sensors. These sensors send their data to a certain central processing unit (CPU) through estab-
lished communication protocols such as the cellular data network or through Wi-Fi. The data are cleaned in order to remove

noise and outliers before feeding it into CG architectural models (Seu et al. 2022) for further processing. The sampled results
are automatically transmitted to a cloud server, which in turn makes the results available through the use of a mobile appli-
cation in the form of notifications and a comprehensive water quality analysis. This real-time processing helps in having

timely awareness and quick action to sustain the standard of safe drinking water. For empirical purposes, a well-defined data-
set is employed to evaluate the models’ performance.

Figure 1 illustrates the architecture of the proposed SWCMS. From the architecture, the CA uses systematic decision-

making processes in which lower-level models’ forecasts become the inputs to higher-level models, which strengthens the
SWCMS architecture. Overall, the technique in this study analyses raw sensor data to obtain spatial features through
CNNs and temporal features through LSTMs and performs RF to extract useful features from them. The features generated
from these models are merged together to make the final convention called a feature set, which is used for the next-level

models.
Then, the other higher-level models include GBMs and SDAE, which build on the previous models to add more value to

the intra-dataset interaction and accuracy of the detections. The final output is the aggregation of these higher-level models,

which gives a comprehensive detection to the customers to create real-time awareness and action about the quality of water
through a mobile application. At the same time, each layer uses the strengths of individual models at different stages, and the
application of this approach creates a reliable and accurate system for monitoring and evaluating drinking water conditions.
://iwaponline.com/hr/article-pdf/56/2/136/1535432/nh2025097.pdf



Figure 1 | Conceptual architecture of SWCMS.

Table 1 | Specifications and vital parameters of sensors utilized in the testing phase

Sensor Range Accuracy Resolution

pH sensor (in pH) 0–14 + 0.01 0.01

Selective electrode (in mg/L) Sodium ion
Magnesium ion
Calcium ion
Chloride ion
Potassium ion
Carbonate ion
Sulfate

0.1–10,000
0.1–1,000

+ 2% of reading 0.1

TDS meter (in mg/L) 0–5,000 1

EC meter (in μS/cm) 0–2,000 + 1% of reading 1

Hardness sensor (in mg/L) 0–500 + 2% of reading 1

Temperatures (°C) � 10 to 100 °C + 0.1 °C 0.1 °C

Multi-parametric water quality meter EC 0–2,000 EC +1% EC 1
TDS 0–5,000 TDS +2% TDS 1
pH 0–14 pH +0.01 pH 0.01
Temp 10–100 Temp +0.1 Temp 0.1
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In addition, Table 1 depicts the summary of the sensors and the reading adopted in the phase of SWCMS testing, with details
concerning range, accuracy, resolution, and the unit of measure. These specifications are important to achieve the needed
accuracy of measuring parameters of water quality.
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Table 2 | Prominent training parameters of the WaterNet dataset

Attribute Specification

ID Unique identifier per water sample

pH Indicates the alkalinity or acidity of the water
(6.5–8.5 for drinking water)

Sodium (Concentrated as mg/L) Sodium ions

Magnesium Magnesium ions

Calcium Calcium ions

Chloride Chloride ions

Potassium Potassium ions

Carbonate Carbonate ions

Sulphate Sulfate ions

TDS Inorganic and organic components in water (combined content)

EC (ÂμS/cm) Water’s ability to conduct electricity (related to dissolved salts)

Total hardness (TH)(mg/L) Concentration of magnesium and calcium salts

WQI Composite index representing overall water quality

Portability Flag: 1 (potable), 0 (not potable)

Hydrology Research Vol 56 No 2, 141

Downloaded from http
by guest
on 14 March 2025
3.1. Dataset

The dataset employed to work with the SWCMS is ‘WaterNet’, which is obtained from IEEE Dataport (Ajayi et al. 2022b).
This dataset consists of 718 records and contains 14 essential features of water quality samples that dictate the potability of

water. Through the application of all these attributes, systematically enhanced through a process known as CG, the SWCMS
can deliver a timely and reliable assessment of drinking water quality, hence guaranteeing the consumers’ safety and infor-
mation. Table 2 represents the vital parameters, which are considered for training purposes.

The selection of sensors specified in Table 1 is associated with water quality characteristics, including pH, sodium, mag-
nesium, and electrical conductivity (EC), which point to the safety and potability of water. These sensors help improve the
accuracy of the overall system because each attribute is monitored in real-time if the SWCMS is to detect and combat possible
water quality problems effectively. The current and steady checking of a broad scope of parameters makes it possible to assess

the WQI and portability and maintain the potential to acquire organic and beneficial consequences for consumers.
3.2. Pre-processing

Analyzing and preparing the data for the SWCMS requires some important stages to provide precise and viable results in the

ML models. First of all, the data cleaning is conducted, during which missing values are addressed with mean imputation
(Singh & Singh 2022), replacing them with the mean of the given attribute. Outliers are found using the Z-score method
(Huang et al. 2022) with data points that have a Z-score of more than three removed or corrected. The next operation is

data normalization, which must bring the data within the range of 0–1 through min-max scaling.
This technique ensures that all attributes like sodium, pH, magnesium, and others are measured on the same scale, which is

essential for CG. The dataset is then divided into training, validation, and test data sets so as to have valid model estimations.
Feature engineering is carried out to make new features relevant or to convert an existing one to help detect patterns from the

dataset. This kind of pre-processing also has the advantage of ensuring that the input data is well pre-cleansed and normalized
for the subsequent training of the suggested ML models.
3.3. Cascade generalization

CG is the process of building a hierarchy that includes several models, where the prediction of models at a lower level is used
by models at a higher level. In the current study, CG enhances the use of the three core layers. These are the lower-level
models, the intermediate fusion, and the higher-level models. Layer 1 incorporates methods such as CNN, LSTM, and RF.
://iwaponline.com/hr/article-pdf/56/2/136/1535432/nh2025097.pdf
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3.3.1. Layer 1 (lower-level models)

CNN: Here, the application of CNNs proves their effectiveness because raw sensor data undergoes rapid processing while
important spatial patterns of the water quality parameters are identified. It proves that they are efficient in capturing local

patterns and co-relations of the data in those regions. This raw data are fed into the convolutional layers, where the filter fea-
ture maps are used to detect features like trends in pH, sodium, and other chemical specifications. The outputs from the
convolutional layers are posted through pooling layers to down-sample and emphasize major features. Last of all, fully con-
nected layers enable these features to be transformed into the next process format. The outcome of this process is a feature

map that holds some of the spatial information from the sensor data, and such an outcome gives confidence to enhance the
effectiveness of the proposed methodology. The primary computation of this process is expressed as a raw sensor data matrix,
Isensor [ Rr�c, where r and c indicate the sample size and feature count, respectively. Thus, to extract the spatial features, the

standard convolution operation (Borup et al. 2023) is applied as follows, and the corresponding feature map outcome is rep-
resented in the following equation:

Icnn ¼ fcnn(Isensor) (1)

Icnn [ Rr�kcnn (2)

LSTM: In the case of the temporal relation among various sensor values, recurrent neural networks (RNNs) are used,

specifically LSTM networks. It is most applicable to cases of time series data since knowing the previous observations is a
critical component of LSTMs. The raw sensor data Isensor [ Rr�c is passed into the LSTM layers, which retain some earlier
inputs to establish and follow changes in the data pattern. This makes the model gain comprehension of how specific
water quality parameters evolve over time, which is crucial in achieving desired results in terms of anomaly detection

and/or prediction. The final output of the model Ilstm [ Rr�klstm is in the form of temporal features that capture the sequence
inherent in the sensed data. The major operational process (Borup et al. 2023) of this model is represented in Equation (3).

Ilstm ¼ flstm(Isensor) (3)

RF: RF is incorporated in the lower-level models so as to perform feature selection as well as initiate predictions. RF is an
extension of the bagging method where, during the construction of decision trees, an ensemble of them is built, and during

classification, the mode of the classes is returned. It also has solutions for noisy data and explains which features are impor-
tant in the dataset. Through the training of the RF model, thereby mapping the raw sensor data Isensor [ Rr�c to the target
class, the prediction probabilities or feature importance for classification is obtained, thereby determining attributes of signifi-

cance to the water quality, Irf [ Rr�krf . Thus, during the training phase, the feature selection and robust detection are carried
out using the standard operational process (Manoharan et al. 2022) as depicted in the following equation:

Irf ¼ frf(Isensor) (4)
3.3.2. Intermediate fusion (layer 2)

As for the layers of the intermediate fusion layer, the output of the lower-level models is concatenated into a compound fea-
ture set. This entails the feature maps resulting from the CNNs, the temporal features from the LSTMs, and the probability of
a prediction or the feature importance score if it was derived from the RFs. The fusion process lays the foundation of a highly
comprehensive multiple features vector based on the strength of each lower-level model. It means that the present fused fea-

ture set includes all the water quality parameters, spatial and temporal distributions, and the most important features
extracted by the RF model. These feature vectors are then prepared for feeding as input to the higher-level models using
this comprehensive feature vector. Equation (5) expresses the output concatenation process of lower-level approaches,

which tends to form a comprehensive feature set:

Ifused ¼ (Icnn, Ilstm, Irf) [ Rr�[kcnnþklstmþkrf ] (5)
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The intermediate fusion layer also improves the models’ robustness and neutralizes the drawbacks of each lower-level

model. For instance, CNNs are capable of learning localized spatial information, but they fail to learn the temporal patterns
learned by LSTMs. Likewise, RFs aid in highlighting the most important features, suppressing noise, and preventing the
model from over-focusing on irrelevant parts of the data provided. In this way, those various outputs are combined in the

intermediate fusion layer to minimize over-reliance on specific patterns and increase robustness across a wide range of
water quality cases. Furthermore, the fusion process allows the model to learn to adjust to changes in data occurrence (in
an optimal way), thus reducing differences and fluctuations in sensor data, which is essential in real-time context as a
result of unexpected noises or square data. The collective and continuous input that it involves makes the results obtained

more accurate. Therefore, it is more reliable, thereby improving the capacities of the SWCMS in delivering timely and accu-
rate water quality reports.

3.3.3. Layer 3 (higher-level models)

GBM: In all these higher-level approaches, GBMs (Dong et al. 2022) are then employed to improve the results from the fused
feature set. GBMs are extremely effective ensemble learning mechanisms, which depend on building models incrementally,
each new model trying to minimize the errors of the previous ones. Various types of features are fused together (Ifused), and

then a GBM is trained on these fused features because the model can learn interactions between attributes for higher accu-
racy, which is highlighted as an operation expression via Equation (6). As a result of GBM, the model delivers a set of refined
predictions (Ŷgbm) that are enhanced by the iterative error-correction system, which constitutes boosting methods:

Ŷgbm ¼ fgbm(Ifused), where Ŷgbm [ Rr (6)

SDAE: SDAEs (Wang et al. 2022) are also used in higher-level models to improve the feature representations extracted

from the intermediate fusion layer. SDAEs are generative restricted Boltzmann machines that attempt to learn a good feature
representation by adding noise to the input and training the network to recognize the noiseless version of the data. This pro-
cess aids the model in getting familiarized with mere features that improve its generality, and it works out this aspect. The

SDAE then takes this fused feature set (Ifused) and processes it to gain a further denoised version of the data. The output
from the SDAE is a set of enhanced features (Ŷsdae) that provide deeper patterns on the input features referring to water qual-
ity parameters:

Ŷsdae ¼ fsdae(Ifused), where Ŷsdae [ Rr (7)

The final result is achieved by using the results from both the GBM and the SDAE proposed in this study. This is achieved
through a simple summation in which the outputs of the two models are each weighted before being summed up in order to
produce the final output. The weights (ϑ) are tuned through cross-validation so as to allow the network to perform at its best.

Equation (8) exhibits that this combination utilizes the merits of both the GBM and SDAE; therefore, the accurate and
reliable detection of water quality is enabled. It is then disseminated through the consumer’s mobile application, keeping
the user informed and enabling appropriate action concerning the water quality in real time:

Ŷ ¼ qŶgbm þ (1� q)Ŷsdae (8)

This CG mechanism also had the advantage of blending positive aspects of the various models in the SWCMS for training
as well as the testing phases.

4. PERFORMANCE EVALUATION AND DISCUSSIONS

In order to assess the feasibility of the SWCMS model quantitatively, the software and the hardware specifications should be
properly selected to obtain satisfactory results and the highest accuracy. The general software used is Python v3.9 with Ten-
sorFlow v2.8 for CNNs and LSTMs and Skikit-learn v0.24.2 for RF and GBM; PyTorch v1.11 is used for SDAE. Also, the

Jupyter Notebook v6.4.3 is used in the interactive development and experimentation processes. Pandas v1.3.3 and NumPy
v1.21.2 are used for data processing, while Matplotlib v3.4.3 is used for data visualization. The aspects that must be taken
into consideration in terms of configurative hardware are high-performance computing with NVIDIA (Tesla V100-32 GB
://iwaponline.com/hr/article-pdf/56/2/136/1535432/nh2025097.pdf
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for the GPU RAM), and a minimum of RAM of 64 GB with Intel Xeon processors with 16 cores for deep-learning model

training. Features include appropriate storage capability to store large datasets and have fast read/write speeds. This way,
the training and assessment of the SWCMS model would be highly efficient with escalations of inaccuracies through
increased computational skills to address water quality problems. In areas with unreliable network connectivity, the

SWCMS employs robust data transmission protocols designed to ensure reliable sensor data delivery. Techniques such as
data buffering and local storage are used to temporarily hold sensor data when connectivity is lost, ensuring no data are
lost. Once the connection is restored, the buffered data are transmitted in batches. Additionally, low-power wide-area net-
works and protocols like message queuing telemetry transport are utilized for efficient and reliable data transmission,

even in low-bandwidth environments, ensuring continuous monitoring and timely updates to the system.
Table 3 exhibits the hyperparameters that have been chosen according to the most used values in similar applications and

fine-tuned in compliance with the specifications of the SWCMS. All these make sure that the models operate optimally and

increase their effectiveness.
Table 3 | Empirical configuration to evaluate SWCMS

Approaches Hyperparameter Optimal range/values

CNN Number of conv layers 3
Filters per layer 64
Kernel size (3, 3)
Pooling size (2, 2)
Activation function Rectified linear init (ReLU)
Dropout 0.5
Batch size 32
Optimizer Adam; Adjovu et al. (2023)
Learning rate 0.001

LSTM Number of LSTM layers 2
Units per LSTM layer 50
Activation function tanh
Dropout rate 0.3
Batch size 32
Optimizer Adam
Learning rate 0.001

RF Number of trees 100
Maximum depth 10
Minimum samples split 2
Minimum samples leaf 1
Bootstrap True

GBM Learning rate 0.1
Number of estimators 200
Maximum depth 3
Minimum samples split 2
Minimum samples leaf 1
Subsample 0.8

SDAE Number of layers 3
Units per layer 64
Noise level 0.2
Activation function ReLU
Dropout rate 0.3
Batch size 32
Optimizer Adam
Learning rate 0.001

Final detection Weight for GBM (α) 0.6
Weight for SDAE (1� α) 0.4
Epochs 100
Training:Testing 80:20
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Table 4 | Detection samples of SWCMS for various water quality parameters

Sample ID pH

Sodium Magnesium Calcium Chloride Potassium Carbonate Sulphate TDS TH

EC (μS/cm) WQI Detection flag(in mg/L)

S1 7.49 168.17 10.13 93.63 189.46 0.66 56.72 65.51 1,835.52 188.23 1,802.43 81.19 0

S2 6.87 134.37 1.48 80.23 122.25 3.51 434.67 118.76 771.67 102.92 1,485.71 69.11 1

S3 7.23 158.22 15.85 36.56 112.94 4.86 376.65 83.93 1,740.36 207.04 2,227.81 44.23 1

S4 6.71 13.22 37.09 36.79 43.16 7.49 489.89 36.11 926.08 177.69 2,127.57 71.79 0

S5 8.22 162.68 23.76 49.72 173.91 6.42 268.83 118.41 768.52 226.34 612.42 42.53 1

S6 7.53 120.57 33.48 54.88 50.69 1.04 256.21 64.46 1,039.66 132.66 2,514.94 76.13 0

S7 7.14 54.43 29.43 5.27 117.16 8.88 88.98 13.09 1,782.54 418.19 1,873.41 61.73 0

S8 7.86 73.44 7.09 97.47 25.99 6.52 195.62 88.82 651.44 487.01 1,554.16 49.47 1

S9 7.31 142.77 23.67 94.53 103.02 7.51 384.21 209.42 1,411.83 303.21 667.76 74.84 0

⋮

S100 8.21 170.94 22.71 78.41 148.59 2.63 480.34 155.57 1,446.37 384.22 1567.85 93.38 1
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Table 4 lists a few detection samples of the SWCMS of different water quality indexes as well as the flag of detection as

normal (0) or alarm (1). When evaluating the results of the detection concerning the SWCMS, it was confirmed that the
system is able to detect problems with water quality. The samples that have a detection flag of 1 demonstrate the concerning
parameter values that are out of the ordinary range, which may be a sign of water pollution. For instance, the high chloride

and carbonate concentrations in Sample S2, the high sodium and high EC in Sample S3, and the extremely low/high pH in
Sample S5 and Sample 100 are interesting. Besides, sample S8 is critical for high levels of sulphate and TDS (Hicks et al.
2022). These deviations are, however, necessary for giving an alert and causing awareness as soon as possible to consumers
concerning water quality problems. The observed attributes are quite explicit and clearly marked elevated sulphate, TDS, as

well as the filters’ ability to determine the presence of specific disturbances, only proving that the system is rather reliable and
stable for real-time water quality detection.

The proposed CA approach from the SWCMS is compared with the following existing methods for performance evalu-

ations: MCN–LSTM, LSTM, gradient booster regressor (GBR), FL-DT, and RF. Table 5 reflects the comparative
performance analysis (Psaros et al. 2023) of the existing methods, which suggests the marked superiority of the CA in the
SWCMS. The proposed approach for people re-identification attains an average accuracy of 96.0%, precision of 95.9%,

and recall of 95.8% with an F1 score of 95.8%. Thus, CA (SWCMS) presents the best performance, meaning that it is the
most suitable for processing water quality data with high precision and reliability. MCN–LSTM is also accurate, achieving
an accuracy of 92.5% and a precision of 91.8%, although it is computationally expensive. Thus, the presented LSTM and

RF models can be considered satisfactory when it comes to a balance between performance and resource usage; yet again,
they are not as efficient as CA (SWCMS). While subtler and not as computational, the performance metrics for the two
models are lower; notably, the FL-DT is the lowest. Thus, based on a balance between the computational costs and high-per-
formance characteristics, it is possible to conclude that CA (SWCMS) will be the most appropriate for water quality analysis.

The use of several lower-level and higher-level models in CA is naturally accompanied by higher requirements for compu-
tational complexity (Rogers & Louis 2005) and increased time consumption. Furthermore, combining outputs of several
models and conditions to guarantee real-time performance increases the workload; therefore, the inference time is impacted.

Such computation limitation can be addressed by introducing refined parallel computing in a distributed environment.
Table 6 shows that the MCN–LSTM has great accuracy with a significant training time of about 6.5 h among the models

and a moderate amount of memory, about 3.2 GB, and the inference time was fairly efficient, estimated to be 0.05 s/sample.

LSTM is favourable in training time with a duration of 5 h, a memory size of 2.8 GB, and a slightly faster inference time of
0.03 s/sample. It also has slightly lower accuracy compared to the MCN–LSTM model. Thus, the GBR model, with its train-
ing time of 3.5 hours, consumed less memory (1.5 GB) and had an efficient inference time of 0.02 s/sample, but the
algorithms revealed lower performances than others. Overall, the FL-DT model is the least complex, with a training time

of 2 h and an inference time of 0.01 s/sample, and the additional memory requirement is approximately 1.2 GB of
memory, yet it provided the lowest performance statistics when the other approaches provided better results. The RF
model consumes 3 h of time to train with 1.7 GB of memory, while the inference is very efficient, 0.02 s/sample, but still

lower than CA computational performance-wise. Despite committing the highest training time (8 h) and memory usage
(3.5 GB), the CA (SWCMS) supersedes all models in all measures of accuracy, precision, recall, and F1 score, with an infer-
ence time of 0.06 s/sample, which makes them the best option for monitoring the quality of water in the most efficient way.
Table 5 | Comparative performance evaluation and analysis of CA with existing approaches

Method

Performance metrics (%)

Accuracy Precision Recall F1 score

MCN� LSTM 92.5 91.8 91.5 91.6

LSTM 90.2 89.7 89.3 89.5

GBR 88.7 88 87.5 87.7

FL-DT 85.4 84.8 84.2 84.5

RF 89.9 89.3 89 89.1

CA (SWCMS) 96 95.9 95.8 95.8
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Table 6 | Comparison of computation efficiency

Method Training time (in h)
Inference time
(in s/sample) Memory usage (in GB)

MCN–LSTM 6.5 0.05 3.2

LSTM 5 0.03 2.8

GBR 3.5 0.02 1.5

FL-DT 2 0.01 1.2

RF 3 0.02 1.7

CA (SWCMS) 8 0.06 3.5
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Water safety improvement (WSI) (Ahmed et al. 2022) quantifies the beneficence of the system in improving the safety of the

water that is used for drinking. This metric assesses the identification and management of possible threats to water quality;
attainment of lower risks associated with polluted water is hereby postulated in the system. The percentage increase in water
safety the system brings is determined by comparing the detection and prevention of water quality due to the system. This

improvement is usually assessed with specific reference to the way the system identifies and reacts to incidences of poor
water quality in the period before it was implemented and compares it to the period after it was implemented. The additional
percentage increase in water safety is derived from comparing the enhancement of the system to the first degree of protection

achieved.
A comparison of WSI accomplished by various methods is presented in Figure 2, with the initial safety level being 60%. The

proposed CA in SWCMS shows the highest improvement, improving water safety by 90%, and overall by 150%. This enor-
mous improvement supports the system’s ability to identify and contain pollution threats, thus projecting it as the most

efficient technique compared to the others that were compared in this research. The MCN–LSTM-based method also records
a very significant improvement of a remarkable 70% and gives an overall safety improvement of 116.67%, which shows its
effectiveness in terms of safety in processing extensive and intricate data on water quality. LSTM comes next with a 65%
Figure 2 | Analysis of WSI.
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improvement and a 108.33% overall safety enhancement. Such effectiveness proved the technology’s ability to perform tem-

poral data analysis. GBR reaches a 60% improvement, which is equal to 100% on the whole, which highlights the result of
high efficiency in the tasks of regression. In the case of getting the marked improvement from low accuracy, FL-DT, with the
lowest improvement of 55%, yields the highest accuracy of 91.67% overall increase demonstrated, which is not very high and

confirms the fact that the tool does not significantly affect water safety. RF provides a balanced performance with an enhance-
ment of 67%, and an overall improvement of 111.67% improvement was recorded, showing the efficacy of the model. To sum
up, all the methods are useful in enhancing water safety, but CA (SWCMS) is the most efficient one, pointing at the highest
increase in the index and providing the most substantial confidence in the quality management of water.

Consumer awareness enhancement (CAE) (Javanbakht-Sheikhahmad et al. 2024) assesses the extent to which the system
creates awareness among consumers about the quality of the drinking water they consume. This measure evaluates the extent
to which the system updates users on the present water situation and the danger of water-borne diseases thus allowing the

users to act accordingly.
The relation of CAE of each method is shown in Figure 3, where the initial awareness level is set to be 50%. Specifically for

SWCMS, the proposed CA shows the highest improvement by raising consumer awareness by 85%, which leads to 92.5%

overall enhancement. Such a significant rise epitomizes the efficiency of the system in averting water-borne diseases through
the supply of timely and accurate water quality information, thus enhancing consumer awareness. Hence, the MCN–LSTM
has achieved a 60% improvement, resulting in an 80% boost on the whole, proving the model’s efficiency in processing large

and intricate data and providing the necessary information to the users.
The percentage of increased improvement in the LSTM method is 55% higher and, therefore, makes a 77.5% overall

improvement, proving its prowess in dealing with sequential data and increasing the user’s level of knowledge. GBR gets
an improvement of 50%, which gives an overall improvement of 75%, showing the effectiveness of GBR in regression pro-

blems but with comparatively less change in consumers’ awareness. Thus, the improvement in the condition of FL-DT is
45% lower compared to other approaches and attains an overall awareness of 72.5%. This conclusion underlines that the
effect of Facebook advertising on the increase of consumers’ awareness is rather low. For RF, an impactful level of conver-

gence was displayed, with 58% improvement and 79% overall enhancement. In other words, all the methods help in
increasing consumer awareness, but CA (SWCMS) is the most effective one, providing a higher degree of enhancement
Figure 3 | Analysis of CAE.
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and guaranteeing a higher level of awareness and timely response to water quality concerns. With real-time monitoring of the

water, the SWCMS helps to prevent water-borne diseases and increase the safety of water by detecting problems as they
occur. In the cost-effectiveness model view, SWCMS may be costly initially and in operations because of the technology
and computation burdens necessary to support educational models at their most complex and accurate; however, these

costs are far outshadowed by gains. Due to its availability to bring timely alerts or shoot down the frequency of water-related
health hazards, the system has the edge over conventional water monitoring practices and is instrumental in containing
healthcare costs and improving public health outputs. With this, SWCMS offers more benefits and is cheaper than the current
working solution in the long run.

Thus, the rise in consumption awareness translates to:

• Increased awareness among consumers on water consumption matches the firm’s objectives.
• Spontaneous reactions to cases of water quality concerns have been reported.

• Strengthened health of the public due to increased knowledge and preventive actions.

The technical consequences of the CA at the level of the SWCMS architecture are dramatic because it assumes a complex

decisional model that is able to strengthen the reliability of water quality assessments. From this point of view, consistently
applying the lower-level models like CNNs for extracting spatial features and RNNs with LSTM for capturing temporal
dependencies and incorporating the RF for the feature selection, the system forms an exhaustive feature set. This feature

set passes through the higher-level models, such as the GBM and the SDAE, to improve the prediction and boost the inter-
activity within the dataset. Each of these higher-level models’ outputs accumulated creates realistic and robust forecasts.
These predictions are then reported and brought to consumers’ awareness in real time via a mobile application, thereby allow-
ing for timely prompt action. The CA approach guarantees that every layer utilizes the advantages of each model, thus

developing a strong and effective structure for assessing and perceiving the condition of drinking water, which will contribute
to the betterment of public health and safety. There are many predictions about the effectiveness of the proposed SWCMS,
especially in terms of scalability, as well as inter-linkage between urban and rural domains. In urban settings, the data proces-

sing of big volumes of real-time data makes it easier to monitor water quality in wide networks, hence creating public health
and safety. Despite the potential coverage gap in rural areas with regard to water quality information due to usage of the
SWCMS, concerned people can gain important and timely information to enhance water safety and awareness, with

increased comparability between rural and urban water management.
Therefore, the facilitation that comes with the SWCMS has far-reaching consequences on the health of the population and

security within the societies in question. Based on sophisticated sensor solutions and data analysis techniques, SWCMS
enhances the real-time, automatic evaluation of water quality, thus greatly enhancing water quality and consumers’ health.
Due to the timely nature of the alerts and detailed information, the consumers are in a position to make appropriate decisions
on water quality, hence avoiding incidences of water-borne illnesses. Furthermore, based on the findings of the proposed
study, the high performance of the CA within SWCMS proves the existence of higher accuracy, precision, and effectiveness

in implementing water quality management systems. In essence, consumers benefit from safer and improved quality of drink-
ing water through the use of SWCMS, which also promotes the health of the public through awareness of safe drinking water
and streaks off diseases associated with impure water.

However, the CA approach in SWCMS has some limitations, even though it has its advantages. Due to the highly complex
structure, as well as the incorporation of multiple models at different levels, there are likely to be higher computational
requirements, as well as higher time in training when compared with more simple models implemented at individual

levels, especially at socio-hydrology management (Javanbakht-Sheikhahmad et al. 2024). Also, the requirement of broad data-
sets to train the rich models efficiently may be problematic in data collection and computation. Table 7 depicts the significant
comparative discussion with existing systems based on the key comparative factors.

The training phase of the SWCMS, which uses CG, has a certain computational complexity and high memory consumption

because these models are multilayered. CNNs and LSTMs consume a large amount of computational resources while dealing
with spatial and temporal data in Layer 1, and the RF model also takes in terms of memory as it is a kind of ensemble of
decision trees. The intermediate fusion layer integrates outputs from these models, thus raising dimensionality and

memory requirements. In the higher level models such as GBM and SDAE, further improvements in the prediction are
made at the cost of time taken for the computation. Feature engineering methods, including spatial pattern analysis by the
CNN, temporal analysis by the LSTMs, and feature selection by the RF, are more important in improving the model
://iwaponline.com/hr/article-pdf/56/2/136/1535432/nh2025097.pdf



Table 7 | Comparison between the proposed SWCMS model and other WQM techniques

Comparative factors Limitations Performance Connectivity Sensor system Data processing Parameters monitored Core objective

SWCMS Computation cost Detection
accuracy .95%

Mobile
application for
real-time alerts

High-performance
real-time sensors

Mean imputation
and Z-score
normalization

pH, turbidity,
temperature, chemicals

Real-time WQM

Lakshmikantha et
al. (2021)

No clear data
collection protocol

NA NA Low-cost sensors Standardized data
analysis

NA SHM of pipes

Garrido-Momparler
& Peris (2022)

Dependence on
internet
connection

Low cost,
effective

Internet
connection
required

Sensors with Arduino
microcontroller

Cloud server
evaluation

pH, turbidity,
conductivity, temp

IoT-based WQM

El-Shafeiy et al.
(2023)

Power consumption,
price issues

High frequency
and accuracy

IoT infra and
cloud
computing

Smart sensors Cloud computing NA Smart sensor
connectivity

Syrmos et al. (2023) Computationally
intensive

Early, accurate
signals

Network of IoT-
based sensors

IoT-based sensors Deep learning
(MCN–LSTM)

NA Outlier detection
in water data

Chinnappan et al.
(2023)

Sensor calibration
and maintenance

Real-time
monitoring

LoRaWAN Flow meters, water
quality sensors

ML predictive
models

Consumption rates,
quality features

IoT architecture
for real-time
WQM

Shahra & Wu
(2023)

Data quality and
availability

Constant supply
of safe water

Cloud
connectivity

Sensors with
Raspberry Pi

FL-DT Chlorine level,
temperature, flow

Real-time chlorine
level checks

Rana et al. (2023) High computational
resources

Shortest
detection time,
wide coverage

NA NA EA NA Optimal sensor
placement

Jallow (2024),
Shams et al.
(2024)

High computational
complexity

High success
rates (MAE,
MSE)

NA NA ANN, LSTM Dissolved oxygen, temp,
conductivity, pH,
turbidity, TDS,
chlorides

Water quality
prediction and
monitoring

Ruiz-Moreno et al.
(2023)

Conceptual stage Conceptual stage Cloud-based Microscopic cameras,
bioluminescent
sensors

TensorFlow
Javascript

ATP, nitrate Assessing water
quality with ML
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performance as they determine which of the features to be used at the final prediction stage have been preprocessed. The

highly complicated relationships between the features were learned in the GBM to enhance the prediction accuracy,
while the SDAE focused on creating better representations of the features by removing noise, thereby leaving only the
most informative patterns for the final prediction.

5. CONCLUSION AND FUTURE RESEARCH

Some of the metrics used in assessing the SWCMS performance to the 95% detection accuracy include precision, recall, F1

score, training time, inference time per sample, memory usage, WSI, and CAE. Precision measures how correct positive pre-
dictions are in regard to the actual positive classification. Recall measures the precision of the model while identifying the
total number of positive cases, and the F1 score combines the measures of both precision and recall into a single value. Train-
ing time is the time of training the model efficiently, while inference time shows how faster the model is in terms of real-time

prediction. Memory usage shows how the system utilizes the system resources, while WSI and CAE quantify the enhance-
ment in water safety and consumer awareness that the system brings. Combined, these metrics build a solid and relatively
efficient system that envisages a high degree of detection accuracy and high overall effectiveness of the SWCMS.

In conclusion, the SWCMS, with its CA, improves WQM through the latest AI models, such as CNNs, LSTMs, RF, GBMs,
and SDAEs. Another benefit of the system is the real-time identification of problems in water quality, which consequently
raises water safety by 90% and consumer sensitivity by 92.5%. Even though training the CA model is costlier than training

the usual models, time-consuming, and requires more memory, CA can overcome these drawbacks with parallel processing,
fast hardware, optimized models, and data processing. The complex strategy of CA proves that the combination of single, dis-
tinctive models and time and space data provides more accurate and successful water quality evaluation. Through the

provision of timely alerts or detailed information to the consumers, the users of SWCMS are in a position to protect them-
selves, and thus, the welfare of society is boosted. Gradual implementation helps identify technical or operational issues that
may arise, hence avoiding massive failures. Additionally, updating and maintaining the ML models from time to time keeps
SWCMS equipped for water quality threats and brings optimum results in the long run. Due to this development, the system’s
effectiveness from a technical perspective, as well as its utility to stakeholders, makes it one of the models for dealing with
water quality.

The future developments of SWCMS are as follows: The SWCMS is planned to be enhanced by integrating concurrent com-

puting frameworks to manage large datasets more effectively and by adapting higher-grade computing hardware to accelerate
processing. Additionally, future developments will explore the use of methodologies like transfer learning and quantization to
further improve model accuracy while optimizing resource utilization. These advancements aim to ensure the system remains

scalable and efficient as it evolves. Further, improving model architectures using some of the methodologies, such as transfer
learning and quantization, could improve the accuracy while at the same time optimizing the utilization of resources.
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