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A B S T R A C T

Doctors diagnose various heart muscle disorders by continuously analyzing ELECTROCARDIOGRAM (ECG)
signals. Obtaining a noise-free ECG recording is difficult due to various types of interference, making an effective
filter essential for accurate diagnosis. This paper introduces a novel, low-complexity filter designed to enhance
ECG signal quality. The proposed method involves partitioning the implementation of the Recursive Least
Squares (RLS) adaptive filter between a Microblaze soft processor and hardware resources within a Field Pro-
grammable Gate Array (FPGA). The hardware component is responsible for creating a Finite Impulse Response
(FIR) filter, while the adaptive processing is handled by the soft processor. This configuration makes the filter
adaptable, allowing it to work with various algorithms for a wide range of applications. The co-design was tested
for ECG noise removal, achieving an average Signal-to-Noise Ratio (SNR) improvement of 89.78 %. Offloading
adaptive tasks to the soft processor reduced power consumption by 56.2 %, making it suitable for integration
with ECG sensors in wearable body networks.

1. Introduction

Cardiovascular diseases pose a serious threat to human health. The
World Heart Federation expects more than 23 million deaths annually
for cardiovascular patients by 2030, according to a report (World Heart
Federation, 2019) [1]. Given the rapid growth of aging in the world, the
diagnosis and treatment of cardiovascular diseases is a global necessity,
especially because most injuries occur in middle-aged and elderly people
[2–5]. An ELECTROCARDIOGRAM (ECG) is a diagnostic instrument for
various cardiac and blood disorders. Reading ECG signals provides
real-time heart rhythm analysis, heart rate variability, cardiac ischemia,
and the detection of respiratory abnormalities [6]. As shown in Fig. 1,
the ECG has different features (P, Q, R, S, T, and U) of varying intervals
(P-R, QRS, etc.) known to physicians to determine the heart’s health. It is
a low amplitude signal ranging from 0.5 mV to 5mV, with a frequency of
60 to 80 pulses susceptible to many types of noises [7].
Since the ECG signal has low amplitude/frequency waves, it is very

sensitive to noise, whether internal or external, high or low frequency.
Among the types of impacting noise are electromyography noise (EMG)
or muscle, artifacts (MA), and line wandering (BW) noise [8–12], etc.
Each type has characteristics that affect the diagnosis of the electro-
cardiogram, and the following are the most important types and their

features:

1.1. Power line interference (PLI)

PLI is a stationary interference caused by the capacitive and induc-
tive coupling of 50/60 Hz power lines in the ECG acquisition circuit
[14–16]. PLI lower frequencies are merged with the ECG signal. This
interference leads to the destruction of P-waves, which causes an
incorrect verdict of atrial arrhythmias such as fibrillation and atrial
hypertrophy [7].

1.2. Base line wandering (BLW)

It is a low-frequency artifact produced mainly by patient movement,
poor contact with electrodes, and changes in skin-electrode impedance.
Frequently, when measuring with a wearable ECG sensor while per-
forming exercises or in an ambulance. [17–18]. This baseline drift is as
high as around 15 % of the peak-to-peak ECG amplitude over the
0.15–0.3 Hz frequency range. These artifacts distort the ST segment as
well as other ECG low-frequency components. This ST-segment
misrepresentation may cause an incorrect diagnosis of Brugada syn-
drome, myocardial infarction, and many other related anomalies [16].
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1.3. Muscle artifacts (MA)

This type of electrical activity is generated in the muscles when one
of themmoves, especially those close to the head, such as the movement
of the neck or eyes, and when swallowing, as well as from the heartbeat
[7]. These activities, owing to muscle shrinkages, last for approximately
50ms between (0 and 10,000 Hz), with an amplitude of around 10 % of
the full-scale deflection [17]. This noise distorts the ECG waves because
it has a frequency of 0.01 to 100 Hz. They hinder the correct identifi-
cation of heart rate disorders, especially in wearable systems [18–20].
The design of wearable portable devices must consider the impact of
physical activities such as shifting between sitting and standing,
running, climbing stairs, etc., which present a major challenge to
achieving correct readings.

1.4. Channel noise

Sending ECG over a channel with poor conditions, such as Additive
white Gaussian noise (AWGN) or any other type, corrupts it.

1.5. Miscellaneous noises

It is a mixture of electrode motion artifacts EMA, MA, and BLW [7],
or a mixture of BLW, EMA, PLI, and MA [14,16]. In addition, any other
combination that leads to a change in the peak amplitude, duration, and
spectrum range causes a misdiagnosis of the ECG signal.

2. Literature review

Electrocardiogram contamination is an ongoing problem that affects
the results of its analysis. Deformation may occur at the following stages:
acquisition, processing, or transfer. In general, effective treatment of the
noise problem contributes to obtaining an accurate diagnosis from the
electrocardiogram. Many de-noising techniques are available in the
works of literature, one of them begins the threshold processing pro-
cedure, which is a common way of removing noises by exploring the
global and local signal characteristics [15,21–22]. Besides using wavelet
transform methods to reduce ECG noise by analyzing the signal, deter-
mining the threshold type, and reconstructing the signal [23–26].
Another category is based on deep learning strategies, which target
regenerating a pure ECG signal from a besmirched signal by optimizing
the objective function [27–30]. Another important ECG de-noising

category is using Bayesian filters to evaluate variations in the ECG dy-
namic model by adaptive filters [31–33]. A hybrid strategy is the last
category that combines the different procedures such as wavelet and
smoothing filter [34] and combines the multiresolution wavelet nature
with the adaptive learning capability of artificial neural networks [35].
Table 1 summarizes notable solutions written in the literature and em-
phasizes their main contributions.
From the literature, it is clear the importance of using RLS as the

most appropriate filter to cancel ECG noise, but the stumbling block is
the great computational complexity of the filter, as its implementation
requires (N2+5N+1) multiplier and (N2+3N) addition, in addition to the
division process. Overcoming this complexity is the most important goal
of this paper.
The main contribution of this paper is to propose a new design for an

RLS filter that is better for filtering the ECG signal while overcoming its
great complexity by partitioning its work between the FPGA compo-
nents. This enabled the design to work on removing various noises with
high accuracy. Giving the task of completing complex calculations to the
MicroBlaze processor without hardware building reduces the
complexity and consumption. The proposed design can easily work with
any other algorithm and for various applications.
The remainder of this manuscript is arranged as follows: Section 3

explains materials and methods using adaptive RLS equations and
techniques. Section 4 demonstrates the benefits of co-design, linking the
soft processor and the hard tools parts, and the software platform for
merging HW/SW. Experimental analysis is discussed in Section 5 with
an SNR of different noise types. Section 6 presents the conclusion and
suggestions.

3. Martial and methods

Requiring an accurate ECG is the main motivation for much of the
research. The ability to work in anonymous and varying environments
has made the adaptive filter an effective tool for heart signal filtration.
Continuously adaptive filters adjust their weights using the adaptive
algorithm for error minimization. In general, the least mean square
(LMS), Normalized LMS (NLMS), and Recursive Least Squares (RLS) are
the most standard sets of adaptive algorithms [36]. RLS procedure
provides the best results compared to LMS and NLMS algorithms with
superior convergence rate and shorn of any adjustment of its parameters
[37], but it needs high calculation and memory with increasing the
signal sampling rate and filter order. RLS is excellent for working in

Fig. 1. Anatomy of the cardiovascular system and ECG signal [13].
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non-stationary environments while ignoring the computational
complexity, especially when used for de-noising the ECG signal. The RLS
algorithm contains recursive updating of the ω(n) and the inverse
autocorrelation P(n) matrix. k(n) gain evaluation and the inverse auto-
correlation matrix P(n), are required to calculate the product as follows
[38]. The related equations of the RLS adaptive are as follows: -

ω(n) = [ω0(n) ω1(n) ω2(n) … ωN− 1(n)]T , (1)

x(n) = [x(n) x(n − 1) …x(n − N + 1)]T , (2)

y(n) = ωT(n − 1) x(n), (3)

e(n) = d(n) − y(n), (4)

k(n) =
λ− 1P(n − 1)x(n)

1+ λ− 1xT(n)P(n − 1)x(n)
, (5)

P(n) = λ− 1
{

P(n − 1) − k(n)xT(n)P(n − 1)
}
, (6)

ω(n) = ω(n − 1) + k(n) e(n), (7)

where ω(n) is the weight vector, N is the filter length, and x(n) represents
the input s. d(n) is the desired signal, e(n) demonstrates the output noise,
and the correlation matrix P(0) = δ− 1I where δ is a small positive con-
stant. In addition, λ denotes the forgetting factor (0<< λ ≤ 1) and λ ∈ (0,
1).
The RLS adaptive filter provides a better adaptive solution to remove

various noises from the ECG signals. Despite having better convergence

Table 1
Summary of the de-noising ECG in the reviewed articles

Ref. Procedure Result Tool/dataset Advantages Disadvantages

[6] Motion artifact, compared with:
(FIR1, Zero-phase IIR2, moving
average, moving median) filters,
wavelet, empirical mode
decomposition, and adaptive
filter.

Adaptive filtering has a better
SNR.

MATLAB software/ clean
ECG and with BLW noise
from the MIT-BIH

Recording the ECG and
impedance pneumography
signals by using special design
hardware.

Reducing motion artifact only.

[8] De-noising the left-arm ECG from
a wearable device using LMS,
RLS, and extended kernel RLS.

Maximal SNR, PLI removing
by utilizing RLS adaptive filter
(step size = 1×10− 5), named
(T-ECG).

MATLAB/ MIT-BIH Different noises with various step
sizes. T-ECG: available at https:
//github.com/rafa-coding-proj
ects/T-ECG

Not declare the tap length.
Taking step size only without
other RLS parameters.

[9] Proposed a 12-layer-1D-CNN to
classify five classes of heartbeat
with wavelet self-adaptive
threshold. The results were
compared with those of the BP
neural network, RF3, and other
CNN networks.

CNN performance Accuracy=
97.41%, Sensitivity= 97.05%,
Specificity= 99.35%, and the
positive prediction rate
=97.21%.

MATLAB DL4 Toolbox
trained on an Intel i5-7300
HQ PC, 16GB-RAM, and
TX1050 as GPU. /MIT-BIH
database

Classify five classes: [normal
(NOR), left bundle branch block
(LBBB), right bundle branch
block (RBBB), Atrial premature
beats (AP), and premature
ventricular beats (PVC)]. Data:
https: //physionet.org/content/
mitdb/1.0.0/

Anti-noise capability without
stating different ECG noise
types.

[11] Contributed to a determination
of adaptive threshold procedure
based on the 3σ5 standard.

Improve SNR of six synthetic
ECGs (Syn00-Syn05) with the
original SNRs of (-2, -5, 2, 5,
10) dB. Best performance with
the highest average SNR.

MATLAB 2016/MIT-BIH
database using 3-noise type
[BLW, EM, and MA contain
muscle artifacts].

Study different noises:
electromyogram noise (EMG),
baseline wandering (BW),
electrode contact noise (ECN),
white noise (WN), and hybrid
noise (HN).

An adaptive threshold
maintained the QRS
information and de-noised the
ECG diagram.

[15] Investigated a dual-tree CWT6

based on threshold tuning to
deliver de-noising ECG. Eight
threshold sets were tested to
obtain the best threshold
function.

The best results (80.72 SNR)
were obtained with a proposed
estimator with 23
minimization factors and a
normal distribution.

MATLAB R2016 Intel Corei5,
using 64bit OS/ MIT-BIH
arrhythmia V5 of 100
records, is derivative from
the Physio-ATM.

Different threshold processes
[Hard, Soft, Non-negative
garrote, Trimmed, Hyperbolic,
and Semi-soft]. Comparing
different distributions (Normal,
and Gaussian).

Removing only the baseline
wander noise.

[23] FPGA7 design for de-noising the
ECG signal to improve
ventricular late potentials (VLP)
detection based on WT8. Their
system has been realized on
Altera’s FPGA and confirmed on
the DE1-SoC9.

The probability density
functions of the vector
magnitude values in the
presence of delayed
ventricular potentials are
plotted in Fig. 6 of [23].

MATLAB and Quartus-II 14.1
software

Hard threshold on the 3-detail
levels, and four levels are added.
FPGA hardware realization.
State the IIR and FIR filter
coefficients. Comparing MATLAB
values with the simulation
results.

Focused attention is paid to
the hardware implementation
without mentioning howmuch
noise is reduced, especially
since it is designed to operate
in real time.

[27] 6-filters [Median, Gaussian,
Moving Average,
Savitzky–Golay, Low-Pass
Butter, and Wavelet De-noising]
are compared with Custom
CNNs.
Presented three 1D-CCNN10

models: (Model-1, Model-2)
consisting of 5-CLs11, 5-max-
pooling layers, and 1-fully
connected layer. (Model-3)
consists of 4-CLs, 4-fully
connected layers, 3-max-pooling
layers, max-pooling, and dropout
alternating each other in the
models.

PSNR of 6-filters are [87.3,
86.5, 81.05, 80.5, 78.6, 56.9].
CCNN: Model-1 reached
accuracy= 93.03%,
sensitivity= 52.18%, and
specificity= 84.45%. For
Model-2 accuracy= 89.03%,
sensitivity= 47.92%, and
specificity= 95.88%. While.
Model-3 achieved accuracy=
89.56%, sensitivity= 47.48%,
and specificity= 87.20%.

Python (Scipy library),
Google collab with Tesla K80
GPU, CPU Intel, Xenon(R),
RAM 13 Gb/(MIT-BIH
Arrhythmia and Boston’s
Beth Israel Hospital). 80%
training, and 20% for testing.

The median filter has a higher
PSNR12.
CCNN architecture can help
doctors accurately diagnose
coronary artery illness.

Not studying different noise
types.
Small dataset, Filtering results
in PSNR and CCNN in different
parameters that cannot be
compared.

Note: FIR1: finite impulse response, IIR2:infinite impulse response, RF3: Random Forest, DL4: Deep Learning, σ5: Standard deviation of the intrinsic mode functions,
CWT6: Complex Wavelet Transform, FPGA7: Field Programmable Gate Array, WT8:wavelet transform, DE1-SoC9(Development and Evaluation board-System-on-Chip),
1D-CCNN10=one-dimension Complex Convolutional Neural Networks, CL11: Convolution Layers, PSNR12::Peak-Signal-to-Nise Ratio.
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and parameter tracking ability, the RLS algorithm requires expensive
computational resources and sometimes suffers from numerical stability
issues. Soft programming cooperation with hardware resources repre-
sents an essential solution to this problem; if the microprocessor is
programmed to perform an adaptive RLS task, then the simple FIR
components can achieve the RLS task without complexity. Their pa-
rameters are updated depending on the output calculations of the
microprocessor. The main contribution of this paper is to propose a
collaboration between hardware and software to accomplish the adap-
tive RLS task, which is challenging when built with hardware only.

4. The proposed RLS co-design

Currently, FPGA vendors use System-on-chip (SoC) devices that
involve one or more soft/hard processors and an FPGA printed on a
single circuit for designing more complex systems. Virtex 5 FPGA is one
of the gate arrays of the Xilinx family [39]. Xilinx ML506 evaluation

platform contains a Microblaze™ soft embedded processor, which is a
32-bit reduced instruction set computer (RISC) [40–42]. It was con-
structed with Harvard architecture which isolates data storage memory
and instruction memory as shown in Fig. 2. Collaboration between
software engineers and hardware designers (co-design), has revolu-
tionized many aspects of traditional FPGA hardware, by making it freer.
This flexibility is also important for devices adopting any form of
development as well as facilitating hardware design through collabo-
ration between all FPGA components.
The proposed Co-RLS design partitioned the conventional RLS be-

tween FIR constructed by the hardware components and embedded soft
processor which also are contained in the FPGA platform. Instead of
designing an RLS denoising system using FPGA hardware and its great
complexity, the adaptation task is assigned to the soft processor which
simplifies the co-RLS hardware architecture and makes the collection of
FIR with adaptive processer as conventional RLS. The adaptation task is
assigned to the soft processor, which calculates each P(n), and K(n) as

Fig. 2. Internal schematic diagram of a Microblaze™ Xilinx soft processor with signals interfaces and busses indicated [42].

Fig. 3. Architecture of the proposed Co-design RLS Filter (hardware FIR filter and adaptation with Microblaze soft processor).
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shown in Fig. 3.
The features of Microblaze™ soft core comprise 32-bit (general-

purpose registers, instruction mode with two operands and three
addressing styles), and a 32-bit address bus with a single pipeline.
Adding Microblaze™ that is parameterized to permit selective enable-
ment of add-ons. It can be configured using multiple buses such as the
32-PLB interface, or the LMB protocol synchronizes efficient Block-RAM
transfers, while FSL provides fast, loose-flow communication, and XCL
provides fast, controlled flow between memory controllers. External

interface and cache, in addition to debugging internal interface used
with the core of the microprocessor debugging unit (MDM) with the
ability to track the interface for analysis [43]. FPGA manufacturers have
sought to get the most out of their products by giving designers greater
flexibility to achieve broader, more inclusive designs by including these
gates with software wizards. Xilinx has created a Platform Builder
Wizard (BSB) to create an embedded FPGA processor effectively, select
types of memory, and control peripherals. Instructions size and type of
data cache, optimization levels, the clock frequency of the processor and

Fig. 4. Schematic diagram of the proposed co-design of an RLS filter sharing both hardware and programming (Microblaze Soft Processor) with an indication of
interconnection with peripheral devices on the Virtex platform.
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local memory size are manipulated through GUI. The proposed RLS
adaptive algorithm was written in C language on a MicroblazeTM soft
processor according to the following steps:

1. Reading input samples and required signals from the file and storing
them in SDRAM.

2. Determines filter output (by feeding the input samples with weights
to the FIR filter) and then reads the output.

3. The affinity of the output samples is tested.
4. Computing k(n) and P(n) in the MicroBlaze soft processor.
5. Calculates the error if its value is at the minimum level or within the
expected range (convergence), then there is no need to update the
weights. Otherwise, return to step 2.

6. Finally, the XPS synthesis summary and the block diagram are
created using the XPS via its GUI. Fig. 4 demonstrates the proposed
Hardware/Software (HW/SW) system.

5. Result and discussion

Evaluation of the proposed HW/SW RLS architecture was tested on
several noisy ECG signals from the MIT_BIH arrhythmia database
available in (Moody and Mark, 2005) [44] and (MITBIH, 2022) [45].
Which includes 48 ECG recordings for half an hour at a 360 Hz sampling
rate. Three types of noise added to each record in the database were
done using MATLAB R2019 software and implemented on an Intel (R)
Core i5-11th processor with a 64-bit operating system. Figs. 5, 6, and 7
show the resulting waves.
The proposed HW/SW filter was tested on diverse annals of MIT_BIH

arrhythmia. The results illustrate the remarkable increase in the SNR by
applying the proposed filter with three ECG noise types as shown in
Figs. 8, 9, and 10 utilizing eight RLS taps. The average signal-to-noise

(SNR) improvement of all recorders (100-150) is 89.78%. Filter tabs
can be easily increased to any value using a system generator program,
which raises the SNR, and the adaptation is simply done through the soft
processor. Utilizing a floating-point instruction set in the assembly
programming of MicroblazeTM increases the accuracy of adapting filter
weights. The proposed collaboration of constructing RLS design excels in
many aspects, the most important of which is its low consumption and
the possibility of including it with heart signal sensors as is summarized
in Table 2. Xilinx Power Analyzer tool was used to estimate the power
consumed by conventional RSL (FPGA devices only) and the proposed
Co-RLS design that uses a Microblaze processor to see how much it be
reduced.
For 8-taps RLS adaptive filter the traditional RLS form needed (105)

multiplier and (88) addition, with one division process. Giving the task
of adaptation to the MicroBlazeTM soft-processor reduces the complexity
to FIR filter, that having eight multiplications and seven respectively.
Which allowed to reduce the power consumed by a percentage 56.2 %
for embedding with an ECG sensors.

6. Conclusion

In this paper, co-operation between hardware and software was
implemented on Virtex-5. So, the software part can be easily changed to
any other adaptive algorithm. Using the MicroblazeTM software pro-
cessor in the FPGA eliminated the complexity of the RLS filter, making it
extremely flexible even in terms of its length. Experimented results on
the MIT-BIH arrhythmia database have a 67.37, 59.29, and 58.22dB
SNR for 8-tap filter length and 69.37, 63.38, and 62.68dB when
increasing filter length to 10-tap for nosing ECG by power line inter-
ference, baseline wandering, and mixing them in the third one. The low
power consumption of the soft processor makes the proposed filter

Fig. 5. Proposed de-noising results (a) ECG corrupted by Power line (b) clean ECG signal and (c) Error signal (8-taps for the FIR filter, λ=0.98 and δ=0.05).
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Fig. 6. Proposed de-noising results (a) ECG corrupted by Baseline wander (b) clean ECG signal and (c) Error signal (8 taps for the FIR filter, λ=0.98 and δ=0.05).
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suitable to embed within ECG sensors for cleaning heart signals in real
time.
Electroencephalogram (EEG) also has the same noise types so; the

proposed work can be embedded with the EEG sensor for accurately
measuring health signals in real-time in an IoT environment with lower
power consumption. The proposed co-operation in constructing the fil-
ter reduces the computational complexity of the filter and makes it
compatible for use in human body network sensors to measure vital

parameters with high accuracy and longer life due to its low
consumption.

Ethical approval

The research does not contain any experiments on living vertebrates
or invertebrates. Not contain human participants or animals.

Fig. 7. Proposed de-noising results (a) ECG corrupted by Baseline wander and power line(b) clean ECG signal and (c) Error signal (8 taps for the FIR filter, λ=0.98
and δ=0.05).

Fig. 8. SNR comparison before and after de-nosing the ECG signal from power line interference using the proposed Co-RLS design.
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Fig. 9. SNR comparison before and after de-nosing the ECG signal from baseline wandering noise using the proposed Co-RLS design.

Fig. 10. SNR comparison before and after de-nosing the ECG signal from a power line with baseline wandering noise using the proposed Co-RLS design.

Table 2
Summarized Co-RLS design with recent de-nosing works.

Ref. Dataset Method SNR dB Real-System Power

PLI BLW MA AV

[6] MIT-BIH RLS NA 19.9 Simulation
only

NA
[8] MIT-BIH LMS 9.47 9.47 9.32 ​ NA
[10] not mentioned NN 30.43 10.7 NA
[21] (101, 105, 117, 119, 121, 215, 223, and 230) of the MIT-BIH Wavelet 62.6 NA ​ NA
[26] 4-ECG:MIT-BIH Normal Sinus Rhythm (Goldberger et al. 2003) and 4-ECG: MIT- BIH

Arrhythmia (Moody andark 2001; Goldberger et al. 2003)
GAMNVE 56.3 NA ​ ​

[30] 75 records with reference annotations of fetal QRS DCNN NA 15 NA
[32] MIT-BIH Arrhythmia FIR MSE:0.0501 ​ Spartan-3E RP
[34] MIT-BIH Arrhythmia WESBSF 16.1 NA 10.8 ​ Simulation NA
[46] MIT-BIH Arrhythmia DANet NA 24.3 27.6 12.5 Simulation NA
Popsoed (100,101,...,150) MIT-BIH Arrhythmia Co-RLS 63.4 63.38 62.7 23.5 Virtex-5 RP

56.2%

Note AV: Average Improving, NA: is Not Available, NN: Neural Network, GAMNVE: Genetic Algorithm Minimization of a new Noise Variation Estimate DCNN: Deep
Convolutional Neural Networks, RP: Reduce Power, MSE: Mean Square Error, WESBSF: Wavelet Energy and Sub-Band Smoothing Filter.
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[33] S. Särkkä, Bayesian Filtering and smoothing, Cambridge University Press, 2014,
https://doi.org/10.1017/CBO9781139344203.

[34] D. Zhang, S. Wang, F. Li, J. Wang, A.K. Sangaiah, V.S. Sheng, X. Ding, An ECG
signal de-noising approach based on wavelet energy and sub-band smoothing filter,
Appl. Sci. 9 (2019) 4968, https://doi.org/10.3390/app9224968.

[35] S. Poungponsri, X. Yu, Electrocardiogram (ECG) signal modeling and noise
reduction using wavelet neural networks, in: Proceedings of the IEEE International
Conference on Automation and Logistics Shenyang, China, 2009, https://doi.org/
10.1109/ICAL.2009.5262892.

[36] L. Dogariu, C. Stanciu, C. Elisei-Iliescu, C. Paleologu, J. Benesty, S. Ciochin, Tensor-
based adaptive filtering algorithms, Symmetry. (Basel) 13 (481) (2021) 27,
https://doi.org/10.3390/sym130.30481.

[37] Z.A. Khan, T. Hussain, U. Zabit, M. Usman, E. Ayguade, PH-RLS: a parallel hybrid
recursive least square algorithm for self-mixing interferometric laser sensor, IET
Optoelectronics (1–9) (2021), https://doi.org/10.1049/ote2.12021.

[38] P. Rakesh, T.K. Kumar, A novel RLS based adaptive filtering method for speech
enhancement, World Acad. Sci., Eng. Technol. Int. J. Electr. Commun. Eng. 9 (2)
(2015) 176–181, https://doi.org/10.5281/zenodo.1099384.

[39] Virtex–5 FPGA User Guide, UG190 (v5.4), 2012. http://www.gstitt.ece.ufl.edu/co
urses/fall12/eel4720_5721/reading/v5userguide.pdf.

[40] ML505/ML506/ML507 Getting Started Tutorial For ML505/ML506/ML507
Evaluation Platforms, UG348, (v3.0.2) 2008. http://www.bdtic.com/download/
XILINX/ug348.pdf.

[41] Embedded Processor Block in Virtex-5 FPGAs Reference Guide UG200 (v1.8) 2010.
https://docs.xilinx.com/v/u/en-US/ug200.

[42] MicroBlaze Processor Reference Guide 3 UG984 (v2021.2), 396, 2021. https
://www.xilinx.com/content/dam/xilinx/suport/documents/sw_manuals/xilin
x2021_2/ug984-vivado-microblaze-ref.pdf.

[43] V.A. Akpan, Hard and soft embedded FPGA processor systems design: design
considerations and performance comparisons, Int. J. Eng. Technol. 3 (11) (2013).
https://www.researchgate.net/.

[44] https://physionet.org/content/mitdb/1.0.0/.
[45] http://www.medteq.info/ECG_Data/MITBIH.zip.
[46] H. Lin, R. Liu, Z. Liu, ECG signal denoising method based on disentangled

autoencoder, Electronics. (Basel) 12 (2023) 1606, https://doi.org/10.3390/
electronics12071606.

A.F. Mahmood et al. Results in Engineering 24 (2024) 103563 

10 

https://doi.org/10.1186/s12889-020-09747-6
https://pubmed.ncbi.nlm.nih.gov/346114427/
https://doi.org/10.1002/ejhf.1858
https://doi.org/10.1016/i.jelectrocard.2014.022
https://amj.amegroups.com/article/view/5475/htlml
https://amj.amegroups.com/article/view/5475/htlml
https://pubmed.ncbi.nlm.nih.gov/32155984/
https://pubmed.ncbi.nlm.nih.gov/32155984/
https://doi.org/10.1049/iet-spr.2020.0104
https://www.mdpi.com/2079-9292/9/5/866
https://www.mdpi.com/2079-9292/9/5/866
https://doi.org/10.3389/fncom.2020.564015
https://ejmcm.com/article_3136_4bd12a4487b4eb3d4e2a374b5dac3f88.pdf
https://ejmcm.com/article_3136_4bd12a4487b4eb3d4e2a374b5dac3f88.pdf
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235330
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235330
https://turcomat.org/index.php/turkbilmat/article/view/2033
https://turcomat.org/index.php/turkbilmat/article/view/2033
http://samples.jblearning.com/9781284175073/9781284175073_Boling_CH02_SECURE.pdf
http://samples.jblearning.com/9781284175073/9781284175073_Boling_CH02_SECURE.pdf
http://refhub.elsevier.com/S2590-1230(24)01806-1/sbref0014
http://refhub.elsevier.com/S2590-1230(24)01806-1/sbref0014
https://doi.org/10.1177/0142331219895708
https://doi.org/10.3390/s20 216318
https://doi.org/10.3390/s20 216318
https://doi.org/10.1109/CSNT.2013.22
https://doi.org/10.1155/2019/2608547
https://doi.org/10.1155/2019/2608547
https://doi.org/10.3390/s22051941
https://doi.org/10.3390/s22010104
https://doi.org/10.3390/s22010104
https://doi.org/10.1007/s42600-020-00075-7
https://doi.org/10.1007/s42600-020-00075-7
https://doi.org/10.1155/2020/8811962
https://doi.org/10.1504/IJMEI.2020.106898
https://doi.org/10.1016/j.bspc.2021.103478
https://doi.org/10.1016/j.bspc.2021.103275
https://doi.org/10.1007/s42600-019-00033-y
https://doi.org/10.1007/s42600-019-00033-y
https://doi.org/10.1561/116.00000123
https://doi.org/10.1561/116.00000123
https://doi.org/10.7717/peerj-cs.825
https://doi.org/10.1016/j.neucom.2019.04.044
https://doi.org/10.3389/fpe d.2020.00508
https://doi.org/10.3389/fpe d.2020.00508
https://doi.org/10.1016/j.rineng.2024.102678
https://doi.org/10.1016/j.protcy.2016.08.137
https://doi.org/10.1017/CBO9781139344203
https://doi.org/10.3390/app9224968
https://doi.org/10.1109/ICAL.2009.5262892
https://doi.org/10.1109/ICAL.2009.5262892
https://doi.org/10.3390/sym130.30481
https://doi.org/10.1049/ote2.12021
https://doi.org/10.5281/zenodo.1099384
http://www.gstitt.ece.ufl.edu/courses/fall12/eel4720_5721/reading/v5userguide.pdf
http://www.gstitt.ece.ufl.edu/courses/fall12/eel4720_5721/reading/v5userguide.pdf
http://www.bdtic.com/download/XILINX/ug348.pdf
http://www.bdtic.com/download/XILINX/ug348.pdf
https://docs.xilinx.com/v/u/en-US/ug200
https://www.xilinx.com/content/dam/xilinx/suport/documents/sw_manuals/xilinx2021_2/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/content/dam/xilinx/suport/documents/sw_manuals/xilinx2021_2/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/content/dam/xilinx/suport/documents/sw_manuals/xilinx2021_2/ug984-vivado-microblaze-ref.pdf
https://www.researchgate.net/
https://physionet.org/content/mitdb/1.0.0/
http://www.medteq.info/ECG_Data/MITBIH.zip
https://doi.org/10.3390/electronics12071606
https://doi.org/10.3390/electronics12071606

	RLS adaptive filter co-design for de-noising ECG signal
	1 Introduction
	1.1 Power line interference (PLI)
	1.2 Base line wandering (BLW)
	1.3 Muscle artifacts (MA)
	1.4 Channel noise
	1.5 Miscellaneous noises

	2 Literature review
	3 Martial and methods
	4 The proposed RLS co-design
	5 Result and discussion
	6 Conclusion
	Ethical approval
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability statements
	datalink6
	References


