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Highlights 

• Cheaper levulinic acid from lignocelluloses requires full by-products valorisation. 

• Nature of solid by-products depend on feedstock composition and catalytic variables. 

• Heterogeneous/homogeneous catalyst synergies are positively correlated. 

• Solid residues from acid hydrolysis of lignocellulose are the largest by-product. 

• Hydrochar use as promoter of anaerobic digestion is a novel valorisation route. 
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Abstract 

In recent years, integrated biorefineries have received growing interest as to maximise the 

extractable value from biomass in the form of green platform chemicals in order to support the 

establishment of a low carbon economy. Research and development in this area has focused on 

the conversion of lignocellulosic biomass, regarded as second-generation feedstocks, into a 

multitude of biochemicals from numerous different plant-based feedstocks with a wide range 

of catalytic systems, particularly the production of levulinic acid. This work critically reviews 

the most significant and pertinent literature of the methods and challenges of second-generation 

feedstock for levulinic acid production, identifying heterogeneous/homogeneous catalyst 

synergies can improve yields between 28-58% depending on mineral catalyst promoter used. 

In addition, areas of particular focus of this review regards solid residues potential applications 

in a circular biorefinery context, revealing the novel role of hydrochar as booster additive in 

anaerobic digestion, which results in increased methane yields and, potentially, better soil 

amending digestate. The review also highlights the gaps in knowledge and synthesise new 
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concepts to bridge these gaps in research, most pertinently applied to the solid residue 

formation and properties, with key links between multiple fields defined for the first time. 

Keywords: Levulinic Acid; Value Added Chemicals; Lignocellulosic feedstock; Biorefinery; 

Catalysis; Solid residues. 

Abbreviations: anaerobic digestion (AD); 2,5-dioxo-6-hydroxyhexanal (DHH); gamma-

valerolactone (GVL); hydrothermal carbonisation (HTC); Higher Heating Values (HHV); 5-

hydroxymethylfurfural (5-HMF); Klason-lignin (KL); microvawe (MW); plug-flow reactors 

(PFR). 

 

 

 
 

1. Introduction 
 
The global transition towards a low-carbon economy has driven a in growing interest in low-

carbon green chemicals [1]. Lignocellulosic biomass can be converted into a range of both bulk 

and fine chemicals, carbon emissions partially negated by the use of carbon-neutral biomass 

feedstocks [2]. Due to the complexity of biomass composition focus has been on the 

development of platform chemicals, such as levulinic acid and furfural, that can be utilised in 

the production of fuels, herbicides and solvents among other high value applications, as shown 

in Figure 1 [3]. For example, hydrogenation of levulinic acid to valeric acid (pentatonic acid) 

and subsequent esterification to valerate esters will yield petrol and diesel-grade compounds 

[4], as shown in Figure 2. Levulinic acid can also be oxidised to succinic acid [5], which is a 

complementary C4 platform chemical [6]. It can be hydrogenated to gamma-valerolactone 

(GVL), a useful solvent and polymer precursor [7], or undergo amination to form the herbicide 

amino-levulinic acid, among other applications. Similarly furfural, commonly produced during 

levulinic acid synthesis has shown a diverse range of applications including polymers, resins 

fuels and solvents [8–10]. The development of these applications of levulinic acid as part of a 

green chemical sector requires the efficient low-cost production of the platform chemical itself. 

Levulinic acid production from lignocellulose is therefore imperative.  
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Figure 1: Levulinic acid as a platform chemical for multiple applications 

Levulinic acid can be synthesised directly from the lignocellulosic materials, in conjunction 

with furfural and formic acid, with minimal biomass pre-treatment using “one-pot” or 

sequential acid catalysis [11–14]. Acid-catalysed hydrolysis employs relatively mild 

temperatures (120-250 ⁰C) to selectively hydrolyse β-1-4-glycosidic bonds in cellulose, while 

simultaneously catalysing the dehydration and conversion of the resulting monomeric sugars 

to high value chemicals [15]. The combination of low temperature and catalysts reduces the 

quantity of side products reducing the difficulty of separation and producing higher value 

platform chemicals. The application of acid catalysts can selectively transform two of the 

largest lignocellulosic fractions, cellulose and hemicellulose, directly towards multiple 

platform chemicals offering a greatly simplified process with comparable methods. This can 

be further improved using heterogenous acid catalysts that very much reduce catalyst 

separation costs compared with homogenous ones such as HCl and H2SO4 [16]. Solid acid 

catalysts include metal oxides, modified metals, zeolites, acidic polymers, and metal oxide 

frameworks [17–19]. Despite solid acid catalysts achieving comparable yields for the 

conversion of sugars to levulinic to mineral acids, difficulties have been found with cellulose 

and biomass, due to reduced solid-solid interactions and catalyst deactivation [20]. As such, 

mineral acid catalysis is among the most developed lignocellulose conversion methods with 

several pilot and demonstration plants in Italy, Minnesota (USA) and the Netherlands, for the 

production of platform chemicals including furfural, 5-hydroxymethylfurfural (5-HMF) and 

levulinic acid [21].  
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The further development of commercial levulinic acid using acid catalysts has proven more 

troublesome in recent years, despite the ever-growing attention it has received. Several studies 

have modelled various levulinic acid production processes from lignocellulose, which 

highlighted several issues limiting full commercialisation [22–24]. Most notably, the low 

weight yields of levulinic acid (10-25 wt.%) require either higher selling prices or the complete 

valorisation of the biomass by-products [25]. For example, typical acid hydrolysis processes 

can yield 5-10 wt.% of both furfural and formic acid from biomass, requiring furfural valorised 

for the production of solvents, polymers and fuel additives [26,27] [28–31], while formic acid 

is extensively used as a commodity chemical in multiple industries with multiple applications. 

Valorisation of by-products is thus seen as essential for lowering the cost of levulinic acid 

production, with significant attention placed on the two aforementioned by-products. Large 

quantities of quantities of currently low-value aqueous and solid waste products are produced 

as both degradation products and unreactive lignocellulose fractions [32]. Amongst these, the 

solid residue is the largest fraction accounting for 30-60 wt.% of the starting biomass and is 

most-frequently utilised for energy recovery as a post-reaction solid fuel [33]. This represents 

a key element to be valorised appropriately (higher value) for modern, self-sustaining 

biorefineries. The process operating conditions have a significant effect on the formation of 

solid by-products, most notably humins from the dehydration of sugars through aldol 

condensation [34,35]. The formation mechanism of humin by-products via aldol-condensation 

of 5-HMF has been elucidated in great detail by literature and it can include lignin and protein 

fractions [33,36–39]. The valorisation of humin-rich solid residue has proven a difficult 

challenge for biorefinery design [25]. In fact, high value applications have included utilisation 

as a building material, pyrolysis feedstock and anaerobic digestion supplement [40–44]. As 

such, the minimisation of solid residue and other by-product yields is commercially 

advantageous via process optimisation, advanced separation, and novel catalysis solvents [45–

48]. However, the by-product yields have been found to depend on the nature of the biomass 

feedstock utilised for acid hydrolysis as well as the different operating conditions [49]. The 

effects of biomass composition thus not only affect the by-product (in yield and type), but also 

the levulinic acid yield. There are no extensive reviews investigating this link in great details. 

Accordingly, this study focused on the conversion of lignocellulosic biomass towards levulinic 

acid with specific consideration on the effects of all biomass fractions on the overall process 

including by-product yields.   

2. Lignocellulosic Biomass Composition  
 

The abundant availability of lignocellulosic biomass across major global regions, manifests in 

a diverse scalable multi-source supply of up to 1.3 billion tons annually [50]. Lignocellulosic 

biomass by definition includes all feedstocks containing cellulose, hemicellulose and lignin as 

their primary components with, forestry residues, paper residues, agricultural by-products and 

dedicated energy crops [51].The variety in lignocellulosic biomass manifests itself in varying 

biomass composition in both regards to the largest constituents, namely structural 

polysaccharides, as shown in Table 1. The exact composition and local availability of each 

lignocellulosic feedstocks will vary significantly, however, the commonality of primary 

constituents, facilitates the transfer of processing methods from one feedstock to another [52–

54]. Therefore, the heterogeneous nature of lignocelluloses necessitates an investigation of all 

constituent fractions to understand the overall conversion process, the interaction between 

breakdown products and their impact on final levulinic acid yield.  
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Table 1 Examples of varying composition of the main structural components in 

lignocelluloses 

Lignocellulosic Biomass 
Cellulose / 

wt.% 
Hemicellulose / 

wt.% 

Total 
Lignin / 

wt.% Reference 

Rapeseed 30.5 18.7 15.1 [55] 

Corn Stalk 39.0 42.0 7.3 [56] 
Wheat Straw 38.2 30.0 15.7 [57] 
Rice Straw 40.4 18.1 26.0 [58] 
Miscanthus x Giganteus 38.3 24.7 18.0 [20] 
Poplar Wood 48.9 21.7 23.3 [59] 

 

2.1  Cellulose 

The largest single constituent of lignocellulosic biomass is cellulose, accounting for up to 50% 

of the dry weight and it is considered the primary target of lignocellulosic conversion to 

platform chemicals or biofuels. Cellulose is composed of 15-20 nm wide microfibrils that 

contain β-1-4-glycosidic bonds linked glucose units that form the plant cell wall [60]. The 

arrangement of the cellulose microfibrils provides structural strength to the cell wall and plant, 

by utilising a rigid crystalline structure that causes significant intramolecular hydrogen bonding 

networks [61]. The crystalline structure is recalcitrant and insoluble under normal conditions, 

however the linking glycosidic bonds are susceptible to acidic and enzymatic hydrolysis, as 

well as ionic liquids. Transitionary zones of less organised cellulose chains (identified as 

amorphous cellulose), exist between crystalline cellulose microfibrils, as shown in Figure 2. 

Where the accessibility of cellulose and thus the β-1-4-glycosidic bonds have been shown to 

be directly proportional to the amorphous cellulose content [62]. Previous studies have shown 

that accurate conversion of cellulose requires the modelling of both amorphous and crystalline 

cellulose degradation. The crystalline – amorphous variation is often overlooked in cellulose 

valorisation and has been proposed as a source of lower than expected product yields.  
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Figure 2: Difference between crystalline and amorphous cellulose 

 

Particle size reduction pretreatment of lignocellulose has shown that dry ball-milling reduce 

cellulose crystallinity, which results in an increased rate of cellulose hydrolysis to glucose [63]. 

More recently, wet ball milling has been found to have reduced effects on crystallinity, due to 

recrystallization of cellulose during drying [64]. Wet milling has a well-known energy 

advantage over dry-milling processes that would make it a preferred and much more cost-

effective initial pre-treatment method [65].  

2.2  Hemicellulose 

Hemicellulose is the next largest component of lignocelluloses, characterised by an amorphous 

structure, as it is composed primarily of xylose, but also includes a variety of other sugars 

including galactose, glucose, mannose and arabinose, as well as acetic acid [66].  Its primary 

function in the cell wall is to bind cellulose to lignin and it is inherently amorphous with very 

few protecting groups to the linking glycosidic bonds. Hemicellulose plant content and sugar 

composition differ significantly between species, with switch grass showcasing values of 

nearly 30% compared with woods, which frequently contain less than 10% [67]. The primary 

constituent (xylose) is a five carbon (C5) sugar; hence, it differs from glucose (C6 sugar), and 

these undergo different reaction pathways during hydrolysis. Currently, the largest application 

of xylose is for the production of the platform chemical furfural. Xylose can be separated from 

lignocellulosic biomass via sequential hydrolysis or steam explosion [68]. Despite that, due to 

the relatively small abundance compared with cellulose, its valorisation is not prioritised in 

current biorefineries.  
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2.3 Lignin 

Finally, lignin is a three-dimensional polymer of phenylpropanoid units [53].  Its biological 

purpose is to provide stiffness and strength to the plant material, and is primarily composed of 

a non-repeating structure, primarily derived from p-coumaryl, coniferyl, and sinapyl alcohols 

[69]. Lignin is most commonly classified in two types by literature as Klason lignin (also known 

as acid insoluble lignin) and acid soluble lignin. Lignin can be liberated into is aromatic 

monomers using oxidative processes (including white fungi, alkaline, oxidation, fast pyrolysis 

and hydrogenolysis) [70–72]. These aromatic compounds are currently of great commercial 

interest for use in production of vanillin, biofuels and styrenes [73], but for the most part lignin 

is refractory to degradation under non-oxidative conditions [74,75]. Several other methods have 

been developed to increase lignin accessibility, including catalytic, ionic liquids and enzymatic 

processes [76–78]. During non-oxidative conditions [79], such as acid hydrolysis, the 

hydrothermal conditions can induce aromatisation and dehydration of lignin [80]. This is further 

discussed in Section 6.2.  

 

Acid soluble lignin is composed of short-chained hydrophilic phenolic compounds [81,82] and 

its content in lignocelluloses varies between 3-10% of plant dry matter. Acid soluble lignin has 

been observed to react with various sugar compounds under hydrothermal and acidic 

conditions to produce pseudo-lignin [83,84]. Pseudo-lignin is an aromatic material, which 

contributes to Klason lignin content but is not derived thereof. The individual reactions of acid 

soluble lignin under various operating conditions are not well understood, though they can be 

broadly described as condensation reactions forming insoluble materials akin to Klason lignin. 

 

2.4  Minor constituents 

Alongside these three constituents, there are a range of other simple sugars, proteins, pectin 

and oils as well a multitude of trace chemicals that make up to 20% of biomass. The quantity 

and composition of extractives from lignocelluloses varies significantly between feedstocks 

and processing conditions [85]. These other components can either be inert and/or reactive 

under different operating conditions. The removal of extractive aromatic compounds such as 

tannins has received significant attention using solvents such as water, ethanol and deep euletic 

solvents, as well as via dilute acid or alkaline hydrolysis [86]. However, selective extraction 

processes have demonstrated low selectivity with high sugar losses [87,88]. Other extractives 

such as proteins are mostly insoluble though have demonstrated flocculation properties [89] , 

while uronic acid composed pectins are effectively insoluble under non-alkaline conditions 

[90]. Determining the relative reactivity of the extractive fraction is possible through 

experimental methods only; which is one of the reasons why a multitude of feedstocks must be 

trialled.  

3.  Polysaccharide fractionation pre-treatments 
 

Given the complexity and insolubility of the polysaccharide matrix, it is beneficial to degrade 

the long-chained polymers into individual monomers before further valorisation. This includes 

the hydrolysis of cellulose and hemicellulose to primarily glucose and xylose respectively, in 

addition to feedstock-dependent trace quantities of mannose, galactose, arabinose and 

rhamnose sugars [70]. The polysaccharide hydrolysis can be achieved through several 

processing conditions most importantly, but not limited to, hydrothermal hydrolysis, acid 
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hydrolysis, solvatic processes (such as organosolv, deep euletic solvents, and ionic liquids) and 

microwave assisted heating systems [91–95].  

 

Under hydrothermal conditions the hydrolysis of polysaccharides towards simple sugars can 

be achieved using processing methods such hot water extraction and steam explosion [96–98]

. The advantages of hydrothermal processes are the reduction in the catalyst consumption and 

cost, with no requirements to remove corrosive acids. However, specific hydrothermal 

hydrolysis processes such as steam explosion and sub-critical water extraction have been found 

to not fully hydrolyse sugar-based polymers, though they do not produce significant by-

products from hydrothermal decomposition such as levoglucosan, furfural and glycolaldehyde 

[99]. Another disadvantage is that hydrothermal hydrolysis produces significant quantities of 

oligosaccharides that have lower conversion yields to that of monomeric sugars, further 

reducing levulinic acid yields [102,103]. Acid catalysed hydrolysis can selectively hydrolyse 

β-1-4-glycosidic bonds between repeating sugars at moderate temperatures (120-250 °C) with 

mineral and organic acids such as hydrochloric, sulphuric, formic and oxalic acid [69]. In the 

last 20 years, the acid hydrolysis of large variety of materials including crystalline cellulose, 

bagasse, wood, energy crops, grasses and agricultural wastes, has been extensively investigated 

for the production of monomeric sugars [67,104–106].  Alternative non-aqueous solvents with 

ionic properties such as ionic liquids and deep euletic solvents can hydrolyse by disrupting the 

polysaccharide structures [115]. Ionic liquids have been described as “designer solvents” that 

can be further tailored for specific applications including the catalysis of sugars to levulinic 

acid [118]. However, ionic liquids are currently expensive for commercial uses and can easily 

precipitate with ash impurities in lignocellulosic feedstocks [119,120]. Recent works have 

sought to reduce ionic liquid costs by utilising inorganic anions combined with organic cations 

[115], though work is ongoing. In recent years the use of microwave heating has been actively 

investigated as an alternative to conventional thermal conduction/convection heating for 

biomass processing. Despite the benefits of microwave heating, its wide scale commercial 

adoption has been limited. Previously, its use has been constrained by high electricity costs, 

high capital costs and low scalability [136]. More recent developments however have sought 

to reduce these costs by adopting modular microwave approaches that increase scalability and 

reduce capital costs via process intensification.  While the price of electricity will remain 

comparatively higher than fossil fuel derived low pressure steam, the development of low-

carbon electricity grids can potentially significantly reduce the carbon impact of process 

heating [137]. The electrification of industrial processes is considered a key challenge in 

meeting carbon reduction emissions and the use of microwave heating would help meet these 

goals [138].  

4. Acid catalysis of sugars 
 

4.1 Homogeneous catalysis   

 

The acid catalysed conversion of sugars can be combined with the polysaccharide hydrolysis, 

resulting a “one-pot” process for the direct production of biochemicals from lignocellulosic 

biomass. Using Brønsted and Lewis acid properties, cellulose can be hydrolysed to glucose, as 

previously discussed, before transformation into levulinic acid, following the paths shown in 

Figure 3 [34]. Lewis acids can readily isomerise glucose to fructose, in which the pyranose 

structure is converted to furanose fructose, which is known to be more unstable [96]. Fructose 

can then undergo the Bronsted acid catalysed triple dehydration to form the intermediate, and 

highly reactive, 5-HMF [97].  The subsequent double rehydration of 5-HMF produces a 
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stoichiometric equal mixture of levulinic and formic acid. Formic acid is a versatile 

biochemical that can be utilised in a multitude of processes in a biorefinery context [31]. [98] 

 

 
Figure 3: Production of levulinic acid from cellulose with intermediate glucose, fructose and 

5-HMF 

 

Homogenous catalysts such as mineral acids, metal salts and organic acids have been used for 

the conversion of sugars, cellulose and real lignocellulosic biomass, as shown in Table 2. 

Levulinic yields have varied from 30 to 80%, from a variety of feedstocks and reaction 

conditions. In 2006, Girisuta et al. [99] utilised H2SO4 (0.05-1.0 M) to achieve levulinic acid 

yields exceeding 80% using glucose as a feedstock at 140 °C. The accompanying kinetic model 

identified that the lower operating temperatures (towards 140 °C) improved the selectivity of 

glucose towards levulinic acid over side reactions. While higher operating temperatures around 

200 °C is required for selective cellulose hydrolysis. The difference in optimum operating 

temperature between cellulose hydrolysis and levulinic acid synthesis can complicate 

optimisation of lignocellulose conversion.  This limitation is not an issue for the conversion of 

simple sugars such as glucose and fructose, leading to yields of over 70% with catalyst HCl, 

H2SO4 and AlCl3.  Several studies report that fructose is nearly 100 times more reactive than 

glucose [100,101] and that metal ions, such as Al3+, Sn2+ and Cr3+, can greatly improve the 

isomerisation of the glucose to fructose [102]. However, levulinic acid yields from sugars are 

limited by the formation of by-products, which reduce molar yields to below 80%. 
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Table 2: Summary of levulinic acid yields from a range of feedstocks with homogenous catalysts 

Catalyst Substrate 

Substrate 

Loading 

(w/w%) 

Temperature 

(°C) 

Reaction 

time  

(Hours) Other 

Yield  

(mol. %) 

Referenc

e 

2M H2SO4 Fructose 5 170 8  69 [103] 

30 w/w% NaCl Fructose 10 110 24  75 [104] 

0.1 M HCl Glucose 10 160 4  51 [105] 

0.5 M H2SO4 Glucose 0.18 140 8  80 [99] 

SnCl4 Glucose 1.90 190 1.5  45 [106] 

0.01M AlCl3 Glucose 2 180 2  71 [107] 

1M H2SO4 Cellulose 1.70 150 -  76 [34] 

0.75M HCl Cellulose 2 155 1.6 
GVL*/H2O 

Solvent 
71 [108] 

1.37 M HCl Cellulose 1 200 0.05 MW 43 [11] 

0.01M AlCl3 Cellulose 2 180 2  24 [107] 

0.02M CrCl3 Cellulose 5 200 3  67 [107]  

[HO3S-(CH2)3-

py]Cl-FeCl3 
Cellulose 1.67 180 10  49 [17] 

0.1M H2SO4 Euctalyptus 5 190 1  29 [109] 

2.5M H2SO4 
Kernel grain 

sorghum 
10 200 40 mins MW 33 [110] 

1 M H2SO4 Corn-cob 10 180 0.5  75 [111] 

5% w/w H2SO4 Poplar Wood 10 190 50 mins  54 [112] 

37 w/w% HCl Poplar Wood 7.2 200 1 MW 71 [113] 

2 M HCl Corn Starch 1 165 0.25  55 [114] 

0.37 M HCl Bamboo 10 160 3 MW 48 [115] 

0.6M HCl 
Pre- treated Cow-

Dung 
3.3 180 2.5  81 [116] 

[C3SO3Hmim]Cl2 Rice straw - 180 1.5  21 [117] 
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[BMIMSO3H] 

HSO4 
Corn Stover - 95 1  70 [118] 

2M Maleic acid + 

Al2(SO4)3 
Mandarin Peel 4.3 180 0.63  86 [119] 

*GVL = gamma-valerolactone 
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Using microcrystalline cellulose, it is possible to achieve levulinic acid yields exceeding 60 % 

with HCl, H2SO4 and CrCl3 as shown in Table 2. Mineral acids are of greatest interest for this 

application, due to their availability, low-cost and high yields however, their corrosive 

properties have been reported to damage vessels and pipeline systems [24]. Transition metal 

chlorides also received attention in this area, due to the low concentrations required (<0.1 M) 

to achieve high yields compared with HCl (0.1-1.0 M) and H2SO4 (0.5-2M) [107]. It has been 

hypothesised that the chloride counter ion has an additional positive effect of stabilising 

intermediate products [120]. More recently, neutral NaCl salts have been reported to achieve 

yields over 75% from fructose under relatively mild conditions (<150 °C) [104], however 

chloride ions under neutral conditions have not been reported to fully depolymerise cellulose 

or isomerise glucose to fructose.  

 

Due to the complexity of lignocellulosic biomass, its composition must be screened to estimate 

the interference of other compounds on catalysis. This is most evident with metal salt catalysts 

such as AlCl3, which tend to precipitate with counter ions found in real lignocellulosic biomass 

[121], despite achieving similar yields to that with pure cellulose. Ion precipitation is a 

considerable expense for ionic liquids conversion of real biomass, due to the low catalyst 

recyclability, especially with toxic transition metal elements [122]. The salt precipitation issue 

is less significant with mineral acids, primarily HCl and H2SO4, due to the wide solubility of 

their respective salts under aqueous conditions. Antonetti et al. [113] achieved levulinic acid 

yields exceeding 70% with a range of feedstocks including poplar wood, wastepaper and olive 

tree prunings at 200 °C for 1 hour with microwave heating, with similar yields being achieved 

with bamboo, cow dung and rice straw by other authors [115,116,123].  Despite the high yields 

consistently achieved with hydrochloric acid, the high corrosivity of the catalyst requires 

advanced alloy materials, greatly adding to initial capital costs [124]. Sulphuric acid has 

therefore been used as the compromise catalyst in several pilot plants in Caserta (Italy) and 

Minnesota (USA) [21], despite the possible CaSO4 fouling issues with certain feedstocks such 

as wastepaper and tobacco waste [113,125]. Sulphuric acid has achieved yields of 50-70% with 

poplar wood, bagasse and food wastes [15,126,127]. The Biofine process reported sulphuric 

acid recyclability of over 98% with minimal fouling on a large scale [24] which has also been 

demonstrated on a lab scale [98,103].   

 

The kinetic model of the cascade catalytic process shown in Figure 3, including by-products, 

has been investigated in great depth from both cellulose [34,128] and real lignocellulosic 

biomass [35,129,130]. Using the reaction kinetics continuous plug-flow reactors (PFR) have 

been designed for the large-scale production of levulinic acid and also implemented in pilot 

plants [21,105]. One of the advantages of PFR reactors is the minimisation of by-product yields, 

when using the Biofine process, to ~50 wt.% of the feedstock. Dussan et al.[131] proposed two 

PFRs in series, operating at 185 °C and 180 °C respectively, to achieve overall 72% levulinic 

acid yield from Miscanthus x Giganteus, with 27 % furfural yields in under 20 minutes. The 

modelling of the reaction kinetics with multiple feedstocks have found similar reaction rates 

for the conversion of glucose towards levulinic aid across multiple studies, while the 

differences in cellulose structure result in widely differing the kinetic data for polysaccharide 

hydrolysis. The variance in cellulose structure and crystallinity has been attributed as the cause 

of such difference along with the presence of inert fractions such as lignin and pectin [132]. 

Nevertheless, this results in each feedstock needing an individual and custom evaluation for 

this application.  
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4.2 Heterogeneous Catalysts and recyclability 

 

Heterogenous catalysts compared with mineral acids have several advantages including 

reduced corrosive wear, improved separation, reduced environmental concerns and lower 

energy consumption [133]. In recent years, a large variety of solid acid catalysts has been 

investigated for the catalysis of sugars, cellulose and real biomass, as shown in Table 3. Such 

catalysts include insoluble metal oxides, zeolites, acidic ion-exchange resins and functionalised 

hydrochars. The use of solid catalysts significantly decreases the catalyst separation costs 

compared with homogenous catalysts, with minimal corrosion concerns [134]. Another key 

advantage of solid acid catalysts is their high temperature stability as well as the tunability of 

their surface acidity to improve catalyst selectivity by reducing by-product formation [135]. As 

an example, the carbonaceous solid acid catalysts obtained from lignin [150] is an interesting 

route to catalyse the conversion of cellulose into high-added value chemical, mostly because it 

can be obtained from natural and cheap raw materials, such as sugarcane straw [151]. It is also 

beneficial to use a solid catalyst instead of a liquid catalyst because the former is easier to 

isolate from the reaction mixture and has potential to be reprocessed [152]. These properties 

make heterogeneous catalysts suitable for large scale commercial application in this field, 

including levulinic acid production.  
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Table 3: Summary of levulinic acid yields from a range of feedstocks with heterogenous catalysts 

Catalyst 

Catalyst to 

Biomass ratio 

(w/w%) 

Substrate 

Substrate 

Loading 

(w/w%) 

Temperature / 

(°C) 

Reaction 

time 

(hours) 

Other 
Yield 

(mol. %) 
Reference 

Amberlyst 15 2.2 Glucose 10 140 8  59 [136] 
ZSM-5 0.75 Glucose 4 180 3  53.2 [137] 

Graphene-

SO3H 
0.025 Glucose 15 200 2  78 [138] 

Amberlyst 15 2.2 Glucose 10 140 8  26.7 [136] 
Amberlite IR-

105 
0.7 Sucrose 10 130 0.05  19 [139] 

Zirconium 

Phosphate 
1 Cellulose 4 220 2  18 [140] 

Amberlyst -70 3 Cellulose 2 160 16  23 [141] 
C-SO3H-

Fe3O4 
1.6 Cellulose 12 190 3.5 

MW 

Magnetic 
25.3 [142] 

Sulfated TiO2 1 Cellulose 2.5 240 0.25  32 [143] 
Zirconium 1 Cellulose 2 180 3   [144] 

Al-NbOPO4 0.8 Cellulose 5 180 24  53 [145] 
PTA doped 

carbon foam 
5 Cellulose 1 180 4  89.4 [146] 

Amberlyst 36 1 
Paper 

Towels 
5 150 0.33 MW 30 [147] 

CrCl3/HY 12 Kenaf 1 145 2.5   [148] 

Amberlyst 36 20 
Sugar Beet 

Molasses 
0.1 140 180  78 [149] 

SCSTc-x 3.6 Sugarcane 1 140 6  38.55  
[150] 

Cr-A15 (4 
wt%, 6 wt%, 
and 8 wt%) 

0.5 
glucose, 

sucrose, 

MG, 

1 200 2  1.2, 17.3, 

4.6, 11.2, 
[151] 
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cellobiose, 

fructose, 5-

HMF, and 

cellulose 

10.6, 

11.3, 5.8 
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4.2.1  Acidic ion-exchange catalysts  

The first solid acid catalyst for levulinic acid production utilised acidic ion-exchange resin, Amberlite 

IR-105, to achieve yields of 19 wt.% (28 mol. %) from sucrose at 130 °C in 5-6 minutes under reduced 

pressures [139]. The use of this solid acid catalyst was able to significantly drop the reaction temperature 

and time compared with mineral acids. Acidic ion-exchange catalysts are made from functionalised 

polymers, most commonly sulfonated polystyrene, that can be produced at large scale with highly 

tuneable surface, porosity and ion exchange capacity. The sulphonic acid group (-SO3H) is a strong acid 

that has similar acidic properties to sulphuric acid, without the associated corrosion issues. More recent 

works with Amberlyst has achieved levulinic acid yields of the 57% with fructose, 27% with glucose 

and 30% with wastepaper sludge [136,140,147]. The limiting factor with ionic polymers is the low 

isomerisation of glucose to fructose which can be mitigated by active basic catalytic sites [153] or the 

addition synergistic catalysts with soluble Lewis acids [104]. More recent works have utilised carbon 

foams to support acid exchange functional groups with over 80% yields over 5 recycles from cellulose 

[146].  

4.2.2  Metal oxide catalysts  

The cationic metal centres of metal oxides act as Lewis acids that can isomerise glucose to fructose, 

with high selectivity at low temperatures of <100 °C [134]. Zirconium dioxide has been reported to 

produce a molar levulinic acid yield of 32% at 180 °C for 3 hours from cellulose [144]. However, the 

direct conversion of cellulose to levulinic acid with a single metal oxide has mostly proven difficult, 

due to imbalances in the acid functional sites. This is due to the high catalytic activity of many metals, 

which can catalyse the formation of formic, acetic acid lactic acid from sugars [154], along with the 

further conversion of levulinic acid into higher value products such γ-valerlactone [155]. Ding et al. 

[145] suggested that the optimum Brønsted/Lewis acid ratio for the conversion of cellulose to levulinic 

acid is 1.2:1. Hybrid metal catalysts can easily be tailored to optimise acids sites with catalysts such as 

Al-Zr, zirconium phosphate and Ru/C for the conversion of sugars [140,145,156]. Nonetheless, it should 

be noted the use of metal catalysts has been limited for the production of levulinic acid for many reasons, 

but primarily for the strong adsorption of LA and degradation products onto the catalysts surface area, 

which can decrease levulinic acid yields over multiple cycles[160]. 

Surface modification can be utilised to tune acidic properties of metal oxides to improve levulinic acid 

yields such as sulphation or metal doping. Sulphated titanium dioxide and zirconia catalysts achieved 

levulinic acid yields of 32% and 59% respectively from cellulose [143,158]. Kobayshi et al. [159] 

developed a recyclable heterogeneous catalyst from the sulphated carbon chars resulting from the 

production of glucose from eucalyptus. Heterogeneous catalysts surface modification by sulphation has 

been found to increase the number of overall acid sites as well as allow the tunable modification of the 

Brønsted/Lewis acid site ratio [160]. The sulphation of zirconia increased the catalysts selectivity for 

levulinic acid from cellulose from 32% to 53% and showed remarkable stability over 5 recycles with 

lignocellulose [144]. However, with lignocellulosic biomass, humin deposition can deactivate surface 

modified sites which can be partially negated by the incorporation of organic hydrogels onto the surface 

structure[161] . 

4.2.3 Zeolite catalysts  

Zeolite catalysts such as ZSM-5, X/Y, β, and A are aluminosilicate minerals that exhibit a wide variety 

of tuneable catalytic crystal structure [162] [163]. As early as 1987, Jow et al. [164] used LZY zeolite to 

convert fructose to levulinic acid at 140 °C for 15 hours with a 43.2% yield, with the high selectivity 

attributed to molecular sieving ability, in addition to Lewis acid sites. Also, H-USY zeolite (Si:Al of 

30) has shown remarkable selectivity (>90%) for the isomerisation of glucose to fructose at temperatures 

as low as 120 °C [165].  Ya’aini et al.[166] found that CrCl3/HY catalyst can reach levulinic acid yields 

of 55.2 and 53.2% from cellulose and kenaf respectively, at 145 °C for 2.5 hours. In this case, the high 

yields were attributed to pore structure trapping intermediate 5-HMF [148]. The reduced steric freedom 

reduces the humin formation from the aldol-condensation 5-HMF reducing by-product yields. In 
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addition, the catalytic activity of zeolites for the conversion of sugars and cellulose has shown 

remarkable stability of up to 5 recyles [165,167,168]. However, the recyclability of zeolites for the 

conversion real lignocellulosic biomass has proven more challenging, with yields decreasing by up to 

60% over 3 recycles [169]. Low recyclability was attributed to several phenomena, including coking 

[170] and acid site leaching [171]. The coking phenomena also include the catalytic formation of 

insoluble humins via dehydration of intermediate compounds and also lignocellulosic extractives 

blocking the catalyst the surface area. Specifically the beneficial steric hinderance of furanic compounds 

can catalyse the decomposition of aromatic compounds inside the porous structures causing micro-

channel blockages. Bianasari et al. utilised delignified rice husks to reduce coking with Mn3O4/ZSM-5 

with H2O2 [172]while Magyarova et al. proposed the inclusion of metal cations into the zeolite structure 

to facilitate coke decomposition [173].  

 

4.2.4  Metal-organic catalysts  

Metal-organic catalysts utilise organic frameworks to support metal oxides or metal oxide nanoparticles 

have been investigated for an increased surface area and tuneable pore structure [174]. Metal-organic 

frameworks have primarily been investigated for the further conversion of levulinic acid via 

hydrogenation or ketalization[175,176]. Wang et al. achieved yields of nearly 32% levulinic acid using 

Ga2O3-UiO-66 with a high selectivity (68%) with regards to levulinic acid [17].  More recently, Lee et 

al. found that UiO-66-NH-R-SO3H could produce levulinic acid from glucose with 71.6% yield at 170 

°C [177]. The study by Lee found that the addition of alkyl spacers into the organic framework allowed 

tailoring of the spacing between Bronsted and Lewis acid site further improving levulinic acid yields. 

Metal organic frameworks offer many of the same advantages of ion-exchange catalysts, specifically 

the chemical inertness of the underlying structure, but with a far higher degree of functionalisation and 

optimisation options. Although the stability of such catalysts has not been demonstrated with biomass 

and have not been largely explored for cellulose conversion. 

 

4.3 Synergistic Catalysis 

 

Heterogeneous catalysts can be synergistically promoted by the addition of salts or acids in the aqueous 

phase, as shown in Table 4.  

Table 4: Promotion of heterogeneous catalysts 

Catalyst Feedstock 
Yield Without 

Promoter 

Catalyst 

Promoter 

Yield With 

Promoter 
References 

DOWEX 

DR-2030 
Glucose 28% Levulinic acid 1:1 Salt:sugar  

71% Levulinic 

Acid 
[104] 

Nanofin Cellulose 
14% Levulinic 

Acid 
25 wt% NaCl 

72% Levulinic 

Acid 
[178] 

Ru(1.8)/H–

USY 
Cellulose 1% Sorbitol 1 mM 29% Sorbitol [179] 

Sulfonated 

Carbon 
Eucalyptus 31% Glucose 13 mM 78% Glucose [159] 

 

Previous studies have found that high concentrations of NaCl (20 wt.%) under hydrothermal conditions 

could partially depolymerise cellulose and, simultaneously, reduce the average molecular weight of 

cellulose by up to 50% without forming free sugars [177]. In this regard it was proposed that the Cl- 

anion could disrupt the cellulose hydrogen bonding network. Other works have proposed that cellulose 

depolymerisation is enhanced in the order of CO3
2−> F- >> Cl- > NO3

- > SO4
2- . Similarly, Pyo et al. 

[104] proposed Cl− >CO3
2− >SO4

2− for the dehydration of the fructose to levulinic acid. The use of NaCl 

has been found to drastically increase the yields of levulinic acid with sulphated polymers however, it 
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was shown to require high salt concentrations, exceeding 10 wt.%. Kobayshi et al. [159]was able to 

substitute concentred NaCl with dilute 13 mM HCl for the promotion of glucose formation from real 

biomass, which increased from 31% to 78%. While Geboers et al.[176] was instead able to improve 

sorbitol production via hydrogenation from cellulose by nearly 27-fold with only 1 mM HCl. Similar 

results were found with homogenous catalysts by Hu et al. where NaCl improved levulinic acid yields 

with benzenesulfonic acid from 45% to 60% from wheat straw [181]. These remarkable improvements 

with trace mineral acids can be used with a wide range of heterogeneous catalysts, by debottlenecking 

both the cellulose hydrolysis and 5-HMF hydration stages with Cl- anions [103,106][200] 

5. Post-reaction products and their applications 
Catalytic reactions of lignocellulosic biomass yield a variety of liquid and solid by products, in 

conjunction to the target compound of levulinic acid. For practicality these products will be discussed 

separately in the following sub-sections based on their form (liquid or solid) and their chemical formula 

is shown in association with their main application in Figure 4. 

5.1 Aqueous by-products 

The production of levulinic acid from lignocellulosic biomass results in a range of aqueous and solid 

by-products [24,32]. Most notably, organic acids such as formic and acetic acid, acid soluble lignin and 

aliphatic hydrocarbons [182]. Aqueous by-products have been under reported despite the possibility for 

interactions that could reduce primary product yields. The most commonly reported by-product, acid-

soluble lignin, has been reported by multiple authors to react with xylose under acidic conditions. 

Dussan et al. found that the formic acid by-product from levulinic acid synthesis could catalyse the 

reaction between lignin and xylose, reducing furfural yields by up to 24 %. The removal of acid soluble 

lignin is possible by dilute acid extraction which has also shown to improve cellulose hydrolysis [183].  

Formic acid is a degradation product of multiple biomass products, including proteins, in addition to 

being formed in equimolar proportions to levulinic acid. The degradation of protein amino acids can 

result in the production of ammonia as well as multiple organic acids in trace quantities including, 

pyruvic, glutramic, and gylolic acid in addition to formic acid [184]. The presence of formic acid is 

often reported after acid hydrolysis, but rarely quantified. Formic acid has been found to be stable during 

the mineral acid hydrolysis [185,186]  However, Świątek et al. [49] identified that formic acid degraded 

during the dilute hydrolysis with sugars, suggesting its consumption to be linked to the nature of the 

lignocellulose feedstock. In fact, formic acid reacts with acid soluble lignin and formylation of solid 

residues from acid hydrolysis could be possible [187,190]. Acetic acid is also naturally present in 

biomass in the form of acetylated hemicellulose. The acetate content of biomass varies up to 2 wt.% in 

certain woods, and is considered easily hydrolysable [189]. Several authors have shown that the acetic 

acid is independent of processing conditions and is not formed during the levulinic production, but it 

has been found to react with hydrochars, increasing the carbon content and Higher Heating Values (HHV) 

[190] This suggests that acetic acid becomes incorporated into the humin structures, though Wang et al. 

found  acetic acid (~1 wt.%) had minimal effect on hydrochar surface properties [191]. The interactions 

between aqueous by-products and solid-by-products could have significant effects with solvent and 

catalysts recycling. Further investigation between trace aqueous products is required. 

Levulinic acid recovery by solvent extraction or esterification, results in the separation of organic acids 

that must be further purified [192,193]. Previous studies have found that formic and acetic acid can be 

separated from levulinic acid during solvent recovery with levulinic acid as the bottom product [22]. 

Larger trace organic acids with similar boiling points to levulinic acid have not been investigated. Errico 

et al. modelled the extractive separation of levulinic acid, furfural and formic acid with furfural as the 

extractive solvent. The accumulation of acid soluble lignin and other organic by-products may thus 

accumulate in the extractive solvent necessitating further investigation. T 
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5.2 Solid By-Products 

Solid by-products from acid hydrolysis of lignocellulose are the largest single by-product and can 

exceed the combined levulinic acid furfural weight yields [32]. The residual solid fraction complex, as 

the solid residue not only contains degradation products including humins, hydrochar and pseudo-lignin, 

but also unreacted biomass and unreacted lignocellulosic structures [41]. The relative ratio of these 

constituent fractions will vary as the reaction progresses, with unreacted cellulose constituting a 

decreasing fraction as the reaction progresses though is not completing eliminated.  Therefore, the 

multiple constituent fractions can be defined from their source, as either an inert fraction present in the 

initial biomass or a process by-product. 

 

The largest inert fraction of lignocellulose is Klason-lignin (KL) which can account for 10-30 wt.% of 

starting feedstock and has been found to be inert under sub 300 °C acidic reaction conditions [80]. 
Although Aftab et al. found that the acid removal of cellulose and acid-soluble lignin cause 

morphological changes to KL structure increasing the surface area and porous structure [194,195] . 

Klason-lignin properties are highly dependent on the reaction conditions due to its lipophilic properties 

that can result in the presence of long-chain hydrocarbons, alcohols, and ketones, sterols, stanols, and 

dioic acids. The aforementioned lipids are mostly inert under acidic conditions, have not been reported 

to react with KL matrix and are dispersed through the porous lignin structure that reduce wettability 

[196]. The wax and cutin derived structures can be mostly extracted using organic solvents such as 

ethanol, iso-propnal, acetic acid and hexane [197]. It has previously been reported that during 

compositional analysis the wax and cutin derived compounds are frequently erroneously reported as 

part of the KL fraction due to improper solvent extraction prior to analysis [198]. During levulinic acid 

production under aqueous conditions it assumed that the wax and cutin structures will be incorporated 

in the solid residue and would effectively be similar to KL.  

 

The most frequently reported solid by-product during acid-catalysis are humins. Several humin 

formation mechanisms have been proposed by Lund and Patil [37], Huber et al. [105], Zandvoort et 

al.[39] and Heeres et al. [34] among others. These models have consistently proposed humin formation 

as an overall dehydration process via aldol condensation. Baugh et al. [199] found in 1985 that different 

C6 sugar isomers and processing conditions altered the elemental composition of humin formation (56-

61 wt.% C). The variation of humin’s elemental composition with reaction conditions was further 

investigated by the Heeres group (60-65 wt.% C) which suggested that the humins may be the result of 

multiple different reactions 165,166. However, Zandvoort et al. 157 demonstrated such differences in 

elemental composition can be explained as different degrees of dehydration of the overall structure. 

Sumerskii et al. [201] estimated the humin structural composition consisted of ~60 wt.% furan rings 

weight and ~20 wt.% linking aliphatic linkers. Furthermore, using C13 NMR, GC-MS and IR analysis, 

it was estimated that humins consisted of polymers chains varying in chain length with a similar 

composition of functional groups. IR spectra specifically suggested the presence of a significant number 

of oxygen functional groups, as well as furanic surface structures with acidic properties [33,38,202].   
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Figure 4: Composition structure of solid residue particle humin formation and minor compound 

incorporation 

 

Patil and Lund [37] proposed a humin formation mechanism from 5-HMF explaining their findings on 

structural investigations, shown as the humin formation mechanisms in Figure 4. The proposed 

mechanism involved 2,5-dioxo-6-hydroxyhexanal (DHH) formed by rehydration of 5-HMF as an 

intermediate product for further polymerisation. Specifically, polymerisation between the carbonyl 

group of 5-HMF and DHH enolate group, with the subsequent product maintaining the enolate group 

for chain reaction aldol condensation. The solid residue from acid hydrolysis of sugars using ionic 

liquids, suggested that the primary humin formation rapidly occurred between soluble compounds, with 

slower solid-liquid and solid-solid interactions [203]. The particle size of the humins structures was 

found to increase with reaction time and could include levulinic acid fragments as part of the structure. 

Morphological SEM analysis suggested that the humins formed in the shape of spherical units [39,204]. 
Thus, the sugar-derived humins structures can be described as an oxygenated, time-dependant polymer 

with furanic cross-branching. 

 

Multiple kinetic studies investigating the formation of levulinic acid have included the formation of 

humin by-products from both glucose and 5-HMF [15,34,128,131,202]. Humin formation has been 
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considered an almost first-order reaction with regard to acid concentration [97] and Lund et al.[37] 
showed that levulinic acid selectivity could be increased over that of humins using high acid 

concentrations. In addition, both Girisuta and Dussan [34,131] estimated that the activation of energy 

for the formation of humins is much higher than all other activation energies during the acid catalysed 

dehydration, showing that lower reaction temperatures can limit humin formation. Resulting in lower 

humin yields with lower reaction temperatures, low residence times and high catalyst concentration.  

 

Humic substances formed when using real lignocellulosic biomass is even more structurally complex, 

due to the incorporation of unconverted biomass fragments. Chars from the Biofine process showed (via 

TGA analysis) that the char included cellulose and hemicellulose, in addition to lignin [21]. 
Furthermore, C13 analysis indicates possible cross-linking between the humins and unreacted biomass 

fractions, as well as symmetric peak patterns that are indicative of fused polyaromatic rings. Similar 

results were found by Agarwal et al.[42]study, where the acid catalysed solid residue from pinewood, 

contained cross-linking cellulose and hemicellulose fragments. In contrast Runge and Zhang [112] 
reported “tar-like” substances on-top of unreacted lignocellulosic biomass during acid hydrolysis, which 

limited lignocellulose conversion. That study proposed that fast-forming furfural could undergo 

decomposition and polymerisation to form humin-like materials [206,207]. Zandvoort et al. [208] found 

that xylose derived humins were chemically and thermally more recalcitrant than glucose derived 

humins possibly due to their more conjugated structures. Further, C13 analysis indicated that levulinic 

acid, furfural and dihyroxyacetone was incorporated into the humin derived structures [209].  

 

The presence of psuedo-lignin has been reported in addition to humins due to the condensation of acid-

soluble lignin under acidic conditions. Acid soluble lignin has been reported to actively react with xylose 

under acidic conditions [81]. In support of this, Dussan et al. [84] found that soluble lignin could 

decrease furfural yields by up 24%, with the formation of an insoluble pseudo-lignin residue by-product. 

It was also proposed that acid-soluble lignin could react with itself to form pseudo-lignin in significant 

quantities under acidic conditions [210]. Another study by Aarum et al. [211] reports pseudo-lignin was 

incorporated into the humic structures on the particle surface and, as such, is difficult characterise pseud-

lignin in detail. Nitrogen containing compounds were also found by Leng et al. [212]incorporated into 

the pseudo-lignin structures. The rate of the pseudo-lignin incorporation into humin structures is 

unknown to date and difficult to quantify, due to complexity of measuring acid soluble lignin.  

 

5.3 Similarities Between Solid Residue and Hydrochar 

 

The acid catalysis in aqueous conditions operates under similar reaction parameters to hydrothermal 

carbonisation (HTC) which are generally considered to be 180 – 250 °C at autogenous pressure [213]. 
HTC is primarily utilised as an energy densification process for wet lignocellulose for the production 

of bio-oil and hydrochar [214–217]. The hydrothermal carbonisation process has been proposed to 

include dehydration, decarboxylation, polysaccharide hydrolysis, retro-aldol cleavage and condensation 

as well as aromatisation [213]. However, at temperatures less than 250 °C, negligible direct 

aromatization of cellulose occurs, with the predominant hydrochar formation mechanisms being 

polysaccharide hydrolysis, followed by condensation of aqueous and furanic compounds [214]. Sevilla 

et al. [218] stated that low temperature hydrochars from sugars formed as carbon rich spheres, with an 

oxygen-rich outer shell and carbon-rich core. The aqueous compounds condense via aldol condensation 

on the surface structure, followed by subsequent aromatization. Shi et al.[215] suggested that humins 

are an intermediate product of hydrochar formation, in agreement with the ‘shell and core’ model, where 

aromatization of the furanic polymer network occurs via a combination of acetal-cyclisation, 1,2-

hydride shift, intramolecular aldol condensation, and dehydration to form a polycyclic and phenolic rich 

polymer core. 
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The proposed aromatisation of furanic humin structures towards poly-aromatic during levulinic acid 

production with acids catalysis presents similarities with hydrochar formation mechanisms. Such 

similarities in formation mechanisms result in minimal differences between the two independently 

studied materials. However, the small differences in structures may affect the possible applications. In 

fact, hydrochars have been reported to have higher HHV than that of humins [36]. The more abundant 

polycyclic compounds found in hydrochars (primarily due to higher reaction temperature) have been 

reported to increase cation exchange capacity of the material, at the expense of increased microbial 

inhibition [219]. As the severity of the acid catalysis process increase, solid condensation increasingly 

dominate the residue’s surface properties.  Initially, humin formation enriches the surface area with 

oxygen-rich functional groups that increases the surface hydrophilicity. Higher reaction temperature 

however, will increase the rate of hydrochar formation, surface hydrophobicity and surface area. The 

carbon sphere condensation product also includes pseudo-lignin and nitrogen containing compounds, 

which are considered to exert minor effects on the solid residue surface area. These interacting 

condensation reactions will result in an overall dehydration process of the solid residue with significant 

surface and bulk property differences related to reaction conditions.  

 

5.4 Solid By-product Applications 

 

Several studies have looked at the application of humins and solid residues for the valorisation of waste 

products from levulinic acid production. Most commonly, the solid residue has been proposed as a solid 

combustion fuel, for the production of steam, to be utilised for the heating of the acid hydrolysis process 

as well as the separation of levulinic acid via distillation [106,200] . Techno-economic analysis results 

the aforementioned studies suggest that solid residue as fuel is sufficient to provide the heat required by 

the levulinic acid production process. However, due to its carbon content exceeding 60 wt.%, the solid 

residue combustion resembles that of coal with regards to CO2 emissions [25]. This would significantly 

increase the carbon emissions associated to the manufacture of levulinic acid. 

 

Sugar-derived humins were investigated by Rasrendra et al. [200] as a feedstock for pyrolysis. The 

primary reaction product was biochar (70-72 wt.%), with bio-oil and syngas yields of 8-10 wt.% and 

17-22 wt.%, which was lower than that from lignin under similar conditions. Agarwal et al.[42] utilised 

catalytic pyrolysis to increase the bio-oil to 14 wt.% with ZSM-5. Using catalytic fluidised bed reactors, 

Sumbharaju et al. [220] managed to increase bio-oil yields to nearly 20 wt.% with the same catalyst. 

However, the low bio-oil yields are not sufficient to justify the high processing temperature of nearly 

600 °C. Melligan et al. [41] as part of the Carbolea research group, was able to achieve bio-oil yields of 

12-20 wt.% from the pyrolysis of solid residue from the acid Miscanthus x Giganteus without any 

catalyst. The higher bio-oil yield with real biomass may be attributable to the higher lignin content of 

solid residue although, biochar remained the primary pyrolysis product. These results indicate that 

significant further work is necessary for the successful valorisation of solid residues via pyrolysis. 

 

Alternatively, novel applications of humins have gained increasing attention in recent years, which are 

related to their material properties. For example, humin-impregnated resins have been found as a 

promising substitute of plywood boards[40].  Humin-based solid foams exhibited remarkable insulation 

capacity with applications for the building sector [202] . Solid residue from bamboo hydrolysis can be 

activated with sulphuric acid to from a low-cost catalyst for further acid hydrolysis [159], while the 

residues from the acid hydrolysis of textile waste was found to be a promising electrode material [221].  

Also, ionic liquid derived humins from sugars were shown to remove heavy metals from wastewater 

due to the high surface O/C ratio [203]. In which, the functionalised surface areas, exhibiting high cation 

exchange capacity, were able to selectively remove trace elements. Non-thermal applications of solid 

residue from acid catalysis would also facilitate the storage of carbon, acting as a form of carbon 

sequestration, thus reducing the CO2 emissions of the resulting levulinic acid product.  
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Hydrochar applications are similar to those of humins, with a primary focus in this case, on use as a 

solid fuel however, in the literature they also found applications as an electrode material, soil 

amendment and heavy metal removers for soil remediation [217]. Among the novel and growing 

applications of hydrochar is its use as additive for the promotion of anaerobic digestion. Hydrochar has 

been found to increase methane yields during anaerobic digestion by improving buffering capacity, 

providing a source of trace metals, adsorbing inhibitors (such as ammonium and fatty acids) as well 

promoting microbial activity via direct interspecies electron transfer and acting as a microbial support 

material [260–264]. The energy consumption, and subsequent costs of carbonaceous material 

production, has been so far a limiting factor of their application for AD with lower cost analogous 

hyrochars sought [222,223]. The application of solid residue from the acid catalysis of Miscanthus x 

Giganteus for levulinic acid production were found to have up to +14% increase in methane yields from 

the anaerobic digestion of chicken manure [224]. This was further confirmed Madadi et al. that showed 

that levulinic acid could be produced alongside highly adsorbent solid residues with 85% energy 

recovery [225]. More recently Licursi et al. found that the adsorption properties of hydrochar from 

levulinic acid could be further upgraded by KOH activation [228].  

 

It should be noted that there is remarkable similarity between the humins and the soil organic material 

humus, after which humins are named [208]. Soil humus is formed from the decay of animal and plant 

material with a complex aromatic structure, predominantly composed of furanic polymers with oxygen 

and nitrogen functionalities. Fulvic and humic acids found in soil have been found to have similar 

structures to catalytically derived humins, but also incorporate fatty acids, amino acids and lignin [227]. 

Soil humus is an essential fraction of healthy soil and has been proposed to improve soil fertility. 

Effective humus has additionally been proposed to provide a source of nutrients and organic matter for 

the soil microbiome, as well improving the bulk soil water retention [228]. The similarities between 

humins and soil humus indicate potential cross application of humin materials, more specifically as a 

form of carbon sequestration or microbial promotion. 

 

6. Conclusions 
 

Renewable low carbon levulinic acid, can be produced from a large variety of lignocellulosic biomass 

using a range of acid catalysts. Both homogeneous and heterogeneous catalysts can be employed (with 

varying degrees of success) for the conversion of lignocellulose towards levulinic acid and furfural in a 

one-pot process. However, for the full commercialisation of the levulinic acid biorefineries better 

consideration for the interactions between the individual biomass properties, catalysis and by-product 

valorisation must be conducted. Ideally, flagship demonstration of commercial biorefineries that exploit 

solid residues should be investigated from an economic feasibility perspective. The utilisation of novel 

heterogeneous catalysts and possible combination with aqueous modifiers such as salts or trace acid 

could potentially overcome the limitations of cellulose hydrolysis with solid catalysts. These novel 

catalytic platforms must be considered alongside by-products for specific biomass varieties. Complete 

valorisation of by-products has been shown to be necessary for commercial production of levulinic acid.  
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