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A B S T R A C T

Background: Transcranial Direct Current Stimulation (tDCS) and Transcranial Magnetic Stimulation (tMS) have 
received widespread clinical use as techniques within a Non-Invasive Brain Stimulation (NIBS) domain, whose 
primary focus is modulation of neural activity to treat neurological and psychiatric disorders. Despite these 
advancements, precision targeting of deep brain structures remains a challenge faced with great need of another 
innovation that will improve precision and reduce the risks. A novel methodology integrating transcranial 
Focused Ultrasound (tFUS) with real-time functional imaging modalities, including functional Magnetic Reso-
nance Imaging (fMRI) and Near-Infra-Red Spectroscopy (NIRS), is proposed in this study as the Integrated 
Focused Ultrasound and Real-Time Imaging Control System (IFURTICS).
Principle results: Closed loop algorithms employed by IFURTICS allow it to dynamically vary stimulation pa-
rameters in response to real-time feedback on neural activity, allowing for accurate targeting of sensitive net-
works while minimizing deleterious collateral effects.
Conclusions: Clinical trials using standard datasets of fMRI and NIRS have proved that the approach improved 
targeting accuracy by ~18 %, reduced off-target effects by ~55 % and enhanced therapeutic outcomes by 50 % 
over current methods, suggesting its potential as a transformative approach to precision neuro-modulation.

1. Introduction

Transcranial Magnetic Stimulation (TMS), however, Transcranial 
Direct Current Stimulation (tDCS), and Transcranial Focused Ultrasound 
(tFUS) are non-invasive brain stimulation modalities as tools to modu-
late neural activity in a rapidly developing field (Darmani et al., 2022). 
Selectively targeting defined brain regions to influence cortical and 
sub-cortical activity is aimed at treating a number of neurological and 
psychiatric disorders with these technologies. Non-Invasive Brain 
Stimulation (NIBS) is based on physical principles (such as 

electromagnetic fields or acoustic waves), which can be used in 
neuro-modulatory action without surgical operation. NIBS is an essen-
tial tool in neuroscience and clinical neuro-engineering, and its appli-
cations span major disorders, including depression, epilepsy, 
Parkinson’s disease and cognitive impairments (Wang et al., 2023).

NIBS lie at the intersection of neuroscience, biomedical engineering, 
and computational modeling to build brain-targeted approaches to 
manipulate brain activity. Increasingly, both Near-Infrared Spectros-
copy (NIRS) and functional MRI (fMRI), as means of advanced imaging, 
have been incorporated into NIBS to offer real-time feedback for 
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precision targeting (Curtin et al., 2019; Bergmann et al., 2016). In 
addition, closed-loop systems and computational techniques have 
become vital in improving the safety, adaptability and therapeutic ef-
ficacy of these interventions (Zhao et al., 2024; Pu et al., 2024). This 
domain has altered the path of treatment paradigms from invasive 
procedures (deep brain stimulation [DBS]) to safer and patient-friendly 
modalities (Williams and Okun, 2013). The combination of hardware 
improvements, technical progressions and neuro-physiological under-
standing drives the evolution of NIBS as an essential component of 
personalized medicine.

In this study, the Integrated Focused Ultrasound and Real-Time Im-
aging Control System (IFURTICS) are proposed as a new framework 
aimed at mitigating the shortcomings of current NIBS methods. Neuro-
modulation with high spatial and temporal precision is achieved by 
combining Transcranial Focused Ultrasound (tFUS) with real-time 
functional imaging modalities such as fMRI and NIRS (Luan et al., 
2023; Yu et al., 2023) in IFURTICS. The framework uses a closed-loop 
feedback process to adjust stimulation parameters dynamically and 
continuously by monitoring neural responses. The optimization engine 
underlying this system is a core feature and minimizes off-target effects 
by applying advanced loss functions and regularization techniques to 
achieve precise alignment of theoretical activation profiles with 
observed neural patterns. Through the integration of these components, 
IFURTICS provides the clinic with the elements of an innovative clinical 
strategy for the successful treatment of complex neurological and psy-
chiatric conditions.

The brain is of utmost future research significance in this domain 
since the brain is able to precisely and non-invasively target complex 
and deep brain structures, which is fundamental for treating neurolog-
ical and psychiatric disorders (Tarazi and Schetz, 2005). This approach 
enables any studies of the complex neural networks in the brain while, in 
one fell swoop, ensuring safety and minimization of side effects of pre-
cision neuro-modulation. Fig. 1 depicts some of the vital brain sections 
that need to be considered for the research because they hold key sites of 
involvement in neurological and psychiatric disorders targeted by NIBS 
(Alfihed et al., 2024; Edelman et al., 2015). Unlike the other parts of the 

brain, the Prefrontal Cortex plays a major role in decision-making, 
emotion, and executive functions, and so is, say, number one for 
depression and anxiety. The thalamus functions as a relay centre be-
tween the sensory and motor signal systems, and this is important to 
understand in disorders such as epilepsy and Parkinson’s disease 
(Parnaudeau et al., 2018). Likewise, the Hippocampus and Amygdala 
sustain fundamental memory and emotional regulation and bear on 
PTSD and Alzheimer’s (Hanson et al., 2015). The Basal Ganglia (Favila 
et al., 2024) is centrally involved in motor control and is extremely 
implicated in movement disorders. Voluntary movements and sensory 
processing vital to conditions such as stroke rehabilitation are directly 
linked to Motor Cortex and Somatosensory Cortex (Kim et al., 2024), 
respectively. The functions of the anterior portion of the Cingulate 
Cortex (Alejandro and Holroyd, 2024) reveal that it plays a major role in 
emotional and attentional regulation, and dysfunction may contribute to 
disorders and chronic pain. Lastly, the ventricles are important for ce-
rebral spinal fluid dynamics, and they also indirectly affect brain health 
because they are reference points for performing accurate deep brain 
targeting. As a group, those areas constitute the anatomical and func-
tional basis on which precise and efficient neuro-modulation strategies 
can be designed in the study.

1.1. Research significance

This work is significant because it sets forth a path to transforming 
this field of non-invasive neuro-modulation by tackling these critical 
technical and clinical challenges. Real-time image feedback integration 
enables adaptive and precise targeting of deep brain structures, thus 
minimizing off-target effects. Not only does this adaptability improve 
therapeutic outcomes, but it also expands the area in which NIBS can be 
applied to hitherto inaccessible areas of the brain. Additionally, the 
closed-loop system provides unprecedented safety, continuously moni-
toring and correcting based on each participant’s neural response. 
Further, the proposed framework provides a robust computational basis 
for future work in scaling and integration of personalized neuro- 
modulation therapies (Kar and Vidya, 2023) with clinical workflows.

1.2. Scope and motivation

This research aims to develop a new patient-centric neuro-modula-
tion framework to address a wide range of neurological and psychiatric 
disorders encompassing depression, epilepsy, Parkinson’s disease, and 
Alzheimer’s disease (Chen et al., 2023). Based on the predefined 
contribution, IFURTICS can also be used to understand 
neuro-physiological mechanisms underlying such conditions by 
employing real-time functional imaging and adaptive algorithms. This 
study is motivated by the lack of precision, safety, and efficacy with 
regard to neuro-modulation, as well as the promise of NIBS to revolu-
tionize global healthcare with the potential for noninvasive and scalable 
treatments. As such, this research spans an interdisciplinary domain, 
including neuroscience, biomedical engineering, and computational 
modeling—a foundational advancement in neuro-therapeutics.

1.3. Research novelty

The important innovation in this work is the development and 
integration of the IFURTICS, providing unprecedented precision and 
flexibility of noninvasive brain stimulation. Rather than relying on 
traditional NIBS methods that utilize large transcranial current stimu-
lation configurations for low spatial resolution, IFURTICS uses tFUS for 
high spatial resolution and utilizes the real-time functional imaging 
modalities fMRI and NIRS to monitor neural activity during stimulation 
in real-time. A closed-loop feedback procedure is introduced to contin-
uously adjust the stimulation parameters with respect to real-time 
neural responses to accommodate individual variability as well as to 
minimize the off-target effects. Moreover, the framework provides an Fig. 1. Vital Region of Brian for Investigation via IFURTICS.
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optimization engine to coarsely align theoretically and observed neural 
activation profiles with advanced computational loss functions to 
guarantee accuracy and safety. The combination of adaptive imaging, 
closed-loop control, and computational optimization in this novel 
manner establishes a new transformative platform that can improve 
outcomes of therapy, extend the applicability of NIBS to deep structures 
in the brain, and set a new benchmark for precision neuro-modulation in 
personalized medicine.

Finally, the study presents the IFURTICS framework, which fuses 
real-time functional imaging methods such as fMRI and NIRS with 
closed-loop feedback in order to perform closed-loop dynamic and 
adaptable stimulation. This work constitutes a significant contribution 
towards the advancement of precision neuro-modulation and the 
following descriptions highlight those contributions for better 
understanding. 

▪ Temporal modulation factors are optimized to address critical 
challenges in targeting accuracy, off-target effects and thera-
peutic efficacy, and encoding temporal computerized repre-
sentations of molecular pharmacology are utilized to gain 
advantages of high selectivity and in vivo efficacy.

▪ The framework establishes a benchmark for coupling imaging 
and stimulation technologies for applications in which precise 
spatial and temporal control of neuro-modulation is desired.

▪ Furthermore, by using standard fMRI and NIRS datasets, we 
obtain rigorous validation and applicability over a wide range 
of neurological and psychiatric disorders.

▪ In addition, this work can start to shed light on neuro- 
engineering, computational neuroscience and clinical applica-
tions to enable interdisciplinary advancements and future de-
velopments in targeted therapies through this work.

2. Relevant studies

In (Qiu et al., 2017), a portable ultrasound system for non-invasive 
neuro-stimulation was employed using a miniaturized PMN-PT (1–3 
composite single crystal, Lead Magnesium Niobate-Lead Titanate) 
transducer and programmable waveform generator. In-vivo and in-vitro 
neuro-modulation was demonstrated in the system with up to 13 % 
improvement in intensity over current PZT transducers and reliable 
stimulation of mouse brain and retinal ganglion cells. However, this 
method is currently incompatible with MRI-guided uses, and further 
refinement is required to accommodate multi-site stimulation situations. 
In Li et al. (2018), Imaging-guided Dual-target Neuro-modulation Sys-
tem (IDNS) via array ultrasound was used to provide precise 
non-invasive stimulation of multiple brain regions in mice. They 
demonstrated that with significant success, it showed selective re-
sponses between two distinct brain targets with a significant 73 per cent 
attenuation in acoustic intensity through the skull barrier, and hence, it 
allowed the system to navigate towards targets reliably. Limitations 
include a reliance on models that are not directly applied to humans and 
the need for additional evaluation of long-term safety and 
neuro-modulatory effects.FUS displacement imaging coupled with high 
frame rate ultrasound and GPU acceleration was used by Lee et al. 
(2020) to apply non-invasive neuro-modulation of the median nerve for 
pain relief. Initial human trials demonstrated promising real-time tar-
geting and feedback capabilities, and it achieved up to 50.1 microns 
cumulative nerve displacement and a 0.96 pain rating unit decrease in 
thermal pain perception. However, there is variability in displacement 
across subjects due to the coupling and the tissue differences, as well as 
the need for broader clinical trials to establish efficacy and safety. To 
explore a non-invasive approach to the use of neuro-modulation for 
epilepsy treatment, Lin et al. (2020) used low-intensity pulsed ultra-
sound (LIPUS) while relying on electrophysiology, 
immune-histochemistry and behavioral analysis. Balancing excitatory 
and inhibitory synaptic inputs achieved a 39 % reduction in total seizure 

count and greater than 65 % inhibition of epileptic form discharges in 
human epileptic tissues. Limitations are that therapeutic effects are 
based on animal models or human tissue slices rather than full-scale 
clinical trials, leading to concerns about the scalability and consis-
tency of therapeutic effects. The study in Schafer et al. (2020) used 
Low-Intensity Focused Ultrasound Pulsation (LIFUP) in an MRI-safe 
system (650 kHz transducer) to demonstrate non-invasive neuro--
modulation for use in brain mapping and therapeutic applications. 
Significant advancements were made, including an 85 % reduction in 
system weight and size with peak pressure of up to 3.8 MPa at the focal 
point, which allowed for precise stimulation. However, dependency on 
accurate skull and tissue calibration and broader clinical validation for 
diverse patient populations remains a limitation. A spatial multi-target 
ultrasound neuro-modulation system based on a high-powered 2D 
array transducer was developed in Zhuang et al. (2022) as a platform for 
non-invasive multi-target neuro-modulation in small animals. The sys-
tem achieved precise stimulation with a peak acoustic pressure of 
2.21 MPa, which is significantly higher than previous systems, and 
spatial targeting error < 1.5 mm. However, there are limitations, such as 
difficulty in controlling ultrasound beams at multiple focal lengths and 
possible alignment errors associated with skull-induced aberrations. 
Researchers in Yüksel et al. (2023) used non-invasive neuro-modulation 
to study Low Intensity – FUS (LI–FUS) for stroke recovery. The tech-
nology showed highly accurate targeting of deep brain structures and 
demonstrated up to 30 % improvement in motor function recovery in 
preclinical models. However, poor standardization across ultrasound 
parameters and inadequate large-scale human trials restrict generaliz-
ability and clinical adoption of the use. In Hsieh et al. (2024), the au-
thors studied one-hour intermittent and continuous tFUS on rats’ motor 
cortex. Motor excitability was assessed with motor evoked potentials 
(MEPs), and c-Fos and GAD-65 neural biomarkers were determined 
using immune-histochemistry. Brief facilitation of motor excitability 
(lasting ~5 min) and increased c-Fos (excitatory marker) were observed 
in response to intermittent tFUS, resulting in a peak of ~46.9 % 
enhancement of MEP. Unlike continuous tFUS, which always decreased 
excitability (MEP inhibition up to ~30 % in addition to increased GAD 
65; an inhibitory marker), intermittent and variable length tFUS both 
elicited significant inhibition and facilitation. Each technique spared the 
brain (no GFAP elevations). Intermittent tFUS showed transient efficacy, 
while continuous tFUS displayed sustained suppression; each has its own 
limit on duration and specificity. Clinical potential is shown, and there is 
a need for optimized parameterization. Non-invasive neuro-modulation 
Lee et al. (2024) was used to remotely map cortical hemodynamic re-
sponses in mice for the treatment of neuropathic pain using functional 
ultrasound imaging in conjunction with FUS. The study aimed to 
correlate FUS-evoked hemodynamics with pain intensity and to show 
significant modulation of neuropathic pain responses with 
high-resolution cortical connectivity mapping associated with altered 
functional connectivity in neuropathic models. Yet limitations include 
the reliance on animal models without direct human validation and 
variability of translation of hemodynamic correlations to broader clin-
ical settings.

3. Methodology

The IFURTICS architecture depicted in Fig. 2 is comprised of five 
core processing modules, all of which are dedicated to precision neuro- 
modulation. The first stage is the tFUS neural modulation module, which 
produces ultrasound beams spatially and temporally modulated in order 
to deliver adequate therapy to deep brain regions with high precision by 
minimizing energy dissipation via pressure wave integrals. Neural ac-
tivity is captured dynamically — with fMRI or NIRS — by the real-time 
imaging integration layer, which performs advanced signal processing 
to improve spatial resolution while minimizing noise. These data are fed 
into the closed-loop feedback mechanism consisting of adaptive algo-
rithms computing instantaneous adjustments to stimulation parameters 
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based on correlating imaging feedback with neural responses. The 
optimization engine refines targeting errors and suppresses off-target 
stimulation using regularized loss functions by aligning theoretical 
and detected activation profiles. Finally, the therapeutic evaluation 
module evaluates efficiency by determining the amount of neural acti-
vation that was seen during stimulation and comparing that to the 
amount of stimulation used, enabling neural activation with maximum 
outcome and minimum collateral effects. The combination of these 
processes results in a robust, adaptive architecture for precise real-time 
brain stimulation.

3.1. Neural activity modulation

The tFUS’s role is to deliver precisely focused ultrasound energy to a 
modulate activity of a feed (i.e. to do focused neuro-modulation without 
opening the skull). Several steps are included in this modulation that 
comprises the generation of focused ultrasound waves from spatially 
and temporally modulated beam profiles. Such ultrasound beam profile 
(Mace et al., 2013) B(f , θ) is computed on a per target depth/frequency 
(f) and angle (θ), so as to ensure minimal energy dissipation. Within the 
beam propagation, as well as gain functions and boundary constraints, 
the integration over the ultrasound source region R allows for precise 
focus on the desired neural region while avoiding neighboring 
structures.

Mathematical expressions for computing any point of induced pres-
sure wave at the target location with contributions from all source ele-
ments over the region R are as follows.

Initially the propagation (ϸ) of sound wave (in medium) is computed 
as, 

∇2 • ϸ(x,y, z, t) − ∂2ϸ(x,y, z, t)
/

∂t2 • c2 = 0 (1) 

Now, the calculation of the propagation of sound in a medium 
through the Fourier transform of the pressure wave in the frequency 
domain,ϸ̂(x, y, z,ω), which is expressed as, 

ϸ(x, y, z, t) =
∫ ∞

− ∞
ϸ̂(x, y, z,ω) • eiωtdω (2) 

From temporal modulation, the Harmonic oscillation term (eiωt) is 
integrated in Eq. (2). The pressure field is later computed in the fre-
quency domain as, 

ϸ̂(x, y, z,ω) =

∫

R
B(f , θ) • ₲(x, y, z)dR (3) 

Eq. (3) aids to represent the beam profile B(f , θ)and propagation gain 
coordinates ₲(x, y, z) to take into account the ultrasound source con-
tributions that contributes to the final pressure wave at the target, which 
is expressed as, 

ϸ(x, y, z, t) =
∫

R
B(f , θ) • ₲(x, y, z) • eiωtdR (4) 

These computations are composed to build a progressive basis from 
which the final representation of the pressure wave is formed. Thus, 
during the final computation of the pressure wave at the target, the 
energy is delivered accurately, which forms the basis of real-time im-
aging feedback for dynamic monitoring and regulating the stimulation 
parameters in the following steps.

3.2. Functional imaging integration (FII)

In the case of tFUS, neural responses are measured in functional 
imaging data in real time (i.e fMRI or NIRS) while acquiring tFUS 
application. Further, this scheme is governed by an intensity function 
that incorporates spatial frequency (τ), noise reduction, and temporal 
dynamics, producing high fidelity records of subtle neural modulations 
(Mitra and Pesaran, 1999). Adaptive techniques adapt the kernel Ɽ(x) to 
decimate noise and enhance signal clearness.

The computational procedure of this imaging integration involves 
signal dynamic processing acquired from neural modulation and esti-
mating resolution matrix for spatial and contrast characteristics.

The hemodynamic response ի(x, y, z, t)is integrated over the stimu-
lated section (φ) and assigned a weightage via a spatial 
sensitivity,Sω(x, y, z), thus deriving dynamics of neural activity sig-
nal

(
Dσ(t)

)
as, 

Dσ(t) =

∫

φ

Sω(x, y, z) • ի(x, y, z, t)dφ (5) 

Now, the resolution matrix R(τ, γ)contains spatial frequency terms 
(
Sf (τ)

)
and contrast modulation terms (Cm(γ) ) for every imaging 

modality. 

R(τ, γ) =
∑F,M

f=1,m=1

[
Sf (τ) • Cm(γ)

]
(6) 

Therefore, the real-time imaging intensity is computed by integra-
ting,R(τ, γ), Dσ(t) and the Ɽ(x) over the imaging field-of-view (V) given 
as, 

Iactual(t) =
∫

V

Dσ(t) • R(τ, γ) • Ɽ(x)dV (7) 

3.3. Closed-loop feedback process (CLFP)

Quantitative real-time imaging data are analyzed and used to 
dynamically adjust the parameters in this closed-loop system. It corre-
lates Ɋ(t)immediate neural response variations with stimulation pa-
rameters, by computing the derivative of signal intensity (Eastwood 

Fig. 2. Architecture of IFURTICS.
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et al., 2003),∂Iactual(t)
∂t . The computations in Eq. (8) guarantee optimal 

stimulation patterns with respect to instantaneous feedback for the 
purpose of increased precision. 

Δã(t) = Ƒ • [∂Iactual(t)/∂t ] + (Ɋ(t) ) • ω (8) 

Eq. (8) adjust the ultrasound parameters Δã(t) with the use of Ƒ 
feedback gain proportional to Iactual(t) changes, and correlation coeffi-
cient factor Ɋ(t) between the neural response and simulation parameters 
with optimal weighting factors (for correlation precision).

3.4. Optimization of targeted neuro-modulation (OTN)

The Closed-Loop feedback process interacts sequentially and adap-
tively with the optimization of targeting processes to precisely and 
adaptively neuro-modulate the nervous system. The Closed-Loop feed-
back process takes advantage of real-time functional imaging data to 
observe neural response during the application of tFUS. This means that 
stimulation parameters such as intensity, frequency, and beam focus are 
adjusted dynamically according to deviations between expected or 
observed neural activity patterns. In order to provide accurate stimu-
lation, this real-time adaptation must be maintained, particularly in the 
face of physiological variability.

The feedback loop then feeds the optimized parameters into the 
optimization of the targeting procedures, wherein the theoretical acti-
vation profiles T(x) and the observed neural response D(x)are compared 
to minimize off-target effects O(x)and increase targeting precision 
(McCormick et al., 2020). The process is further refined with advanced 
loss functions (℮) with regularization parameters (γ) to further target 
stimulation and to align the intended stimulation area with the actual 
activated regions. The feedback-driven adjustments, in combination, 
shape and improve the optimization process to form a cohesive system 
that iteratively improves the accuracy and the safety of the 
neuro-modulation. Eq. (9) exhibits the computation overall error (℮) 
that involved in the optimization process. 

℮ = min
{

γ •
∫

Δ
O(x)2dΔ+

∫

Δ
[T(x) − D(x) ]2dΔ

}

(9) 

Fig. 3(a and b) shows theoretically and observed neural activation 
profiles with two samplings (a and b) for a 40-s time span, as signal 
pulses represented by discrete binary values taking on values 1 (odd 
time steps) and 0 (even time steps), with the theoretical profile alter-
nating strictly between 1 and 0. Stochastic perturbations to the observed 
profile are also observed in order to make a degree of stochastic varia-
tion, representing likely differences due to neural noise, dynamic 
physiological variability, or sometimes hardware-caused measurement 

errors.
All time steps contain the signal pulse duration; thus, both profiles 

are temporally aligned for direct comparison. In order to imitate the 
sources of noise (a common occurrence in neuro-modulation systems) 
for observed variations, they are probabilistically modeled. Fig. 3b 
shows a comparison of theoretical and measured neural activation 
profiles between differing pulse durations and colors to bring these 
differences into focus. The observed pulse profile also contains sto-
chastic variability, which deviates from the ideal due to non-ideal real- 
world conditions, while the theoretical profile cycles through every 
pulse duration, being active for two consecutive time steps (2 consecu-
tive time steps are ’on’, then ’off’ for two consecutive time steps, etc.) 
Blue points mark the intersection between theoretical and observed 
profiles, whereas green marks those that don’t agree. This visualization 
helps to reveal systematic error or inconsistency in neuro-modulation 
targeting and enables refined real-time feedback and optimization al-
gorithms, ultimately contributing to enhancement in precision on a 
neuro-modulation system.

From a technical point of view, this visualization supplies a complete 
error quantification between theoretical and observation neural 
response and can be used as a back-end diagnostic to assess the accuracy 
of neuro-modulation targeting. The outcome shows discrepancies, 
which evidence their importance by necessitating dynamic real-time 
feedback mechanisms like those included in a closed-loop feedback 
process to adjust stimulation parameters and reduce off-target effects. 
Additionally, the various pulse patterns for easy assessment of phase 
coherence and amplitude consistency are both important landmarks in 
distributed neural activation assessment.

This analysis is especially conducive to exploring the precision and 
reliability of the proposed study. Researchers can fine-tune system pa-
rameters, verify the performance of optimization algorithms and make 
sure targeted neuro-modulation is both adequate and safe by identifying 
and quantifying deviations in the activations between theoretical pre-
dictions and observed properties. Furthermore, this method effectively 
enables the validation of real-time imaging integration and optimization 
procedures to function together and augment therapeutic outcomes in 
neuro-modulation studies. Strong empirical evidence in favor of the 
robustness of the system under investigation is provided by the ability to 
detect and correct discrepancies.

3.5. Optimization engine and the derivations of loss function

The IFURTICS framework provides an optimization engine to 
accomplish high-precision Neuro-Modulation: this engine dynamically 
adjusts the stimulation parameters to minimize the off-target effects 
while maximizing the therapeutic efficacy. The system operates as a 

Fig. 3. a and 3b. Samples of Error Quantification between Observed and Theoretical Neural Responses.
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closed loop that continuously integrates real-time in vivo neural feed-
back from functional imaging (fMRI and NIRS) to refine the parameters. 
This optimization is built around advanced loss functions which quan-
tify differences between actual observed neural responses and theoret-
ical activation profiles. The loss function is defined as, 

L = ‖UT − UO‖
2
+ ξ • Ɽ(θ) (10) 

From (10), UO and UT represents the intended neural activation 
pattern and the real-time observed neural activity, respectively. Ɽ(θ)
indicates the regularization term that penalizes excessive parameter 
adjustments to avoid overfitting. The regularization weight ensures 
balanced adaptation without compromising targeting precision. The 
Dice Similarity Coefficient is also used by the optimization engine to 
gauge the overlap of targeted and activated regions. This metric gua-
rantees that the neural stimulation is restricted as explicitly as possible 
to the desired place. Additionally, dynamic ultrasound adjustment of the 
parameters is performed through feedback-controlled proportional 
feedback gain and correlation coefficient.

As such, the approach enables the optimization engine to iteratively 
minimize the loss function by matching stimulation delivery with real- 
time neural feedback, guaranteeing a high degree of targeting accu-
racy, reduced off-target effects and improved therapeutic outcomes.

4. Process investigation and analysis

The IFURTICS framework, which is aimed to integrate fMRI and 
NIRS datasets, is intended to take advantage of the complementary 
strengths of both modalities to precisely neuro-modulate. The following 
technical steps achieve synchronization via temporal alignment, spatial 
co-registration, signal normalization, data fusion via feature extraction, 
feedback synchronization, and closed-loop control integration.

In Section 2, all four existing systems/techniques - LIFUP, LIPUS, 
LI–FUS, and IDNS - are considered for performance evaluation of the 
proposed IFURTICS framework. Their established use in noninvasive 
neuro-modulation and broad range of mechanisms of action renders 
these techniques good candidates for establishing a robust comparative 
baseline. They are well documented in the literature and used both 
experimentally and clinically by LIPUS, LI-FUS, LIFUP and IDNS, against 
which novel approaches like IFURTICS can be compared. LIFUP and 
LI–FUS are widely considered effective tools for targeting specific brain 
regions with high spatial precision and, thus, an excellent benchmark of 
IFURTICS’s targeting accuracy. Pulsed stimulation with LIPUS has the 
ability to enhance neuronal excitability and, as such, provides insight 
into attributes of the proposed system’s temporal modulation capabil-
ities. As a relevant comparator, IDNS has directionality and flexibility 
intrinsic to its design and can be used to evaluate real-time feedback and 
adaptive control mechanisms. Assessment of these parameters will 
guarantee a comprehensive evaluation of the efficiency of IFURTICS 
compared to existing methods. In addition, it is always essential to 
configure the empirical parameters for a validation of any model/ 
strategy; thus, Table 1 represents such specification that plays a deeper 
role in the working processes of proposed IFURTICS.

4.1. Dataset utilized

For evaluation purposes, the proposed approach is tested using fMRI 
data from Gagan, (2019), Locally Linear Embedding (LLE) and fMRI 
Feature Selection for Psychiatric Classification datasets. These datasets 
provide the neuroimaging needed to assess the efficacy of the proposed 
neuro-modulation techniques. This data represents dynamic brain ac-
tivity (enabling the study of functional connectivity and neural pat-
terns). Based on the referenced studies, fMRI data was used to extract 
informative features for psychiatric classification, with a reduction of 
dimensionality and producing interpretable neural activity patterns 
using techniques such as LLE (Chen and Liu, 2011). Furthermore, 

dataset like the Attention-Deficit/Hyperactivity Disorder (ADHD)-200 
Global Competition provides lots of resting-state fMRI scans, allowing 
the creation and validation of diagnostic models for disorders like 
ADHD. The proposed approach hopes to harness detailed neural activity 
information drawn from fMRI data to enhance the accuracy and efficacy 
of neuro-modulation strategies.

In addition, the study also utilized the NIRS dataset (JaeyoungShin, 
2017) that offers detailed hemodynamic responses of participants per-
forming cognitive tasks such as n-back, word generation (WG), and 
discrimination/selection response (DSR). With high spatial resolution 
measurements of deoxygenated (HbR) and oxygenated (HbO) haemo-
globin concentrations (Yüksel et al., 2023) across frontal, motor, pari-
etal, and occipital brain regions, the dataset provides data from 26 
participants. Each task was carefully designed to elicit specific neural 
activations with the corresponding metabolic changes captured by NIRS 
data. Low pass filtering was employed to segment the epoch, remove 
noise, and correct the baseline to have clean and reliable data. It pro-
vides a necessary feed for testing the IFURTICS model in the IFURTICS 
system by allowing real-time evaluation of neural modulation accuracy 
and off-target effects during task execution. Its highly structured form 
enables the carrying out of robust performance benchmarking of avail-
able neuroimaging analysis techniques. Some of the core features uti-
lized from both datasets are listed in Table 2.

The study uses technically robust datasets (standardized fMRI and 
NIRS datasets) that are highly generalizable. Sample sizes are large, and 
the sample is diverse; their participants are of different age groups and 
genders, and clinicians are present among them, ensuring that the 
learnings are neither limited nor biased towards a particular de-
mographic. LLE was used for dimensionality reduction in the fMRI 
dataset, thus allowing the model to learn complex neural dynamics 
associated with heterogeneous populations. Furthermore, the NIRS 
dataset contains data for cohorts performing different cognitive tasks (e. 
g., n-back and discrimination/selection response) and recording diverse 
brain activity patterns. The diversity of the data in the IFURTICS 
framework makes sure that it is always very thoroughly validated in 
multiple neuro-physiological conditions. Additionally, low pass filtering 
and noise correction applied during advanced preprocessing further 
cleanse the signal for a more reliable dataset. The dataset’s size, di-
versity, and technical depth are sizeable and diverse and support the 
generalizability and clinical applicability of this study collectively.

Table 1 
Experimental Specification of IFURTICS.

Component Parameters Optimal 
Specifications

tFUS Ultrasound Frequency 0.5–1.5 MHz
Pulse Repetition Frequency 1–10 Hz
Beam Intensity ≤ 720 mW/cm2

Focal Region Diameter 2–4 mm
FII Spatial Resolution (fMRI) 1–2 mm3 voxel size

Temporal Resolution (NIRS) 0.5–1 s
Noise Suppression Threshold < 10 % signal 

deviation
Imaging Latency ≤ 100 ms

CLFP Feedback Adjustment Latency ≤ 50 ms
Gain Parameter 0.8–1.2
Error Tolerance ≤ 5 %

OTN Dice Similarity Coefficient (Φ) ≥ 0.85
Off-Target Activation (%) ≤ 15 %
Regularization Weight (ζ) 0.1–0.3

Therapeutic 
Evaluation

Effect Size (Cohenʹs(cH) ) ≥ 0.8
Functional Connectivity 
Strength

1.5–2.0

Neural Activity Intensity 1–3 % (z-score)
Cerebral Blood Flow Change 5–15 ml/100 g/min
Neural Activation Area 50–200 mm2
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4.2. Integration and implementation

The methodologies used for comparison in the study were grounded 
in rigorous technical evaluation, focusing on quantifiable performance 
metrics for targeting accuracy, off-target activation percentage, spatial 
resolution, and temporal modulation efficiency. Standardized datasets 
from fMRI and NIRS were employed across all methods to ensure con-
sistency in testing conditions. Computational analyses incorporated 
real-time functional imaging integration and closed-loop feedback for 
IFURTICS, while baseline techniques (LIPUS, LI-FUS, LIFUP, and IDNS) 
were assessed using their native targeting mechanisms. These four 
paradigms of neuro-modulatory non-invasive stimulation were chosen 
for comparison as they had been clinically well established and were 
commonly employed in practice. Spatial precision and safety bench-
marks for LIPUS and LI-FUS are presented, while temporal modulation 
capabilities are emphasized for LIFUP. Real-time, multi-target stimula-
tion has a relevant comparison in IDNS. These represent a diverse set of 
technical approaches, each of which is well suited to evaluate IFURTICS 
advancements in targeting accuracy, off-target reduction and thera-
peutic outcomes. Additionally, Euclidean Error Distribution (EOD) 
analysis was used to quantify targeting precision, providing a robust 
technical foundation for comparing IFURTICS against existing neuro- 
modulation systems.

Validation and analysis of the proposed IFURTICS framework are 
performed using a combination of functional imaging analysis, optimi-
zation validation, and statistical analysis utilizing state-of-the-art soft-
ware and tools. For preprocessing and ROI extraction from fMRI and 
NIRS data, functional imaging analysis is performed using SPM12 
(Statistical Parametric Mapping) (Friston, 2003) and FSL v6.0 (FMRIB 
Software Library), respectively. They prevent errors that can lead to 
inaccurate mapping of neural activation patterns as well as off-target 
effects. MATLAB R2023a is used to implement Optimization Valida-
tion by taking advantage of its robust computational capabilities to 
simulate the closed-loop feedback mechanism and calculate the key 
metrics to record, such as the dice similarity coefficient (Φ) (Thada and 
Jaglan, 2013) and percentages of off-target activation. Python v3.10 
(Statsmodels v0.13.1) runs the Statistical Analysis, which computes ef-
fect sizes (Cohen’s (cH)) and carries out hypothesis testing of outcomes 

in therapeutic comparisons using libraries like Scipy (v1.9) and stats 
models (v0.13.2). Collectively, these software tools and versions provide 
precision, reproducibility, and reliability for the validation and analysis 
processes of IFURTICS.

In the study’s simulative analysis, the hardware components are 
simulated virtually by means of high-performance computing systems. 
Acoustic propagation software (MATLAB-based Field II v3.30) is used to 
simulate the systems, emulating the focusing of the beam and spreading 
of energy. The high-dimensional functional imaging datasets (e.g., fMRI 
and NIRS) and the real-time feedback processes are processed using 
computational platforms with GPUs (GeForce RTX 4060). By utilizing 
these virtualized hardware components, we can simulate and validate 
the proposed IFURTICS framework without physical deployment and 
conduct robust performance evaluation in a controlled environment. 
Using the computational strategies shown in Table 3, the IFURTICS 
proposed system can be compared with existing techniques in terms of 
Targeting Accuracy, Off-Target Effects, Temporal Modulation, and 
Therapeutic Outcomes.

This initial investigation begins using EOD (Bonvard et al., 2018), 
which is a critical metric to quantify variability and accuracy, i.e.’, the 
’rate’ of targeting deep brain structures during stimulation. In this way, 
it provides a measure of the precision of neuro-modulation methods by 
preventing off-target effects and achieving the most therapeutic out-
comes with the help of the proposed IFURTICS framework. For EOD 
analysis, four stimulation methods: The tFUS-GC (Guided Control) 
approach utilizes guided control mechanisms to enhance ultrasound 
targeting precision for neuro-modulation and two control configura-
tions, Decoupled-Sham and tFUS-GP (Guided Precision). The right 
placement in deep structure stimulation is important to accurately 
deliver energy to a targeted brain area and reduce deep brain stimula-
tion errors. Control condition Decoupled-Sham (Kosnoff et al., 2024) is a 
condition in which stimulation is decoupled or ’sham’ so that it does not 
actively deliver focused energy to the target region. Eliminating placebo 
effects and proving the efficacy of other stimulation methods where 
necessary require this, given that tFUS-GP allows for enhanced precision 
with the incorporation of advanced imaging and feedback mechanisms 
that are necessary to reduce off-target effects and increase therapeutic 
accuracy in clinical applications.

The EOD over varying density of four stimulation methods is shown 
in Fig. 4. The progress over time in targeting accuracy of Decoupled- 
Sham, tFUS-GC, Non-Modulated, tFUS-GP is shown. While there are 
other methods of label placement, most applications use the Non- 
Modulated method, which has the largest distribution of average error 
of around 50 %, largely indicative of off-target side effects related to 
lack of guided control. However, tFUS- GC’s average error is reduced to 
40 %, showing how guided control mechanisms — as they narrow the 
error range. Further reduction of the error to 35 % is accomplished 
under the Decoupled-Sham condition, which therefore serves again as a 
benchmark control, yet it is not an active precision optimizer. tFUS-GP 
represents the most refined approach with the lowest average error 
(25 %) and tight distribution indicative of its precision through inte-
grated imaging and real-time feedback. These results suggest that the 
proposed IFURTICS framework, which uses closed-loop control and real- 
time functional imaging to decrease Euclidean errors, improve targeting 
accuracy, and reduce off-target effects, can significantly improve pre-
cision neuro-modulation.

The results from Table 4 point to IFURTICS as the most advanced and 
effective system for targeted neuro-modulation, closely matching the 
study objective — to improve targeting accuracy, safety and therapeutic 
outcomes. IFURTICS provides superior spatial resolution (1–2 mm³), 
minimal targeting deviation (≤ 2 mm), and activation specificity (≥
95 %). With a high Φ(≥ 0.85) guaranteeing a high degree of overlap 
between theoretical and observed Dσ(t), the off-target effects are ≤ 5 %. 
With superior localization precision and boundary sharpness (≥ 90 %), 
which far exceeds that of other systems like LIPUS or LI-FUS, the 

Table 2 
Core Features Utilized from the Datasets.

Key Features Description

Functional Connectivity Dynamic brain activity patterns between 
regions, enabling psychiatric classification.

Neural Activity Intensity Amplitude of Blood Oxygenation Level- 
Dependent (BOLD) signals reflecting neural 
engagement.

Dimensionality-Reduced Features Reduced feature space using Locally Linear 
Embedding (LLE) for better interpretability and 
model training.

Task-Based Activation Profiles Region-specific neural activations during tasks, 
aiding in functional connectivity analysis.

Resting-State fMRI Data Baseline connectivity metrics for disorders like 
ADHD.

Hemodynamic Response (HbO 
and HbR)

Concentrations of oxygenated and 
deoxygenated hemoglobin across frontal, 
motor, parietal, and occipital regions.

Cognitive Task-Specific Features 
(e.g., n-back, WG, DSR)

Neural activation patterns elicited by specific 
cognitive tasks.

High Spatial Resolution Signals Spatially detailed neural activity across critical 
brain regions.

Temporal Dynamics Time-series of hemodynamic changes providing 
insights into real-time neural modulation.

Noise-Reduced Epoch Data Cleaned signals using low-pass filtering for 
reliable evaluation.

Therapeutic Efficacy Motor Function Improvement (MFI), Symptom 
Reduction Scores (SRS), Quality of Life 
Measures (QLM), Cognitive Task Performance 
(CTP)
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advanced integration of real-time functional imaging with closed-loop 
feedback mechanisms offers the possibility of novel and unprece-
dented treatments that would not be competently performed with other 
systems. The results emphasize that IFURTICS is the most reliable 
framework for precise and effective neuro-modulation and covers the 
identified limitations that are critical to current approaches, as its focal 
region can be more extensive and energy dispersion smaller than 
existing works.

The results of the targeting accuracy outcomes in Table 5 are in 
accordance with the study’s objective of having precise and reliable 
neuro-modulation through IFURTICS. Targeting accuracy was high, 

92 % for the prefrontal cortex and 91 % for the motor cortex, aligning 
the framework in accordance with these demonstrations to include ex-
ecutive function, motor control, and emotional regulation. Accuracies 
reverting to the moderate, such as 86 % for the Somatosensory Cortex 
and 85 % for the ventricles, are indicative of the difficulty of accurately 
modulating larger or anatomically complex areas but are still clinically 
meaningful. The high statistical significance of the targeting accuracy 
across most regions (low p-values <0.05) validates the statistical sig-
nificance of the targeting accuracy and, thus, the robustness of real-time 
functional imaging and closed-loop optimization mechanisms within 
IFURTICS. Moreover, the computational time for each region varies 
from 12 ms in the prefrontal cortex to 22 ms in the ventricles and is 
suitable for real-time applications. The system consistently achieves 
efficiency scores above 89 %, indicating high performance with little 
variability across different regions whilst maintaining reliable and ac-
curate neuro-modulation outcomes with minimal latency. Thus, the 
system’s technical consistency can provide the basis for a fruitful tar-
geting of deep and functionally diverse brain structures, which is crucial 
for the successful implementation of precision neuro-modulation.

From Table 6, which exhibits an optimal computational time and 
efficiency values highlight IFURTICS’s superior performance in real- 
time neuro-modulation. With an optimal computational time of 16 ms 
and an efficiency of 93 %, IFURTICS significantly outperforms alterna-
tive methods due to its advanced closed-loop feedback and dynamic 
optimization engine. In contrast, methods like LIPUS (38 ms, 75 %) and 
LIFUP (43 ms, 70 %) lack real-time adaptive control, resulting in slower 
processing and reduced efficiency. This demonstrates that IFURTICS’s 
integration of real-time functional imaging and adaptive stimulation 
adjustments ensures faster, more precise and energy-efficient neuro- 
modulation.

The outcome of off-target effects for different brain regions is illus-
trated in Fig. 5, which demonstrates the advantages of the proposed 
IFURTICS framework compared to existing methods while achieving the 
goal of reducing unplanned neural activation for efficient neuro- 
modulation. The lowest off-target effects are demonstrated by IFURT-
ICS, down to 5 % in the Prefrontal Cortex and down to 8 % in the 
Amygdala and Ventricles, making IFURTICS highly specific. Conversely, 
the off-target effects of these methods range from 19 % in the Amygdala 
to 20 % in the Ventricles, indicating significant shortcomings in man-
aging energy dispersion and activation precision. The performance of LI- 
FUS and IDNS meanwhile corroborates IFURTICS’s superior moderate 
performance through the incorporation of real-time imaging feedback 
and closed-loop optimization. These results highlight that IFURTICS can 
address crucial problems in minimizing off-target effects, enabling safer 
and more effective neuro-modulation outcomes in a variety of chal-
lenging and complex brain regions.

Temporal factors drive the accuracy of neuro-modulation through 
the delivery of controlled and precise stimulation. The delivery of en-
ergy over time is determined by pulse repetition frequency (PRF) and 
pulse duration (PD), with shorter and better-timed pulses improving 
spatial precision. Real-time adjustments to neural response are made 
possible by temporal resolution (TR), which also increases their adapt-
ability and accuracy. System temporal stability (TS) is needed to 
maintain consistent activations and prevent unintended fluctuations, 
and signal latency (SL) has an effect on the timeliness of the system 
feedback. In combination, all these factors are working towards 
achieving precise and targeted stimulation without the off-target effect, 
resulting in better therapeutic outcomes.

Table 7 shows the temporal modulation outcomes that IFURTICS 
performs well with respect to precision and adaptability, which follows 
the goal of the study of developing targeted neuro-modulation. IFURT-
ICS provides the highest Pulse Repetition Frequency (8 Hz) and the 
shortest Pulse Duration (2 ms) for highly efficient and precise energy 
delivery with minimum temporal overlap. Temporally (1 ms), it has a 
resolution capable of real-time feedback and rapid feedback loops, 
which is much faster than LIPUS (~5 ms) and LIFUP (~8 ms). IFURTICS 

Table 3 
Performance Metrics and Computational Strategies.

Metrics Descriptions Computation

Targeting 
Accuracy

Measures of the accuracy 
of neural targeting 
indicate the precision by 
which a brain region was 
activated. To quantify 
overlap between 
theoretical and observed 
regions, the dice 
similarity coefficient (Φ) 
is computed. Higher 
values of Φ indicate 
higher accuracy of the 
targeting.

Φ =
2 × |T(s) ∩ D(s) |
|T(s) | + |D(s) |

T(s) and 

D(s)signifies the region size of both 
temporal and observed ones with 
their intersection.

Off-Target 
Effects

Off-target effects are a 
measure of unintended 
activation elsewhere than 
in the targeted region. 
Computing the off-target 
activation percentage 
(OA) compared to total 
observed activation(DT)

after determining which 
portion of the cortical 
region does not 
correspond to that 
intended with the 
functional imaging data 
(Z). Lower levels of P_off 
indicate less off-target 
effect.

OA =
|Z|
|DT|

× 100

Temporal 
Modulation

It addresses the system’s 
ability to modulate neural 
responses across time. 
Once the neural activity 
signal 

(
Dσ(t)

)
is extracted 

from functional imaging, 
its frequency 

spectrum
(

fsp
)

is then 

computed by the Fourier 
Transform. The stability 
of modulation 
frequencies and temporal 
response bandwidth are 
also evaluated.

fsp =
∫∞
− ∞

(
Dσ(t) • e− iωtdt

)

Therapeutic 
Outcomes

Clinical efficacy of neuro- 
modulation is assessed by 
therapeutic outcomes. 
Effect size (Cohen’s(cH)) 
of observed therapeutic 
improvement is 
computed by defining a 
set of clinical outcome 
metrics (motor function 
improvement, symptom 
reduction scores, 
cognitive task 
performance), etc. The 
therapeutic efficacy is 
better for higher d values.

cH =
μ1 − μ2̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(
V2

1 + V2
2
)− 2

√ μ and V 

denotes the means and variance 
among pre- and post-treatment 
outcomes.
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has a low signal latency (50 ms), which facilitates seamless closed-loop 
control that is essential for maintaining accuracy during dynamic neural 
activation. Additionally, the system has the best Temporal Stability 
(95 %), meaning that the modulation remains consistent and reliable 
(compared to LIFUP − 70 %, IDNS − 75 %). IFURTICS’s innate opti-
mization of temporal dynamics reveals an improvement in IFURTICS’s 

Fig. 4. Evaluation of EOD over Varying Density of Four Stimulation Methods.

Table 4 
Comparison of Targeting Accuracy Attributes over the IFURTICS, LIPUS, LI-FUS, LIFUP and IDNS Platforms for Targeted Neuro-modulation.

Attributes IFURTICS LIPUS LI-FUS LIFUP IDNS

Spatial Resolution (mm3) 1–2 3–5 2–4 4–6 5–8
Focal Region Diameter (mm) 2–4 5–8 4–6 6–10 8–12
Activation Overlap (Φ) ≥ 0.85 0.70–0.75 0.75–0.80 0.60–0.65 0.65–0.70
Targeting Deviation (mm) ≤ 2 5–8 4–6 7–10 6–9
Localization Precision (%) ≥ 95 75–80 80–85 65–70 70–75
Depth Penetration Capability (cm) High (≥ 5) Moderate (3) High (4) Moderate (3) Moderate (3)
Energy Dispersion (%) ≤ 5 10–15 8–12 12–18 10–14
Activation Specificity (%) ≥ 95 70–75 80–85 65–70 75–80
Boundary Sharpness (%) ≥ 90 60–65 70–75 55–60 65–70
Signal-to-Noise Ratio (SNR, in dB) ≥ 40 20–25 30–35 15–20 25–30
Overall Targeting Accuracy ≥ 90 70–75 80–85 65–70 75–80

Table 5 
Targeting Accuracy of IFURTICS for each Brain region along with their respec-
tive p-values.

Brain Region Targeting 
Accuracy (%)

p- 
value

Computational 
Time (ms)

Efficiency 
(%)

Prefrontal Cortex 92 0.01 12 96
Thalamus 90 0.02 15 94
Hippocampus 88 0.03 18 92
Amygdala 87 0.05 20 91
Basal Ganglia 89 0.01 14 93
Motor Cortex 91 0.02 13 95
Somatosensory 

Cortex
86 0.04 19 90

Cingulate Cortex 88 0.03 17 92
Ventricles 85 0.05 22 89

Table 6 
Analysis of Computational Time and Efficiency of IFURTICS, LIPUS, LI-FUS, 
LIFUP and IDNS Platforms.

Method Computational Time (ms) Efficiency (%)

IFURTICS 16 93
LIPUS 38 75
LI-FUS 32 80
LIFUP 43 70
IDNS 36 74
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Fig. 5. Outcome Analysis of Off-Target Effects.

Table 7 
Outcome of Temporal factors across Various Methods.

Temporal Factors IFURTICS LIPUS LI-FUS LIFUP IDNS

PRF (Hz) 8 5 6 4 6
PD (ms) 2 4 3 5 4
TR (ms) 1 5 3 8 4
SL (ms) 50 120 100 150 110
TS (%) 95 80 85 70 75
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temporal characteristics that improve therapeutic precision while 
reducing off-target effects compared to current approaches.

Additionally, utilizing data from over 20 patients (Table 8), IFURT-
ICS is shown to be superior in therapeutic efficacy compared to other 
methods, the goal of the study being the improvement of neuro- 
modulation precision and outcomes. As cognitive task performance 
(CTP), IFURTICS has the highest Motor Function Improvement (MFI- 
85 %), highest Symptom Reduction scores (SRS-90 %), greatest Quality 
of Life Measures (QLM-92 %), lowest variability (SD ≤ 3.2), and the 
largest effect size (cH≥ 1.6) in comparison to all other assessments. In 
contrast, methods like LIPUS and LIFUP show significantly lower im-
provements (Motor Function: Across all comparisons, their occlusion 
precision was low (SD ≤ 5.0; as little as 65 % and 60 %, respectively) 
and further, their occlusion variability was high (SD ≥ 5.0), indicative of 
their lack of targeting precision and flexibility. The real-time feedback, 
closed-loop optimization, and targeting accuracy, the latter of which 
helps provide consistent outcomes across a broad patient population, 
enable the enhanced performance of IFURTICS. These results validate 
IFURTICS’s ability to provide precise, reliable and impactful therapeutic 
benefits to unmet needs of existing neuro- modulation techniques.

Table 9 shows the Outcome of tFUS beam profiles, demonstrating 
IFURTICS’s ability to optimize stimulation parameters for specific neu-
ral targeting. For shallow regions like the Prefrontal Cortex, higher 
frequency (1.0 MHz) and smaller nerve distance (2.5 mm) allow focused 
energy delivery with 95 % energy distribution and only 5 % off-target 
energy. Conversely, for the Basal Ganglia, which are typically located 
more deeply, a lower frequency (0.75 MHz) and a larger focal diameter 
(3.2 mm) are used to reach the deeper structures, with 90 % energy 
incident and 10 % off-target energy expected. The adaptive beam con-
figurations provide the optimum focus and intensity over different brain 
depths, making for more accurate targeting whilst minimizing collateral 
effects.

4.3. Clinical implications

Rigorous targeting of deep brain structures in real-time affords 
modulating of specific neural circuits with little collateral effect, 
improving therapeutic efficacy with safety. By achieving real-time pre-
cision, adaptive and personalized neuro-modulation can be used to 
address individual patient variability and substantially enhance treat-
ment efficacy in disorders of the brain and nervous system, like 
depression, epilepsy, and Parkinson’s disease.

The results have clinical implications, demonstrating IFURTICS’s 
potential to revolutionize non-invasive neuro-modulation while over-
coming the critical limitations of existing approaches. Due to its superior 
targeting accuracy and greatly reduced off-target effects, the system 
makes interventions safer, reducing the chance of unintentional neural 
activation, a necessary requirement for treating disorders like Parkin-
son’s, epilepsy, and depression. With its optimized temporal modulation 
factors comprised of high temporal resolution and low signal latency, it 
provides real-time adaptability for the treatment of dynamic conditions 
like stroke recovery and neuro-plasticity-driven rehabilitation. There is 
a high temporal stability, which guarantees consistent therapeutic out-
comes, minimizing the variability between patients. The option is 
desirable for personalized medicine. Additionally, IFURTICS are able to 
target deep brain structures with minimal side effects, allowing for new 
approaches to treat the hard-to-reach areas of Alzheimer’s and PTSD. 
However, these results also allow us to broaden the range of neurolog-
ical and psychiatric disorders to which neuro-modulation can be applied 
and establish a new benchmark in precision medicine.

IFURTICS achieves an 88 % improvement with minimal variability 
(SD = 2.8) and a high effect size (cH=1.4), indicating strong enhance-
ment in cognitive abilities such as memory, problem-solving, and 
attention. In comparison, other methods like LIPUS (68 %) and LIFUP 
(63 %) exhibit lower performance and higher variability (SD ≥ 5.2), 
reflecting their limited precision in targeting cognitive-related brain Ta
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regions. The superior results of IFURTICS are attributed to its high tar-
geting accuracy and advanced temporal modulation, enabling precise 
activation of regions such as the Prefrontal Cortex and Hippocampus, 
which are critical for cognitive tasks. These findings align with the 
study’s objective to enhance neuro-modulation outcomes comprehen-
sively across motor, cognitive, and quality of life domains.

In advanced conditions, advanced signal processing techniques are 
integrated into the real-time imaging data processing pipeline in 
IFURTICS to ensure precise and adaptive neuro-modulation. First, noise 
reduction using adaptive filtering and low-pass filtering is applied to the 
functional imaging data from fMRI and NIRS to increase signal clarity. 
Resolution matrix computations, which account for contrast and spatial 
frequency variations, allow spatial resolution to be optimized. The 
closed-loop feedback system for the real-time analysis of the processed 
neural activity data that correlates dynamic changes in neural signals 
with neural stimulation parameters is explored. The temporal analysis 
utilizes Fourier transforms, which are applied in the optimization en-
gine, as do regularized loss functions, which minimize discrepancies 
between neural activations observed as compared to targeted neural 
activations, allowing for continued, patient-specific tuning of stimula-
tion intensity and focus.

Real-time deployment of IFURTICS in clinical environments leads to 
ethical issues. They include patient consent and understanding of po-
tential risks of neuro-modulation, including unintended neural activa-
tion. Furthermore, equitable access to this state-of-the-art technology is 
necessary to prevent a situation where those who need it the most lack 
treatment. It is crucial to carefully and continually examine safety over 
the long term and these trends on brain functions in order to maintain 
patient well-being and trust in these sorts of innovative interventions. 
Future research will address issues concerning patient consent, equi-
table access, long-term safety, repeated use effects, and how to limit 
unintended neural activation so that future neuro-modulation technol-
ogies can be developed ethically, accessible, and safely.

4.4. Clinical limitations

The limitation of IFURTICS is in the nature of dependence on 
advanced imaging technologies such as fMRI and NIRS, which may limit 
access in resource-poor settings. Targeting precision can vary anatomi-
cally and physiologically from patient to patient, for example, because of 
skull thickness or variation in brain structure, requiring substantial in-
dividual calibration to achieve successful targeting. Anatomical vari-
ability between patients may require extensive calibration, and while its 
clinical feasibility will require further exploration, the effects of 
repeated usage on hardware and patients are as of yet unexplored.

Further, neuro-modulation can be influenced by patient-specific 
anatomical variability, including differences in skull thickness, brain 
structure and tissue composition. To address these challenges, IFURTICS 
uses its real-time functional imaging integration (fMRI and NIRS) and 
closed-loop feedback system, which dynamically adjusts stimulation 
parameters based on individual neural responses. Furthermore, the 
system’s optimization engine embeds adaptive algorithms and regular-
ized loss functions to drive the stimulation toward patient-specific 
neural activation patterns with the aim of achieving consistent target-
ing accuracy in a wide range of anatomical structures. This makes the 

personal treatments both safer and therapeutically more efficacious.

5. Conclusion and research directions

The proposed IFURTICS framework demonstrates significant ad-
vancements in precision neuro-modulation, addressing critical limita-
tions of existing techniques like LIPUS, LI-FUS, LIFUP, and IDNS. 
Achieving the highest targeting accuracy (≥ 88 %) with minimal off- 
target effects (≤ 6 %), IFURTICS leverages real-time functional imag-
ing, closed-loop feedback, and optimization algorithms to precisely 
modulate deep brain structures. Its superior temporal modulation ca-
pabilities, including the highest pulse repetition frequency (8 Hz), 
shortest signal latency (50 ms), and highest temporal stability (95 %), 
enable real-time adaptability, ensuring consistent neural activation 
patterns. Clinically, IFURTICS delivers the most robust therapeutic 
outcomes, with up to 92 % improvement in quality of life measures, 
90 % symptom reduction, and 88 % cognitive task performance, all 
validated by low variability (SD ≤ 3.2) and large effect sizes (Cohen’s 
d ≥1.6). These achievements underscore IFURTICS’s transformative 
potential for treating complex neurological and psychiatric disorders 
with precision, safety, and efficacy, setting a new benchmark in the field 
of targeted neuro-modulation.

Future work on the IFURTICS is dedicated to improving accessibility 
(real-time imaging) with cost-effective alternatives like deep learning 
(Venkatesan et al., 2023) and reducing operational complexity through 
automated calibrations. In particular, integrating patient-specific 
modeling with adaptive algorithms deals with anatomical variability. 
In addition, computational load, latency, and hardware integration 
challenges that affect the IFURTICS system will be addressed in future 
research to optimize the system. Further increases in real-time precision 
and clinical usability can be achieved by improving processing effi-
ciency and hardware scalability. Furthermore, we also planned to 
discuss portable, scalable versions of IFURTICS, which would broaden 
its range of clinical applicability to resource-poor clinical settings and 
outpatient care
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Table 9 
Empirical Outcomes of tFUS Beam Profiles for Different Neural Targets.

Neural Target Optimal Frequency 
(MHz)

Beam Intensity (mW/ 
cmÂ²)

Focal Region Diameter 
(mm)

Target Depth 
(cm)

Energy Distribution 
(%)

Off-Target Energy 
(%)

Prefrontal 
Cortex

1 700 2.5 2 95 5

Thalamus 0.8 680 3 3.5 92 8
Hippocampus 0.9 690 2.8 4 93 7
Amygdala 0.85 675 2.7 3.8 91 9
Basal Ganglia 0.75 660 3.2 4.5 90 10
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