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ABSTRACT 
Partial Least Squares Regression (PLS-R) was introduced as a method 
for modeling the uptake of six potentially toxic elements (PTEs)- Ba, 
Cd, Cu, Ni, Pb, and Zn- by lettuce, chard, and carrot. Data were 
obtained from a pot experiment where these crops were cultivated in 
urban soils of various characteristics. The models consider soil concen-
trations of PTE, Al, Ca, Fe, K, Mg, Mn, Na, P, S and pH, SOM, CEC, and 
soil texture as predictors. Initially, eighteen metal- and crop-specific 
models with all predictors were developed, using selectivity ratios (SRi) 
to identify influential variables for predicting PTE soil-to-crop transfer. 
Reduced models were then created using only predictors with high 
SRi. Key variables for predicting PTE soil-to-crop transfer included soil 
PTE concentration, pH, Fe and Mn soil concentrations, and soil texture. 
Out of eighteen models, sixteen were suitable for predicting correla-
tions and assessing PTE accumulation in crops, while eight were accur-
ate for quantitative predictions. This study shows that PLS-R is a robust 
method for modeling soil-to-crop transfer of metal contaminants, even 
with multicollinear predictors. PLS-R also helps identify key variables, 
providing insights into the mechanisms of PTE accumulation in crops, 
which is crucial for effective risk assessments.
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Introduction

Urban soils are shaped by a combination of natural biogeochemical processes and 
human-driven impacts, including intensive land modifications, emissions from traffic 
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and industries, and waste disposal, making the urban soils fundamentally different from 
their rural or natural counterparts (Pavao-Zuckerman 2008; Liu et al. 2014; Riddle et al. 
2022; Ribeiro et al. 2023). They often consist of a mix of original soil and excavated 
materials from other sites, often containing waste, resulting in considerable geochemical 
variability over short distances (Beesley et al. 2020). Consequently, urban soils often dis-
play elevated concentrations of many metals, or potentially toxic elements (PTEs), e.g., 
barium (Ba), cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) (Orsini 
et al. 2013; Datko-Williams et al. 2014; Mitchell et al. 2014; Antisari et al. 2015; 
Rouillon et al. 2017; Beesley et al. 2020).

Nonetheless, the expanse of urban areas is significant, with an increasing share of 
the world’s growing population settling in cities. As a fundamental component in 
shaping tomorrow’s sustainable cities, urban farming is often highlighted (e.g. Bendt 
et al. 2013; Langemeyer et al. 2018, 2021). Even at the citizen level, there is a notice-
able rise in involvement in urban gardening, in settings such as community gardens 
or allotments (Bieri et al. 2024). Factors contributing to this trend include easy access 
to affordable fresh produce, health benefits from the moderate physical activity associ-
ated with gardening, and the promotion of sustainable community development and 
social cohesion (Audate et al. 2019; Stubberfield et al. 2022). However, also soils used 
for the cultivation of crops in urban areas typically contain elevated concentrations of 
PTEs (Clark et al. 2006; Szolnoki et al. 2013; Wu et al. 2015). Therefore, initiatives to 
expand vegetable production in these environments should consider the extent to 
which contaminants in the soil may be absorbed by the crops, and which factors that 
influence PTE uptake. This is critical because, for non-occupationally exposed individ-
uals, the soil-crop-human pathway is the primary route of metal contaminant expos-
ure (EFSA 2009, 2010; Tchounwou et al. 2012). To assess health risks, reliable models 
for the prediction of PTE uptake in edible crops are vital. However, the transfer of 
PTEs from soils to crops is complex and not easily modeled. It varies between differ-
ent crop tissues and cultivars (Alexander et al. 2006; Dalcorso et al. 2013; Lima et al. 
2015), and different metals differ in their availability for crop uptake (Ge et al. 2000, 
2002; Bieli�nska and Mocek-Pi�ociniak 2010; Alloway 2014). The availability for uptake 
depends heavily on the metals’ solubility, which is determined by complex, inter-
dependent sorption processes controlling the balance between soluble and adsorbed 
fractions. Main sorbents include organic matter, clay minerals and (hydr)oxides of 
iron (Fe), manganese (Mn) and aluminum (Al) (Gray and Mclaren 2006; Romic and 
Zovko 2011; Suda and Makino 2016; Wang et al. 2019). Other factors that have been 
shown to affect the speciation and retention of metals in soils are the soil pH, cation 
exchange capacity (CEC) and redox potential (Kabata-Pendias 2004; Alloway 2014; 
Antoniadis et al. 2017). The abundance of other cations, mainly the major elements 
calcium (Ca), magnesium (Mg), potassium (K) and sodium (Na), is influential as they 
compete for sorption sites in the soil matrix, and consequently, they play a critical 
role in determining the total cation exchange capacity (CEC) of soils (Kabata-Pendias 
2004; Alloway 2014). These elements are also major nutrients, along with nitrogen 
(N), phosphorus (P) and sulfur (S), and as such decisive for the nutritional status of 
the soil, which, in turn, may influence the geochemical cycling of many PTEs (Kirkby 
2012; Zakari et al. 2021).
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Despite these complexities, various mathematical models have been developed by 
authoritative bodies and researchers to predict the transfer of metals from soils to food 
crops. Empirical models, typically developed based on fitting some sort of least squares 
regression to large data sets with paired soil:crop samples and incorporating various soil 
parameters have been found to be a practicable approach to predicting crop uptake for 
several divalent metals (Hough et al. 2004; Legind and Trapp 2010; Stubberfield 2017). 
The majority of previous studies aimed at developing models to simulate the uptake of 
PTEs by various crops, applying MLR, have considered the soil’s total metal content 
and pH as predictor variables (e.g. Efroymson et al. 2001; McBride 2002). To enhance 
the models, some have also added measurements of additional parameters, e.g., the soil’s 
CEC or its content of organic matter, clays, Fe and/or Mn (hydro)oxides, or exchange-
able Ca and/or Mg (e.g. Hough et al. 2004; R€omkens et al. 2009; Bacigalupo and Hale 
2011; Liang et al. 2013; dos Santos-Araujo et al. 2017; Stubberfield 2017; Xiao et al. 
2018). Some metals, however, have consistently proven more difficult to model (e.g., Pb 
and Cu) than others (e.g., Cd and Zn) (R€omkens et al. 2009; Antoniadis et al. 2017; 
Lundgren et al. 2023).

The most commonly applied approach for modeling the influence of soil geochemis-
try on metal uptake in crops is multiple linear regression (MLR) (McBride 2002; Hough 
et al. 2004; Novotn�a et al. 2015; dos Santos-Araujo et al. 2017; Stubberfield 2017; 
Cavanagh et al. 2019). However, an assumption in linear regression modeling is the 
independence of all predictor variables (James et al. 2013). This aspect is crucial for 
ensuring the model’s reliability, and violations can result in biased estimates and mis-
leading conclusions. Multicollinearity, which occurs when independent variables are cor-
related, essentially violates the requirements of a multiple linear regression (MLR) 
model, rendering it invalid under these circumstances (James et al. 2013; Kuhn and 
Johnson 2013). Since the geochemical sorption/desorption processes that control PTE 
phytoavailability involve multiple interdependent soil parameters, partial least squares 
regression (PLS-R) is an appropriate analytical approach to incorporate them effectively. 
PLS-R combines and generalizes features from principal component analysis (PCA) and 
MLR and is suitable for analyzing datasets with mutually correlated predictors, or where 
the number of predictors is close to or exceeds the number of observations (Wold et al. 
2001; Carrascal et al. 2009; Hastie et al. 2009; Kuhn and Johnson 2013). It has previ-
ously been applied successfully to model chemical reactions and complex ecological 
data, such as the relationships between environmental gradients and species distribution, 
making it a philosophically suitable approach for modeling processes that influence soil- 
to-plant metal transfer (Wold et al. 2001; Carrascal et al. 2009) The PLS-R method can 
also aid in identifying predictors highly relevant to the system under investigation – 
specifically, those variables that are crucial for explaining variations in the modeled 
response variable. The variable selection process enables the development of simpler, 
more effective models and may enhance our understanding of complex systems 
(Andersen and Bro 2010; Mehmood et al. 2012; Farr�es et al. 2015; Mehmood et al. 
2020#C/a>).

This study introduces partial least squares regression (PLS-R) to predict the transfer 
of six divalent metals (Ba, Cd, Cu, Ni, Pb, Zn) from soil to three common garden crops: 
lettuce (Lactuca sativa L. var. Crispa), chard (Beta vulgaris L. gr. Leaf Beet), and carrot 
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(Daucus carota L.) – while identifying key soil variables. We used data from a green-
house experiment where the test crops were grown in urban soils with diverse geochem-
ical characteristics (with several multicollinear variables) and varying levels of 
contamination.

Materials and methods

Soil and crop data preparation

Soil sampling
Soil samples for the cultivation experiment were collected from active urban allotment 
plots in inner city areas of 6 European cities. The selection of sampling sites was 
affected by the timing of the project, which overlapped with the Covid pandemic and 
restricted access to many areas. Consequently, we were referred to allotment areas in 
the cities we aimed to include, based on where access was granted. This resulted in 22 
different sites: 7 from Copenhagen in Denmark; 5 from Widnes in the UK; 4 from 
Malm€o in Sweden; 3 from Madrid in Spain; 2 from Pribram in the Czech Republic, and 
1 from Berlin in Germany. After removing litter and/or vegetation, topsoil samples 
were taken from the upper 20 cm using a stainless-steel hand trowel. Soil samples were 
taken from each allotment area in multiple replicates and then combined into a single 
composite sample for each of the 22 allotments. Upon arrival to the laboratory, bulk 
samples were air dried, sieved to < 2 mm, and thoroughly mixed. Thereafter, three 1- 
liter pots were prepared for each soil-crop combination, and a sub-portion of each soil 
sample was set aside for chemical analyses.

Crop cultivation
The cultivation experiment was conducted indoors under controlled conditions, ena-
bling more accurate regulation and investigation of soil factors and their influence. 
Cultivation of lettuce (Lactuca sativa L. var. Crispa), chard (Beta vulgaris L. gr. Leaf 
Beet), and carrot (Daucus carota L.) was carried out in a growth room at Linnaeus 
University in Kalmar, Sweden, from late December 2020 until early May 2021. Chard 
and lettuce were cultivated in all 22 soils and harvested after 8 wk, but only 21 soils 
produced sufficient biomass for analysis. For carrots, adequate biomass for further ana-
lysis was obtained from 17 soils. For carrots, which require more time to reach an 
edible size, harvesting was done after 16 wk. Details about the soil experimental set-up, 
soil preparation and vegetable cultivation are described by Qvarforth et al. (2022). After 
harvest, the crop samples were rinsed in deionized water prior to drying at 60 �C for 
18 h. The dry matter content of the crop samples was determined during sample 
preparation.

Chemical analyses
Approximately 0.50 g of each soil and crop sample was placed in 50 mL poly-propylene 
tubes and sent to the commercial laboratory ALS Scandinavia AB in Luleå, Sweden, for 
digestion and determination of trace elements (Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, 
Ni, P, Pb, S and Zn), using double-focusing sector field ICP-MS (ICP-SFMS). For the 
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soil samples, pseudo-total concentrations were determined after Aqua Regia (AR) diges-
tion, where the samples were mixed with 7.5 mL HCl and 2.5 mL HNO3, both concen-
trated and of Suprapur grade. The samples were heated (130 �C) on a heating block for 
2 h, followed by dilution to 50 mL using Milli-Q water. The crop samples were digested 
using 10.0 mL concentrated HNO3, providing quantitative oxidation of the biologic 
material while achieving limited dissolution of resistant minerogenic fractions that may 
be associated with the plant materials (Rodushkin et al. 1999). The cropþ acid mixtures 
were placed in a fume hood at 20 �C overnight, and thereafter on a heating block 
(120 �C) for 1 h. The extracts were diluted with Milli-Q water to 20 mL before the ICP 
analyses. Information on instrument settings and the procedure for Quality Assurance 
(QA) and Quality Control (QC) is provided by Qvarforth et al. (2022), and further 
details on the ICP-SFMS analysis can be found in e.g., Engstr€om et al. (2004).

The analyses of grain size (clay and silt fractions) and effective cation exchange cap-
acity (CEC) were also conducted at ALS Scandinavia AB, using approximately 100 g of 
material from each of the dried and sieved soils. The determination of effective CEC 
was done using a barium chloride solution according to CSN ISO 11260, while the anal-
yses of particle size distribution (PSD) were done by combining wet sieve analysis (for 
fractions > 0.063 mm) and a laser diffraction method (for the finer fractions), according 
to method CZ_SOP_D06_07_120.

Soil pH and soil organic matter (SOM) were analyzed at Linnaeus University, 
Kalmar, Sweden. SOM was determined by loss on ignition (LOI) at 580 �C (Schulte and 
Hopkins 1996; Salehi et al. 2011), and pH in a suspension of soil and deionized water 
(Thomas 1996) using a portable multi probe (HACH HQ40d) designed for low ionic 
strength samples.

Statistical analysis

This study uses Partial Least Squares Regression (PLS-R) to develop predictive models 
for the soil-to-plant transfer of six potentially toxic elements commonly elevated in 
urban areas (Ba, Cd, Cu, Ni, Pb, and Zn), using soil concentrations of these PTEs along 
with Al, Ca, Fe, K, Mg, Mn, Na, P, and S, as well as pH, CEC, and clay and silt content 
as predictors. PLS-R addresses multicollinearity among predictors by reducing dataset 
dimensionality, creating a few uncorrelated latent variables (PLS components) from 
combinations of the correlated variables (Wold et al. 2001; Boulesteix and Strimmer 
2007; Hastie et al. 2009). These components maximize the predictor variance relevant to 
the response, strengthening model accuracy by optimizing covariance between predic-
tors and response(s) (Hastie et al. 2009; Abdi 2010). A short description of the algo-
rithm behind PLS-R can be found in the supplement and more comprehensive 
descriptions of PLS-R in general can be found in Wold et al. (2001) and Hastie et al. 
(2009).

To assess the importance of each predictor in the PLS-R analyses, we used selectivity 
ratios (SRi), which represents target-projected loadings within the validated PLS-R 
model (Rajalahti et al. 2009; Kvalheim 2010). SRi is defined as the ratio of the explained 
predictive variance (Vexpl,i) and the residual, or unexplained, variance (Vres,I) for each 
predictor i on the target projected component (Kvalheim 2010, 2020). SRi can range 
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from 0 to 1, with SRi � 1 indicating that a predictor’s contribution to explaining the 
response variable is comparable to its residual variance. Predictors with low SRi (close 
to 0) contribute little to explaining variance and may rather introduce noise into the 
model (Rajalahti et al. 2009). The decision on an SRi-threshold to distinguish between 
informative or uninformative variables is generally data-dependent and context-specific 
(Kvalheim 2010). In this study, we calculated means of SRi (Eq. (1)).

SRmean ¼

P
SRi

n
, i ¼ 1, 2, 3, ::: (1) 

The PLS-R analyses were conducted in R (version 4.1.3) using the “mdatools” pack-
age (Kucheryavskiy 2020; R Core Team 2022). An overview of the analysis workflow is 
shown in Figure 1. Prior to analysis, the dataset was divided into 18 sub-datasets, one 
for each combination of PTE metal and crop (Ba, Cd, Cu, Ni, Pb, Zn in chard, lettuce, 
and carrot). Univariate PLS-R was then applied to predict the concentration of each 
metal in the crops, considering the 15 soil predictors (concentrations of the target PTE, 
Al, Ca, Fe, K, Mg, Mn, Na, P, and S, as well as pH, SOM, CEC, and clay and silt con-
tent). All response variables and predictors, except soil pH and CEC, were log10-trans-
formed to normalize distributions and ensure a linear relationship with the response 
(Kuhn and Johnson 2013). Predictors were also auto-scaled (mean-centered and scaled 
to unit variance) to provide equal weight in the analysis. Pearson correlation matrices 
were assessed to confirm multicollinearity among soil variables (Supplement Figure S1).

Step 1 in the PLS-R analyses
In the first step of the PLS-R analysis, all 15 predictor variables were included to create 
18 full models (one for each PTE and crop combination). Cross-validation was used to 
select the optimal number of PLS components, and leave-one-out cross-validation 
(LOOCV) was applied to determine the best component count (Wakeling and Morris 
1993; Westad and Marini 2015; Nengsih et al. 2019). The optimal number of PLS com-
ponents in the PLS-R models was selected using the first local minimum of RMSEcv 

(Eq. (2)).

RMSEcv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 yi − ŷi
� �2

n

s

(2) 

In Eq. (2), n represents the number of observations, yi is the measured value of the 
response (target metal concentration in crop) and ŷi is the model’s predicted value from 
the cross-validation procedure. Inspection of the plots with RMSE for calibration and 
cross-validation results against the number of PLS components were also used to com-
plement the automated selection described above (Kucheryavskiy 2020). In this step, SRi 

for each predictor, and the SRmean was calculated separately for each model (Eq. (1)).

Step 2 in the PLS-R analyses
In the second step, reduced PLS-R models were created for each PTE and crop combin-
ation, including only predictors with SRi values above the SRmean from step 1 
(Mehmood et al. 2020; Westad and Marini 2022). The optimal number of PLS 
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Figure 1. Flow chart of the PLS-R analysis.
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components was again based on the first local RMSE minimum. For each crop-metal 
pair, predictive feasibility was validated using LOOCV, and predictions were plotted 
against measured crop metal concentrations with coefficients of determination (R2) for 
calibration (R2

cal) and cross-validation (R2
cv). Additionally, model performance was 

assessed using the residual predictive deviation (RPD), a ratio of sample standard devi-
ation to prediction RMSE, Eq. (3) (Williams and Sobering 1993; Chang et al. 2001).

RPD ¼
SDsample

RMSEcv
(3) 

According to Chang et al. (2001), models with RPD values <1.0 have poor predictive 
ability and should not be used; values between 1.0 and 1.4 indicate poor models that 
can potentially distinguish high from low values; RPDs between 1.4 and 2.0 suggest 
moderate predictive ability; and RPDs >2.0 indicate models suitable for quantitative 
predictions.

Finally, corrected regression coefficients were extracted for each reduced model in 
step 2 (Kucheryavskiy 2020).

Results

Soil and crop chemical composition

All PTEs included in this study (Ba, Cd, Cu, Ni, Pb and Zn) were present at higher 
concentrations in the 22 analyzed inner-city allotment soils than in typical agricultural 
soils (Table 1), while the major elements (Al, Ca, Fe, K, Mg, Mn, Na, P, and S) fell 
within representative ranges (Table 1; Szolnoki et al. 2013; Alloway 2014). Compared to 
the baseline values for Swedish and European agricultural soils in Table 1, also the 
median values of soil CEC, pH and SOM in the analyzed allotment soils were slightly 
elevated. It is worth reiterating that the measured metal concentrations represent total 
(or pseudo-total) levels.

For PTEs in the cultivated lettuce and carrot samples, mean concentrations were 
higher than those reported for commercial produce by Jorheim et al. (2016), except for 
Ni in lettuce (Table 2). No specific reference data was available for chard. For Cd and 
Pb, which have permissible concentrations set by Commission Regulation (EU) 2023/91, 
several samples also exceeded the EU Commission thresholds for leafy vegetables and 
carrots (root and tuber vegetables) (Table 2).

Using PLS-R to identify influential soil variables for predicting the soil-to-plant 
transfer of PTEs

In the full models of step 1, the optimal number of PLS components (ncomp) utilized 
to define the models varied from only one component (in five models), to two (in six 
models) and three (in five models) (Figure 2). Five components were used in two mod-
els; for Cd in chard and Ni in carrot. The SRmean values, which were used to identify 
the most important variables for prediction of the response, varied between 0.4 and 2.0. 
These values were, in general, lowest for chard (0.4–0.6) and highest for carrot (0.7–2.0) 
(Figure 2).
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Table 2. Descriptive statistics for the analyzed PTE concentrations (mg�kg−1
dw) in crops from the 

greenhouse experiment.

Crop Metal
Crop concentration (mg�kg−1

dw)
Commercial produce Thresholdb

Mean Min Median (PC25–PC75) Max Mean (mg�kg−1
dw) (mg�kg−1

dw)

Chard Ba 84 15 66 (38–120) 300
n¼ 21 Cd 6.1 0.051 0.92 (0.29–1.9) 95 2.5

Cu 18 7.0 18 (13–26) 37
Ni 0.59 0.067 0.32 (0.12–0.62) 3.3
Pb 5.5 0.39 0.92 (0.78–1.6) 88 3.8
Zn 390 25 130 (59–620) 1600

Lettuce Ba 25 3.2 15 (6.8–24) 140 9.8b

n¼ 21 Cd 2.9 0.16 0.55 (0.29–1.2) 34 0.16 3.3
Cu 12 6.1 10 (9.2–18) 24 7. 7
Ni 0.49 0.092 0.35 (0.19–0.61) 1.8 0.81
Pb 1.7 0.29 0.64 (0.39–1.3) 14 0.12 5.0
Zn 120 30 63 (46–190) 310 36

Carrot Ba 23 6.3 19 (14–31) 49 22b

n¼ 17 Cd 0.27 0.016 0.15 (0.069–0.26) 1.6 0.19 0.91
Cu 4.6 2.9 3.8 (3.2–5.5) 11 3.8
Ni 1.0 0.051 0.22 (0.092–0.68) 12 0.36
Pb 0.64 0.061 0.21 (0.11–1.0) 2.8 0.095 0.91
Zn 40 12 22 (17–31) 280 15

Bold figures indicate values exceeding the thresholds for Cd and Pb in commercial produce of commission Regulation 
(EU) 2023/915. Descriptive statistics for commercial produce (carrot and lettuce) were published by the Swedish food 
agency (Jorheim et al. 2016). PC¼ percentile.
aMeans for commercial produce and the EU commission thresholds are converted from fresh weight, using the dry 
weight data from this study, i.e., 8% for chard, 6% for lettuce and 11% for carrot.
bData derived from McBride et al. (2014) and refers to the median.

Table 1. Descriptive statistics for the analyzed target PTEs and basic soil geochemistry for all 22 
study soils.

Variable Unit
Soil samples (n¼ 22) Sweden

Europe
Mean Min Median (PC25–PC75) Max Median (PC25–PC75) Median

pH (H20) 7.2 5.0 7.3 (7.1–7.5) 8.0 4.9 (4.6–5.4)a 6.3b

SOM % 8.4 4.5 8.6 (5.6–11) 14 4.5 (3.4–6.0)c 2.5d

CEC cmol�kg−1 17 4.1 17 (14–21) 27 12 (7.7–18)e 13b

Clay % 0.60 0.01 0.50 (0.24–0.80) 1.8 n.f. n.f.
Silt % 26 1.9 20 (16–32) 65 n.f. n.f.
Al g�kg−1

dw 10 5.6 9.4 (8.0–13) 21 9.2 (6.5–13)a 11a

Ca g�kg−1
dw 17 2.1 16 (7.1–.26) 39 2.5 (1.6–130)a 3.0a

Fe g�kg−1
dw 19 9.2 19 (11–23) 43 16 (9.2–21)a 17a

K g�kg−1
dw 2.4 0.39 2.2 (1.8–3.0) 5.8 790 (370–1.4)a 1.2a

Mg g�kg−1
dw 3.1 0.61 2.5 (2.3–3.2) 7.2 2.3 (1.3–3.9)a 2.9a

Mn g�kg−1
dw 0.38 0.094 0.34 (0.24–0.42) 1.3 0.34 (0.21–0.53)a 0.44a

Na g�kg−1
dw 0.37 0.22 0.31 (0.27–0.42) 0.76 0.059 (0.038–0.096)a 0.048a

P g�kg−1
dw 1.5 0.54 1.3 (0.96–1.9) 3.3 0.76 (0.59–0.92)a 0.65a

S g�kg−1
dw 0.60 0.24 0.57 (0.40–0.71) 1.2 0.29 (0.22–0.37)a 0.21a

Ba mg�kg−1
dw 300 51 170 (84–370) 930 52 (36–57)a 62a

Cd mg�kg−1
dw 1.2 0.092 0.71 (0.31–1.4) 7.4 0.15 (0.10–0.21)a 0.18a

Cu mg�kg−1
dw 150 16 46 (24–230) 690 10 (7.0–16)a 15a

Ni mg�kg−1
dw 23 4.9 15 (10–34) 70 9 (4–14)a 15a

Pb mg�kg−1
dw 320 21 84 (43–310) 1 900 12 (9.0–16)a 16a

Zn mg�kg−1
dw 440 61 190 (110–550) 2 000 47 (30–64)a 45a

European and Swedish medians and percentiles (PCs) for normal agricultural soils are provided at the right-hand end of 
the table for comparison. n.f. ¼ no comparable results found.
aAndersson et al. (2014).
bBallabio et al. (2019).
cEriksson (2021).
dde Brogniez et al. (2015), SOM converted from organic carbon (OC) assuming SOM ¼ : OC

0:58eEriksson et al. (2010).
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Figure 2. Selectivity ratio (SR) for soil variables in the crop and PTE specific PLS-R models developed 
in step 1. Black baris the target PTE in the soil (always selected to be included in step 2), dark grey 
bars are soil variables with SRi > SRmean, i.e. those selected to be included in step 2, and light grey 
bars are soil variables excluded in step 2. Negative bars show variables with negative signs and posi-
tive bars show variables with positive signs for the PLS-R coefficient. Ncomp refers to the number of 
PLS components used in the analyses.
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The SRis for the individual predictors in all models were between 0 and 11, but val-
ues above 3 were rare. When examining individual predictor’s SRis relative to the mod-
els’ SRmean, with the inclusion criterion for a predictor variable in step 2 being that its 
SRi in step 1 exceeded the SRmean, it was observed that higher SRis were particularly 
associated with the soil concentration of the focal PTE, as visualized through the black 
bars in Figure 2. The PTE concentration showed SRi > SRmean in 14 of 18 models 
(Figure 2). The SRi was close to the mean values also for the last 4 models; Ba in chard, 
Ni in lettuce, and Cd and Zn in carrot. In addition, soil pH had SRis above the mean in 
13 of the 18 PLS-R models, and the concentrations of Fe and Mn were found significant 
enough for inclusion in step 2 in 10 cases (Figure 2). Four predictors had SRis below 
SRmean in all step 1 models, and were thus not included at all in step 2. These predictors 
were CEC, Mg, Al, and Ca.

Reduced models compared to full models

The reduced PLS-R models in step 2 are developed from data on the target metal in the 
soil together with the variables with SRi above SRmean. The optimal number of PLS 
components in the reduced models (ncomp in Table 3) was between 1 and 3 for all 
models except that for Ba in carrot, which was based on 4 optimal components. Table 3
also shows the PLS-R corrected regression coefficients from the second step, which can 
be applied directly to raw data (without auto-scaling).

A comparison between the predictive performance of the full and reduced models, 
based on R2

cv, RMSEcv and RPD (Table 4), indicates that the reduced models, in gen-
eral, have a better potential for predictive purposes. This is implied by higher R2

cv val-
ues and higher RPDs in 10 out of 18 of the reduced models and lower RMSEcv values 
in 11 out of 18. Improved predictive performances was clearly shown in all Pb and Zn 
models.

Performance of reduced models

In general, our models’ R2
cal values ranged from 0.64 to 0.94 (Figure 3), indicating a 

high model fit. Our PLS-R models for predicting Cd uptake in lettuce and chard 
showed especially high R2

cal values, 0.81 and 0.94, respectively. The predicted concentra-
tion of Cd, Ni and Zn in crops generally align more closely with the 1:1 reference line 
and have higher R2 values (both for calibration and cross-validation) compared to the 
models for Cu, Pb and Ba (Figure 3). In addition, the models for Pb and Ba showed the 
highest variation in performance depending on crop type. The models developed for Cd 
in chard, Zn in chard and Ni in carrot were the most accurate, with predictions from 
the cross-validation (LOOCV) closely aligned to the 1:1 reference line. Accordingly, 
these models also returned a high R2

cv and high scores for RPD (Table 4). The opposite 
was shown for all three models predicting Cu uptake, as well as for the models predict-
ing Pb and Ba in chard. The R2 for the cross-validation (R2

cv) for the PLS-R models in 
this study, which, together with RPD (Table 4), was used as a validation of the models’ 
potential predictive performances, averaged 0.68 (range 0.36–0.90).
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Discussion

Soil and crop chemical composition

Although the selection of the 22 test soils in this project was largely influenced by acces-
sibility, all are from inner-city allotments within major metropolitan regions. 
Consequently, they are all impacted to varying degrees by a mix of traffic emissions and 
historical industrial activities. These study soils may not represent the full range and 
diversity of urban soils used for crop cultivation across Europe; however, the results 
reveal a wide variety of soil characteristics and elevated concentrations of potentially 
toxic elements (PTEs). This variability in soil composition provides a solid foundation 
for studying PTE uptake in crops specifically grown in urban soils designated for 
cultivation.

Even though total concentrations exceed those of the potentially phytoavailable frac-
tion – particularly for metals with low solubility (such as Pb or Cu) compared to those 
with higher solubility (like Zn or Cd) – they offer the most reliable measure of the soil’s 
“metal content” for subsequent modeling. Consequently, many soil-to-plant transfer 
models define the soil metal content based on concentrations after strong extractions, 
utilizing e.g. Aqua Regia or concentrated HNO3 þ H2O2, and then use geochemical 
information to estimate the plant available fraction from the near total measure 
(McBride 2002; Hough et al. 2004; Novotn�a et al. 2015; dos Santos-Araujo et al. 2017; 
Stubberfield 2017). This has been shown to be a more reliable approach to modeling 
uptake than using more direct measures of bioavailability (Hough et al. 2005). Weaker 
extractions, which aim to target phytoavailable concentrations, often yield more variable 
results that are strongly influenced by the composition of the solid material being tested, 
thereby reducing their reliability.

Table 4. Comparative model metrics for the PLS-R models from step 1 and 2.
Model Step 1 models all X-variables Step 2 models SR-selected X-variables R2

cv  

Step 2�
R2

cv  

Step 1

RMSEcv  

Step 2�
RMSEcv  

Step1

RPD  
Step 2�

RPD  
Step 1Metal Crop R2

cv RMSEcv RPD R2
cv RMSEcv RPD

Ba Chard 0.65 0.180 1.73 0.56 0.213 1.55 FALSE FALSE FALSE
Lettuce 0.50 0.321 1.45 0.62 0.273 1.66 TRUE TRUE TRUE
Carrot −0.01 0.226 1.03 0.76 0.112 2.10 TRUE TRUE TRUE

Cd Chard 0.92 0.201 3.57 0.90 0.232 3.28 FALSE FALSE FALSE
Lettuce 0.77 0.280 2.14 0.75 0.290 2.07 FALSE FALSE FALSE
Carrot 0.46 0.395 1.40 0.63 0.358 1.71 TRUE TRUE TRUE

Cu Chard 0.65 0.125 1.73 0.52 0.124 1.48 FALSE TRUE FALSE
Lettuce 0.46 0.132 1.40 0.43 0.135 1.36 FALSE FALSE FALSE
Carrot 0.47 0.106 1.42 0.61 0.100 1.66 TRUE TRUE TRUE

Ni Chard 0.79 0.209 2.27 0.75 0.228 2.06 FALSE FALSE FALSE
Lettuce 0.76 0.161 2.1 0.74 0.169 2.01 FALSE FALSE FALSE
Carrot 0.87 0.280 2.96 0.87 0.244 2.84 FALSE TRUE FALSE

Pb Chard 0.19 0.449 1.14 0.35 0.430 1.27 TRUE TRUE TRUE
Lettuce 0.34 0.346 1.26 0.64 0.259 1.71 TRUE TRUE TRUE
Carrot 0.52 0.325 1.49 0.69 0.211 1.86 TRUE TRUE TRUE

Zn Chard 0.80 0.253 2.28 0.86 0.209 2.77 TRUE TRUE TRUE
Lettuce 0.66 0.199 1.75 0.68 0.195 1.81 TRUE TRUE TRUE
Carrot 0.59 0.232 1.63 0.74 0.214 2.02 TRUE TRUE TRUE
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Figure 3. Predicted vs. measured log10 metal concentration (mg∙kg−1
dw) in crop for the PLS-R models 

developed on selected soil variables in step 2. Model predictions and R2 for calibration (cal) are 
shown in blue and for cross-validation (cv) in red. The 1:1 line (black dotted line) indicates total agree-
ment between predicted and measured metal concentration in crop.
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Using PLS-R to identify influential soil variables for predicting the soil-to-plant 
transfer of PTEs

Predictors that were defined as influential in the Step 1 PLS-R components for different 
PTE/crop combinations, and subsequently included in Step 2, are indicated in the 
matrix of Table 3. Since the concentration of the studied PTE in the soil was an impor-
tant predictor in the majority of the models, it implies that the use of total (or pseudo- 
total) metal concentrations to define the soils’ “metal content” is applicable.

The significance of soil pH
The soil pH had a clear effect on the uptake of all metals except Cu (Table 3), despite a 
relatively narrow pH span of the study soils. Additionally, the pH effect was greater for 
the uptake in lettuce and chard than in carrots. The pH effect on metal solubility in 
soils and – consequently – their subsequent absorption by crops is well known 
(McBride 2002; McBride et al. 2014; Adamczyk-Szabela et al. 2015) and is explained by 
the strong influence of pH on the availability of negative surface charges in the soil 
matrix, where the high concentration of protons at low pH values effectively prevents 
electrostatic sorption of other cations (McBride 1989). Consequently, the solubility and 
availability for crop uptake of cations increases as pH decreases.

The significance of Fe and Mn (hydr)oxides
In this study, we use pseudo-total Fe and Mn concentrations as indicators for the abun-
dance of their (hydr)oxide forms. Since the Aqua Regia digestion used before ICP ana-
lysis also dissolves other fractions, such as carbonates and sulfides, it’s important to 
note that the (hydr)oxide abundance may be overestimated. Nevertheless, this approxi-
mation has been employed by others before; for instance, both Be�ster et al. (2013) and 
Yi et al. (2020) successfully used pseudo-total Mn and Fe concentrations in soil to 
model Cd uptake into vegetables.

With a pattern resembling that seen for pH, the concentrations of Fe and Mn in our 
studied allotment soils also had a significant impact on the uptake of all PTEs except 
Cu, and a lesser effect on uptake in carrots than in leafy vegetables (Table 3). The gen-
erally high relevance of Fe and Mn in our study aligns with previous findings, which 
show that, in the presence of Mn/Fe (hydr)oxides, a significant portion of adsorbed 
trace metals typically binds to these oxides, resulting in reduced solubility (Gray and 
Mclaren 2006; Suda and Makino 2016; Antoniadis et al. 2017). However, different trace 
elements bind to the surfaces of Mn/Fe (hydr)oxides with different strengths; for 
example, Pb ions are in most cases more strongly bound than e.g. Cu, Ni and Cd 
(Kabata-Pendias 2010). The binding strength of contaminant metals to Mn/Fe usually 
also depends on the pH, and typically decreases with pH (Suda and Makino 2016). This 
may explain the similar role seen for pH and the concentrations of Mn/Fe in our mod-
els, which can be described as part of the underlying processes controlling the phytoa-
vailability of PTE, which PLS-R can capture in the analyses (Wold et al. 2001).
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The significance of clay and silt
In our PLS-R models, clay content, and to some extend silt, was particularly important 
for predicting Cu uptake, and in several of the carrot models (Table 3). Our models of 
PTE uptake in carrot indicate that clay and silt, often together with pH were key 
parameters influencing the processes controlling phytoavailability of the target PTE 
(Figure 2). However, overall, clay content has relatively low importance for predicting 
metal uptake, which contrasts with previous studies that identify clay as a key factor in 
metal adsorption in soils and uptake by crops (R€omkens et al. 2004; dos Santos-Araujo 
et al. 2017). The high surface area and abundance of negatively charged sites on clay 
minerals are crucial for the soil’s ability to buffer and retain metal cations (McBride 
1989; Kabata-Pendias 2004; Alloway 2014). For this reason, clay content has been used 
as a predictor in models of metal transfer from soil to crops in several studies (Lijzen 
et al. 2001; Otte et al. 2001; dos Santos-Araujo et al. 2017).

Other variables
In general, SOM, together with pH, is the most widely used variable in regression mod-
els for prediction of the transfer of PTEs from soil to different crops (Hough et al. 
2004; Novotn�a et al. 2015; dos Santos-Araujo et al. 2017; Lundgren et al. 2023). 
However, in contradiction to the well-documented association between soil organic mat-
ter (SOM) and the phytoavailability of trace elements in soils (Sauv�e et al. 2000; 
R€omkens et al. 2004; Violante et al. 2010; Antoniadis et al. 2017; dos Santos-Araujo 
et al. 2017), SOM was of low importance for predicting the uptake of PTEs in our PLS- 
R analyses (Figure 2). One possible explanation for why SOM did not emerge as one of 
the most influential parameters for predicting PTE uptake in this study could be its 
multicollinearity with S and P. The strong correlation between S, P, and SOM is evident 
in the correlation matrices provided in the Supplement Figure S1. Similarly, in the load-
ing plots, S and P often appear clustered together with SOM (Supplement Figure S2), 
indicating that they exhibit similar relationships with PTE concentrations in crops. It is 
also possible that the determination of SOM (%LOI) was less accurate than the meas-
urements of S and P concentrations, resulting in a clearer association between the latter 
two and the response. Salehi et al. (2011) noted that %LOI may be more suitable for 
rough estimations of organic matter than for measurements requiring high accuracy.

Among the predictors that were not included in any of the reduced models (Table 3), 
CEC is occasionally found to be useful for predicting the uptake of various metals by 
plants (Xiao et al. 2018). The CEC should, however, be viewed as a somewhat imprecise 
measure as it reflects the overall abundance of negatively charged surfaces within the 
soil matrix, and as such, it is influenced by a multitude of other soil factors and proc-
esses that intricately interact, e.g., the content of SOM and clay minerals, pH (Kabata- 
Pendias 2004; Violante et al. 2010), redox potential and base cation saturation (McBride 
1989; Alloway 2014). In our study CEC and SOM were strongly correlated, r¼ 0.86 and 
0.85 in the soil compositions for chardþ lettuce and carrot models, respectively 
(Supplement S1), and CEC often occurs close to SOM in the loading plots (Supplement 
Figure S2).
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Reduced models compared to full models

A relatively large fraction of the reduced models did not perform better than the full 
models. This implies that the SRmean threshold may have excluded variables that con-
tained important information for predicting the response. This was evident for Cd in 
chard and lettuce, as well as for all Ni models, where the reduced models, despite hav-
ing RPDs > 2, showed lower predictive performance compared to the full models.

Filter methods, such as using SRmean values to select soil variables, provide a simple 
and computationally efficient way to rank predictors. However, the reliance on a fixed 
threshold can be a limitation, particularly for small datasets (Mehmood et al. 2020; 
Westad and Marini 2022). However, in most cases, our results show that the SR filter 
effectively removed irrelevant or noisy variables, which improved the predictive per-
formance. For nearly all reduced models, RPDs � 1.4 still indicated their suitability for 
assessing trends and correlations. The exceptions were the models for Pb in chard and 
Cu in lettuce.

Performance of reduced models

The good performance of our PLS-R models for predicting Cd uptake in chard and let-
tuce align well with previous studies, e.g., the ones by McBride (2002) and Brown et al. 
(1998). The former reported R2 values between 0.79 and 0.87, while the latter presented 
an R2 of 0.94. For the other PTEs, our PLS-R models generally displayed higher R2 val-
ues than previously presented models describing the control of soil geochemistry on 
PTE uptake by the same crop types (Hough et al. 2004; Bacigalupo and Hale 2011; dos 
Santos-Araujo et al. 2017; Stubberfield 2017; Cavanagh et al. 2019). Our findings align 
well with other studies, indicating that metals with higher solubility (e.g. Cd and Zn) 
are generally easier to model than those with lower solubility (e.g. Cu and Pb) (Legind 
and Trapp 2010; McBride et al. 2014).

The results from the LOOCV indicate that our PLS-R models will have a generally 
good performance also on unseen (i.e. future) samples (Figure 3, Table 4). However, 
caution should be taken to the small sample size, the use of a dataset with a rather lim-
ited range for some of the soil variables, and the lack of validation on independent 
data. Studies that have tested soil-to-plant transfer models on independent data have 
generally shown low predictive model performance, even when the model parameters 
have been within the model calibration range (Legind and Trapp 2010; Novotn�a et al. 
2015; Stubberfield 2017; Lundgren et al. 2023). Unreliable predictions have to some 
extent been attributed to many models being too “site specific,” i.e. based on soil types 
with low variability, or local geochemistry not fully covered by the parameterization 
data (McLaughlin et al. 2011). Moreover, low variability of longitude, latitude, altitude, 
climate, temperature, humidity, precipitation, contamination sources/origin and history, 
and other factors might influence soil properties and their influence on the soil-to-crop 
PTE transfer (dos Santos-Araujo et al. 2017). Testing the models on independent data is 
therefore of great value in the process of model evaluation, though the use of a single 
test dataset has limited ability to characterize the uncertainty of the results. Given it is 
advantageous to use as much available data as possible to develop statistical models of 
this type, the availability of independent datasets is limited, and resampling methods, 
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such as the leave-one-out cross-validation (LOOCV) applied in our study, can produce 
reasonable predictions of the model performance on future samples (Kuhn and Johnson 
2013).

Future perspectives

A key finding of the study is that the PLS-R approach resulted in a high agreement 
between measured and modeled uptake of most PTEs by lettuce, chard and carrot. PLS- 
R can also be used as a variable selection tool, to identify predictors with high impor-
tance when explaining the variation in the modeled response variable. We used SRmean 

as a filter to select the soil variables of highest importance for the development of 
reduced models, but since the full models in some cases performed better than the 
reduced ones, other alternative variable selection methods should be evaluated (Farr�es 
et al. 2015; Mehmood et al. 2020; Westad and Marini 2022). To comprehensively assess 
the precision and accuracy of the PLS-R approach in predicting soil metal uptake by 
crops, forthcoming studies should also prioritize subjecting PLS-R models to independ-
ent data. Additionally, enhancing the generalizability of PLS-R models in the soil-to- 
crop transfer context necessitates utilizing larger datasets with a wider range of soil and 
crop types. It would also be valuable to use this method to evaluate different types of 
soil treatments, like adding organic matter, sewage sludge and biochar.

Other perspectives to explore are the uptake of other not so well documented PTEs, 
the use of gentler metal extraction methods and also environmental variables that could 
potentially affect the uptake of PTEs in crops, e.g., contamination sources, aerial depos-
ition, climate, etc.

Conclusions

This study explores the applicability of Partial Least Squares Regression (PLS-R) in 
developing predictive models for crop uptake of metal contaminants, using soil geo-
chemical variables as predictors. (Mehmood et al. 2020). Key conclusions drawn 
include:

� PLS-R demonstrates an ability to model and identify key variables for predicting 
the soil-to-crop transfer of potentially toxic elements in the presence of multicol-
linearity among predictor through the creation of latent variables (PLS 
components).

� Key variables influencing the processes controlling PTE uptake were soil pH, 
along with the concentration of the target PTE in the soil, often in combination 
with the Fe and Mn concentration in soil.

� The majority of our reduced models in step 2 of the workflow, which were based 
on the predictor variables that were assessed most influential in step 1, were 
found suitable for assessing trends and correlations, and some exhibit quantita-
tive predictive capabilities.
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In risk assessments of soil-to-crop PTE transfer, a wide range of soil parameters are 
often analyzed on a rather small number of soil samples. PLS-R has the ability to and is 
particularly suited for analysing datasets where the number of predictors is close to or 
exceeds the number of observations and when complex systems need to handle multi-
collinear parameters, which we took advantage of in this study. Furthermore, PLS-R can 
contribute to deeper insights about the key controlling soil variables that influence PTE 
accumulation in crops cultivated in contaminated soils, e.g. in urban environments, 
which can be used in the developments of risk assessment models, leading to higher 
accuracy and precision and, thus, a base for better decisions for stakeholders.
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