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Abstract

This study investigates the challenges of permeability prediction
in reservoir engineering, focusing on addressing uncertainties in-
herent in the data and modelling process, and leveraging Nuclear
Magnetic Resonance (NMR) log data from the Northern Sea Volve
field. The study uses a probabilistic machine learning method called
Gaussian Process Regression (GPR) with different kernels, such as
Matern52, Matern32, and Radial Basis Function (RBF). LSboost, K-
nearest neighbour (KNN), and XGBoost are some of the existing
models that are used for comparison. Performance metrics includ-
ing Mean Absolute Error (MAE), Mean Squared Error (MSE), and
coefficient of determination (R?) are utilized for assessment. Ad-
ditionally, the uncertainty associated with different GPR kernels
is analyzed, and confidence intervals are generated to provide in-
sights into model behaviour. The inclusion of confidence intervals
enhances interpretability by quantifying the range within which
the true permeability value is likely to fall with a specified level
of confidence, offering valuable information for decision-making
processes in reservoir engineering applications. Findings demon-
strate the effectiveness of GPR with Matern52 and Matern32 kernels
in permeability prediction, offering competitive performance and
robust uncertainty quantification. This research contributes to ad-
vancing reservoir engineering by providing a comprehensive and
uncertainty-aware approach to permeability prediction.
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1 Introduction

Permeability stands as a pivotal parameter in reservoir characteri-
zation, offering crucial insights into the transmission capacity of
oil and gas from subsurface formations. Accurate prediction of
reservoir permeability holds paramount significance in the field
of reservoir characterization, directly impacting the efficient ex-
traction of oil and gas resources [3]. The ability to precisely assess
how fluid flows through subsurface formations is instrumental in
optimizing reservoir management strategies, well placement, and
overall production performance. It is a critical factor for making in-
formed decisions in the oil and gas industry, influencing economic
feasibility and environmental sustainability. However, obtaining a
precise measurement of permeability poses a formidable challenge.
The most accurate methodologies, such as core analysis and well
testing, are both time-consuming and financially demanding. To
overcome these limitations, well logs become indispensable, serv-
ing as a means to extrapolate relationships from core analysis data
for predicting uncored intervals and wells. Subsequently, machine
learning algorithms can be trained to forecast permeability based
on these derived relationships [8, 15, 18, 24]

Nevertheless, the data sourced from well logs is inherently sus-
ceptible to various uncertainties originating from acquisition, pro-
cessing, interpretation, and environmental factors[5, 30]. Further-
more, these datasets may exhibit incomplete coverage of the ge-
ographical domain, introducing potential biases. Consequently, a
model trained on such data may excel in regions where information
is abundant while performing poorly in others. Subsequently, this
uncertain data is fed into a machine learning model for training.
Beyond the data fed into the model, the efficacy of the model is
intricately tied to its parameters and hyperparameters, represent-
ing additional layers of uncertainty. Machine learning algorithms
introduce uncertainties stemming from the selection of these pa-
rameters and hyperparameters. Consequently, understanding the
reliability of model outputs becomes paramount in the presence of
these uncertainties.
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Figure 1: Proposed workflow for Uncertainty-aware perme-
ability prediction

Regrettably, existing methodologies often overlook the intri-
cacies of these uncertainties and fall short of providing a robust
framework for quantifying and expressing confidence in model
outputs [12]. Quantifying uncertainty plays a significant role in the
oil and gas industry when it comes to making decisions [16, 17, 28].
Quantifying uncertainty plays a critical role in oil and gas explo-
ration and development, especially when decisions like reserve
estimation, enhanced oil recovery (EOR), and field development
planning are at stake. Inaccurate predictions based on uncertain
data can lead to costly consequences, such as underestimating re-
coverable resources, implementing ineffective EOR strategies, or
building infrastructure for the wrong reservoir characteristics. By
capturing and interpreting uncertainties, companies can make more
informed risk assessments, prioritize exploration efforts, and design
robust operational plans. Investing in robust tools and methods for
uncertainty quantification is crucial for maximizing returns and
optimizing decision-making in this high-risk industry. Uncertain-
ties in data and models can lead to underestimating recoverable
resources in a reservoir. This can result in inefficient investment
decisions, early abandonment of fields and missed opportunities for
enhanced oil recovery (EOR). Conversely, overestimating reserves
can also have negative consequences such as inflated asset valua-
tions, and excessive infrastructure investment. Furthermore, it can
lead to model-related uncertainties such as poor well placement,
ineffective EOR strategies and risky development plan.
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Based on a probabilistic machine learning approach, this study
aims to comprehensively understand and quantify uncertainties
inherent in both the data and the model. It confronts the challenges
associated with permeability prediction using machine learning, ac-
counting for uncertainties throughout the entire process. To tackle
this issue, Gaussian Process Regression (GPR) is employed. This
technique is capable of capturing the inherent uncertainties in the
data stemming from environmental factors, data collection, and
processing. Moreover, our objective is to establish a robust frame-
work that integrates these uncertainties into the machine learning
model and provides a means to assess and articulate the confidence
level in the model’s predictions. This approach enhances the inter-
pretability of prediction models, fostering greater trust and insight
into the underlying dynamics of the predicted outcomes.

This paper presents several novel contributions to the field of
uncertainty-aware permeability prediction using machine learning
techniques as listed below:

(1) Comprehensive Uncertainty Quantification: This method
emphasizes the significance of measuring uncertainties that
arise from both the process of gathering data and the frame-
work of modelling. By accurately capturing and including
these uncertainties in the predictions, we can provide a more
practical and dependable evaluation of the estimations of
permeability.

Interpretable Uncertainty Estimates: Unlike traditional point
estimates, this methodology uses GPR to generate predic-
tive distributions that quantify the associated uncertainties.
These estimates are presented in an understandable way,
allowing reservoir engineers to make informed decisions
and assess the reliability of predictions.

Uncertainty Visualization: Our study includes visualizations
and examples that effectively communicate the uncertainty
estimates provided by the GPR models. These visual repre-
sentations enhance the interpretability of the results and aid
in understanding the reliability of permeability predictions.
Practical Implications and Future Directions: In our research,
we have identified practical implications that could be useful
for the oil and gas industry. These implications can have a
significant impact on risk assessments, operational planning,
and decision-making processes. Furthermore, we have out-
lined future research directions that may pave the way for
more advancements in uncertainty-aware reservoir charac-
terization.
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The paper is organized as follows: In Section 2, we provide a re-
view of related works in the field of predicting permeability. Section
3 discusses the methodology and the uncertainty quantification
ability of GPR used in this study. Subsequently, the dataset and
evaluation metrics are discussed in Sections 4 and 5 respectively.
Then we discuss the results and comparative analysis in Section 6,
subsequently the findings and recommendations for further study
in7.

2 Related Work

The process of Nuclear Magnetic Resonance (NMR) logging involves
using electromagnetic waves to analyze the volume, composition,
viscosity, and distribution of fluid-filled pores within reservoir rock
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that contain water, oil, and gas. This technique is highly effective
in characterizing these substances and is considered to be a unique
approach [6, 7]. This method used for assessing formations is highly
sophisticated and efficient, and it provides accurate evaluations of
petrophysical parameters like total porosity, effective porosity, pore
size distribution, and permeability [2, 14, 26, 31]. The NMR log is a
highly effective technique that allows for the continuous assessment
of a formation’s permeability.

The process of predicting permeability using NMR is based on
the assumption that the distribution of NMR relaxation times T2
accurately represents the distribution of pore sizes under ideal
conditions. The size of the pore and T2 relaxation time are posi-
tively correlated. This correlation makes it possible to relate the
distribution of pore sizes to the distribution of pore throat sizes,
which is an essential factor in managing the flow of fluids in a
reservoir[4, 9, 21]. These aided in the development of widely used
empirical models for estimating permeability. These models include
Timur Model [25] and the Schlumberger Doll Research (SDR) model
[10]. Both permeability models are limited in that they summarize
relaxation spectra to a single variable, disregarding the possibility
of a unique relationship between each spectra point and the pore
throat. Furthermore, the SDR model only considers average pore
size and porosity, while the Timur model only weighs the effect of
T2 cut-offs and porosity on permeability[13, 23].

Researchers have developed various permeability models to pre-
dict permeability. One such model is proposed by Rios et al. [23],
which uses NMR echo data and the T2 distribution along with a
multivariate modelling technique, partial least squares (PLS) algo-
rithm to predict permeability. This model showed greater accuracy
compared to the SDR model. Trevizan et al. [27] introduced a Ra-
dial Basis Function (RBF) that uses a small number of principal
components instead of the full spectrum. This method provided
good results when predicting permeability in a complex carbonate
formation.

Furthermore, Parchekhari et al. [20] proposed an NMR-based
permeability prediction in carbonate reservoirs using the LSboost
technique. The author used peak analysis as a feature extraction
method on the NMR T2 distribution curve. After deriving five
parameters, an LSboost technique was used to make a prediction
from core measure permeability. The accuracy was better than the
free-fluid and SDR models. Also, Osman et al. [19] applied a KNN
regression algorithm to predict permeability and porosity using an
NMR log.

Despite the advancements of these methods in predicting perme-
ability, there is a need for approaches that account for uncertainties
in the prediction process. These uncertainties emerge from vari-
ous sources, such as measurement errors, environmental factors,
and modelling assumptions. The existing models also often lack
confidence intervals, which are crucial for assessing the reliability
of predictions and making informed decisions in reservoir engi-
neering practices. Employing uncertainty quantification techniques
offered by GPR can provide a more comprehensive understanding
of the reliability and robustness of permeability predictions. This
study aims to contribute to the development of more accurate and
interpretable permeability prediction models by addressing these
challenges, thereby enhancing the effectiveness of reservoir engi-
neering practices.
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3 Proposed Methodology

3.1 Gaussian Process Regression

Gaussian Process Regression (GPR) is a non-parametric probabilis-
tic model used to solve regression problems [29]. It is especially
suited for data that is limited or expensive, as it allows building a
model that incorporates both prior information and observational
data while naturally providing estimates for uncertainty quantifica-
tion. GPR offers a flexible and powerful framework for permeability
prediction. Unlike traditional regression models that assume a fixed
functional form, GPR models the relationship between variables
as a distribution over functions. This adaptability is particularly
advantageous in the context of permeability prediction, where com-
plex and non-linear relationships often exist. The GPR is given as
follows:

u(x) ~ GP (m(x), k(x,x"))
Where:

o 1u(x) represents the latent function, indicating the underlying
true relationship between input x and the output

o GP denotes the Gaussian Process, characterized by a mean
function m(x) and a covariance (or kernel) function

e m(x) represents the expected value of p(x) at any given x

e k(x,x") represents the covariance matrix between the values

The covariance function captures the similarity between out-
put values at different inputs and plays a crucial role in shaping
the distribution of possible functions. This helps in understand-
ing the underlying patterns in the data. The choice of the kernel
function allows GPR to model the spatial correlations inherent in
reservoir properties, making it well-suited for predicting perme-
ability across different locations. The kernel function incorporates
prior information about data structure to better capture variations
in permeability. In this study, we explored three different kernel
functions namely Matern52, Matern32, and Radial Basis Function
(RBF).

The Matern family of kernels [22] is particularly well-suited for
modelling functions that exhibit a certain degree of roughness or
non-smoothness. The Matern52 and Matern32 kernels were selected
because they can effectively capture the potential non-linearities
and complexities in the relationship between NMR log data and
permeability. In addition to the Matern kernels, we also included the
RBF kernel [22], which is a widely used kernel in machine learning
applications. The RBF kernel is particularly effective in capturing
non-linear relationships and can model a wide range of functions.
The kernels are then evaluated to determine the most accurate in
portraying the underlying relationships and uncertainties, resulting
in more accurate and dependable permeability estimates. Matern52,
Matern32 and RBF kernels are denoted as follows:

RBF Kernel:

(x—x)?
212

)

krpr(x,x ) = exp(~

Matern32 Kernel:

V3lx - x| ( V3lx — x|
I

)

3 ,
kp(ex)=(1+ )exp
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Matern52 Kernel:
H , \/§|x—xl| 5(x—xl)2 \/§|x—x'|
ky(e,x)=(1+ ] + 2 ))exp(—f)

Where [ is a lengthscale parameter.

3.2 Uncertainty Quantification

The process of predicting permeability from NMR logs is inher-
ently complicated by various sources of uncertainties, arising from
both the data acquisition process and the modelling framework.
NMR logging tools are subject to measurement errors, leading to
uncertainties in the recorded data. Variations in tool calibration,
environmental conditions, and logging procedures contribute to
measurement uncertainties in NMR-derived properties, including
porosity and fluid saturation. Also, models used for permeability
prediction often rely on empirical relationships and assumptions
about rock properties and fluid behaviour. Uncertainties in model
parameters, such as correlation coefficients and petrophysical prop-
erties, propagate into permeability predictions, impacting their
reliability.

GPR inherently provides probabilistic predictions by modelling
the relationship between features and permeability as a distribution
over functions. Instead of producing single point estimates, GPR
generates predictive distributions that capture the uncertainty in
permeability predictions.

GPR estimates confidence intervals around predictions, indicat-
ing the range within which the true permeability value is likely
to fall with a specified level of confidence. These confidence inter-
vals offer insights into the uncertainty associated with individual
predictions which can aid in risk assessment and decision-making.

Reservoir engineers can reduce the risks associated with reser-
voir development and production strategies by using GPR to in-
clude uncertainties into permeability estimations and make well-
informed decisions under uncertain conditions. The probabilistic
nature of GPR predictions provides a comprehensive understand-
ing of the uncertainty landscape, guiding resource allocation and
operational planning in reservoir management.

4 Data Preparation

The dataset used in this study was sourced from the Volve field, a
North Sea oil field. The Volve open dataset, accessible for research
and development purposes [1], provides comprehensive data from
this field. Situated in the central region of the North Sea, approxi-
mately 5 km north of the Sleipner East field, and with a water depth
of 80 meters, the Volve field was discovered in 1993. The reservoir
in the Volve field comprises Jurassic sandstones located between
depths of 2750 and 3120 meters. For this study, we focused on two
specific wells: 15_9_F1 and 15_9_F11_T2.

The data from these two wells were merged into a single CSV,
with a well identifier column created to distinguish between wells.
Subsequently, preprocessing was performed on the data. This in-
cluded checking for missing values and duplicates. Furthermore,
the input data was standardized using Scikit-learn StandardScaler
to ensure consistency and comparability across features. This step
transforms the input features to have a mean of 0 and a standard
deviation of 1, mitigating the influence of feature scales on model
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Table 1: Features in the Input Data

Feature Description

DEPTH Depth at which the measurement was taken
WELL  Well identifier

T2GM  Geometric mean of the T2 distribution
MPHS  Mean Porosity from Hydrogen Index

MPHE  Mean Porosity from Effective Porosity
MBVI Bulk Volume Irreducible

MBVM  Bulk Volume Movable

MBW Bound Water

training. The input data comprises 4407 rows and is detailed in
table 1. While, the output is the reservoir permeability.

5 Evaluation Measures

Three metrics were used to examine the accuracy performances of
the proposed model and other machine learning models in predict-
ing permeability: Mean Absolute Error (MAE), Mean Squared Error
(MAE), and Coefficient of determination (R?).

MSE is a widely used metric to quantify the average squared dif-
ference between predicted and actual values. The metric computes
the mean squared differences of errors, penalizing larger discrepan-
cies between predictions and ground truth. A smaller MSE indicates
that the model’s predictions are closer to the true values. MAE is
another performance metric that quantifies the absolute average
difference between the predicted and true values. In contrast to
MSE, MAE employs a more intuitive measure of the average predic-
tion error by not penalising larger errors. A smaller MAE indicates
that the model’s predictions are closer to the true values. Also, R-
Squared (R?) is a popular statistical measure of the variation in the
dependent variable that is explained from the independent vari-
ables. It illustrates how well the data fit to the model with a value of
1 to indicate perfect fit and 0 to be the worse fit and are commonly
represented by 100% and 0%. Mathematically, they are computed as
follows:

1 N
_ )2
MSE = N iil(yl 7i)

1 N
MAE:N;WI‘—QH

_SSR_ > (yi — i)

SST 2(yi — )

Where N presents the total number of data samples. y; presents
the actual observed value. ; presents the mean of the observed
values. §J; presents the predicted value.

To quantify the uncertainty of the models, the variance of the
model’s prediction is calculated. In the case of GPR, uncertainty
is typically quantified by calculating the variance of predictions
for a given input data point. This variance represents the spread or
dispersion of predicted values around the mean prediction. Math-
ematically, the uncertainty associated with the prediction of the
target variable y for a new input point x can be calculated as follows:

R*=1
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Figure 2: Comparison of the models’ MAE on test data
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Figure 3: Comparison of the models’ R? on test data

Uncertainty = Var(y_pred)

Where Var(y_pred) denotes the variance of the predicted value
of the target variable for a new input point (x*) across different
model runs or training data splits.

6 Results and Discussion

This section presents a comparative analysis of the proposed model’s
performance against several existing models from previous litera-
ture. The proposed models include GPR with Matern52, Matern32,
and RBF. Model from previous literature encompasses LSboost,
KNN, and XGBoost. Key performance metrics including MAE, MSE,
and R? are utilized for comparison. The uncertainty associated with
different GPR kernels is also examined to provide deeper insights
into model behaviour.

The comparison of performance metrics across models serves as
a crucial evaluation criterion. The MAE and MSE offer insights into
the average magnitude of errors and their dispersion, respectively,
while R? provides a measure of the proportion of variance in the
target variable explained by the model. It is illustrated in Figures 2,
4and 3

In order to visually compare the performance and uncertainty of
different GPR kernels in permeability prediction, we present a bar
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Figure 4: Comparison of the models’ MSE on test data
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Figure 5: Comparison of the GPR kernel’s mean uncertainty
on test data

plot illustrating the mean variance values across various test data
points in Figure 5. This plot offers insights into the average spread
or variance of predictions generated by each kernel, allowing for a
comparative assessment of their uncertainty levels. Additionally,
prediction interval plots are constructed to visualize the prediction
intervals associated with each kernel’s predictions in Figures 7, 6
and 8. These plots depict the range within which the true perme-
ability values are likely to fall with a specified level of confidence,
providing a comprehensive understanding of the reliability and ro-
bustness of predictions generated by each GPR kernel. Points where
the confidence interval width is large indicate high uncertainty in
predictions, suggesting less confidence in the model’s estimates. In
such cases, decision-making may be guided by the model’s predic-
tions while considering the potential for deviation from the true
underlying value. Conversely, when the confidence interval width
is narrow, indicating low uncertainty, greater confidence can be
placed in the model’s predictions, and decisions may be made more
confidently based on these estimates. Ultimately, understanding
and interpreting uncertainty in GPR predictions enables practition-
ers to make informed decisions and manage risks effectively in
reservoir engineering applications.

The results demonstrate that the proposed GPR models utilizing
Matern52 and Matern32 kernels deliver competitive performance
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Figure 6: Uncertainty Quantification in Permeability Predic-
tion: GPR with Matern52 Kernel and 95% Prediction Intervals
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Figure 7: Uncertainty Quantification in Permeability Predic-
tion: GPR with Matern32 Kernel and 95% Prediction Intervals
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Figure 8: Uncertainty Quantification in Permeability Predic-
tion: GPR with RBF Kernel and 95% Prediction Intervals
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across key metrics such as MAE, MSE, and R?, when compared
to other models. These kernels offer varying degrees of smooth-
ness in modelling the underlying data, providing adaptability to
capture intricate relationships within the dataset. Notably, the RBF
kernel, while exhibiting respectable performance, ranked third in
terms of MAE, MSE, and R%. However, it showcased lower mean
uncertainty compared to the Matern32 kernel, as shown in Figure
5. Furthermore, it demonstrated superior performance even with-
out the standardization process. This underscores the effectiveness
of the RBF kernel in permeability prediction tasks, particularly in
scenarios where variability in data distribution is pronounced. The
superior performance of the GPR models can be attributed to their
inherent capability to account for uncertainties during modelling.

Moreover, the examination of uncertainty associated with GPR
kernels reveals valuable insights into the reliability and robustness
of predictions. By comparing the uncertainty estimates provided
by different kernels, practitioners gain a nuanced understanding
of the model’s confidence levels across various regions of the in-
put space. This information is instrumental in making informed
decisions, particularly in scenarios where uncertainty management
is paramount. Figures 6, 7 and 8 illustrate simplified visualization
using binning [11] for the average actual values against the average
predictions and prediction intervals. The average uncertainty of
the kernels is illustrated in Figure 5.

The comparative analysis highlights the effectiveness of GPR
with Matern52 and Matern32 kernels in permeability prediction,
underscoring their superior performance and robustness across
evaluated metrics. Additionally, the examination of uncertainty
provides valuable context for interpreting model predictions and
enhances decision-making capabilities in reservoir engineering
applications.

7 Conclusion

In this study, we investigated the application of GPR for perme-
ability prediction, emphasizing the importance of addressing un-
certainties in both data and modelling. The proposed method was
compared with models from existing literature and state of the art
models. Through this approach, we aimed to enhance the accuracy
and robustness of permeability predictions, crucial for effective
reservoir management.

Our results highlight the significant impact of addressing uncer-
tainties in permeability prediction using GPR. By modelling the
uncertainty inherent in the data and prediction process, GPR pro-
vides valuable insights for reservoir engineers, enabling informed
decision-making and risk mitigation strategies. The probabilistic na-
ture of GPR not only offers point estimates of permeability but also
quantifies the associated uncertainties, providing a comprehensive
view of the predicted permeability distribution. This capability is
particularly crucial in complex subsurface environments where un-
certainties abound and can have profound implications for reservoir
development and production strategies.

Quantifying uncertainty is crucial in the oil and gas industry.
Inaccurate predictions based on uncertain data can lead to costly
consequences, such as underestimating recoverable resources or
implementing ineffective EOR strategies. By accurately interpreting
uncertainties, companies can make informed risk assessments and
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design robust operational plans. Uncertainties in data and models
can result in inefficient investment decisions, missed opportunities,
and negative consequences such as inflated asset valuations.

The application of GPR yielded promising results, with perme-
ability predictions exhibiting high accuracy and uncertainty quan-
tification. The Matern52 provided the highest accuracy and lowest
mean uncertainty followed by Matern32 and RBF.

For future work, further efforts could focus on refining the GPR
methodology, exploring other kernels and the combination of mul-
tiple kernels. Additionally, extending the application of GPR to
other reservoir properties beyond permeability could provide a
holistic understanding of subsurface dynamics and facilitate more
comprehensive reservoir management strategies.
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