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Abstract

The prosthesis components a lower limb amputee receives are determined by their as-
signed K level. K levels range from K0 to K4 and are defined by the user’s ability
to traverse environmental barriers, change cadence and ambulation skill. K levels are
assessed during a single clinic visit which varies between clinics but mostly utilizes con-
versation and basic mobility assessments. There are known issues with the reliability
of K level assignment, especially when deciding between a K2 and K3. It has been
shown that if a lower limb prosthetic user is not given an adequate prosthetic that meets
their activity needs it could lead to the patient becoming less active and/or not using
their prothesis. This PhD aims to create a sensor-based system to assess a patient’s ac-
tivity levels in the real-world to reduce the issues with reliability during K level assignment.

As a first step, to fully understand the requirements of the system, a study was carried
out where interviews were conducted with clinical experts. The ability of the patient to
vary their cadence, traverse different terrain, walk without a walking aid and also the
distance they can walk were emphasised by clinicians as the main differences between
a K2 and K3 patient, and would constitute the data that would be required from the
proposed sensor-based system (presently these are only be assessed via self-report).Of
these measures only cadence is specifically stated in the current K level definitions, which
suggests that the current K levels definitions do not meet the clinical needs.

A review was then conducted to identify the specification of the system in terms of
algorithms and sensors that can be used to provide the required data. The review
found that cadence has previously been measured with a shank mounted IMU. More-
over, body-worn IMUs have been used to accurately identify between flat ground, stairs,
and ramps. However, walking on uneven terrain has not previously been classified for
amputee gait. Furthermore, no studies could be found that identified walking aid use
using appropriate body or prostheses mounted sensors. The review also looked at what
method would be best to process and analyse the data. It was found that K-nearest
neighbour, support vector machines, random forest and long short term memory neu-
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ral networks are classifiers that have previously shown success with similar problems.
Using a low pass filter and breaking the data into windows has also shown to be beneficial.

As a second step, a study was conducted to inform further system development, split
into two parts. The first part was concerned with collection of data from lower limb
prosthesis users in supervised real-world conditions. For this the participants had sensors
attached and then were asked to traverse a range of set terrains, with and without a
walking aid, outdoors. These data were then been used to train the classifiers. It was
found that the terrain a lower limb prosthetic user is traversing can be classified using a
single IMU mounted on the prosthetic shank, but walking aid use cannot be classified to
clinically acceptable accuracies using a single IMU. A random forest model produced the
highest terrain classification accuracies.

The second part of the study was conducted in a gait lab. For this part the par-
ticipants were asked to traverse similar terrains, with and without a walking aid, but
with sensor and full motion capture data being collected. These data have been used to
create virtual sensors that were then used to estimate the ideal IMU location to increase
classification accuracy. Feature importance was used to identify the most important
aspects of the accelerations and then variations in these parts of the acceleration data
were examined for different locations on the prosthetic shank. It was discovered that
a consistent location is critical for high classification accuracies, and that for terrain
classification accelerations captured at the ankle produce higher accuracies.

A final study was conducted to explore clinical experts’ views on the developed sys-
tem and the output data. Real-world data was collected from 3 lower limb prosthetic
users over two weeks using a prosthesis shank-worn IMU. These data were processed
and classified using the previously created algorithms, to estimate terrain and walking
aid use. Each participant also had their K level clinically assessed using current standard
clinical procedures. A report was compiled for each participant that summarised the
clinical assessments and the classification data. These reports were shown to 4 clinical
experts and semi-structured interviews were conducted to assess their thoughts on the
data, if the system would be clinically useful and if the data would change their K level
assessments. All the interviewees thought the data would help with clinical assessments
and had positive views about the data that were produced. They also all commented
on how the data would change how they would conduct a K level assessment and two
said that for two of the participants the sensor data would change the K level they
would assign compared to just the clinical assessment. Active time and load through the
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prosthetic were the only measures that were identified that could further improve the
system for clinical use.
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Chapter 1

Background and introduction

1.1 Background

1.1.1 Lower limb prosthetic use

It is estimated that 35–40 million people globally require prosthetics and orthotics [9] and
the need for prosthesis is on the rise, for example in 2005 there were 1.6 million people
living with limb loss in the United States of America (USA) and it is projected that there
will be 3.6 million by 2050 [10]; this is a realistic estimation as in 2021 there were 2.2
million people with limb loss in the USA [11]. Underlying reasons for these numbers
include that over half a million individuals experience limb loss or are born with limb
difference in the USA each year, with 83% of limb loss being lower body [11]. 86.4%
of those were above 45 years old, with 44.7% above 65, 57.6% were due to diabetes
and only 12.9% due to trauma. In the United Kingdom (UK) limb loss statistics are
similar with 70% of lower limb prosthetic users being over 54 years old, with only 10%
for trauma [12].

Diabetes mellitus, commonly referred to as diabetes, is a chronic condition that oc-
curs when raised levels of blood glucose occur because the body cannot produce any
or enough of the hormone insulin or cannot effectively use the insulin it produces [13].
Diabetes can often lead to lower limb loss as amputation may become a necessity when
blood flow to the extremities is reduced due to diabetic peripheral arterial disease [14].
It has been estimated that 537 million people worldwide have diabetes and that this
will increase to 783 million by 2045 [13]. It was estimated that over 6.7 million people
aged 20-79 will die from diabetes related causes in 2021, and that the direct healthcare
costs due to diabetes will exceed one trillion USD by 2030 [13]. Over 90% of cases of
diabetes worldwide are of Type 2 diabetes. The causes of Type 2 diabetes are not known
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but there are strong links to weight, age and ethnicity [13]. One of the key aspects to
management of Type 2 diabetes is promoting a healthy lifestyle that includes regular
physical activity [15].

Lower limb prosthetic users have been found to be less active than non-amputees
[16], with research suggesting that a large proportion could be classified as sedentary
[17]. Inactivity has been shown to be a serious cause of death with an estimated 1.9
million deaths globally in 2002 linked to inactivity [18]. In the USA it was found that peo-
ple who have limb loss have a mortality rate 18.5% higher than the general population [11].

When limb loss occurs, prosthetics are generally prescribed to enhance mobility and
physical functioning. Depending on the level of limb loss, a transtibial (TT) or trans-
femoral (TF) prosthetic may be prescribed for the lower limb. Transtibial prosthetic
users make up 54% of the prosthetic users in the UK, with Transfemoral accounting
for 37% [12]. The main components of a lower limb prosthetic are: socket, suspension
mechanism, knee joint (above knee limb loss only), pylon, and ankle and foot joint [19].

Given the large number of individuals experiencing lower limb loss, prosthetic devices play
a crucial role in restoring mobility and improving quality of life. Various types of prosthetic
knee joints and components are available to accommodate different levels of activity and
user needs. There are two main categories of prosthetic knee joints, mechanical and
microprocessor. Mechanical knees can be single axis, locking, polycentric or hydraulic.
Single axis knees are considered the most basic and bend freely on a single axis, that acts
like a hinge, and do not have any stance control, which can be an issue for older users [20].
They are lightweight and low cost [21]. Locking knees are similar to single axis knees but
have a locking feature to keep the knee straight when in stance, this can be manually
controlled or weight activated [20]. Polycentric knees have multiple axis of rotation,
usually utilising a 4-bar link mechanism. These offer more stability in stance and due to
the mechanism the limb length shortens during swing which increases foot clearance [22].
Hydraulic knees are incorporated into a single or polycentric knee to control the swing
phase of a stride through hydraulic dampening [20]. This gives the user the ability to
vary walking speeds as the knee will limit fluid flow and therefore limit flexion [21]. These
components add cost and weight to the prosthesis [22]. Microprocessor knees utilise
sensors in the knee that then influences the response on the knee similar to a hydraulic
knee [21]. With the quick response and adaptability of the system during a stride, they
can produce a more natural gait [22]. These are much more expensive and heavier than
other knees [22]. For an example of the weight difference between different knees, an
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Össur Locking Knee weighs 0.248Kg [23] and an Össur Power Knee weighs 2.6Kg [24].

There are also different types of ankle and foot joints are: solid ankle cushioned heel
(SACH), flexible keel, axial, dynamic response, and microprocessor [25]. A SACH foot
is the most basic prosthetic ankle and foot, it is a non-articulated foot with no hinged
parts [26]. They are low cost and durable but the heel height is fixed and they have poor
toe-off [27]. Flexible keel feet are similar to a SACH foot but with an elastic keel [25],
meaning the forefoot is able to conform to uneven terrain [26]. Axial feet can be single
or multi-axis. Single axis allows for dorsiflexion and plantarflexion, where as a multi-axis
foot also allows medial lateral flexion [25]. The ankle movement helps to dampen some
of the stresses of walking which can reduce pressure in the prosthetic socket [27]. A
dynamic response foot stores and releases energy during a stride, absorbing energy in the
keel during the roll-over phase and then springs back to provide a subjective sense of
push-off [26], but due to the ankles inability to produce a plantar-flexion moment when
in a plantar-flexed position they cannot produce a natural push-off at toe-off [28]. This
allows for a more natural gait [25]. Microprocessor feet are similar to microprocessor
knees in that they utilise sensors in the foot to make automatic adjustments so the foot
can adapt to the terrain. They also incorporate ankle motors to give an active push
at toe-off to help provide a more natural gait, but they are high cost and heavier than
other prosthetic feet [27]. For an example of the different weights of different types of
feet, an Ottobock Kintrol single axis foot weighs 0.953Kg and an Ottobock Empower
microprocessor foot weighs 2.145Kg, both for 27cm feet.

Baars et al. [29] conducted a review of satisfaction with lower limb prosthetics, they
found that users only had a mean satisfaction score of 58 (range 0-100) in relation to
prosthetic weight and that TF prosthetic users were more likely to be dissatisfied with
their prosthesis than a TT prosthetic user.

In summary, lower limb loss is a growing global health issue, with diabetes as a
primary contributor. Lower limb prostheses for TT and TF patients offer a solution to aid
with mobility, and various types exist that differ in components, general functioning and
also weight and costs. However, satisfaction with lower limb prostheses remains mixed.
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1.1.2 K levels and associated prosthesis component prescrip-

tion

K levels
The prosthetic components a lower limb prosthetic user is given can have an impact
on the types of activities the user can do. As such, if a lower limb prosthetic user is
not given an adequate prosthetic that meets their activity needs it could lead to the
patient becoming less active and/or not using their prothesis [5], and the implications
of that on health have been discussed above. Activity levels of lower limb prosthesis
patients are characterized by K levels. A K level is assigned to the patient, and the
K level designates the prosthesis components the patient is given and the payments
from their medical insurance that they will receive [30]. K levels were created by the
US Health Care Financing Administration in their common procedure coding system
[31]. K levels go from K0 to K4, and a description of each level is provided in Table
1.1 below. These brief descriptions are the only definitions given to distinguish between
the different K levels with not additional information given. There is no guidance or
objective measures to define any aspect of the definitions, for example how much variance
in cadence would constitute being able to ambulation with variable cadence. This brings
subjectivity into assigning K levels which could mean different clinicians judge the same
level of an aspect of activity to align to a different K level. There is also no set procedure
to assess patients for classification of K levels. Balk et al. [5] reviewed studies that
looked at the validity of 50 outcome measures that could be used to classify a patient’s
activity level for component prescriptions A.1. All the outcome measures were deemed to
have some validity, but there remains little evidence to show treatment effects, patient
satisfaction and long-term use effects. Balk et al. stated that current research fails to
address whether different lower limb prosthetic users will benefit from specific prosthetic
components. It was also found that there is sparse evidence of long-term outcomes.
They also stated that no study had investigated prosthetic prescriptions in relation to
functional outcomes, and that K level assessments variability and subjectivity could lead
to inappropriate prosthetic prescriptions. Following this, it was suggested that more
research is needed to address the issue of heterogeneity of treatment effects and improve
matching of components to patients. Hafner [32] stated the same findings already in
2005 which highlights the remaining lack of research in this area to address these issues.

K-levels are crucial in determining the appropriate prosthetic components prescribed, as
they classify patients based on activity levels and predict potential mobility. However,
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Table 1.1 K level descriptions [5]

K level Description
Level 0 Does not have the ability or potential to ambulate or transfer

safely with or without assistance and a prosthesis does not
enhance their quality of life or mobility.

Level 1 Has the ability or potential to use a prosthesis for transfers or
ambulation on level surfaces at fixed cadence. Typical of the
limited and unlimited household ambulator.

Level 2 Has the ability or potential for ambulation with the ability
to traverse low level environmental barriers such as curbs,
stairs, or uneven surfaces. Typical of the limited community
ambulator.

Level 3 Has the ability or potential for ambulation with variable ca-
dence. Typical of the community ambulator who has the ability
to traverse most environmental barriers and may have voca-
tional, therapeutic, or exercise activity that demands prosthetic
utilization beyond simple locomotion.

Level 4 Has the ability or potential for prosthetic ambulation that
exceeds basic ambulation skills, exhibiting high impact, stress,
or energy levels.

the current K-level assessment process is limited by subjectivity and variability, leading to
misclassifications.

Prosthetic component prescriptions
Clinics and manufacturers designate different types of components to different K levels.
For example, the NHS requires patients to be a K3 to be able to be given a microprocessor
knee. Clinics that publish the data [33][34][35] are in consensus that a K 1 patient would
get a SACH foot and single axis manual locking knee if needed (Figure 1.1a, 1.2a). A
K2 patient would get a flexible keel foot with a multi axis ankle and a single axis knee
with extension assist (Figure 1.1b, 1.2b). A K3 or above patient would get a flex foot,
energy storing or shock absorbing foot with a dynamic response or powered ankle and a
hydraulic, pneumatic or microprocessor knee (Figure 1.1c, 1.2c).
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Fig. 1.1 Ottobock prosthetic feet a) Kintrol K1 foot (www.ottobock.com) [1], b) Terion
K2 foot (www.ottobock.com) [2], c) Taleo Harmony K3 foot (www.ottobock.com) [3].

Fig. 1.2 Ossur prosthetic knee joints a) Locking Knee K1, b) Total Knee 1900 K2, c)
Power Knee K3 (www.ossur.com) [4]).

Table B.1 in Appendix B.1 displays the various components that Limbs 4 Life recommends
for different K levels. Limbs 4 Life is an Australian charity that supports and advises
amputees [8]. Training material by Nelson et al. [36] state the same, that a K2 should
get a SACH foot and a K4 get a dynamic response foot.

Some evidence exists that K level and associated component selection indeed affect
gait. For example, Symmetry of External Work (SEW) is an outcome measure that has
shown kinetic gait differences between different types of prosthetic feet. SEW compares
the ground reaction force between the prosthetic and intact limb. It has been shown
that a K2 and K3 patient have a higher SEW using a K3 foot over a K2 foot for ramp
ascending and descending. Interestingly, there was no statistical difference for a K2
patient in using a microprocessor-controlled ankle and a K2 foot, whereas for a K3
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patient there was a large improvement for the microprocessor-controlled ankle and a K2
foot [37]. This suggests that more active patients will benefit more from using more
advance components and are more capable of using more advanced components, hence
appropriate K level assignment is important to optimize the match between patient and
prosthesis components.

1.1.3 Problems with K level assignment

Evidence exists that mis-classification of K levels at times occurs. For example, data
collected at Blatchford centres, for ISO standards, published at ISPO, present the case
of a 72-year-old man that was classed as K2 but after 8 months was walking over 6000
steps a week and wearing his prosthesis 12 hours a day, so arguably he should have been
classified as a K3 level prosthetic user [38]. The paper also stated that, “The K level will
NOT Select Best Prescription for amputee”. Furthermore, Amputee Reported Outcome
Measures (AMPROM) data obtained from the online AMPROM database highlight
difficulties with the assignment of K levels, see Table 1.2. AMPROM is a database set
up by ISPO UK to collect data on lower limb prosthetic user outcome measures [6]. Only
a small number of prosthesis users data had been recorded in this database at the time
of writing this thesis, but this is the only database available that records this type of data
for prosthetic users. The data show K2 and K3 patients classified by the same clinician
between July 2018 and July 2020. All of the recoded prosthetic users except two used
a walking aid, regardless of K level, and type of walking aid varied across participants.
Some K2 patients covered more distance in the 6-minute walk test, used less walking
aids and stumbled and fell less often than some K3 patients. Whilst some outcomes
rely on the accurate report of the patient, this table overall highlights the difficulty of
distinguishing between K levels, in particular between K2 and K3.
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Table 1.2 Data from AMPROM, ISPO UK NMS., retrieved on 8th of January 2021 at
16:00pm, URL: https://amprom.uk [6]

Level/s of am-
putation

K-level Walking
aids

Walking
aids -
Usage

Distance
covered
in 6
minutes
(m)

How fre-
quently do
you stumble?

How fre-
quently do
you fall?

RIGHT Trans-
femoral

K3 no infor-
mation

Outdoors
only

430 Less than
once monthly

Less than
once monthly

RIGHT Trans-
femoral

K3 no infor-
mation

Outdoors
only

430 Once or more
monthly

Once or more
monthly

RIGHT
Transtibial

K2 RIGHT
Cane

Outdoors
only

400 Once or more
monthly

Once or more
weekly

RIGHT
Transtibial

K2 RIGHT
Cane

Outdoors
only

400 Once or more
monthly

Once or more
weekly

RIGHT Trans-
femoral

K3 RIGHT
Cane

Outdoors
only

208 More than
once daily

Once or more
weekly

RIGHT Trans-
femoral

K2 Crutches All the
time

200 Less than
once monthly

Less than
once monthly

RIGHT Trans-
femoral

K2 Crutches All the
time

200 Less than
once monthly

Less than
once monthly

Right Symes K2 Walker Outdoors
only

150 Once or more
monthly

Once daily

LEFT Trans-
femoral

K3 LEFT
Cane

Outdoors
only

128 Less than
once monthly

Less than
once monthly

RIGHT Knee K3 Walker All the
time

100 More than
once daily

More than
once daily

RIGHT Toe K2 RIGHT
Cane

no infor-
mation

67 Less than
once monthly

More than
once daily
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1.1.4 Current clinical practice for assessment of K levels

In line with the above, a systematic review [39] identified the need to establish detailed
outcome measures to assess lower limb prosthetic users’ activity levels. Subsequently,
Jamieson [40] ran focus groups and interviews with lower limb prosthetic users and clini-
cians to investigate their views on prosthetic rehabilitation outcome measures and explore
how an activity monitoring system could be beneficial. The research found that activity
monitoring was not currently used in assessing patient activity levels, patients do not
keep their clinicians updated on their activity levels except when needed and measures on
the terrain that the patients are traversing would be beneficial for clinical decision making.

Arguably, a vast range of outcome measures have been developed to assess differ-
ent aspects of a patient’s health and activities. Table 1.3 displays the main ones that are
clinically used; a review was conducted [7] that assessed most of the outcome measures
listed. The review concluded that even for outcome measures that are valid and reliable,
there remain issues with ease of use. It was also highlighted that there is no gold
standard measure and no guidance as to which measures should be used when allocating
K levels and prescribing components to a patient. Importantly, most measures identified
were self-reported, yet studies have found that self-reported measures are not accurate
when compared to objective measures [41][42], for example, it has been shown with
some non-prosthetic users, that timed walking tests do not correlate with daily stepping
activities [43].

A more recent and comprehensive review by ISPO as part of the LEAD and COM-
PASS project found 60 outcome measures for lower limb prosthetic users [44]. This
project then had an expert panel examine the outcome measures and a list of recom-
mended outcome measure sets were presented. Three sets were recommended: COMPASS
– Time-up-and-go test, Amputee Mobility Predictor, 2-Minute Walk Test, Prosthesis
Evaluation Questionnaire Residual Limb Health and Utility sections, and Trinity Am-
putation and Prosthesis Experience Scales-Revised: COMPASS+ - 6-minute walk test
and Comprehensive High-Level Activity Mobility Predictor; COMPASS Adjunct - Patient
Specific Function Scale. The COMPASS set is recommended as the standard set and
takes approximately 45 minutes to complete. The COMPASS+ is for high-functioning
individuals and takes approximately 25 minutes to complete. COMPASS Adjunct is
recommended to be used in addition to the other sets for a clinical setting and takes
approximately 10 minutes to conduct. No published papers that could be found that
investigated the use of any of these recommended outcome measure sets for K level
assignment or prosthetic prescriptions; the ISPO report also does not mention whether
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these outcome measures could be used for lower limb prosthetic prescriptions.

When this project started, notably no work could be found that looked at gaining
an understanding of how clinicians view K levels and how K level assessments are con-
ducted in different centres. A vast number of clinical outcome measures exist (see Table
1.4), yet understanding their implementation (or lack of such) and associated clinical
views and processes may help identify the sources of the inaccuracies and have the
potential to inform design of an assessment method that addresses present shortfalls.
Activity monitoring through small body-worn devices may be a solution, as it has shown
promise in the research arena as will be discussed in the following sections.

In summary K levels are fundamental to prosthetic care, determining the prescrip-
tion a user will be given and the benefits they will receive, but also prosthetic components
are designed to specific K levels. Even so, with this there is evidence of inaccuracies
in K level assignments, which could be due to the subjectivity of the assessments and
the vague definitions. There are validated outcome measures that can be used to assess
lower limb prosthetic users but there is no recommendation on how these should influence
K level assignment. The prosthetic component a lower limb prosthetic user is give can
have a large impact on their activity levels and consequently their health and wellbeing,
therefore it is vital that these issues with K level assignment are investigated and reduced.
So a gap remains in developing objective, standardized assessment methods that could
improve the accuracy and consistency of K level assignments and better match prosthetic
components to patient needs. This demonstrates the need for exploring objective, real-
world data collection and monitoring methods to enhance K level accuracy and improve
patient outcomes.
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Table 1.3 Outcome measures analysis. List of measures from Condie et al. [7]

Outcome measure Description Advantages Disadvantages

Socket comfort score (SCS) Patients are asked to rate the com-
fort of their socket from 0 to 10
scale where 0 is the most uncomfort-
able and 10 is the most comfortable
[45]

It has been shown that reported SCS
was consistent and reliable, with
a strong relationship between SCS
and clinical evidence of poor fit [45]

Only assesses the comfort of the
socket and not the ability of the
patients. [7]

Trinity Amputation and Prosthesis
Experience Scales (TAPES)

TAPES is a self-administered ques-
tionnaire. It consists of nine sub-
scales. 3 regarding psychosocial, 3
covering activity restriction and 3
additional that assess satisfaction
with the prosthesis [46].

TAPES has shown good internal
consistency [7]

TAPES is intended to assess the
adjustment to amputation and not
assess the ability of the patient [7]

Perceived Social Stigma Scale
(PSSS)

PSS is a self-reported questionnaire
the explores quality of life in respect
to social stigmas about limb loss. It
consists of 22 items derived from
a large pool of attributes that em-
body common negative stereotypes
associated with disabled people [7]

The internal consistency of the
PSSS is good, and it is reported to
have good face and content validity
[7].

PSSS dose not assess a patient’s
ability but how they are affected by
limb loss [7]

Prosthesis Evaluation Question-
naire (PEQ)

PEQ is a self-reported questionnaire
that aims to measure functional out-
comes of lower limb prostheses. The
questions refer to the 4 weeks imme-
diately preceding the administration
of the questionnaire. Questions re-
late to ambulation, limb health, ap-
pearance and quality of life. [47]

Testing has shown the PEQ to have
good reliability and good to excel-
lent construct validity [7]
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Body Image Questionnaire (BIQ) BIQ is a self-reported questionnaire
that measures quality of life. It
asks respondents about their feel-
ings about their body shape, the
shape of their prostheses, the atti-
tude of others towards them, and
the impact on their social activity
[7]).

The BIQ has good internal consis-
tency [7]

Aspects of reliability and validity are
unknown and the BIQ does not as-
sess the patient’s ability [7]

Amputation Body Image Scale
(ABIS)

ABIS is a self-reported survey that
assess how a person with an am-
putation perceives and feels about
their body. [48]

Correlation to the TAPES has been
shown and good reliability demon-
strated [7]

ABIS does not assess a patient’s
ability [7]

Attitude to Artificial Limb Ques-
tionnaire (AALQ)

AALQ is a self-reported question-
naire that measures quality of life.
It measures satisfaction with pros-
thesis, walking ability, attitude of
others to them, and restoration of
body image [49].

Internal consistency of the AALQ is
good [7]

Some psychometric properties re-
main unreported [7]

Frenchay activities index (FAI) FAI is a self-reported questionnaire
that measures activities of daily liv-
ing. It has 3 domains which are
domestic chores, leisure/work and
outdoor activities [7]

The FAI is reported to have excellent
reliability and adequate validity [50]

FAI looks at the frequency of an ac-
tivity not the ability to do an activity
[7]

Prosthetic profile of amputee
(PPA)

PPA is a self-reported questionnaire
that measures the factors related to
prosthetic use and the use of the
prosthesis. [51]

The PPA has been shown to be valid
and reliable for clinical use [7]

Problems have been reported with
self-administration and patient’s un-
derstanding of the questions [7]
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Houghton scale Houghton scale is a self-reported
questionnaire that measures the
wear and use of a prosthesis. It has
been proposed that the Houghton
scale parallels K levels [52]. It con-
sists of four items: the amount of
time the prosthesis is used, the man-
ner in which it is used, whether an
assistive device is used outside, and
the individual’s perception of stabil-
ity while walking outside on a variety
of terrain [7].

It has been shown to be responsive
to change in prosthetic use [52]

Some floor and ceiling effects have
been reported [7]

Amputee Activity Score (AAS) ASS is a self-reported questionnaire
which explores activities of daily liv-
ing and the frequency of participa-
tion in certain activities [53].

AAS has been shown to be respon-
sive to change in mobility with re-
habilitation and at follow-up [7]

Construct validity is still unclear [7]

Special interest group in amputee
medicine (SIGAM)

SIGAM is a self-reported question-
naire that assesses a patient’s mobil-
ity. It asks questions about walking
ability and grades patients from A
to F [54].

It has been shown to be reliable and
responsive to change in mobility [7]

More focused on low mobility pa-
tients [7]

Locomotor capabilities index (LCI) LCI is a self-reported questionnaire
that asks the patients to assess if
and how they complete certain ac-
tivities [55].

LCI has been shown to have good
internal consistency, test-retest reli-
ability and construct validity [7]

The activities assessed are limited
and may not fully assess a patient’s
ability [7]

Functional measure for amputees
(FMA)

FMA is a self-reported questionnaire
that is a reduced version of the PPA,
which was deemed to take too long
to complete [56].

FMA has been shown to have good
reliability [7]

FMA has been shown to have poor
validity and the activities assessed
are limited and may not fully assess
a patient’s ability [7]
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Amputee mobility predictor with
(AMPPro) / without prosthesis,
(AMPnoPRO)

AMPPro and AMPnoPro are a set
of objective tests that are used to
measure a patients mobility level.
It covers sitting balance, transfers,
standing balance, gait, stairs, and
use of an assistive device. Score
ranges have been allocated to differ-
ent K levels [57].

The AMP with and without a pros-
thesis are reliable and valid measures
for the assessment of functional am-
bulation in lower-limb amputee sub-
jects [57]

Timed walk test (TWT) Timing of walking can be carried
out by either testing speed over a
short distance (e.g., 10 metres) or
endurance in which the subject is
asked to walk as far as they can in
a given time (i.e 6 minutes) [7].

TWTs are known to be valid and
reliable with a variety of clinical con-
ditions and are frequently used as
the gold standard comparator test
[7]

Poor construct validity has been
shown depending on comparison
measure [7]

Timed get up and go The subject is observed rising from
an armchair, walking 3 m, and re-
turning to the chair on a standard
carpet (Sears, 2012).

The Timed up and go test showed
good intra-rater and inter-rater reli-
ability [7]

Timed get up and go test only as-
sesses a limited element of a pa-
tient’s mobility [7]
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1.2 Review of past studies using activity monitoring

This section looks at activity monitoring for healthcare. Activity monitoring can be used
to collect data on a person’s activities in the real-world, which could have benefits for
lower limb prosthetic prescriptions as it would give clinicians more information on their
patients to make a more informed decision without taking up additional clinical time.
Activity monitors can record cadence and therefore cadence variability which is stated
in the K level definitions as a distinguishing measure between K2 and K3. This section
will look at research relating to activity monitoring of prosthetic users first to establish
relevant context, and then non-prosthetic users to explore broader monitoring approaches
that may offer transferable insights.

1.2.1 Activity classification in prosthesis users

Chadwell et al. [58] performed a systematic review of activity monitors used in studies
related to prothesis users, as activity monitoring was deemed as a potential method of
understanding how prostheses are used in everyday life. The studies reviewed looked at
validating systems or algorithms, comparing activity measures to clinical assessments,
seeing how interventions changed activity levels, and comparing different populations’
activity levels. The studies that attempted to validate new systems and the ones that
compared activity measures to clinical scores are the most relevant for this research. The
majority of the validation studies were looking to validate a body-worn, sensor-based
system to monitor activities, but there were some that explored different approaches,
like using GPS or smartphone sensors. The most common clinical score compared to
everyday activity levels of lower limb prothesis patients was K levels. A few studies found
a good correlation between K level and number of steps taken [59][60][61][62][63][64].
However, only 3 studies measured data for longer than three months with most recording
for less than 2 weeks. Nevertheless, the review concluded that monitoring patients
outside of the clinic can give a clearer picture of the patient’s capabilities and require-
ments. A more detailed discussion of the most relevant studies reviewed is provided below.

Use of accelerometers to monitor aspects of activity.
Several studies concerned with validation used accelerometers attached to a prosthetic
user’s body or prosthesis to measure step count, walking velocity, step length and to
classify locomotion [65][66][67]. Notably, Redfield et al. [67] found that with one ac-
celerometer attached to the ankle of the prosthesis 90.1% accuracy could be achieved
when identifying sitting, standing, moving, and doffing (putting on a prosthesis). Gardner
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et al. [65] also showed that using a proximity sensor in the cuff of the prosthesis could
detect doffing. Gardner et al. [65] used two accelerometers with one attached to the
thigh and one to the prosthetic ankle. However, it may be that some patients may not
be willing to attach a sensor to their body for longer time periods.

One study compared measured to subjectively-reported activity: Balkman et al. [42] also
used accelerometers and looked at how prosthetists’ and patients’ view of the patient’s
activity level compared to objective data. The study found that none of the prosthetists’
estimates for wear time matched the measured data, and only one of the patients’
self-evaluations was predicted accurately. The estimated values for sitting, standing, and
walking time showed no correlation to the values measured, hence the authors rightly
questioned the reliability and accuracy of subjective estimates of activity levels as are
presently used for K level classification.

Three further studies compared K levels to measurements of activity. One study by
Arch et al. [59] looked at cadence of the participants to distinguish between K2 and K3
patients. Their study found that on average K2 patients walked at a slower cadence and
with less variability in their cadence. However, almost 15% of participants were found to
show activity characteristics that were of a different K level to the one they had initially
been classified as. The measurements were made using a wrist-worn FitBit; due to using
a wrist-worn device there might be some error in the cadence measurements but such
placement would make it easier to get the participants to wear the device, for example
hidden in a watch or armband. Arch et al. also used a FitBit to compare activity data
to Medicare functional classification levels, which are the same as K levels [68]. The
clinical assessment consisted of a ten-metre walk test and a six-minute walk test. On
average K2 patients were found to have a slower walking speed, lower step count, shorter
distance covered in the six-minute walk test and fewer active minutes than the average
K3 patient. Just over 18% of participants aligned with the average of a different K level,
and not the average of their assigned K level, in terms of active minutes, total steps,
walking speed and percentage of time conducting high level activities. A waist-worn
FitBit was used by Albert et al. [61] to classify activity levels and compare them to K
levels. The study recruited nine transfemoral prosthetic users but seven were assessed as
K3, with one assessed K2 and one K4. The activity levels were classified as light, fairly
and very active; the K2 participant did have the highest percentage of their activity as
light but this was only slightly higher than two of the K3 participants, and the K2 user
did not have any very active periods, but this was also the case for three K3 participants.
The K4 participant did have the highest percentage of their activity as very active but
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had a larger percentage of light activity than one K3 participant. Due to there only
being one K2 and K4 participant each, this can not be accepted as a validated outcome.
The other study by Orendurff et al. [64] investigated the relationship between K levels
and real-world ambulatory activity data. An estimated K level was calculated from the
measured data and compared to the patient’s clinically-assessed K level. Calculated levels
correlated with clinically assessed K levels, however, the K2 patients scored similar to
the K3 patients. The estimated K levels rated potential to ambulate, cadence variability
and energy level for each participant on a scale between 0 and 4.9. The average of
these ratings combined with the participants clinically assigned K level was used as the
estimated K level. This means that the participants clinically assigned K level had a 25%
influence over the estimated K level and therefore this study does not directly compare
activity levels to K levels. If the assigned K level was taken out of the calculation, there
would be one of the three K2 patients that would have been more active than two of the
six K3 patients, clearly demonstrating challenges with assigning K2/K3 levels. The same
calculated K level was also used by Orendurff et al. in a study that compared this measure
against clinician-assessed K levels, but the clinicians were only shown step count and
cadence data from the prosthetic users [63]. There was a strong correlation between the
k-levels derived using the 2 different approaches (R2=0.829), but the clinician-assessed
K levels were purely assigned from step count and cadence data and therefore cannot be
accepted as the same as clinically assigned K levels, because the prosthetists in the study
all highlighted other factors that they would use to assign K levels in routine clinical care.

Studies incorporating different sensors.
Regarding some different approaches, one study used GPS data along with a step counter
to quantify community mobility and social interactions [69]. It was found that steps in
and outside of the home, wheelchair use, prothesis use, driving trips and time spent on
social trips could all be quantified. This gives a good picture of the patient’s life outside
of the clinic and therefore their requirements in terms of prosthesis function. However,
the GPS device required the participant to charge it every night and carry it around in a
pocket or bag, and this may not be practical for every patient. Another study [62] that
incorporated GPS, investigated the Modus Trex derived K level, an estimated measure
for K level from StepWatch data although the exact algorithm has not been published,
and a modified clinical K level (MCK), derived from criteria set for each K level based on
specific measure collected by the GPS and StepWach combined (mean daily step count,
peak daily step count, steps in a community setting, peak cadence and environmental
barriers traversed), against clinically assess K levels. Out of the twenty-seven participants
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the Modus Trex K levels were different to the clinically assigned K levels four times
(14.8%) and the MCK was different to the clinical K levels 3 times (11.1%).

Two studies used the accelerometers and gyroscopes built into a smartphone. Albert et al.
[60] used such to quantify activity levels and compare them with K levels. It was found
that there was a correlation between K levels and the proportion of moderate to high
level activities. The activities were categorised as either high, medium, low or inactivity,
but the type of activity was not identified. Another study used smartphone sensors to
detect falls [70]. It was shown that the machine learning algorithms could detect falls for
lower limb prothesis users from the mobile phone sensors. Although this is not related to
K levels it shows that simple sensors can classify some aspects of human movement.

One other study by Frossard et al. [71] looked at the viability of using a six-axis
force transducer integrated into an osseointergrated trans-femoral prosthetic to measure
daily activity. The study found that the transducer accurately measured maximum load,
gait cycles, cadence, and activity periods. However, the force transducer used required
to be integrated into a unique prosthesis shaft which limits its use.

Other studies using activity monitoring on a lower limb prosthetic population.
Jamieson [40] looked at developing a system to recognise activities of lower limb prosthetic
users in free living conditions. In doing this, a study was run using one thigh mounted
accelerometer and activities were classified using a range of machine learning algorithms
(Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Random Forest (RF),
AdaBoost (AB), Naïve-Bayes (NB), Long-Short Term Memory neural network (LSTM)
and Linear Discriminant Analysis (LDA)). The study had eight healthy participants and
four transtibial amputees walking on a range of flat ground, stairs, slopes, and soft ground.
SVM and LSTM produce the best accuracies of 76.28% and 78.43%, respectively, using
a 5-fold cross-validation test but only 56.68% and 31.10% using a leave one subject out
approach. This work also looked at unsupervised cluster analysis of the activity data.
T-distributed stochastic embedding was deemed to be the best approach and it was found
that there were appreciable clusters between ground walking and stair ambulation only.
The results of this work show that terrain recognition is possible with lower limb prosthetic
users but also that there are limitations in only using one accelerometer mounted on the
thigh. The accuracies would have also been affected due to the limited variety in the
data collected, with only 131 downstairs samples and 3506 flat ground samples collected.
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Accelerometers have also been used to measure gait symmetry [72]. The accelerometer
was attached to the participant at the thorax, and the results were found to be acceptable
to assess the gait symmetry and regularity of a trans-femoral amputee. The issue with
this study’s proposed system is the placement of the accelerometer, but it did give an
indication on how ambitious the system could be with the amount of data collected from
one accelerometer.

In summary activity monitors have shown potential to be powerful tools that could aid
in prosthetic prescriptions. A range of sensors recording a variety of measures have been
investigated. Accelerometers have been used in many studies, especially for quantifying
step count and cadence. There is no consensus, however, on the most effective sensors
and measures that would aid in K level assignment.

1.2.2 Activity classification in non-prosthetic users

Research into activity monitoring in healthcare extends well beyond prosthetic users and
has produced a wide range of methods. Studies on non-prosthetic users have explored
diverse aspects of activity monitoring, from movement classification to rehabilitation
tracking, providing valuable methodologies that could be adapted for prosthetic applica-
tions. This section will examine a few that have looked at different aspects of activity to
present the range of applications that this technology can be utilised for. Camargo et
al. [73] showed that you can use Inertial Measurement Units (IMU) and goniometers
to calculate walking speed, stair height and ramp incline to a high degree of accuracy.
The system used four IMUs, on the foot, shank, thigh, and trunk, and 3 goniometers, on
the ankle, knee, and hip. The shank IMU reduced the error the most when calculating
the walking speed, while the goniometers reduced the most errors in calculating the step
height and ramp angle. Without the goniometers, the error of the step height was about
5 cm, and the error of the ramp incline was about 3.5°, but with the goniometer the
errors improved to 1.29 cm and 1.25°, respectively. The shank IMU could detect a ramp
but could not accurately measure the incline. The classifier proving most successful in
terms of reducing errors was a feedforward neural network with a Kalman filter. However,
goniometers measure angles, hence, will not be effective on a transtibial prosthesis.

Other studies have used machine learning algorithms to classify movements. Chen
et al. [74] found that K nearest neighbor classifier outperformed Bayesian classifier at
measuring joint angles using accelerometers and gyroscopes for rehabilitation exercises,
but their findings were based on only a small data set. Lum et al. [75] showed that K
means clustering, K nearest neighbours, random forest, linear support vector machine
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and radial basis function support vector machine classifiers all worked better than a count
ratio at measuring the functional use of an arm. An accelerometer on the wrist was used
to collect their data. This demonstrates that machine learning models are capable of
classifying human moment.

A physical activity questionnaire was compared to accelerometer data to see how accurate
patients’ perception of their physical activity were [41]. The study found that agreement
between the questionnaire and the accelerometer data was low and that on average
the participants did less physical activity than they reported in the questionnaire. They
concluded that using accelerometers to measure physical activity would reduce bias and
increase precision, which is plausible as it would remove the subjectivity in the assessments.

A few studies have used an IMU attached to both ankles to measure stride length.
Stride length cannot be physically measured with an IMU system but can be estimated
using calculations. One study [76] used a calculation developed by Rampp et al. [77].
The calculation works out a person’s stride length using an accelerometer and gyroscope
attached to the ankle. The calculation has an absolute error of about 6.26 cm. Ibrahim
et al. [76] used the stride length and other spatio-temporal gait parameters to predict
the fatigue of MS patients. The prediction was done using a random forest regression
algorithm. Rudisch et al. [78] compared two IMU systems against an optical and three
pressure-based systems for measuring stride length, cadence, heel strike and toe-off. The
IMU systems measured stride length and cadence to a similar accuracy to the other
systems.

In summary, Activity monitors can be versatile and adapted to the desired need.
Terrain classification has been achieved, which is a measure defined in the K level defi-
nitions, but the method presented may not be suitable for lower limb prosthetic users.
Machine learning models have been utilised with activity monitors to classify different
measures.

1.3 Conclusions

Lower limb loss is becoming an increasing health problem worldwide, in part due to
diabetes mellitus. Following lower limb loss, prostheses for TT and TF patients aim to aid
with mobility. At present, K levels are assigned through clinical assessment that determine
the prescription of prosthesis components, but issues remain due to the subjectivity of
these K level assessments. There is also issues with the K level definitions, that are vague
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and require subjective interpretation. Satisfaction with lower limb prostheses remains
low, and there is a need to improve matching components to patients. One solution may
lie in the use of activity monitoring in the real world, to provide clinicians with objective
every-day data on activities.

Review of the literature around activity monitoring revealed that a range of variables have
been measured using a variety of different sensors or sensor combinations and classifiers
to classify activity. However, no study has looked at utilizing activity monitoring in
the context of K level assignment. Clinical practice remains without a solution to the
shortfalls of subjective K level assignment. Hence there is a need for a sensor system and
associated algorithms that can inform objectively on unsupervised activity of lower limb
prosthesis users.

Design of such sensor-based system that provides objective, real-world activity data
for lower limb prosthesis users involves a number of steps. To start with, it is important
to understand the requirements that such a system needs to meet and which outcomes
are clinically vital to clinicians. Once such understanding has been established, types of
available sensors and classifiers can be reviewed, and those that have the potential to
meet the requirements can be selected. Supervised real-world and in-lab data collection
can then inform system design in terms of sensor placements and algorithm design. Once
complete, it is then vital that the system and its output are tested in the context of
unsupervised monitoring, and the clinical merit of the outcomes must be confirmed.
Therefore, this PhD has the following Aim and Objectives:

1.3.1 Thesis aims and objectives

Aims:
This PhD aims to develop a clinically useful, sensor-based system that provides objective,
real-world activity data to improve current K-level assessments for lower limb prosthetic
users, specifically addressing current limitations in K-level classification, particularly at
the K2-K3 boundary.

Objectives

• To investigate the clinical requirements for the objective system to aid in clinical
decision making through interviews that explore clinicians’ perceptions regarding
shortfalls of current clinical activity assessments for K level assignments, and which
objective measures they feel would improve their K level assignment. (Chapter 2)
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• To review the literature around sensors and algorithms to inform system design.
(Chapter 3)

• To design a system comprised of sensors and algorithms that output these measures,
utilizing both, real-world and in-lab data collection. (Chapters 4 and 5)

• To evaluate the clinical benefit of the developed system and its outcome measures
through clinician feedback on real lower limb prosthetic users’ data, identifying
areas for further improvement and development
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Chapter 2

Investigation of clinical
requirements for objective system
to aid in clinical decision making
through interviews

2.1 Background

In Chapter 1, the need for a sensor system that has the potential to objectively mea-
sure real-world activity in lower limb prosthesis users, to improve K level assignment,
was established. Chapter 2 focuses on identifying the clinical requirements for a novel
sensor-based system intended to enhance the accuracy of K-level assessments in lower
limb prosthetic care. Before designing such a system, the clinical requirements need to be
explored, to ensure that the system meets clinicians’ needs. The purpose of this chapter
hence was to conduct qualitative interviews with clinicians to gain an understanding of
the clinical requirements for such an objective system, and thereby ensure it has the
potential to aid in clinical decision making when assigning K levels for prescription of
lower limb prosthetic components.

Qualitative research is employed to gather a holistic view of the phenomenon of in-
terest in its context [79]. Glasziou and Chalmers estimate that 85% of health research
funding is wasted but they suggest that most of this could be avoided with better de-
signed research [80]. Slattery et al. argue that co-designed research would produce better
designed research [81]. Co-designed research, sometimes called participatory research
[82], is an approach where stakeholders for the research are engaged to create more
meaningful and relevant research outcomes [81]. As the purpose of this PhD is to create
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a system to help clinicians in clinical decision-making for lower limb prosthetic component
prescriptions, the end users of the system are clinicians who make clinical decisions for
the prescription of lower limb prosthetic components. In consideration of this and to
ensure the system is clinically relevant, qualitative research was conducted with clinicians,
finding of which directed the development of the system in the subsequent chapters.

2.1.1 Aims of Chapter 2

• To gain an understanding of the shortfalls of current clinical activity assessments
for K-level assignments.

• To determine the specific objective measures that clinicians would find most valuable
for improving K-level assignment accuracy.

• To outline functional and practical specifications for a sensor-based system that
aligns with clinical needs thereby enhancing decision-making for lower limb prosthetic
prescriptions.

2.2 Methodology

Before developing an activity classification system, the clinical need(s) that the system is
to meet and associated outcome measures of clinical relevance must be identified. For
this, the views and experiences of prosthetic clinicians needed exploring. Some of the
most used qualitative research methods to obtain these types of data are interviews,
focus groups and questionnaires. To fully understand the clinically-relevant requirements,
follow-up questions to responses are vital to clarify answers. Hence use of a questionnaire
was not considered for this research [83]. Focus groups, however, have shown to give
depth and insight into a participant’s experiences and beliefs [84], and can also reveal a
more nuanced perspective on a topic [85]. Interviews, on the other hand, can produce a
bigger range of views and focus on individual opinions rather than a group consensus
[83]. It is known that K level assessments vary between clinics; hence, it is important
that we discover the individual personal views of the participating clinicians and not just
a consensus to which they all agree. Logistically, interviews are also easier to organise.
Considering this and the fact that there is only a small number of prosthetic clinicians
in the country, it was decided that semi-structured interviews would be used to gain a
thorough understanding of the clinical needs that a sensor system has to meet to aid
in K level classification. Ethical approval was granted to record, transcribe and analyse
interviews (Ethical approval numbers for University: 1710, Appendix D.1 ).

24



2.3 Data Collection: Interviews with clinicians

2.2.1 Participants

The participants that provided informed consent for the interviews were identified through
the International Society of Prosthetics and Orthotics.

Participants met the following inclusion criteria: experience with activity level assess-
ments in users of lower limb prostheses, able to provide informed consent, and able to
do an interview over the phone/video call in the English language. Table 2.1 shows the
professional background and experience of the participants in years.

Table 2.1 Participants professional background and experience

Participant Background Years experi-
ence

Type of clinic

P1 Prosthetist 27 Blatchford

P2 Consultant in rehabilitation
medicine

52 NHS

P3 Prosthetist 16 Blatchford

P4 Amputee specialist physiotherapist 20 NHS

P5 Prosthetist 25 Blatchford

P6 Prosthetist 12 NHS

2.3 Data Collection: Interviews with clinicians

The aim of the interviews was to gather an understanding of how activity assessments
are presently carried out at different clinics across the United Kingdom, explore the
views of the clinicians regarding K levels and the associated assessments for K level
assignment, investigate details of any past studies concerned with activity classification
that the clinicians have been a part of and their views on these, and finally what data the
clinicians would ideally want to help them in clinical decision making and their views on
a sensor-based system that could potentially provide the needed data to assess patients
in the real world.

To obtain the necessary information, an interview guide was developed, influenced
by Kallio et at. [86]. The interview guide (Appendix C.1) was sent to all participants
before the interviews to give participants an understanding of the type of questions that
would be asked and why.

Due to Covid 19, all the interviews were conducted via video call, and audio was
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recorded using an external General Data Protection Regulation (GDPR) compliant record-
ing device. The audio was then hand-transcribed, and any identifying details of the
participants were removed from the transcripts. The interviews were conducted between
May and July 2021. The interviews took no longer than 40 minutes to complete.

2.3.1 Data Analysis: thematic analysis of transcripts

The content of the transcripts was split into three main sections:

1. Current assessments

2. Past studies the participating clinician had been involved in

3. Views on a new sensor system that would provide a means to assess the activity of
patients unsupervised in the real-world

These sections of the transcripts were analysed using thematic analysis based on a
framework approach described by Braun and Clarke [87].

2.4 Results

2.4.1 Current assessments

The main themes highlighted about the current assessments were: 1) Assessment tests
used; 2) Who is involved in the assessments; 3) Distinguishing between K2 and K3
patients; 4) Non-use of biomechanical data; 5) Timeframe for stabilising at a K Level
after amputation; 6) Change in K level over time, 7) Effects of motivation on K level; 8)
Problems with current K level assessments.

Assessment tests used

The participants were asked about the outcome measures and tests that they used, to
assess a patient’s activity level. The list below highlights all tests that were mentioned
during the interviews and the number of participants that mentioned them.

• Get up and go test – 3

• Timed walk tests – 3

• SIGAM (Special Interest Group of Amputation Medicine) – 2

• Socket comfort score – 2
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• AMPPRO (Amputee Mobility Predictor with Prosthesis) – 2

• Video assessment – 2

• Trips and falls questionnaire – 1

• Barthel Index – 1

• Time to recover test – 1

• 10-metre speed test – 1

• Walking around a stick test – 1

• L test – 1

• Pain score – 1

• Hospital anxiety and depression scale – 1

• LCI (Locomotor Capabilities Index) – 1

• Functional Assessment Measure (FIM+FAM) – 1

A key insight from this list is that a range of assessment methods are presently being
used and that consistency is lacking across clinicians interviewed. Only 6 out of the 16
assessments were mentioned by more than one of the interviewees and only 2 mentioned
by three separate interviewees. No assessment was used by more than half the interviewees.

Along with these tests, the participants talked about other techniques that they use
during their assessments. Five of the participants said that what the patient tells them
about their activities of daily living is a very important part of determining the patient’s
K level:

"It is mainly on what the patient is reporting" (P3)

“I think it’s a combination of us checking, their kind of rehab milestones
so that they actually do those activities, plus also what they’re subjectively
telling us about their lives.” (P4)

“Having a verbal assessment dialogue with the patient to understand what
they do in their own everyday life.” (P5)

“It’s more asking the patients and actually just having a knowledge of your
patients and observing how they walk.” (P6)
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Participants 1 and 5 both said they asked their patients if they used walking aids, what
terrain they traversed, if they can change their cadence, the work they are involved in,
and if they participate in any sports. The other participants did not specifically say they
asked their patients about these measures but did mention them as factors when deciding
on a K level.

Participant 3 also said that when they are determining a patient’s K level that “It’s not
just about how far they can go for and how long, it’s about stability and comfort and
security in reducing risks of falls and allowing them to achieve their goals” .

In summary, most of the assessments are based on a verbal dialogue with the pa-
tient and, although validated outcome measures are being used, they do not have a
huge influence on the prescription. This makes the assessments mostly subjective which
may add to the unreliability of the assessments. There is also a large variation of what
different clinicians look for when assessing patients. This may cause different clinicians
to assess patients at different levels and may, therefore, result in reliability being low
between patients assessed at different centres.

Who is involved in the assessments.

From what the participants stated, the group of clinicians who are involved in K level
assessments seems to vary between clinics, but it is usually a multidisciplinary team:

“It varies a lot, but usually a prosthetist and a physiotherapist are available all
the time. So, they tend to be, if you want a constant in the team, whether
you have a doctor or rehab engineer or any the other team members involved
is going to vary a lot from centre to centre.” (P1)

“In conjunction with sort of a physio assessment.” (P5)

Whereas Participant 2 said it was just the prosthetists that use K levels:

“In practice, K levels were used by prosthetists. Not by clinicians, or not by
physicians at all.” (P2)

In summary, a multidisciplinary team assesses the patient, but it might only be the
prosthetist that routinely uses K levels when prescribing a limb for the patient.
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Distinguishing between K2 and K3 patients

Distinguishing between K2 and K3 is the aim of the research that these interviews will
influence. Four main differences between K2 and K3 patients were highlighted by the
participants, these were change of cadence, terrain and use of aids:

Change of cadence

Change of cadence was mentioned by 3 of the participants as a key factor:

“If they can walk 10% faster 10% slower than their preferred walking speed,
and do it comfortably.” (P1)

“They might kind of say, oh, like I was crossing the road, I had to like
really speed up because there’s a bus coming.” (P4)

“For me, personally, the big difference between a K2 and K3 is their ability
to vary cadence.” (P6)

None of the participants distinguished if cadence is more of a factor for TF or TT patients,
so it has to be assumed that it is considered for both.

Terrain

Three of the participants brought up the ability of the patient to traverse different terrain
as a distinguishing factor:

“Getting them to tackle different terrains, so walking up down ramps, up
down steps.” (P1)

“The difference between K2 and K3 is about the environment and the
application.” (P4)

“They come back and they’re like, Oh, yeah, like I took the dog for a
walk in the woods.” (P4)

“K3 would be pretty much independent, able to walk in most conditions
freely confidently, K2 be the ones that won’t be able to probably walk as far,
maybe needing some sort of aid outside for rougher conditions.” (P3)
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Use of aids

As mentioned by Participant 3 above, the ability to walk without a walking aid was also
stated by Participant 1 as a requirement for a K3:

“Walk safely without having to worry about or carry a walking aid, then it is
a K3.” (P1)

Participants 3 and 5 talked about how K2 patients will not be able to walk as far as a
K3 patient:

“Won’t be able to walk as far” (P3)

“K2 would be, wouldn’t be able to go as far with activity. Maybe have
to stop for more rests.” (P3)

“In a six-minute time walk test, they’re more likely to be able to walk,
we’d expect them to walk at least 300 metres, if we get somebody then who
walks a lot less than that. And we thought they’re on the boundary, we
probably say, well, you are presenting to us more as a K2.” (P5)

In summary, being able to change cadence, traverse different terrain, walk without using
a walking aid and walking without the need to rest were highlighted as the four main
differences between a K2 and K3 patients. Being able to change cadence comfortably and
to a degree of 10% was suggested. The types of terrains that were considered important
were steps, slopes, curbs, and uneven ground and being comfortable at traversing them.
The emphasis is to be able to walk safely without aids, so the stability of the patient is
important.

Non-use of biomechanical data

All the participants were asked if they use or have used biomechanical data in assessments
of patients. Biomechanical data were explained as objective data like gait symmetry, joint
angles, or cadence. Two of the participants said that they or a member of their team has
collected biomechanical data to help with patient assessments:

“With the microprocessor technology, we have got the ability to step count
on the knees. So, we have switched them on.” (P3)

“We look at stride, we look at timing, we look at gait symmetry and we get
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a gait profile score. And we look at, we’ve for a while, we were doing energy
expenditure as well with the O2 consumption, we’re looking at knee flexion
angles and things like that.” (P6)

When asking which of these variables they thought was the most relevant, Participant 6
said:

“I think personally, I think the symmetry is the most important thing and
making sure that we’re getting a nice reciprocal, symmetrical gait pattern,
and even weight bearing through both limbs.” (P6)

But they also said:

“We don’t regularly do it in our assessments.” (P6)

This was echoed by the rest of the participants:

“We don’t mainly because it’s not routinely collected on patients.” (P1)

“I don’t think that is required routinely.” (P2)

“We don’t use it to direct our rehab and we don’t use it routinely to allocate
K levels.” (P4)

“We don’t do any, any measures.” (P5)

A couple of the participants said that the reason why they don’t collect biomechanical
data is because they don’t have access to it, with Participant 4 saying “Nope. Mainly
because we don’t have access to it in the clinic”.

In summary, biomechanical data are not commonly used to allocate or help allo-
cate K levels. The inaccessibility of this type of data seems to be a common reason for
it not being used. Step count, recorded by sensors inbuilt into microprocessor knees, is
the most widely used data but not routinely used in assessments. Gait symmetry was
highlighted as a variable of clinical interest.

Timeframe for stabilising at a K Level after amputation

When asked how long it would take a patient to settle into a K level after amputation, 3
of the participants agreed on six to twelve months:
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“About the six months to a year point, after amputation.” (P1)

“Probably months six to twelve probably becomes established, some quicker
depending on the level.” (P5)

“We would review a brand-new patient at one month, three months, six
months and twelve months. And I’m hoping by the time we get to twelve
months, we’re reaching sort of peak of where the patient would be activity
level-wise.” (P6)

Participant 4 gave a broader range:

“We probably would take about three months to rehab a transtibial, and
about six months to rehab a transfemoral. But there will be patients that
take, some patients are on our books for like a year and a half, because they
take so much longer.” (P4)

Participant 1 elaborated on their answer and explained that in the first six months there
is a lot more than just the physical element of amputation to deal with that can affect
rehabilitation:

“I think in the first six months, there’s so much information being bombarded
at the amputee, they’re having to come to terms with the amputation, and
also the response of their family and friends to the amputation.” (P1)

In summary, it takes six months to a year after amputation for a patient to stabilise
at a K level. There are patients who could reach it in three months and some that will
take a year and a half, but participants overall agreed that most will take six months to
a year. This implies that assessing a patients activity might not be necessary until six
months post-amputation.

Change in K level over time

Most of the participants mentioned that K levels can change over time. Three said that
patients can go up K levels:

“Yes, we do typically, yes to somebody who may be K2 initially, as you become
more confident and following their physical and doing every bit more outdoor
walking, we do sometimes see that they progress to a K3.” (P6)

“We’ve had people get remarried and things like that and find a new partner
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or engage in a hobby or, you know, get a new zest for life, then they tend to,
they can go up.” (P3)

“Some people do change, some people go up the bands, and some peo-
ple never ever achieve where you think.” (P1)

Participant 3 also echoed Participant 1’s comments that K levels can go up and down:

“It does change, because if someone says has a stroke or their medical status
changes, then obviously that’s going to affect it.” (P3)

Participant 5 also talked about how health can affect the patient’s mobility and therefore
change their K level:

“Have a bad year or six months of health, then quite often we do see that
there’s a significant change in their prosthetic mobility status.” (P5)

They also said:

“You’d maybe get sort of 10% of that age group, maybe that change K class
significantly.” (P5)

In summary, a patient can change their K level, even after they are established. Due to
the age of most patients, they will gradually decline in their mobility and therefore their
K level, but if a patient is given the right motivation, they can become more active and
go up a K level.

Effects of motivation on K level

Participant 1 and 6 stated that the patient’s motivation can affect their K level:

“I’ve had young, otherwise healthy, traumatic amputees, who you think this,
there’s no reason why this amputee, can’t go on be a K 4, and they never
do it because they don’t, they’re not motivated.” (P1)

“I think motivation and confidence are two of the big things that distin-
guish K2 and K3.” (P6)

Hence, motivation can be an important driver as to what K level a patient achieves during
their rehabilitation, and as shown above, can also affect their K level as an established
patient.
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Problems with current K level assessments

All the participants were asked about their views regarding problems and issues with the
current assessment methods. Three main areas were highlighted.

Defining the levels
The definition of the K levels was brought up as an issue by 3 of the participants:

“The definition of these K 1234 was so broad.” (P2)

“K2 K3 is like you’re really tricky band to sort of understand the differ-
ence between them.” (P4)

“There isn’t anything that would define, I’ve seen anyway. And to see
that a K3 amputee of transfemoral or whatever level should be able to walk
X number of distance at this speed, etc. So, we haven’t had, been able to
use anything to define, it’s always been a little bit blurred.” (P5)

Subjective
Three of the participants said that the subjectiveness of the assessments can be an issue:

“What’s the 10 for one patient might be another person’s 5, you know, say in
terms of like, socket comfort scores? I think, in prosthetics, there’s a lot of
things that is subjective, which is then very hard to compare patient groups
against patient groups.” (P3)

“It’s all very kind of, from our own experience, and practice that we’re
kind of making those judgments.” (P5)

“I think what I might see and judge to be a K2 or a K3 is not, or a colleague
may judge as a K2 or a K3. So, I think it’s very dependent on the clinician,
and specifically what they determine a K2 or a K3 to be.” (P6)

Unreliable
Participant 1 talked about a previous experience where their team had classed a patient
as K2 and not very mobile, but found when the patient wore an activity monitor that
they were mobile and more in line with a K3 patient:

“No one who ever looked at him, from when we predicted to monitor and
the consultant, the physical therapists, the clinician who looked after the
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full team, and myself, and the other prosthetists who were doing this study
looking at the step counts, and cadence, because the monitor also recorded
the cadence. And none of us honestly thought he was going to be doing it,
we’d really thought it was gonna be a low user. Couple 1000 steps a day
type person really, really surprised what he was doing.” (P1)

Participant 6 commented on how the physio’s assessment can be different to the pros-
thetist’s assessment of the same patient:

“If we compare them to our physio colleagues who use a different assessment
tool, they typically score higher on the physio assessment tool, which is the
AMPPRO than the observational score that we would assess.” (P6)

And when asked if there was a discrepancy in the assessments which one they would go
with, they said “I would go with my observational one.” (P6).

Patients not being knowledgeable of the assessments
Participants 1 and 6 mentioned that the patients are not very knowledgeable about the
assessments and usually accept what the clinicians say:

“I think he just got on with it and thought this is the type of leg I should
have, these people, they also know what they’re doing, and no one had ever
told him he could get something that was going to make things easier.” (P1)

“I don’t actually think that patients know what K levels actually mean,
or what an AMPRO score actually means.” (P6)

In summary, the definitions of the K levels and how to distinguish between them were
highlighted as the two main issues, with some specific comments being made regarding
differentiation between K2 and K3 in particular. Both may result in inconsistency in the
allocation of K levels at different clinics. The subjectivity of the assessments, and how
the assessments are being carried out was said to be unreliable by Participant 1 and 6
compared to validated activity assessment methods. The patients’ limited knowledge of
the assessments furthermore may contribute to inconsistent assessments, as they may
not question any inconsistencies in prescriptions between patients.
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2.4.2 Past studies the participating clinician had been involved

in

The main themes highlighted about past studies conducted by the participants were: 1)
Experience with activity monitors; 2) Positives of activity monitors and 3) Negatives of
activity monitors.

Experience with activity monitors

All the participants were asked about their previous experience with activity monitors.
Five of them had some experience of activity monitors attached to patients and four had
used them as part of a study:

“We actually fitted an activity monitor to a group of patient’s legs. And then
we recorded what they did, it was using a system that in effect just printed
out a diary at the end of it, told you on day one you walked a thousand steps
day two you walked so many thousand so on so on.” (P1)

“We’ve done some studies with activity monitors. And they’ve been quite
useful to have a look at step counts.” (P4)

“We did use them over 10 years ago, 15 years ago, there was quite a lot of
work around using activity monitors.” (P5)

“We used to use the activity monitors the step counters and likes to calculate
how many steps a person was doing over a period of time. So, I think they
were called lam ones maybe or something like that. But they’re miniature
activity monitors that would fit in the prosthesis.” (P6)

Participant 1 also described the type of monitors that were used:

“They could collect data for up to a year, when we were trying to look at the
long term, you should offer cause and effect, somebody could easily increase
their activity level for a week. If they thought they were going to get better
quality prosthetic care, or better type of limb out of it. But if you look over
say a month you could see that.” (P1)

Participant 3 had not been part of any study but had a patient who used an activity
monitor to monitor their rehabilitation:
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“A recent quad patient, and she is monitoring her counted because she’s a
middle-aged lady. And she’s recently lost both arms and legs. So, it has
been good for her to measure. So, she’s got a step counter, and she’d be
measuring.” (P3)

Positives of activity monitors

A few positives from the participants were highlighted concerning use of activity monitors.

Change in K levels
As previously mentioned, Participant 1 elaborated about the patient who proved to be
more active than they had been clinically-assessed, and therefore the activity data resulted
in a change of his K level classification and the prothesis he used:

“We’d saw him for years. And he used to come in and tell us that he took his
dog out for walk, but his leg was immaculately clean and think, never doing
anything. He pushes his wheelchair into the limb centre, he’d be treated,
and he’d pushes his wheelchair out the back but when we stuck an activity
monitor, when he came back after a while he was doing 6 / 7000 steps a
day. When we looked at it, he was taking his dog for a walk three four times
a day and we had him on like a SACH foot. I don’t know if you know much
about prosthetics but SACH feet are really basic, fairly naff foot. It’s not
much good for anything. And then we were like oh we better upgrade him
fast because he’s actually doing something. We had him down as a like as a
K2 user, somebody who really didn’t do much at all.” (P1)

This indicates that activity monitors can be used to adjust a patient’s prescription to
ensure the patient has a prosthesis that is more suitable for their activities. Participant 1
also clarified that they did not use the data to limit any patient’s prosthetic care:

“We didn’t really limit people’s prosthetic care as a result of it or, did change
the classifications of a few people who moved up, because we saw they were
actually doing an awful lot more than we believed.” (P1)

From this it can be obtained that clinicians are willing to use activity data to increase
a patients K level if the data suggests their K level is too low but not reduce their K
level or prescription if they have lower activity than perceived. An explanation for this
could be that higher than perceived activity levels proves the patient is capable of higher
activity levels but lower recorded activity level do not necessarily prove the patient is not
able to produce higher activity levels, as other factors such as the weather or an acute
health condition could have affected their activity levels during the recording period.
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Motivation
How the data from the activity monitors motivates the patients to be more active was a
positive mentioned by Participants 1 and 3:

“What we found it was because the amputees come back to the rehabilitation
centre so often, they get to know a lot people and also if you have two
amputees who had their amputation at the same time, they tend to keep in
touch with each other years afterwards. So, then they were comparing the
results. So, there was quite a good buy into it.” (P1)

“Now she’s managing to do 5000 steps a day, from not being able to walk.
So, she’s found in that good for her. So, she’s using that technology herself
to, to monitor herself and then say yes, I’ve achieved in 5000 steps a day. So,
I suppose it’s spurring her on. But not everybody is as motivated as that.
But it could be used as a motivating factor.” (P3)

New data
Participant 1 talked about how the data the activity monitors produce was something
the clinicians hadn’t seen before, and which excited them:

“Everyone who got involved in the project and helped out in it at one part
or another, whether it be the patients, the physiotherapist, the prosthetist,
they were all really quite excited about it. Suddenly the doctor rehabilitation
consultant, at the time got really excited about it he thought was an amazing
thing, because he’d never saw that kind of information about patients.” (P1)

Patients’ acceptance
Participant 4 mentioned how accepting the patients were to participating in the studies
and having the activity monitors attached to them:

“They’ve been quite acceptable to patients, especially if they’re attached to
the device, rather than to the patient themselves.” (P4)

“I think they’re also quite acceptable for patients to apply to themselves,
which is quite useful then if the study says you don’t have to recall the
patient back to the centre to put the Activity Monitor on, you can just send
the Activity Monitor out to the patient, and they can put it on their own
device.” (P4)
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“We have lots of patients here who are usually quite happy for their ac-
tivity to be monitored.” (P6)

In summary, activity monitor data can be used to change a patient’s K level, providing
clinicians with valuable, previously unavailable insights into patient activity. The data has
also been shown to motivate patients to be more active. Clinicians have been excited
by the data because it is new information about their patients that they do not usually
get to see. Additionally, the monitors are generally well-accepted by patients, especially
when integrated into the prosthesis rather than attached directly to the body.

Negatives of activity monitors

A few negative aspects of the participant’s experience of activity monitors were brought
up during the interviews.

Patient’s refusal
Participant 1 talked about two patients that had not wanted to be a part of the study:

“We only had a couple of people who said that they weren’t interested in
getting involved in it. And usually those were people who are very worried
about the cosmesis, because we’re putting it inside the legs, so you can’t
tamper, tamper with it.” (P1)

Participant 4 also mentioned that where the monitor is attached can affect the acceptance
of the patients to having them attached:

“Then sometimes have to attach it to their body. And that’s not as useful or
not useful, it’s not as acceptable to patients.” (P4)

Participant 6 also stated that some patients don’t allow for the activity monitors built
into MPKs to be switched on because they are worried about losing benefits:

“We also have patients who are quite reluctant, because they’re worried that
maybe their benefits may be affected, because they’re actually better than
they’re maybe making out to be.” (P6)

Limitations of activity monitors
The limitation of some activity monitors to differentiate between sitting and standing
and if the patient is not wearing the prosthesis was commented on by Participant 4:
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“The trans-tibial, that are trickier because when you put it on, if you’re going
to put it on their prosthesis, then it does, it can’t tell the difference, then
between whether they’re, they’re stood or they’re sitting.” (P4)

“The other downside actually with, with activity monitors is with prosthetics
is we have to tell the patients to lie the prosthesis down because otherwise
the Activity Monitor thinks the patient stood up all night.” (P4)

Feedback
Participant 4 mentioned that the data that were produced by the activity monitors was
too complicated and didn’t just present the important information they are looking for:

“When you look at it, it’s a bit like, oh, god, what exactly is it that I’m
looking at? And so, I suppose again, it comes back down to that thing of
like, what’s the most important data to present? How do we know what the
most important data is? And how do we get rid of like all that noise that
actually just confuses things and make sure that we’re presenting stuff that’s
really meaningful.” (P4)

They also criticised activity monitors for not producing real time data:

“I think the big downside is that they don’t give you any like real time
feedback.” (P4)

Cost
The cost of the monitors was a restriction that stopped Participant 1’s clinic carrying on
with using activity monitors:

“We’ve got about 1700 amputees. And if you’re going to need If, even say
only half those amputees have two limbs, you’re still talking about 2000 plus
devices. And it just worked out the cost of it was, people were saying, Wait
a minute, that’s a big chunk of money. It’s like a month’s budget.” (P1)

In summary, participating clinicians mentioned that a few patients refused to participate
in the studies; the main reasons for not participating were having the activity monitor
attached to their body, damaging the cosmesis of the prosthesis, and fear the data could
be used to change their benefits. The limitation of the activity monitor not to be able
to distinguish between sitting and standing and not being able to identify whether or
not the patient was wearing the prosthesis was another negative. The data presented to
the clinicians was at times confusing and not always the type of data that is important
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to them. Participant 4 also preferred real-time data feedback. Finally, the cost of the
devices was highlighted as a reason why participants did not continue to use activity
monitors.

2.4.3 Perspectives on a real-world activity monitoring system

During the interviews the participants were asked about their views regarding the de-
velopment of a new sensor-based system that would be attached to the prosthesis to
monitor the patient outside of the clinic. The main themes that were highlighted were:
1) Desired real-world data; 2) Feedback of the system; and 3) Further considerations.

Desired real-world data

When asked what their desired data would be that the system should measure, the main
variables that were mentioned were: step count, cadence, the type of terrain they walk
over, wear time and distance covered:

“How many steps they’re taking, but also cadence. And it has to be a
long-term thing.” (P1)

“Distance covered, I guess. So, step, I suppose that time step length wouldn’t
it? Yeah.” (P3)

“I suppose it would be useful if you were able to detect information about
the terrain that they’re walking on, whether you were able to detect the
speed that they were walking, and whether they’re able to change that speed,
because obviously, that’s an important thing about the K2 K3 is about
that variable cadence. I suppose the other thing would be things like, you
know, like, if they like stepping, like going up and down steps and curbs.” (P4)

“I think I would probably think that looking at the overall distance that
somebody has, has walked would be interesting. And the various, and the
speeds and the variable variation of their speed over that time would be
useful” they also said “terrain. Yes, that would be a good one as well to see
because that would link in with their activity coding because it’s showing
that they are navigating over obstacles.” (P5)

“To get a good idea of what a patient is doing outdoors and the types
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of terrain they’re walking on. I think that would be good. And how long and
are they they’re actual wearing and using their limb.” (P6)

Feedback of the system

Three participants discussed how the system would deliver feedback on the data. Partici-
pant 1 talked about how the data could be used for gait training during rehabilitation:

“Some devices on new amputees that gave me step counts and cadence. And
then I showed the early input on gait training to give education actually
improved overall the patient’s mobility periods.” (P1)

Participant 2 also expressed a similar view that it could be useful for gait training:

“If you think in terms of a subsection of improving the person’s gait, in an
appropriate prosthesis, in other words, the prosthetic element part that yes,
it will be, it could be helpful for the prosthetist.” (P2)

In addition, Participant 4 talked about making sure the data is clear and easy to
understand:

“How usable is it like, how does it, does it collect something meaningful?
And, and then when you’re looking at it on the screen? Like, is it in a format
that’s really easy to understand? Because you think, most clinicians are not
like academics, they need things pretty straightforward, pretty simple and
straight to the point.” (P4)

Furthermore, the usefulness of real-time feedback was discussed by three of the participants.
Participants 1 and 4 said that real-time feedback could be useful to help motivate patients
to be more active:

“If they can see maybe it’s tagged on the phone as an app or whatever, then I
think you would end up with a really good compliance for the users. Because
amputees themselves, because they would like to do it, see that kind of
information. And I think it’s, it’s one of those things, because then if they
can, then come back into the next appointment, say, here you go I’ve have
managed to do 7000 steps a day or 10,000 steps a day whatever it is, then
you’re good.” (P1)

“Having data in real time is really useful. And again, it’s like also, we’ve had
lots of reading activity monitors in different studies, there’s also lots of lots
of kind of feedback that patients quite like to have that information as well.
And that can be quite motivating for them to do more.” (P4)
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Participant 6 was a little more hesitant about its usefulness, saying “It may be useful for
certain instances, but usually it would be when you’re reviewing the patient.” (P6).

In summary, cadence, terrain, distance and step count were mentioned by participating
clinicians as desirable data to support their assessment of K levels, with wear time also
suggested by one participant. A couple of the participants thought it would be ideal if a
new system could assist with gait training. It was also highlighted that the feedback must
be simple and straightforward so that it is easy for clinicians to understand. Finally, real
time feedback was discussed with some participants suggesting that it could be useful to
motivate the patients to be more active, but it probably would not affect the clinicians’
assessments.

Further considerations

A few further points were raised by the participants that should be considered when
developing the new system.

Consent
The consent of the patients was raised by a few of the participants as something that
will need to be considered:

“There was a, a question raised about the ethics and consent.” (P2)

“I mean, they would have to have their consent to do it.” (P5)

“I guess within the NHS there’s a big thing about consent and patient
consent and whether they consent to the Activity Monitor being placed
there.” (P6)

Weight and size
Two of the participants mentioned that the weight and size of the system will need to be
thought about and maybe also waterproofness:

“I think it would be useful as long as it wasn’t heavy. And then didn’t impact
with anything else.” (P3)

“I guess it would depend on the size of the monitor and how it may at-
tach. We have patients that have legs that they use for walking but for
swimming, and it’s going to be waterproof.” (P6)
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Data comparison
Participants 3 and 5 brought up the issue of what to do with the data, i.e. what to
compare the data against and what would the data mean:

“Yeah, I think it would be probably useful if we did it on everybody. But
there’s not that much. As when we did the trips and falls, there’s not that
much detail out there that shows you what an average amputee does for this
level. So, if there’s, at the moment there’s not much data out there that we
could compare it against.” (P3)

“I’d like to see information that I could look up to say, I’ve done these
measures, how do they compare to what to K2 do, which category do they
fit into?” (P5)

Hence, ensuring that patients’ consent is obtained will be vital. The weight and size
of the device were also highlighted as critical to be considered, and the device should
not change the performance of the prosthesis. What the data means will be the most
challenging consideration. The data will not be useful to clinicians if there is no clarity
as to what results each K level should achieve, hence baselines for each level will need to
be determined.

2.5 Discussion and Conclusions

Study 1 identified through interviewing clinicians that the main issues of reliability in
the current activity level assessments come from the subjectivity and variability of the
assessments. Most of the assessments are dialogue-based where different clinicians
ask different questions. It was shown by Limb et al. [41] and Balkman et al. [42]
that dialogue-based questionnaire assessments do not give an accurate assessment of a
patient’s physical activity. The objective outcome measures that are used vary from clinic
to clinic, and although most of the ones used are validated, the observational subjective
assessment takes priority, as stated by Participant 6. There is also some variance in how
the clinicians interpret the K levels and especially the boundary between K2 and K3. The
ambiguity of the levels and the boundaries was brought up by a few of the participants
and is something that needs to be addressed, but that will be more related to how the
different prosthesis components benefit patients with different activity levels.

A few variables were highlighted as the main differences between a K2 and K3 pa-
tient. The ability to change cadence, traverse different terrain, walking without an aid
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and covering a greater distance were the main four. These were, as expected, echoed
with the desired data that the participants would want from a new sensor-based system,
but with the inclusion of step count and possibly wear time. From these measures only
cadence is specifically stated in the current K level definitions, Table 1.1. This suggests
that the current K levels definitions might not meet the clinical needs for prescribing
prosthetic components and therefore an update or replacement to K levels could have
clinical benefit. Changes in cadence and step count have been measured accurately with
an accelerometer or IMU in several studies [65][66][67]. Wear time has been measured
using a proximity sensor or a force transducer to a high accuracy [71][65]. Distance
covered can be accurately measured using a combination of GPS and an accelerometer
[69] or from step count and an estimated stride length [77][76][78], whereas Hoeger et
al. [88] found that step length changed at different cadences. Bassett et al [89] found
that step count alone has a high correlation to physical activity and health. From this, it
might be more accurate and beneficial to record step count and cadence than distance
covered. No prosthesis-mounted sensor-based system has previously measured a patient’s
ability to traverse different terrains and walking without an aid. Camargo et al. [73] used
IMUs and goniometers to measure ramp incline and step height, but a goniometer would
not be effective on a prosthesis and the exact height and incline would not be necessary
to assess if a patient is traversing steps or a ramp. To fully understand what sensors
are required to assess if a patient is traversing a certain terrain or is walking without a
walking aid, a greater understanding of the characteristics of these types of locomotion
is needed.

K levels seem to settle within six months to a year after amputation, hence a sys-
tem to assess the patient’s activity may only become useful after this period. But there
was some desire for the system to be able to help gait training, either by just counting
steps or trying to incorporate a more complex system that measures a variable like gait
symmetry. K levels may change over time, with found or lost motivation and changes
in health acting as drivers to changes in K level. If a sensor-based system could give
feedback to the patients, whether that is in real time or not, it could help motivate
the patients to be more active, which could be beneficial to their health. The system
feedback to the clinicians must be clear and easy to understand, as clinicians do not
have the training or time to understand complicated data. But from previous trials the
participants have been a part of, the clinicians and patients have been excited to see the
data, hence there is a desire to engage with it. Two of the participants also asked for
comparative or normative data to help assign a patient into a K level by comparing their
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activity levels against typical patients for each K level. For this a large dataset would be
needed, and as such could not be achieved within the scope of this project.

Conclusion:
Current K-level assessments are subjective, with vague definitions and inconsistent appli-
cation across clinics, leading to variability and reduced reliability in prosthetic prescriptions.

Clinicians identified four critical objective measures for improving K-level assessments:

• Cadence

• Use of walking aids

• Terrain traversed

• Step count

A sensor-based system that captures these objective measures could enhance the accuracy
and consistency of clinical decision-making for lower limb prosthetics.
For the system to be helpful in practice, the data must be presented in a simple, user-
friendly format that clinicians can easily interpret and apply.
This chapter established the clinical requirements for the objective system to aid in
clinical decision. The next chapter (Chapter 3) reviews the literature around sensors and
algorithms to inform the design of an effective real-world monitoring system.
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Chapter 3

Review of sensors and algorithms
for activity classification to inform
system design.

3.1 Background

In Chapter 2, the clinical requirements for the objective system to aid in clinical decision
making were established through interviews that explored clinicians’ perceptions regarding
shortfalls of current clinical activity assessments for K level assignments, and which
objective measures they feel could improve their K level assignment. Critically, the
interviews demonstrated that the measures such a system needs to provide include steps,
cadence, terrain and walking aid use.

As the next step towards developing a sensor system that meets clinicians’ needs, the
purpose of this chapter was to evaluate existing sensor technologies and machine learning
algorithms that could support accurate, real-world activity monitoring. By examining
prior research on sensors and algorithms, to inform the design of the sensor-based system
for real-world data collection reported on in the subsequent chapters.

3.1.1 Aims of Chapter 3

• Review machine learning algorithms and sensor systems used for unsupervised
activity classification in real-world environments, which will be needed for terrain
and walking aid recognition.
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• Review specific sensor technologies and their specifications for application in
unsupervised activity classification systems to inform the selection of both sensors
and algorithms to be used in subsequent chapters.

However, before a thorough review is presented on algorithms and sensors for activity
monitoring in general, this chapter briefly discusses the only two papers on recognition of
walking aid use specifically. Their discussion is then followed by the review of algorithms
and sensors that are most relevant for developing a robust activity classification system
that has the potential to meet the clinical need.

3.2 Walking aid recognition from wearable tech-

nologies

The only two studies found which investigated walking aid recognition using wearable
sensors were by Antos and Moder [90][91]. Both achieved high accuracies using a wrist
worn accelerometer, but both of these studies were conducted in limited indoor environ-
ments so the performance on a variety of terrain was not investigated. The system that
this research is developing has to limit any effects on the prosthesis user’s life. Asking a
user to wear a wrist worn device for a long period might reduce the acceptability of the
system.

Studies have found differences in lower limb kinematics during strides with and without
a walking aid on flat ground [92][93][94] and stair climbing [95]. Wearable sensors on
the lower limbs are able to measure the kinematics. Hence, the use of wearables on the
lower limbs should be able to detect the differences between strides with and without a
walking aid, and this insight will be taken forward into the subsequent work.

Attaching an accelerometer or IMU to the prosthesis users walking aid could be an
accurate measure of how much the users uses that specific walking aid. The drawback of
this method is that all walking aids the patient uses will have to have a sensor attached
and it would not be detected if the patient used a hand rail or other supporting structure
as an aid. for these reasons this method was not considered for this research.

48



3.3 Review of machine learning algorithms for unsupervised activity
classification in the real world.

3.3 Review of machine learning algorithms for unsu-

pervised activity classification in the real world.

Overview
A systematic review concerned with locomotion recognition in users of assistive devices has
previously been conducted [96]. The aim of the review was to examine the use of machine
learning algorithms for locomotion recognition for assistive devices and identify areas for
future research. The key area identified by the review was the current lack of studies that
incorporated real-world environments. The review included studies that predominantly
looked at locomotion recognition for activity predictions for microprocessor-controlled
prostheses. Fifty-eight articles were reviewed that were published between January 2000
and July 2020. The review of these articles informed this chapter of the PhD and dictated
the subsequent research. Since the review did not capture papers published after July
2020, an updated literature search was conducted for papers published between 2020
and 2024 for the purpose of this thesis. The same search strategy and eligibility criteria
were used, as had been used in the previous review. The initial search found 1039 papers.
After removing duplicates and screening, 75 papers were passed forward for full text
review. Out of these, 42 were deemed to not meet the inclusion criteria, hence 33
additional papers (published since 2020) were freshly reviewed in this review chapter.
In the following sections, details are provided on the search term and databases used,
the associated output and its quality. This is then followed by a thorough discussion of
relevant content of the original review paper and also the papers identified through the
updated literature search.

3.3.1 Methods

Search strategy used to update the literature search.

In PubMed, the following search term was used:

((((exoskeleton OR exoskeleton robot OR powered exoskeleton OR powered lower limb
exoskeleton OR wearable exoskeleton OR lower limb exoskeleton OR lower limb prostheses
OR lower limb prosthesis OR transfemoral amputee OR powered prosthesis OR above-knee
amputation OR powered lower limb prosthesis control OR powered above-knee prosthesis
OR transtibial amputation OR prosthesis use OR powered prosthesis leg OR amputees
OR orthotics OR orthoses OR orthoses OR orthotics)) AND (intent recognition OR
locomotion mode classification OR terrain recognition system OR user intent recognition
OR locomotion mode recognition OR pattern recognition OR user-independent intent
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recognition OR terrain recognition OR terrain-adaptive system OR adaptive pattern
classifier OR human motion intent)))

Regarding additional filtering, the following article types were selected:

Case reports, classical article, clinical study, clinical trial, comparative study, controlled
clinical trial, evaluation studies, journal article, letter, multicenter study, pragmatic clinical
trial, randomized controlled trial, patents and conference papers, and of these only studies
on humans were included.

In Web of Science, the following search string was used:

(TS = ((Exoskeleton OR Exoskeleton robot OR Powered exoskeleton OR Powered
lower limb exoskele-ton OR wearable exoskeleton OR lower limb exoskeleton OR Lower
limb prostheses OR lower limb prosthesis OR Transfemoral amputee OR powered pros-
thesis OR Above-knee amputation OR Powered Lower Limb Prosthesis Control OR
powered above-knee prosthesis OR transtibial amputation OR pros-thesis use OR powered
prosthesis leg OR amputees OR Orthotics OR orthoses OR orthosis OR orthotics) AND
(Intent Recognition OR Locomotion Mode Classification OR Terrain recognition system
OR user intent recognition OR Locomotion mode recognition OR Pattern Recognition OR
User-Independent In-tent Recognition OR terrain recognition OR terrain-adaptive system
OR adaptive pattern classifier OR human motion intent))) AND LANGUAGE: (English)
AND DOCUMENT TYPES: (Article OR Data Pa-per OR Letter OR Proceedings Paper)

The search results for papers published since 2020 are summarised in an adaptation of
the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
flowchart shown in Figure 3.1.
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Fig. 3.1 Review search flowchart

Quality assessment of papers identified through the updated literature search.
A quality score for each study was determined using the same Modified QualSyst Tool
as had been used by Labarrière et al. [96], see below and also appendix G.1 for further
details. Table 3.1 details the quality score, participant group and assistive device for
each identified study. The mean quality score for the studies was 66%. In comparison,
the mean quality score from the original review was 68%. This demonstration that the
quality of papers included in the updated review are similar to the quality of the original
review.

Quality score criteria

• Criteria 1: Question/Objective sufficiently described

• Criteria 2: Study design evident and appropriate

• Criteria 3: Subject characteristics sufficiently described and representative

• Criteria 4: Experimental protocol sufficiently described

• Criteria 5: Critical Timing Provided
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• Criteria 6: Filtering method sufficiently described

• Criteria 7: Window length clearly mentioned

• Criteria 8: Input features clearly mentioned

• Criteria 9: Machine Learning algorithm clearly mentioned

• Criteria 10: Evaluation method of the machine learning algorithm clearly mentioned

• Criteria 11: Results reported with enough detail

• Criteria 12: Conclusions supported by the results

Each criteria was evaluated with a score between 0 and 2: 2 indicates “yes”, 1 indicates
“partial” and 0 indicates “no”. Additionally, prior to assessing the quality of the studies,
the following guidelines were created to ensure consistency in ratings.

The quality score for each paper was calculated as the sum of the scores for each
criteria divided by the maximum possible score.

Table 3.1 Quality assessment and recruited volunteers in the included studies.
TT=transtibial, TF=Transfemoral, NS=not stated, n/a=not applicable

Article Quality score Groups Locomotive assistive
device

Papapicco et al. [97] 75.00% 10 healthy Prosthetic

Wang et al. [98] 50.00% 7 healthy, 1 TT Exoskeleton

Lu et al. [99] 54.20% 10 healthy Exoskeleton

Khodabandelou et al.
[100]

83.30% 10 healthy Exoskeleton

Li et al. [101] 87.50% 10 healthy Exoskeleton

Gao et al. [102] 58.30% 10 healthy Exoskeleton

Chen et al. [103] 62.50% 1 Healthy Exoskeleton

Zhu et al. [104] 62.50% 7 healthy Exoskeleton

Tang et al. [105] 66.70% 15 healthy Exoskeleton

S. Gao et al. [106] 83.30% 10 healthy Exoskeleton

Zheng et al. [107] 66.70% 10 Healthy, 1 TT,
1 TF

Prosthetic
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Yu et al. [108] 62.50% 3 healthy Exoskeleton

Chauhan et al. [109] 83.30% 30 healthy n/a

Vu et al. [110] 45.80% 4 healthy Prosthetic

Sun & Li [111] 37.50% NS Exoskeleton

Madaoui et al. [112] 83.30% 4 healthy Prosthetic

Han et al. [113] 54.20% 6 healthy n/a

Oh & Hong [114] 50.00% 1 healthy Exoskeleton

Luo et al. [115] 50.00% 10 healthy, 2 hip
amputees

Prosthetic

Zhong et al. [116] 62.50% 7 healthy, 1 TT Prosthetic

Gonzales-Huisa et al. [117] 91.70% 24 healthy, 5 TT Prosthetic

Yin et al. [118] 41.70% 22 healthy, 1TF Prosthetic

Qi et al. [119] 62.50% 5 healthy Exoskeleton

Marcos Mazon et al. [120] 79.70% 10 healthy, 1 TF Prosthetic

Bruinsma & Carloni [121] 83.30% 1 TF Prosthetic

F. Gao et al. [122] 54.20% 3 healthy, 3 TT Prosthetic

Shin et al. [123] 66.70% 4 healthy Exoskeleton

Son & Kang [124] 79.20% 500 healthy Exoskeleton

Liu et al.[125] 58.30% 8 healthy Prosthetic

Haque et al. [126] 54.20% 2 Healthy Exoskeleton

Liu & Wang [127] 75.00% 5 healthy, 1 stroke Exoskeleton

Guo et al. [128] 70.80% 10 Healthy Exoskeleton

Qian et al. [129] 83.30% 10 healthy Exoskeleton

The following sections discuss the content of the original review from 2020 as well as
that of the papers identified from 2020 onwards under relevant headings.

3.3.2 Results

Assistive devices
The original review from Labarrière et al., [96] included 50 prosthetic-limb-focused articles,
6 about exoskeletons and 2 on orthoses. For the review update, assistive devices were
categorised as prosthetics (N=12) and exoskeletons (N=19). Two studies used healthy
participants and said the technology could be used for any lower limb assistive device
[109][113].
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Participants
For the Labarrière et al. [96] review, the mean participant number was 5.5. All of
the exoskeleton and orthoses studies only used healthy participants as did 3 prosthesis
articles. Out of the other 47 prosthetic articles, 32 only used prosthesis users and 15
used prosthesis and healthy participants. The average population of prosthesis user
participants was 3.9. The largest prosthesis user participant number was 9 [130]. Twelve
of the prosthetic studies only recruited one prosthetic user. Thirty-two of the prosthetic
studies focused on transtibial prosthetic users and 18 for transfemoral prosthetic users.
No study incorporated both transtibial and transfemoral prosthetic users.

From the review update, most studies used healthy participants, with only 10 stud-
ies using target populations. The mean size of the studies was 24.6 participants, but one
study had a much larger population of 500 participants [124]. With this study excluded,
the mean reduced to 9.2 participants per study. Out of the studies that had the target
population as participants, the mean number of these participants was 1.8, the largest
being 5. Only one study solely used the target population, but it had only one partici-
pant [121]. Out of the prosthetic studies, five studies used transtibial prosthetic users
[98][107][116][117][122], 4 used transfemoral prosthetic users [107][118][120][121], and
one used transpelvic amputees [115]. Only 4 studies recruited more than one prosthetic
user, with one study having 5 transtibial [117], one having 3 transtibial [122], one having
2 transpelvic [115] and one study having a transtibial and a transfemoral prosthesis user
[107].

The majority of studies used healthy participants rather than the target population.
This raises concerns about the generalisability of the results, especially given the variabil-
ity in gait patterns between healthy individuals and prosthesis users. Studies involving
target populations used very small samples, questioning the validity of the accuracies for
real-world activity classification in the lower limb prosthetic user population. This is a
gap in the research that previous literature has not covered.

Movement tasks and terrain in activity classification.
For the Labarrière et al. [96] review, 43 studies incorporated flat terrain, stair use and
ramp walking, with 39 of these focusing exclusively on these three activities and no other
activity. Of the other studies, 13 involved flat terrain and stair use but did not investigate
ramp walking, 6 of these only investigated flat terrain and stair use and no other activity.
Obstacle clearance was incorporated in 6 studies and banked walking in one. No studies
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investigated any type of uneven or unstable terrain.

For the review update, Table 3.2 details the locomotive activities, sensors, data processing,
algorithms and accuracies for each study identified. All the studies used flat terrain and
only one study did not include stair ascending and descending [106]. Twenty-four studies
used ramp ascend and descend. Uneven terrain was incorporated into one study [121],
three studies used grass [98][116][109], one used cobblestones [109] and the same study
used banked terrain. Twenty studies just looked at flat ground, stairs and ramps. All
9 of the studies that recruited prosthetic users collected data on flat and stairs with 2
also including grass [98][116] and the other 7 including ramps, with one of these also
investigating uneven terrain [121].

The majority of studies reviewed focused on a limited range of locomotive activities,
primarily flat terrain, stair use, and ramp walking. Very few examined more challenging
terrains, only four out of the 91 total articles incorporated a type of uneven terrain, for
example cobblestones or grass, and none of the studies investigated unstable terrains such
as gravel or sand. This shows a gap in the research, particularly in relation to real-world
environments where prosthetic users encounter various terrains beyond flat surfaces and
standard inclines.
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Table 3.2 Details of studies identified through review update. F=flat terrain, S=stair use, R=ramp walking, G=grass walking, CS=cobblestones, U=uneven terrain,
B=banked terrain, SVM=Support vector machine, CNN= Convolutional Neural Networks, LSTM= Long short term memory, DBN= Dynamic Bayesian Network,
QDA= Quadratic Discriminant Analysis, ANN=Artificial Neural Networks , DT=Decision tree, LDA= Linear Discriminant Analysis, NNR=neural network regression,
BNN=Bayesian neural networks , GMM=Gaussian mixture model, HSVM=Hierarchical support vector machine, NS=Not stated, MAE=mean absolute error.

Article Locomotive
activity

Sensor Online / of-
fline

Recognition
/ prediction

Windowing
Type

window
Size

Sample rate Algorithms Accuracy
(%)

Papapicco et al.
[97]

F S 2 IMU,
Pressure

Offline Prediction Stride 100 sam-
ples

100Hz SVM 95.6

Wang et al. [98] F G S 1 IMU,
Camera

Offline Prediction Sliding 60 samples NS CNN, LSTM,
ResNet, ResNet-Att

99

Lu et al. [99] F S R 5 IMU Offline Prediction Sliding 300ms 20Hz SVM, LDA, QDA,
ANN

95

Khodabandelou et
al. [100]

F S R 2 IMU,
Knee angle,
Hip angles

Offline Prediction NS 3s 100Hz CNN 99.78

Li et al. [101] F S R 5 IMU, 14
EMG

Offline Prediction From gait
event

300ms 500Hz DBN NN 97.64

Gao et al. [102] F S R 3 IMU,
Force

Online Recognition From point 190ms 100Hz LSTM 98.81

Chen et al. [103] F S 8 IMU Offline Recognition Sliding 128 sam-
ples

200Hz LSTM 97.78

Zhu et al. [104] F S R 4 IMU, 2
load cell

Online Recognition Sliding 100 sam-
ples

50Hz CNN 97.64

Tang et al. [105] F S R 3 IMU, 2
pressure

Offline Recognition Sliding 8 samples 100Hz LSTM 97.93

S. Gao et al. [106] F R 3 EMG, 2
Pressure

Offline Recognition Stride NS 2000Hz SVM 96.8

Zheng et al. [107] F S R 2 IMU,
Pressure

Offline Recognition Sliding 100ms 100Hz fuzzy clasifier and
dynamic time warp-
ing template

95.38

Yu et al. [108] F S 7 IMU Offline Recognition Sliding 150ms 200Hz ANN 99.55
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Chauhan et al.
[109]

F S R CS G
B

6 IMU Offline Recognition NS 8s 100Hz CNN+SVM 98.2

Vu et al. [110] F S 1 IMU Offline Recognition Sliding 50ms 1MHz CNN, LSTM 99.6

Sun & Li [111] F S R 1 IMU Offline Recognition NS NS NS CNN 98.6

Madaoui et al. [112] F S R 1 IMU Offline Recognition Strides 260 sam-
ples

200Hz ANN 97.3

Han et al. [113] F S R 1 IMU Offline Recognition NS 200ms 100Hz DT 96.71

Oh & Hong [114] F S 3 IMU Offline Prediction NS 4ms NS ANN 99

Luo et al. [115] F S R 1 IMU,
lazer range
sensors

Online Recognition Stride NS 50Hz NS 98.67

Zhong et al. [116] F G S 1 IMU,
Camera,
GPS

Online Recognition NS 500ms 10Hz BNN 93

Gonzales-Huisa et al.
[117]

F S R 3 IMU, 4
EMG

Offline Recognition Sliding 80ms 148Hz SVM, LSTM 95.46

Yin et al. [118] F S R 1 IMU,
Camera

Offline Prediction Individual
points

NS NS CNN 96

Qi et al. [119] F S R 2 IMU,
Pressure

Offline Recognition Stride NS 100Hz HSVM 97.106

Marcos Mazon et al.
[120]

F S R 2 IMU Offline Prediction Stride 500ms 500Hz LSTM 95

Bruinsma & Carloni
[121]

F S R U 2 IMU Offline Recognition Sliding 30ms 1000Hz CNN 93.06

F. Gao et al. [122] F S R 1 IMU Offline Recognition Individual
points

NS 200Hz Threshold based 98.5

Shin et al. [123] F S R 4 IMU Offline Recognition Individual
points

NS 100Hz GMM 99.33
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Son & Kang [124] F S R 1 IMU, 2
hip angle, 8
EMG

Offline Recognition Sliding 1.76s 100Hz CNN 96.17

Liu et al. [125] F S R 2 IMU,
Pressure

Offline Recognition NS 50 samples 100Hz ANN 99.16

Haque et al. [126] F S 2 IMU,
Pressure

Online Recognition NS NS NS LDA 87.21

Liu & Wang [127] F S 2 IMU,
Pressure,
Load cell

Online Recognition sliding 15 samples 100Hz SVM 97.38

Guo et al. [128] F S R 7 IMU Offline Recognition NS NS NS NNR 2.09◦ MAE

Qian et al. [129] F S R 3 IMU,
Camera

Online Prediction sliding 6 samples 400Hz CNN 98.5
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Data windowing methods
When using machine learning models to classify time-based data, windowing is commonly
used to add dimensionality to the data [131]. Data is sectioned to combine sequential
datapoints into a single datapoint, so the dimension of time is added to individual
datapoints. This can also reduce datasets to reduce processing time. There are two main
windowing techniques, non-sliding windows where the next window begins sequentially
after the last window, and sliding windows where part of the windows overlap [92].

In the Labarrière et al. [96] review, 30 of the articles used sliding windows, 26 used
non-sliding windows, and 2 did not provide information on the windows that were used.
Five studies used a section of a stride as the window, the rest used time-based windows.
The average time-based window size was 0.247s with the longest being 0.8s and the
shortest being 0.05s. The classification accuracies between time-based windows and
stride-based windows were similar (mean of the presented accuracies for time-based
studies was 95.97% and for stride-based studies was 95.98%). Non-sliding time-based
windows performed slightly better than sliding windows (mean of the presented accuracies
for non-sliding - 96.92%, sliding – 95.35%).

For the review update, fifteen studies used time-based windows with the shortest being
0.004s [114] and the longest being 8s [109]. Nine studies used windows based on the
number of datapoints, with the smallest being 6 datapoints and the largest being 260
datapoints which, considering the sampling rate, translated into time-based windows of
15ms and 1.3s, respectively. The mean window size in time was 1.08s. Eight studies
used a stride or the same portion of a stride as their analysis window, three studies
analysed individual datapoints and twelve used sliding windows, with the rest not stating
the type of windows being used. The accuracies between these three techniques did
not greatly vary (mean accuracies for stride was 97.01%, for sliding 97.11%, and for
individual datapoints 97.94%).

A range of window techniques have been used to-date and there is no conclusive
agreement as to which one gives the best accuracies. Stride-based windows, time-based
and individual datapoints all produce similar accuracies. Non-sliding windows produced
accuracies slightly better than sliding windows, but those were not significantly higher.
Due to the small sample size of most studies and the use of cross-validation to assess
accuracies, which could inflate accuracies due to data from the same participant being
used to train and test the models, it is inconclusive if windowing technique has an effect
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on classification accuracies. Therefore, there is a need to explore various windowing
techniques, which has not been done in previous literature.

Sensor

In the review update, only one study did not use an IMU [106]. For the remaining studies,
the number of IMUs used varied between 8 and 1. Accuracies between studies that used
a single IMU and studies that used multiple IMUs or IMUs in conjunction with other
sensors did not significantly vary (single IMU: 98.14%, other studies: 97.01%). Pressure
or load measuring sensors were the next most-commonly used type of sensor with ten
studies incorporating them into their sensing systems. Five studies used cameras or
sensors that visually detect the terrain the participant is about to traverse. These studies
produced accuracies similar to the mean of all the studies (visual sensors 97.03%, over-
all mean 97.00%). Three studies used EMG, but always in combination with other sensors.

However, from Labarrière et al. [96], 36 studies used IMUs, of which 7 used IMUs
in isolation. Forty-five studies incorporated pressure or load, with 4 using these in
isolation. Twenty-one articles incorporated Electromyographs (EMG) and one used Force-
myographs (FMG), but these were always in combination with other sensors. Twenty-one
studies used angle encodors but only one used them in isolation. Four studies used
lasers or depth cameras to measure distance, but only in combination with other sensors.
The mean accuracies of studies that used IMUs were 95.98%, pressure or force 96.36%,
angle encoder 96.92%, EMG/FMG 93.04% and laser/depth camera 96.73%. The mean
accuracy for using IMUs in isolation was 92.82%, but this was reduced by one study that
had an accuracy of 78% using a single IMU which, if excluded, raised the mean accu-
racy to 95.78%; the only other study that just used a single IMU had an accuracy of 94.1%.

There was not a significant difference in the accuracies produced between the different
sensors. A visual sensor, for example a depth camera or laser, would not be practical
for real-world use as they need line of sight, thereby restricting what clothes a user
could wear, but could be used to train a more practical sensor to reduce data processing.
EMG sensors need to be attached to the user’s skin which is not practical for long term
real-world use, as this would require the prosthetic user to attach the electrodes. In all the
studies that used EMG, multiple electrodes were used with the minimum being 4 [117]
and maximum being 14 [101]. Notably, asking the prosthetic user to attach electrodes
will increase the risk of known issues with EMG, for example artifacts and recording the
wrong muscle [132].
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Description of Algorithms
A range of different machine learning algorithms were used in all the studies, and
they all showed good accuracies for the recorded activities. Prior to discussion of the
algorithms used in the papers, descriptions of the most popular algorithms are given below.

Logistic Regression (LR): LR is a statistical model for binary classification. LR uses a
sigmoid function to map feature values between 0 and 1, to make predictions of probability
between two classes [133]. Due to this LR is regarded as a simple and easy algorithm to
implement, but not ideal for multi-class classification [134].

Linear Discriminant Analysis (LDA): LDA is considered an easy algorithm to imple-
ment and was used in quite a few studies as a baseline to compare other algorithms
against. LDA is a linear classification algorithm. LDA assumes the data is gaussian
distributed and that each attribute has the same variance. LDA makes predictions
by estimating the probability that an input belongs in a class. LDA can struggle in
cases where classes are not linearly separated. LDA makes use of the entire data set to
estimate covariance matrices and thus is somewhat prone to outliers [135]. Quadratic
Discriminant Analysis (QDA) is an LDA algorithm where the variance for each group varies.

Support Vector Machine (SVM): SVM algorithms were shown to have a slightly better
performance than LDA in some studies [96]. The objective of SVM is to find the ideal
hyperplane that separates classes with the biggest margins. Separating classes by the
biggest margins gives more confidence that a new data point will be classified correctly
[136]. SVM does not make assumptions about the data and incorporates a slack variable,
thereby allows some overlap between classes [137].

K Nearest Neighbour (KNN): KNN algorithms are similar to SVM and LDA but work
by classifying a new data point by seeing which data are similar to that point with a
variance defined by the value of K. This means the algorithm is versatile and simple to
implement [134] but can become slow with a large number of samples.

Dynamic Bayesian Network (DBN): A DBN is a Bayesian network that models sequences
of variables. Bayesian networks are simple graphical models’ conditional dependence on
edges in a directed graph, and each node corresponds to a unique random variable [138].
DBN has shown better accuracy than LDA [96] and can take transitional possibilities
into account to improve classification. Hidden Markov Model (HMM) are similar to
DBN, but the entire state of the world is represented by a single hidden state variable [139].
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Decision Tree (DT): DT are classifiers that uses a number of if-then-else decision
rules to classify data. DT are simple to set up, can handle a range of data types and can
be visualised. The main issues relating to DT are that they can be overfit to the data
and any change to the input data will create a different tree [140].

Random Forest (RF): RF are made up of several DT models with each tree voting
on the class of the input and the class with the most votes is where the data is classified.
This reduces the risk of overfitting and provides more flexibility but requires more compu-
tational resource [141].

Artificial Neural Networks (ANN): ANN are networks of processing elements that operate
on local data and communicate with other elements. The construction of ANN was
inspired by the structure of the brain [142]. Many types of ANN have been created but
not all are suitable for the type of classification this PhD is looking to conduct because
they cannot process time dependent data. ANN are robust and less affected by noise in
the data. They are also non-linear and can adapt without user input. But, depending on
how many layers and neurons are in the network, they can be computationally expensive.
Some ANN employ deep learning and generally require less pre-processing than other
machine learning methods [143].

Feedforward Neural Networks (FNN): FNN are ANN that only have connections that
pass data forward and do not cycle. FNN are one of the simplest ANN and the first type
invented, and they remain one of the most popular ANNs [144].

Convolutional Neural Networks (CNN): CNN are ANN that employ the mathemati-
cal operation convolution, which is how the shape of a function modified by another is
described by a third function. CNNs use convolution in at least on layer of the network.
CNN were designed for image recognition but have been applied to other classification
problems [145].

Long Short Term Memory (LSTM): LSTM are a type of recurrent neural network
(RNN). RNN are more complex than FNN as they keep information about past inputs to
influence future outputs. RNN can have issues with trending towards zero, but LSTM
solve this problem by allowing gradients to also flow unchanged if needed [146].
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Algorithms used in the reviewed papers.
For the Labarrière et al. [96] review, the three most common used algorithms were LDA
(N=15), SVM(N=12) and DBN (N=11). DBN was mainly used by 2 research teams
[147][148][149][150][151] [152][153][154][155] where the research teams investigated the
same prosthesis or system in all of their articles. Furthermore, across the papers reviewed,
three types of neural networks were used, CNN (N=4), ANN (N=5) and LSTM (N=1).
KNN, LR, and DT were each used once. Quadratic Discriminant Analysis was used 3
times. Learning From Testing data, Hidden Markov Model, and Entropy Based Algorithm
were all used twice. All the algorithms produced good accuracies above 85%.

From the articles identified through the review update, most studies only investigated
one machine learning algorithm. Out of the studies that compared algorithms, SVM
outperformed LSTM in one study [117] and once produced better accuracies than LDA,
QDA and ANN in another [99]. LSTM also produced similar accuracies to CNN in one
study [110], but performed better in another, and in the same study produced similar
accuracies to a ResNet algorithm, which is similar to CNN but with a wider use of feature
extraction [98]. SVM was used in 6 studies, LSTM in 7, CNN in 9 and ANN in 5, with
other algorithms only used in a single study.

There is no conclusive answer as to which machine learning algorithm gives the high-
est accuracies when classifying human movement, as the vast majority of studies only
investigated one algorithm. The updated review shows that the use of neural network
classifiers has increased in recent years. SVM appears to outperform other classifiers
on the same data, this was also found by Jamieson [40], who found that SVM, KNN
and LSTM outperformed RF and LDA in classifying terrain being traversed. Chen et al.
found that DT classifier outperformed DBN and KNN classifier at measuring joint angles
using accelerometers and gyroscopes for rehabilitation exercises, but their findings were
based on a small data set [156]. Lum et al. found RF produced better accuracies than
SVM and KNN for detecting arm movement for stroke patients [75].

In conclusion, the machine learning algorithm that will produce the best accuracies
for a dataset depends on the dataset. The type of data this PhD is concerned with has
not been previously classified, so there was no study to help judge which algorithm is
best to use. SVM, RF and LSTM performed well in previous studies that have compared
different algorithms. LR and KNN are simple algorithms to implement and have shown
good accuracies, so could be used to set benchmarks for comparison. LR works best
with binary classes so could only be used in walking aid recognition. Importantly, LSTM
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networks have the capability to keep information which would allow the algorithm to
account for a longer time period which will make it more useful than CNN, FNN and
ANN for this research. Due to this KNN, LR, SVM, RF and LSTM algorithms will be
used for terrain classification. LR, KNN, LR, SVM, RF and LSTM algorithms will be
used for walking aid recognition.

Evaluation of classification accuracy
There was no information in the Labarrière et al. [96] review about how accuracies were
calculated. Research by Jamieson [157] used both cross-validation and leave-one-out
when testing the accuracies of terrain classification, and got different results as to which
algorithm works best for the two verification techniques.

Fifteen of the studies identified through the updated review combined all the data
that had been collected before splitting it into training and testing groups. Seven of
these studies used cross-validation where this split is done multiple times, usually five
or ten times, and the mean accuracy is stated. This means that data from the same
participant will be in both groups and therefore could compromise the validity of the
accuracies in real-world use. Five studies used the leave one out approach, where a
participant or group of participants is left out of the training group and instead is solely
used to test the algorithm on. This gives a more valid accuracy for real-world use. Out
of these studies none used just IMUs, with two combining IMUs with a camera, one
combining IMUs with pressure insoles, one combining IMUs with EMG and one using
IMUs and measurements for knee and hip angles. Only one of these studies tested on a
target population [116], i.e. it tested on a transtibial amputee. This study used an IMU
and a camera and produced an accuracy of 93% when classifying between flat terrains,
grass and stair use, using a Bayesian neural networks algorithm.

Guo et al. did not look at classifying the terrain but to predict the angle of the
terrain the participants were traversing [128]. For this they used mean absolute error of
the angle instead of a percentage accuracy.

Most studies have used cross-validation to calculate accuracies, which could be due to
the low number of participants in these studies, but leave-one-out has been successfully
implemented in research similar to this PhD. To evaluate and compare the accuracies to
similar research, both cross-validation and leave-one-out should be used in this PhD.
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Filtering
The Labarrière et al. [96] review did not report on filter techniques. From the review
update only three studies stated the filtering they used for IMUs data. They all used
a Butterworth low-pass filter. Qi et al. [119] used a second-order filter with a cutoff
frequency of 5 Hz, Chauhan et al. [109] also used a second order filter but at 6Hz and Li
et al. [101] used a sixth order filter at 10Hz. In other studies, Butterworth [158][159][160]
and Kalman [73] filters have been used in several studies, with the majority using a low
pass filter of around 20Hz [161][162][160] to reduce noise that is not caused by the stride.
Most studies normalised their data but the process for this was not routinely mentioned.
A second order Butterworth filter has been shown to remove unwanted signal frequencies
in similar data to the studies in this PhD. The cutoff frequency can be obtained through
frequency analysis of the collected data.

3.3.3 Discussion and conclusions

From these reviews it can be seen that high accuracies for terrain recognition can be
achieved using wearable sensors, but real-world use in large target populations has not yet
been shown. There is no conclusive agreement on the best algorithm to use for human
movement classification. SVM, RF and LSTM have performed well in previous studies,
LR and KNN could also be used for benchmark comparisons. There is no conclusion on
window type and size. Studies using time-based windows vary in window size from 4ms
to 8s, all producing similar accuracies. Some studies have produced similar accuracies
splitting the data into strides but the same can be said for studies that have analysed
individual datapoints. It has been shown that a single IMU can produce good accuracies,
which would meet the requirements set out in Chapter 2 for a system that can be attached
to a prosthetic limb and not affect the use of the prosthetic. Most studies did not use a
leave one out approach to assess the accuracy of the systems, but doing so would provide
a more realistic real-world accuracy.

In Conclusion while various machine learning algorithms—including SVM, RF, and
LSTM—have shown high accuracy in activity classification, no single algorithm emerged
as better/superior for all types of activity data. Given the unique demands of classifying
movement in prosthetic users across diverse terrains, this thesis will compare several
models, including SVM, RF, and LSTM, for their ability to handle complex, real-world
data. LR will only be used for walking aid recognition. As the data will not be analysed
in real time, multiple window techniques will be compared. One where each window is
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one stride, different time-based windows from 0.1s to 2s and also individual data points.
The data will be normalized to reduce bias and a low pass Butterworth filter will be
applied to reduce noise.

3.4 Review of Sensors for unsupervised activity

classification in the real world

The previous sections detail the review of the literature concerned with algorithms for
activity monitoring. In a second step, publications were reviewed with a focus on sensor
types used for data collection.By evaluating the strengths and limitations of various
sensor types, this review aims to identify the most suitable options for capturing relevant
activity data in diverse environments.

Inertial Measurement Unit (IMU)
IMUs consist of accelerometers, gyroscopes and magnetometers combined in a single
housing. This means that they do not just give linear acceleration data but also angular
velocities and orientation (pitch, roll, yaw). IMUs are one of the most common types of
sensors used for activity monitoring. IMUs have become a popular choice due to their non-
intrusive nature, portability, low-cost, and ability to capture high-quality inertial data [163].

The Labarrière, et al. [96] review identified three studies that looked only at IMU
data. One study mounted an IMU on the prosthesis shank, but they were only inves-
tigating cross slope steps. Cross slopes are slopes that go across the body either left
to right or right to left, and cross slope steps are used to simulate uneven terrain in
a lab environment. They managed to achieve an accuracy of between 59% and 87%,
using an LDA classifier [164]. Another paper reported on a study in which two IMUs
were attached to a prosthesis to identify ramps and stairs [165]. They did not state
the accuracy of the SVM algorithms and had only one participant, so the algorithm
will have high bias because there are gait variations across the population. Another
study attached IMUs to the shank, ankle and thigh of 11 participants, but only one
of these was a prosthesis user [158]. This study had an 82% accuracy at identifying
ramps and stairs, but it tested the classifier using a randomly selected 20% of data so
there will be bias and no guarantee this accuracy would be achieved with a new participant.

Fourteen studies in the review update used solely one or more IMUs. Five of these
used a single IMU, but only one of these incorporated their target population [122]. This
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study used an IMU attached to the foot to identify flat ground, stair use and ramp
walking, to an accuracy of 98.5% although they did not state the verification method
used. Three of the other four articles used a shank mounted IMU to classify between
flat ground and stair use [110] or flat ground, stair use and ramp walking [112][113]. All
these studies achieved an accuracy above 96% using cross-validation.

Ibrahim et al. used the stride length and other spatio-temporal gait parameters to
predict the fatigue of MS patients [76]. The prediction was done using a RF regression
algorithm and achieved an error of 1.38 on the Borg scale.

Another study mounted IMUs on the chest, hip and ankle of the participants and
achieved a good accuracy for activity recognition using a LSTM algorithm but only tested
healthy participants [166].

Luo et al. produced a database of IMU data for healthy participants walking over
flat ground, banks, grass, cobble, stairs and slopes [159]. Six IMUs were attached to the
participants shins, thighs, trunk and one wrist. Hu et al. applied CNN, LSTM and a
LSTM structure with an extra global pooling layer to Lou et al. data [167]. The global
pooling layer is where each cell learns the global information by getting the distance
from other cells at each timestamp. It is therefore able to learn the correlation between
different parallel time series. With all the sensors, all classifiers achieved over 90%
accuracy and using just one shank IMU LSTM and the global pooling LSTM achieved a
similar accuracy. Data for left and right shank were not combined, and this might have
improved accuracy. Dixon et al. applied a FNN and attained a 97% accuracy in a 7-fold
cross-validation test [168].

A few studies used the components of an IMU separately. Redfield et al. found that
with one accelerometer attached to the ankle of the prosthesis 90.1% accuracy could be
achieved with a DT classifier at identifying sitting, standing, moving, and doffing [67].
Lum et al. found that RF and radial basis function SVM classifiers produced the best
accuracies at measuring the functional use of an arm from wrist worn accelerometer data
[75]. Chen et al. found that DT classifier outperformed DBN and KNN classifiers at
measuring joint angles using accelerometers and gyroscopes for rehabilitation exercises,
but their findings were based on a small data set [156].
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Accelerometers
Accelerometers have shown to be able to classify distinct activities like sitting, standing,
walking, and lying [169], but are not commonly used for terrain recognition. As mentioned
in Chapter 1, Jamieson [40] used a thigh mounted accelerometer to try and recognise
activities of lower limb amputees in free living conditions. Comparing SVM, KNN, RF,
AB, NB, LSTM and LDA, it was found that SVM and LSTM performed the best. LSTM
produced accuracies of 78.43% when assessing using a 5-fold cross-validation on all
collected data and SVM produced accuracies of 56.68% when using a leave one out
approach. These accuracies are not as high as ones achieved with different sensors, but
the study did incorporate 4 lower limb prosthetic users as well as eight healthy participants.

Pressure sensors
Pressure sensors were used in three papers from the review. One mounted the pressure
sensor inside the socket of the prosthesis and achieved a 97% accuracy at identifying
brisk walking and stairs with a multi-layer FNN, but they only used one participant so will
have high bias [161]. The other two studies used pressure-sensing insoles. One achieved
a 99% accuracy with recognising sitting, standing, walking, stairs and stepping over
obstacles with a DT classifier but had only one test participant [170]. The other looked
at the same locomotion and attained a 98% accuracy, with K-fold cross validation, using
LDA [171].

Studies combining different sensors
A few studies have combined sensors to recognise locomotion. One study attached an
accelerometer and gyroscope to a transfemoral socket and a pressure sensing insole to
identify walking on stairs and ramps [172]. Using all sensor data and a HMM, a 95.8%
accuracy was achieved. This study combined amputee and non-amputee data to achieve
this accuracy, and found that the data of amputees and able-bodied participants produced
similar patterns but with different amplitudes. Another study attached IMUs to the back
of the shank and shoe combined with a pressure sensing insole and produced a similar
3.6% error using LDA and QDA classifiers [74]. One further study implanted a load cell
and IMU to the shank of a prosthesis; they found that SMV gave the best accuracies but
was slower than LDA and QDA classifiers [173]. The final study combined EMG, IMU
and load cell data for real time locomotion recognition and achieved a 95% accuracy [162].

Nineteen studies from the review update combined sensors. Only one of these studies did
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not use an IMU, and combined EMG with pressure data [106]. Nine of the eighteen other
studies used pressure or load incorporation with IMUs, the average classification accuracy
of these studies was 96%. Only one of these studies though recruited any participants
from the target population [107]. This study used pressure insoles with a thigh and foot
mounted IMU to classify between flat ground, stairs use and ramp walking. Five studies
use a visual sensor with an IMU, but a visual sensor would not be practical for real-world
clinical use. Three studies incorporated IMUs with EMG and one combined IMUs with
joint angle measurements.

Camargo et al. showed that IMUs and goniometers can be used to calculate walk-
ing speed, stair height and ramp incline to a high degree of accuracy [73]. The system
used four IMUs, on the foot, shank, thigh, and trunk, and 3 goniometers, on the ankle,
knee, and hip. The shank IMU reduced the error the most when calculating walking
speed, while the goniometers reduced the most errors in calculating the step height
and ramp angle. Without the goniometers, the error of the step height was about 5cm
and the error of the ramp incline was about 3.5°, but with the goniometer the errors
improved to 1.29cm and 1.25 degrees. The shank IMU could detect a ramp but could
not accurately measure the incline. The classifiers proving most successful in terms of
reducing errors were feedforward neural network and DBN with a Kalman filter. Notably,
goniometers measure angles so will not be effective on a prosthesis with a fixed ankle joint.

Make of sensors and specification
A range of different makes of sensors have been used and shown to be valid for activity
monitoring, all with similar specifications. This shows that the make of the sensors used
for this research is not as important as the specification of the sensor. There was a range
of data collection frequencies of the sensors used, from 50Hz [70] to 500Hz [150], but the
majority of sensors used 100Hz [158][74][173][162][159][167][168][76][67][166]. Although
walking has been shown to be accurately measured at lower sampling frequencies, and
the ActivPal uses a default 20Hz, recording data at a higher frequency will allow tests to
be carried out to see which frequency will give the most accurate predictions.

Discussion and conclusions
This review of sensors showed that IMUs have been the most frequently used sensors
across all studies [165][158][74][173][162][159][167][168][73][76][166] and shown to be
able to classify different types of locomotion with good accuracy. This PhD aims to
create a system that only requires attachment of sensors to the prosthesis so that the
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participants do not need to attach anything to their body. In the subsequent work,
data will be collected to enable exploration of accuracy versus data redundancy, hence
initially sensors will also be attached to the participants’ body. Copying the IMU locations
used in the study by Luo et al. [159] would give adequate data and will give data
for prothesis users that can be compared to able body participants. Pressure sensors
and load cells measure similar data and have regularly been used in combination with
IMUs [74][173][162]. Individually they have been shown to accurately identify stairs
and obstacle avoidance [161][170] and provide an easy method for recording wear-time.
As discovered in Chapter 2, the simpler the system the more likely it will be used by
prosthetic users. Considering this, although measuring load has been shown to produce
good accuracies, measuring this data will add to the complexity of the system for the
prosthetic user. Just using IMUs has shown to produce equally good accuracies with
terrain classification as studies that have incorporated load data, and IMUs are able to
measure the kinematic data that should be able to classify walking aid use. Notably, the
sensors will have to have a data collection frequency of at least 100Hz.

3.5 Summary of findings

Through review of the literature, this chapter identified several gaps and provided useful
insights :

• Only 2 studies specifically focus on recognising walking aid use with wearable
sensors. The available studies use wrist-worn accelerometers, which may not be
practical or acceptable for long-term use by prosthetic users.

• The majority of studies in activity classification and prosthetic use have been
conducted with healthy participants rather than prosthetic users. Studies that have
prosthetic users often have very small sample sizes.

• Very few studies consider uneven or complex terrains like gravel and cobblestones,
which prosthetic users encounter in real-world environments.

• A variety of data windowing techniques have been used in the past but there is no
definitive agreement on the optimal window type.

• There is no conclusive agreement on the best machine learning algorithm for terrain
or walking aid use classification as such is dependent on the dataset collected.

• IMUs have previously been shown to be able to classify terrain and should be able
to measure the kinematic data that could be used to classify walking aid use.
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This chapter established that whilst a vast amount of algorithms and sensor sets have
been explored in connection with activity classification, there remains a need for further
research to develop a real-world monitoring system capable of accurately recognising
a wide range of activities in prosthetic users, including walking on uneven or unstable
terrains with and without a walking aid. To develop such a system, research will need
to compare machine learning classification algorithms and aspects of these algorithms,
for example data windowing techniques, to investigate the techniques that produce the
highest accuracies.

Informed by this literature review, the next chapter (Chapter 4) is concerned with
the design of a system with the following specifications:

• IMU will be used to capture activity data.

• IMU will capture data at a sampling frequency of 100Hz.

• KNN, LR, SVM, RF and LSTM algorithms will be compared for terrain
classification.

• KNN, LR, SVM, RF, LSTM and LR algorithms will be compared for
walking aid recognition.

• Time-based window (0.1s to 2s), stride-based windows and analysing
individual datapoints will be compared.

• A low-pass Butterworth filter will be used to filter the raw data.

• Data will be normalized to reduce bias.
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Chapter 4

System Design: Classification of
terrain and walking aid use using
real-world data.

4.1 Background

In the previous chapter (Chapter 3), review of the literature concerned with sensors and
algorithms informed a set of system specifications. The purpose of this chapter was
to design the system informed by these specifications. The overall aim is to create a
system capable of accurately classifying user activities, terrains, and walking aid use in
diverse environments. This initial design will be tested across a range of terrains and
with different participants to assess baseline performance.

4.1.1 Aims of Chapter 4

• Using IMUs, collect data on 20 lower limb prosthesis users traversing different
terrains (stairs, slopes, grass, gravel, and cobblestones) with and without walking
aids.

• Investigate the use of machine learning algorithms to create models to classify
terrain traversed and walking aid use for lower limb prosthetic users.

4.2 Methodology

The Methods are described with regard to recruitment and participants, use of instru-
mentation, details of the protocol, data collection, and analysis methods. Furthermore,
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methods for data pre-processing are discussed with respective underlying rationales for
processing choices made.

The data collection will involve lower limb prosthetic users conducting trials where
they will traverse a set terrain with or without a walking aid with sensors attached to
their body and prosthesis. The collected data will be processed and used to train and
test classification models with the aim to produce a model that can identify the terrain
and if the participant is using a walking aid from the sensor data.

Ethical approval was granted to collect data on campus, and also for collecting data at
a location convenient for the participants (Ethical approval numbers for University and
IRAS Ethics: 4743 and 314743, Appendix D.2 and D.3).

4.2.1 Terrain

Incidents where amputees negotiate stairs, ramps and uneven terrain were mentioned
during the interviews in Chapter 2 as being of interest to clinicians. Uneven terrain was
specified as terrain that would be likely to produce a different foot-to-shank angle on
each step. Grass and unstable terrain like gravel or sand were deemed common terrains
that someone could traverse depending on where they lived, and were mentioned by
participant 4 in Chapter 2, so those were also included in the data collection.

At the University of Salford, stairs, steps, slopes, grass, gravel, cobble stones and
uneven pavements were available to be used for the data collection. As shown in Figure
4.1 there was a clear path that lead from one terrain to the other in the order of gravel,
stairs, steps, slopes, grass, uneven pavement and cobblestones. Due to this arrangement,
this was the order in which the different terrains were traversed by the participants
to enable a single recording without breaks, but the order was reversed for half the
participants to reduce effects of fatigue on the later-traversed terrains. Uneven terrain
and cobble stones were considered together as uneven terrain. Data on both stairs and
steps were collected due to differences in heights and widths which require a different
gait to traverse one or the other, consideration of which aids in building robustness into
the algorithm. All these terrains met the requirements set out by the clinical experts in
Chapter 2.
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Fig. 4.1 Map of pathway used for real-world data collection at the University of Salford.

Chapter 5 uses a motion capture system to create virtual IMUs to see if sensor placement
on the limb would affect the accuracy of the classification algorithms. For this project
lower limb prosthetic users traversed stairs, a ramp, artificial cobble stones and flat terrain.
Details about these terrains can be found in Chapter 5. IMU data was collected during
that data collection that was also used in this classification model development.

To increase participant numbers, data collection was expanded to locations convenient
for the participants but which had some of the required terrains. This was generally near
the participants home or work. This not only helped with recruitment but also further
increased the robustness of the algorithms due to the use of additional environments and
different terrains. Table 4.1 displays the location of the data collection for each participant.
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The issue that arose from this type of data collection was, however, that in some
locations not all the required types of terrain were available. This meant that for some
participants data for some types of terrain were not collected.

Types of terrain were also excluded from the data collection for individual participants
if they did not feel safe traversing them. This was sometimes weather dependent, for
example one participant did not wish to walk on grass while it was still damp after rain.
Furthermore, for one of the participants there were technical issues with the sensors that
affected the data collection session, so that not all the different terrains were able to be
recorded. Table 4.2 presents the terrains data was collected on for each participant.

4.2.2 Participants

To ensure the participant group was the most relevant to the issues raised in Chapter 2,
i.e. distinguishing between a K2 and K3 patients, the inclusion and exclusion criteria for
participant recruitment were designed to exclude K0, K1, and K4 patients. Because, not
all prosthetic users know their K level the exclusion criteria also includes criteria that
would exclude them from being a K2 or K3, for example participating in active sport or
regular use of a wheelchair. The inclusion criteria were also written to ensure participants
would be comfortable using a walking aid and traversing most if not all the required types
of terrain. The inclusion and exclusion criteria were:

Inclusion Criteria:

1. Be a transtibial or transfemoral amputee

2. Be able to walk on a lower limb prosthesis (i.e. mobile with prosthesis)

3. Have experience using a walking aid

4. Be comfortable with all or some of the following: climbing/ descending stairs/ramps
and walking on uneven ground

5. Be able to provide informed consent

Exclusion Criteria:

1. Have been classified as a K0, K1, or K4 patient (K0 and K1 are prosthetic users
that are unable to walk on their prosthetic outside the home, and K4 are prosthetic
users that participate in active sport on their prosthesis)

2. Use primarily a wheelchair rather than walking on their prosthesis
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3. Regularly participate in an active sport on their prosthesis (football, running, etc.)

4. Not able to understand written and spoken English

5. Having a positive test result (LFT or PCR) for Covid or having symptoms of Covid
without a negative PCR test

6. The study finishes while they decided to take part

4.2.3 Recruitment

To recruit for this study, a few methods were used to ensure there is a diverse range
of participants including advertisements on social media, advertising through prosthetic
user-focused organisations, university professional patients, and NHS prosthetic clinics.
The social media advertising was conducted on X. The advert (appendix F.1) was shared
by the clinical and academic prosthetic organisations and professionals in the United
Kingdom. The Limbless Association and Manfit shared the advert with their members.
Professional patients at the University of Salford and the University of Strathclyde were
asked if they would like to participate. Manchester University NHS Foundation Trust
and Portsmouth Hospital University NHS Trust put up posters to advertise the study
(Appendix F.1) and shared the study with patients that met the inclusion/exclusion
criteria when they visited the clinic.

Twenty participants were recruited, provided informed consent, and participated in the
study. Eleven were transtibial (TT) and 8 were transfemoral (TF), with one participant
being a bilateral amputee with a TT and TF prosthetic. For this study no participant was
excluded due to demographics as having more data can help to make machine learning
algorithms more robust. Table 4.1 displays the information for each participant. For
Participant 7, who was a bilateral prosthetic user, the IMU set up was changed to IMUs
on both prosthetic shanks and both thighs. This was done under consideration that the
shank and thigh provide more important information than the trunk, and data could be
collected for both a TT and TF leg at the same time without the participant needing
to conduct twice the number of trials which could have caused the participant fatigue.
Participant 7 was considered as two participants participant 7 for the right TT prosthetic
and 21 for the left TF prosthetic. The data for these two participants will be from the
same person but will focus on different strides from different prosthetic types so will not
be similar and will not affect the classification accuracies.
Not all the participants were assessed on every terrain, some participants also did not
want to use the walking aid, and one participant only felt comfortable conducting the
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Table 4.1 Descriptive patient data.

Participant
no.

Age sex Transtibial
(TT)/ Trans-
femoral (TF)

Location for data col-
lection

P1 85 Male TT University of Salford
P2 63 Male TT University of Salford
P3 69 Male TF University of Salford
P4 80 Male TF University of Salford
P5 74 Male TT University of Salford
P6 69 Male TT University of Salford
P7/P21 66 Male TT/TF University of Salford
P8 56 Male TT University of Salford
P9 53 Male TF University of Salford
P10 59 Male TF University of Salford
P11 72 Male TT University of Salford
P12 64 Male TF University of Salford
P13 69 Male TT Participants home
P14 44 Male TF Participants home
P15 33 Female TT Participants home
P16 67 Male TF Participants home
P17 62 Female TT Participants home
P18 61 Male TT Participants work
P19 80 Male TF Participants home
P20 65 Male TT Participants home

study with a walking aid used at all times. Data collection constraints for each participant
are displayed in Table 4.2.

The only type of personal walking aid used in the data collection was a walking stick as
it was the personal walking aid all the participants used in their everyday lives. Handrails
for stairs and slopes were also classified as a walking aid as as it was deemed that a
participant would use it to offload and therefore could change their gait.
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Table 4.2 Test conditions for each patient. “wi”: with walking aid, “wo”: without walking
aid.

Participant
no.

Flat Grass Up
Stairs

Down
Stairs

Up
Slope

Down
Slope

Unstable Uneven

P1 wi/wo wo wi/wo wi/wo wi/wo wi/wo wo wi/wo
P2 wi/wo wo wi/wo wi/wo wi/wo wi/wo wo wi/wo
P3 wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo
P4 wo wo wo wo wo wo wo wo
P5 wi/wo wi/wo wi/wo wi/wo
P6 wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo
P7 wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo
P8 wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo
P9 wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo
P10 wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo
P11 wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo
P12 wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo
P13 wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo
P14 wo wo wo wo wo wo
P15 wi/wo wi/wo wi/wo wi/wo wi/wo
P16 wi wi wi wi wi wi
P17 wo wo wo wo wo
P18 wo wo wo wo wo
P19 wi/wo wo wo wi/wo

4.2.4 Sensor

In Chapter 3, IMUs were identified to be the most suitable sensors for real-world data
collection. Luo et al. [159] used 5 IMUs on healthy participants, one on each shin and
thigh and one on the trunk, and Hu et al. [167] produced good accuracies for terrain
recognition only using one shank IMU from the healthy dataset collected by Luo et al.
Encouraged by Luo’s results, and because the prosthetic leg is of most interest and the
ideal system would only need to be attached to the prosthesis and not the patient’s body,
the IMU placement in this study focused on the prosthetic leg. A total of 4 IMUs were
used for the data collection, placed on the prosthetic shank, the thigh of the prosthetic
leg, the (other)anatomic shank, and the trunk, Figure 4.2.

The placement sites—on the prosthetic shank, the prosthetic thigh, the anatomic shank,
and the trunk—were chosen to capture comprehensive motion data relevant to distinguish-
ing gait patterns for terrain classification and walking aid recognition, while minimizing
the need for body-mounted sensors.
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Fig. 4.2 IMU placements

The specific commercially-available IMU chosen for the data collection were Xsens
Awinda IMUs since they met the requirements set out in Chapter 3, of being able to
record data at 100Hz and have been prove to be able to capture human walking data as
they were the IMUs used by Luo et al. [159].

4.2.5 Study procedure

The procedure for the study was the same wherever the trials were conducted. After
establishing that the participant was comfortable conducting the trial, the procedure was
as follows:

• Participant confirms they are ready.

• Start video recording.

• Start IMU recording.

• Participant given the signal to start.

• Participant stamps their prosthetic leg on the floor twice, providing a clear start
signature on the signal.

80



4.2 Methodology

• The participant conducts the trial.

• The participant finishes the trial and stands still.

• IMU recording is stopped.

• Video recording is stopped.

The participants were asked to stamp their prosthetic leg twice to make it easier to align
the ground-truth video with the IMU data.

The data collection took place between November 2022 and March 2024.

4.2.6 Data Filtering

A low pass Butterworth filter was used to filter the data. To calculate the correct
cut off frequency, a frequency analysis was carried out. This involved calculating the
Fourier transform of the data and seeing where the main frequencies, i.e. where the
main information content, occurs. Each participant conducted multiple trials on each
terrain with and without and with out a walking aid, creating a large overall database.
Due to the size of the dataset the analysis was not run on all trials but on 20 which were
quasi-randomly selected, ensuring that each type of trial was included for one TT and
TF participant. The trials selected are displayed in Table 4.3. Due to the length of the
data collection period and to ensure the data processing and analysis would be complete
in the timeframe of the research, the frequency analysis was carried out before all the
participants had conducted the study. Participant 15 was therefore the last participant
included in the frequency analysis. The analysis was carried out on the raw sensor data
and the results for the different measures were all similar with the main frequencies
being below 4Hz. Figure 4.3 presents the resultant acceleration analysis. To ensure all
important frequencies were included, a 5Hz low pass Butterworth filter was used, as
stated in Chapter 3. Similar to Luo et al. [159] a second order filter was chosen.

Table 4.3 Trials selected for frequency analysis. Participant number and trial number
displayed. WA = walking aid

Gravel
with-
out
WA

Gravel
with
WA

Stairs
with-
out
WA

Stairs
with
WA

Slope
with-
out
WA

Slope
with
WA

Grass
with-
out
WA

Grass
with
WA

uneven
with-
out
WA

uneven
with
WA

P1 1 P11 1 P6 2 P15 3 P1 2 P13 1 P8 2 P6 1 P8 1 P6 1
P3 1 P9 1 P12 2 P10 1 P4 1 P10 1 P4 1 P10 1 P14 1 P9 2
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Fig. 4.3 Frequency analysis of resultant acceleration signals. Spikes that identify the main
frequencies can be seen at around 1.5Hz, 1.9Hz, 3Hz and 3.75Hz.

4.2.7 Stride identification

The data were analysed using the different window methods identified in Chapter 3. One
of these methods is to use a whole stride as an analysis window. To achieve this, the
data had to be split into different strides. Also, to label the data, individual strides had
to be identified.

No method that has previously been used has looked at the precision of a stride count
method to count a stride at the same point in a stride every time. The accuracies
previously used to test a stride count method have been the number of strides. As it
could be crucial for the accuracy of the classification to analyse the same portion of a
stride, analysis was carried out to determine the best stride count method, looking at the
accuracy of the number of strides and the precision of where the stride was counted on
each stride. Due to the size of the dataset, not all trials were included in this analysis;
the trials included were the same as for the frequency analysis as this included one trial
for every trial type. For each trial the video was used to count the number of strides, and
this was taken as the ground truth. The recorded acceleration and gyroscope data for
each of the 3 axes, as well the the resultant magnitude and sum of the three components
of acceleration for the prosthetic shank (PS), thigh (TH) and trunk (TR) IMUs were
plotted. A ‘find-peaks’ algorithm was used to count the strides, with the minimum

82



4.2 Methodology

distance between peaks set at 0.8s and the minimum peak height allowed to be adjusted
for each measure to achieve the best result. The find-peaks algorithm finds the point
where the highest signal occurs within a set portion of time. Table 4.4 presents the
percentage errors for all the trials for all the measures, and Figure 4.4 visualises the IMU
axis. The percentage error for stride count was calculated as the sum of the difference
in stride count between the identified strides and the actual stride count for each trial
divided by the total number of actual strides.

z =

P
|S − I|P

S

z = percentage error of stride count, S = actual number of strides per trial, I = number
of strides identified per trial

The percentage error for the stride precision was calculated as the sum of the difference
between number of strides identified in the same location (the same peak in measurement
during each stride shown in Figure 4.5) and the number of strides identified for each trial
divided by the total number of strides identified.

x =

P
|I − N|P

I

x= error in stride precision, I = number of strides identified per trial, N = number of
strides identified in the same location of the stride per trial
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Table 4.4 Stride count % errors. TH: Thigh, PS: Prosthetic shank, TR: Trunk. The PS
gyroscope in the Y axis (red) was the measure chosen to identify strides.

Measure % error of stride
count

% error of stride
precision

TH resultant acceleration 2.36 6.83

PS resultant acceleration 11.54 10.93

TR resultant acceleration 7.20 6.21

TH sum of accelerations 10.67 11.91

PS sum of accelerations 46.40 6.74

TR sum of accelerations 17.99 23.30

TH acceleration X axis 6.82 21.55

TH acceleration Y axis 11.66 20.89

TH acceleration Z axis 4.09 9.54

TH gyroscope X axis 6.82 26.99

TH gyroscope Y axis 2.23 2.75

TH gyroscope Z axis 4.09 11.87

PS acceleration X axis 4.22 12.34

PS acceleration Y axis 5.21 17.42

PS acceleration Z axis 6.95 21.95

PS gyroscope X axis 7.94 15.58

PS gyroscope Y axis 3.85 2.03

PS gyroscope Z axis 3.60 9.59

TR acceleration X axis 4.47 19.32

TR acceleration Y axis 4.47 21.21

TR acceleration Z axis 5.46 17.90

TR gyroscope X axis 6.45 15.49

TR gyroscope Y axis 3.60 1.91

TR gyroscope Z axis 5.96 17.45
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Fig. 4.4 Visualisation of IMU axis

85



System Design: Classification of terrain and walking aid use using real-world
data.

The sum of prosthetic accelerations was found to produce a 46.4% error for stride
count which was the worst of all the measures. Trunk gyroscope ‘TR’ in the Y axis
produce the best precision (1.91% error) and a good accuracy (3.6% error), and the
thigh gyroscope in the Y axis ‘TH’ produced the best stride count accuracy (2.23%
error) and a good precision (2.75% error). As identified in Chapter 2, an ideal system
would be prosthetic-mounted only and not need for a patient to connect a device to their
body, so the prosthetic shank gyroscope in the Y axis was chosen as it produced a good
precision at 2.03% and a good accuracy at 3.85% which was only slightly worse than
the trunk gyroscope in the Y axis. Figure 4.5 plots the resultant acceleration, gyroscope
data for the Y axis for the prosthetic shank IMU and force plate data for Participant 5
on flat terrain. It is clear from the plot that there is one clear peak per stride for the Y
axis gyroscope data, whereas for the resultant accelerations there are multiple peaks per
stride. This is why the resultant acceleration has a higher precision error than the Y axis
gyroscope data. The force plate data shows when heel strike occurs, from that it can be
seen that the peak that identifies a stride for the gyroscope data in the Y axis is in the
middle of the swing phase of the stride.

Fig. 4.5 Comparison of strides as defined by different variables. Black line: Force plate
data representing the ground reaction force during each stride. Blue line: Resultant
acceleration from the prosthetic shank IMU, indicating the total acceleration experienced
across all axes during the stride. Red line: Gyroscope Y-axis data from the prosthetic
shank IMU, representing the rate of angular change in the medio-lateral direction during
each stride.

With the data labelled into strides, the ‘stomp’ strides at the beginning of the trial and
the last partial stride were removed to ensure only complete walking strides were used for
analysis.
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4.2.8 Labelling

As a stride was counted in the swing phase of a stride, the terrain the foot would land on
during the stride was labelled for the whole stride. Transition strides were not uniquely
identified. To create training data, the terrain labelling was done manually. The video
data was matched to the IMU data, using the stomp and stride count information, and
then the terrain. It is acknowledged that this could be a source of error as it required
human input for every stride, and a miscount could mislabel the terrain, but it was the
only option available for this study. All trials were checked manually by the author after
labelling to try and reduce errors to a minimum.

4.2.9 Normalisation

The data were normalised, but as previous studies do not comment on how they have
normalised their data, two normalisation methods were tested in this research. The first
was normalising the data to compare to the person’s mean for each measure, and the
other was to normalise each stride individually against the mean for that stride. Raw
data that had not been normalised were also tested.

4.2.10 Analysis windows

From Chapter 3, different window sizes and types have previously been used in similar
research, but there is not a conclusive agreement on the best method. For this study,
six time-based windows were compared as well as using a whole stride as a window and
classifying individual datapoints. When the data are processed in the window that consist
of a whole stride, the number of datapoints per stride have to be the same, so the strides
were resampled to ensure their same size.

4.2.11 Sampling rate

The IMUs record at a sampling rate of 100Hz. Previous studies have used a sampling
rate as low as 10Hz to accurately classify terrain [116]. There is no consensus on the
best sampling rate to use in this kind of analysis. Nyquist theorem says that the sampling
rate has to be twice the largest frequency, to ensure aliasing does not occur [174], so
because the data were filtered at 5Hz, the sampling rate cannot be lower than 10Hz.
Lower sampling rates require less computational power to process, so in this research four
sampling rates were tested to see if the classification accuracy is affected as the sampling
rate is reduced. The sampling rates simulated were 10Hz, 20Hz,50Hz and 100Hz. When
the data had been split into windows that consisted of a whole stride, the data were
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resampled into four different numbers of datapoints per stride-window. The number of
datapoints per window were 10, 20, 50 and 100. These reflected the sampling rates. As
shown in Figure 4.6, the majority of strides were at a cadence of less than 1 stride per
second, so resampling to 10 samples per stride will not reduce the sampling rate below
10Hz.

Fig. 4.6 Histogram for strides at different cadences, for all data recorded. The majority
of strides are at a cadence lower than 0.8 strides per second.

4.2.12 Features

In machine learning classification features are the variables used to create the classification
model. The features used for both terrain classification and walking aid recognition are
listed in Table 4.5. The cadence was calculated from the stride time for each individual
stride. The percentage along the stride was also calculated for each individual datapoint.

The delta velocity is the change in velocity between datapoints, acceleration is the
delta velocity divided by the delta time, if the delta time is constant the delta velocity
should be the same but in proportion with the sampling rate.
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Table 4.5 Features for terrain and walking aid use classification.

Feature Units Description
Acceleration X m/s2 Acceleration in the vertical direction

(w/gravity)
Acceleration Y m/s2 Acceleration in the medio-lateral direction

(w/gravity)
Acceleration Z m/s2 Acceleration in the anterior-posterior direc-

tion (w/gravity)
Free Acceleration X m/s2 Acceleration in the vertical direction (w/o

gravity)
Free Acceleration Y m/s2 Acceleration in the medio-lateral direction

(w/o gravity)
Free Acceleration Z m/s2 Acceleration in the anterior-posterior direc-

tion (w/o gravity)
Gyroscope X rad/s Rate of turn along the vertical direction
Gyroscope Y rad/s Rate of turn along the medio-lateral direction
Gyroscope Z rad/s Rate of turn along the anteriorposterior di-

rection
Magnetometer X a.u. 3D magnetic field in the vertical direction
Magnetometer Y a.u. 3D magnetic field in the medio-lateral direc-

tion
Magnetometer Z a.u. 3D magnetic field in the anteriorposterior

direction
Velocity X m/s Delta_velocity (dv) in the vertical direction
Velocity Y m/s Delta_velocity (dv) in the mediolateral di-

rection
Velocity Z m/s Delta_velocity (dv) in the anteriorposterior

direction
Resultant Acceleration m/s2 Resultant accelerations (w/gravity)
Resultant Free Acceleration m/s2 Resultant accelerations (w/o gravity)
Cadence Strides/s Number of strides per second
Percentage of Stride % Percentage of the stride where that datapoint

occurs
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4.2.13 Analysis

There are two methods of testing the accuracy of classification algorithms. The first
being cross-validation which is where the whole data is split into multiple groups, and
each is tested while the other groups are used to train the algorithm. For this research,
5-fold cross-validation was used. The other method is leave-one-out, where a whole
participant is left out to be tested and the rest of the participants are used to train the
algorithm. Due to the number of methods being tested and to reduce computational
time, instead of testing individual participants, participants were split into 5 groups, and
for each trial four of the groups were used to train the model and one was used to test.
This method is called leave-some-out. The participants were quasi-randomly assigned
to groups using a random number generator, but it was ensured that at least one TF
and two TT participants were in each group. With 21 separate sets of participant data
for shank and thigh trials, four groups had four participants and one had five. For the
trunk trials where Participant 7 and therefore 21 did not have a sensor, there were four
groups of four and one of three. Table 4.6 displays the numbers of the participants in
each group.

Table 4.6 Participant numbers and numbers of participants in each group

Group TT participant
numbers

TF participant
numbers

Number of par-
ticipants in each
group (TT,TF)

1 P6, P11 P3, P16 4 (2,2)
2 P7, P8, P17 P14 4 (3,1)
3 P1, P5, P15 P19, P21 5 (3,2)
4 P2, P13 P4, P12 4 (2,2)
5 P18, P20 P9, P10 4 (2,2)

4.2.14 Algorithms

As concluded in Chapter 3, four machine learning algorithms were tested for the terrain
classification. The four algorithms were SVM, KNN, RF and LSTM. For the walking aid
use recognition LR was also tested because LR models look at binary results such as
walking aid use/non-use and give a baseline accuracy that other models can be compared
against.

Optimisers were run for each algorithm to tune the hyperparameters for each model. The
optimisers work by creating classification models with altering the hyperparameters for
each model and calculating the loss function. The optimisers try and find the hyperpa-
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rameters that produce the lowest loss function. All the optimisers were run on 100Hz
data and 0.2s windows as well as data resampled to windows of a whole stride with 100
datapoints. The optimisers were run on all the data collected for all participants. There
was little to no difference between the optimised outcomes for both window methods for
all algorithms. Where there was a difference, a mean value for the hyperparameter was
used.

Support Vector Machine (SVM)

The optimiser adjusts different hyperparameters to create a model that minimises the loss
function. The hyperparameters that were adjusted were; box constraint, kernel scale and
coding method. The hyperparameters found to be the best for terrain classification SVM
trials were; box constraint – 969.43, kernel scale 56.59 and one vs all coding. For walking
aid recognition SVM trials the best hyperparameters were; box constraint – 574.01, kernel
scale 45.609 and one vs one coding.

K-Nearest Neighbor (KNN)

As with the SVM algorithm, an optimiser was run on the same window methods. The
hyperparameters that were optimised for KNN were number of neighbours and how the
distance is calculated. The best hyperparameters for terrain classification KNN trials
were; number of neighbours – 1, how distance was calculated – Euclidean distance. For
walking aid recognition KNN trials the best hyperparameters were; number of neighbours
– 1, how distance was calculated – Mahalanobis distance.

Random Forest (RF)

The hyperparameters that were optimised for the RF models were number of trees,
number of predictors and minimum leaf size. The best hyperparameters for the terrain
classification were: number of trees – 100, number of predictors – 7, minimum leaf size -
1. For the walking aid recognition the best hyperparameters were: number of trees –
350, number of predictors – 45, minimum leaf size - 7.

Long Short Term Memory (LSTM)

LSTM are types of recurrent neural networks with LSTM layers. Most LSTM have only
one LSTM layer, but multiple LSTM layers can produce deeper learning which could
produce a more accurate classifier [175]. To see if more LSTM layers improve the accuracy
of the terrain and walking aid use classifier, trials were run with one, two and three LSTM
layers, the results of which are displayed in Table 4.7 for terrain classification and Table 4.8
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for walking aid recognition and visualised in Figure 4.7 for terrain classification and Figure
4.8 for walking aid recognition. The analysis was run on data split into stride windows
of 10 datapoints per stride and used 5-fold cross-validation to assess the accuracies.
There was no significant difference between using one (M=72.39%, SD=1.73%) and
two (M=72.49%, SD=1.19%) LSTM layers for terrain classification using a Dunn’s test
(0.1% difference in mean accuracy, p value = 0.96), whereas there was a significant
decrease in accuracy when using three layers (M=66.38%, SD=1.56%) (6.01% difference
in mean accuracy, p value = 0.011) as compared to one layer from a Dunn’s test. One
layer (M=6.4s, SD=0.49s) was also significantly quicker to run than two layers from
a Dunn’s test (M=12s, SD=1.5s) (5.6s difference in mean time, p value = 0.0001).
For walking aid recognition there was no significant difference in the accuracies for the
amount of layers from a Dunn’s test, but there was significant difference in the time
it took to process with one layer (M=307.8s, SD=12.43s) being significantly quicker
from a Dunn’s test (256.6s between 1 and 2 layers and 507.6s between 1 and 3 layers,
p<0.0001 when comparing 1 to both 2 and 3 layers). A one-layer LSTM was hence be
used for both terrain classification and walking aid recognition. The processing time
for the walking aid classification was significantly longer then the terrain classification
because the analysis was conducted on a less computationally powerful computer, so can
not be used to compare computational time for the two different classifications.

Table 4.7 Percentage accuracies for number of LSTM layers and processing time for
terrain classification.

Trial 1 Layer Processing
time (s)

2 Layers Processing
time (s)

3 Layers Processing
time (s)

1 73.91% 7 71.90% 15 67.42% 18

2 73.24% 7 72.62% 12 67.88% 17

3 69.02% 6 72.05% 11 66.91% 18

4 72.88% 6 71.18% 11 63.46% 20

5 72.93% 6 74.68% 11 66.24% 19

Mean 72.39% 6.4 72.49% 12 66.38% 18.4
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Fig. 4.7 Cross-validation accuracy for terrain classification using LSTM models with 1, 2,
and 3 layers. This compares the accuracy of LSTM models with different numbers of
layers, indicating that a single LSTM layer achieves the highest accuracy while adding
more layers (2 or 3) results in a significant decrease in accuracy. The boxes represent the
range of accuracy values across trials, with the median value indicated within each box.

Table 4.8 Percentage accuracies for number of LSTM layers and processing time for
walking aid recognition

Trial 1 Layer Processing
time (s)

2 Layers Processing
time (s)

3 Layers Processing
time (s)

1 67.22% 286.00 67.94% 545.00 69.27% 782.00

2 68.62% 313.00 64.97% 560.00 61.01% 796.00

3 67.70% 310.00 69.03% 537.00 69.34% 761.00

4 69.33% 324.00 64.18% 597.00 60.99% 893.00

5 69.74% 306.00 67.42% 548.00 64.49% 845.00

Mean 68.52% 307.80 66.71% 557.40 65.02% 815.40
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Fig. 4.8 Cross-validation accuracy for terrain classification using LSTM models with 1, 2,
and 3 layers. This compares the accuracy of LSTM models with different numbers of
layers, indicating that a single LSTM layer achieves the highest accuracy while adding
more layers (2 or 3) results in a significant decrease in accuracy. The boxes represent the
range of accuracy values across trials, with the median value indicated within each box.

The hyperparameters that were optimised for LSTM were the number of hidden units in
the LSTM layer, dropout probability, initial learning rate, minimum batch size, maximum
epochs, and validation frequency. For terrain classification the optimised hyperparameters
are presented in Table 4.9.

Table 4.9 Hyperparameters for LSTM models

Number of
hidden units

Dropout
probability

Initial
learn rate

Minimum
batch
size

Maximum
epochs

Validation
fre-
quency

Terrain classi-
fication

508 0.4 0.027118 127 11 33

Walking aid
recognition

693 0.9 0.0096238 95 19 17

Logistic Regression (LR)

A LR classifier was used as a baseline for the other classifiers to compare against, as it is a
simple classifier that has been use in previous studies [74]. Due to this, the LR algorithm
was not optimised. The LR classifier is only being used for walking aid recognition. This
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is because LR is used for binary classification so would not be appropriate for the terrain
classification.

4.3 Results

There are two parts to the Results: the first part 4.3.2 is concerned with terrain
classifications and the second part 4.3.3 with walking aid use classification. For both
parts, effects on classification accuracies were explored in relation to use of sensors,
windows, data points per window, variables, normalization, prosthesis type and the
respective other classification aspect (terrain/walking aid use). The analysis was run
sequentially in the order it is documented. This means that the outcome from one
analysis was carried forward to the next part of the analysis, for example the prosthetic
shank IMU was deemed the most suitable IMU position in section 4.3.2, so only the
prosthetic shank IMU data was used for the subsequent analysis. The sequence of the
analysis was set to reduce computational time, as the aspects first compared would have
a larger possibility to reduce computational time compared to aspects investigated later.
For the analysis the null hypothesis was that there as no differences between the variables
being compared for each comparison.

4.3.1 Significance tests

When comparing results, Shapiro-Wilk tests were first run to test the data is normally
distributed, then the ratio of the standard deviations was calculated to check if the
variances were equal. If all the results were deemed to be normally distributed and have
equal variance then an ANOVA test was run to determine if there was any significant
differences for the classification accuracies within each machine learning model, with the
F-value (F ), degrees of freedom and p-value (p) reported. If this showed significance,
a post-hoc Tukey’s HSD tests was run to investigate comparisons between separate
variables, with the mean accuracies, standard deviation, mean differences and p-values
(p) reported for significant results. If any of the results were not deemed to be normally
distributed or had variances in their variances, then a Kruskal–Wallis test was run following
the same process as the ANOVA test, with the Chi-square (X 2), degrees of freedom and p
value reported. The Chi-square value is reported as an alternative to the H value because
the Kruskal-Wallis test statistic (H) follows a Chi-square distribution. If significance
was found a Dunn’s post-hoc test was run following the same process as the Tukey’s
HSD test, with the mean accuracies, standard deviation, mean differences and p-values
(p) reported. Significance was accepted as p values lower than 0.05. All the statistical
analysis was conduced using inbuilt Matlab functions.
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4.3.2 Terrain Classification

Effects of sensor location and combination on terrain classification accuracies

Four IMUs were attached to each participant for this study. Terrain classification algo-
rithms were run for the data of each IMU separately, and then for all combined, using
100Hz data split into windows that contained a whole stride split into 100 datapoints,
as this did not significantly condense the data and ensured all datasets were consistent.
The mean leave-some-out accuracies are displayed in Table 4.10 and visualised in Figure
4.9, the mean cross-validation accuracies are displayed in Table 4.11 and visualised
in Figure 4.10. No significance was found between any of the leave-some-out results
from Kruskal–Wallis tests (KNN X 2(4)=8.65 p=0.07, RF X 2(4)=7.25 p=0.12 and
SVM X 2(4)=7.07 p=0.13, LSTM X 2(4)=6.59 p=0.16). SVM and RF produce higher
accuracies for all IMU locations. For cross-validation results there was significance found
between the means for all the algorithms except for LSTM from Kruskal–Wallis tests
(KNN X 2(4)=17.60 p=0.0015, RF X 2(4)=17.25 p=0.0017 and SVM X 2(4)=19.62
p<0.0001). The significant results found from the Dunn’s post-hoc tests are displayed in
Table 4.12 Combining the data from all the IMUs produced significantly higher accuracies
with SVM and RF algorithms to the trunk and other shank IMUs. The prosthetic shank
and thigh IMU were significantly better than the trunk IMU for KNN, the thigh IMU
also produced significantly higher accuracies than the other shank IMU for KNN. Overall,
these results disprove the null hypothesis, that IMU location and combining IMU does
not have an effect on terrain classification accuracy.
The leave-some-out accuracies are low, but these are comparable to the only other study
that has investigated comparable real-world terrain classification for lower limb prosthetic
users (Jamieson, 2021).

As the ideal system will be prosthetic mounted and there is not a significant difference
between using all IMU to just the prosthetic shank IMU in leave-some-out verification,
and only a slight decrease in cross-validation, only the prosthetic shank IMU was used in
the next stages of analysis.
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Table 4.10 Leave-some-out terrain classification percentage accuracies for different IMU
positions.

KNN RF SVM LSTM

Prosthetic
Shank

44.19% 52.09% 52.87% 47.53%

Other Shank 43.52% 53.56% 52.41% 46.62%

Thigh 37.53% 44.36% 43.95% 39.64%

Trunk 43.51% 54.3% 53.22% 50.31%

All 44.73% 52.00% 49.08% 50.06%

Fig. 4.9 Leave-some-out accuracy results for terrain classification across different sensor
placements and algorithms. The boxplot shows the classification accuracy for each sensor
placement (prosthetic shank, other shank, thigh, trunk, and all combined) using four
machine learning algorithms: K-Nearest Neighbors (KNN), Long Short-Term Memory
(LSTM), Random Forest (RF), and Support Vector Machines (SVM). The median and
inter-quartile range of the accuracy for each sensor placement and algorithm is indicated
by the spread of the boxes and the maximum and minimum values, if these are not
outliers, are presented by the whiskers.
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Table 4.11 Cross-validation terrain classification percentage accuracies for different IMU
positions.

KNN RF SVM LSTM

Prosthetic
Shank

84.30% 81.66% 84.29% 81.99%

Other Shank 83.32% 80.60% 82.11% 82.20%

Thigh 84.72% 82.11% 83.15% 83.21%

Trunk 81.67% 79.90% 81.36% 81.48%

All 82.68% 84.92% 87.32% 81.61 %

Fig. 4.10 Cross-validation accuracy results for terrain classification across different sensor
placements and algorithms. The boxplot shows the classification accuracy for each sensor
placement (prosthetic shank, other shank, thigh, trunk, and all combined) using four
machine learning algorithms: K-Nearest Neighbors (KNN), Long Short-Term Memory
(LSTM), Random Forest (RF), and Support Vector Machines (SVM). Combined sensors
show higher accuracy, particularly when using RF and SVM algorithms. The prosthetic
shank IMU placement showed higher accuracies than the other placements when using
SVM algorithm. The median and inter-quartile range of the accuracy for each sensor
placement and algorithm is indicated by the spread of the boxes and the maximum and
minimum values, if these are not outliers, are presented by the whiskers.

98



4.3 Results

Table 4.12 Significant differences in mean accuracies for cross-validation test between
IMU placements and algorithms.

Model Mean (%) ± SD Mean (%) ± SD Difference (%) p-value

SVM
All 87.32 ± 0.76 Trunk 81.36 ± 0.84 5.96 0.0009

All 87.32 ± 0.76 OS 82.11 ± 1.44 5.21 0.011

RF
All 84.93 ± 0.72 Trunk 79.90 ± 0.82 5.02 0.001

All 84.93 ± 0.72 OS 80.60 ± 1.27 4.62 0.017

KNN

PS 84.30 ± 0.63 Trunk 81.67 ± 0.91 2.63 0.026

Thigh 84.72 ± 0.90 Trunk 81.67 ± 0.91 3.05 0.005

Thigh 84.72 ± 0.90 OS 83.33 ± 0.73 1.40 0.005

Effects of window type on terrain classification accuracies

To assess how different window types affect the accuracies of terrain classification eight
different window types were assessed: six time-windows (0.1s, 0.2s, 0.5s, 1s, 1.5s, 2s), a
trial where the window was made to cover one stride and assessing individual datapoints.
For all these window types, accuracy was quantified as the percentage of strides correctly
classified. For time-windows smaller than a stride the median classified terrain over the
multiple windows that made up the stride was used. For windows that are larger than
a stride, the terrain that was the most predominant across the window was used as
the terrain for the whole window. Tables 4.13 and 4.14 display the mean accuracies
for leave-some-out and cross-validation, with respective results visualised in Figures
4.11 and 4.12. Significance was found between any of the leave-some-out results from
Kruskal–Wallis tests (KNN X 2(7)=25.34 p<0.001, RF X 2(7)=16.32 p=0.022 and SVM
X 2(7)=19.08 p=0.008, LSTM X 2(7)=20.39 p=0.0048). The individual datapoints
were not validated using cross-validation as the algorithms would have been trained
on datapoints of the same stride and would produce artificially high accuracies. In the
leave-one-out tests the stride-based window produced significantly higher accuracies
than the 2s window for RF and the individual datapoints for SVM. The only other
significant result for leave-some-out tests was the 2s window producing lower accuracies
than 0.1s window for KNN and LSTM. For cross-validation verification, significance
was found between any of the leave-some-out results from Kruskal–Wallis tests (KNN
X 2(6)=33.33 p<0.001, RF X 2(6)=33.24 p<0.001 and SVM X 2(6)=32.69 p<0.001,
LSTM X 2(6)=32.73 p<0.001). Dunn’s post-hoc tests found the stride-based window
produced significantly higher accuracies than 2s window for every algorithm, 1.5s window
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for KNN and RF, 1s window for KNN, 0.2s window for SVM and LSTM and 0.1s window
for SVM. Results for significance testing are displayed in Table 4.15. These results
disprove the null hypothesis and show that the windowing method does have an effect on
terrain classification accuracy. The stride-based windows produced the best accuracies
for both leave-some-out and cross-validation, so they were the windows that were used
for the rest of the analysis.

Table 4.13 Leave-some-out terrain classification percentage accuracies for different window
types.

KNN RF SVM LSTM

0.1s 43.97% 43.39% 37.46% 48.05%

0.2s 39.99% 43.04% 41.56% 44.31%

0.5s 39.99% 43.11% 41.56% 44.46%

1s 36.49% 43.01% 43.24% 39.40%

1.5s 39.72% 42.88% 39.09% 38.60%

2s 36.35% 42.11% 37.53% 37.03%

Stride 44.19% 52.09% 52.87% 47.53%

Individual 44.42% 46.52% 32.72% 48.23%

Table 4.14 Cross-validation terrain classification percentage accuracies for different window
types.

KNN RF SVM LSTM

0.1s 83.40% 79.70% 48.58% 76.75%

0.2s 77.68% 74.32% 51.50% 54.94%

0.5s 68.26% 69.53% 61.59% 69.32%

1s 63.01% 62.79% 64.54% 67.15%

1.5s 60.28% 60.85% 63.98% 67.00%

2s 56.70% 56.08% 57.72% 61.93%

Stride 84.30% 81.66% 84.29% 81.99%
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Fig. 4.11 Leave-some-out accuracy results for terrain classification across different windowing methods. The boxplot shows the classification accuracy for windowing
method (time-based windows 0.1s, 0.2s, 0.5s, 1s, 1.5s and 2s, stride-based window and individual datapoints) using four machine learning algorithms: K-Nearest Neighbors
(KNN), Long Short-Term Memory (LSTM), Random Forest (RF), and Support Vector Machines (SVM). The stride-based window produced significantly higher accuracies
than the 2s window for RF and the individual datapoints for SVM. The 0.1s window produced higher accuracies than the 2s window for KNN and LSTM.
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Fig. 4.12 Cross-validation accuracy results for terrain classification across different windowing methods. The boxplot shows the classification accuracy for windowing
method (time-based windows 0.1s, 0.2s, 0.5s, 1s, 1.5s and 2s, stride-based window and individual datapoints) using four machine learning algorithms: K-Nearest Neighbors
(KNN), Long Short-Term Memory (LSTM), Random Forest (RF), and Support Vector Machines (SVM). The stride-based window produced significantly higher accuracies
than all the other windows for at least one classifier.
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Table 4.15 Significant differences in mean accuracies for terrain classification across
different window types. ID = Individual Datapoints

Model Mean (%) ± SD Mean (%) ± SD Mean Difference (%) p-value

Leave-Some-Out Results

RF Stride 52.09 ± 3.48 2s 42.11 ± 1.53 9.98 0.043

SVM Stride 52.87 ± 6.40 ID 32.72 ± 3.53 20.15 0.006

KNN 0.1s 43.97 ± 3.92 2s 36.35 ± 1.10 7.62 0.046

LSTM 0.1s 48.05 ± 3.73 2s 37.03 ± 2.09 11.02 0.022

Cross-Validation Results

KNN

Stride 84.30 ± 0.63 2s 55.70 ± 0.72 27.6 <0.001

Stride 84.30 ± 0.63 1.5s 60.28 ± 1.53 24.02 0.002

Stride 84.30 ± 0.63 1.5s 60.28 ± 1.53 24.02 0.002

Stride 84.30 ± 0.63 1s 63.01 ± 0.58 21.29 0.042

RF
Stride 81.66 ± 0.72 2s 56.08 ± 0.67 25.58 <0.001

Stride 81.66 ± 0.72 1.5s 60.85 ± 0.63 20.81 0.003

SVM

Stride 84.29 ± 0.44 2s 57.72 ± 0.63 26.57 0.042

Stride 84.29 ± 0.44 0.2s 51.50 ± 0.30 32.79 0.002

Stride 84.29 ± 0.44 0.1s 84.58 ± 0.47 35.71 <0.001

LSTM
Stride 81.99 ± 0.40 2s 61.93 ± 0.77 20.06 0.002

Stride 81.99 ± 0.40 0.2s 54.94 ± 0.74 27.05 <0.001

Effect of datapoints per window on terrain classification accuracies.

The more data points that make up a stride, the more computational time it will take to
process the data, but using fewer data points reduces the amount of information and
could reduce the accuracy of classifiers. Four different splits of stride windows were
assessed (10, 20, 50 and 100). Table 4.16 and 4.17 display the mean accuracies for leave-
some-out and cross-validation for the four window datapoint numbers, and Figures 4.13
and 4.14 visualise these results. There was no statistical difference between the number of
datapoints used, and results were statistically similar for all algorithms from Kruskal–Wallis
tests (KNN X 2(3)=0.40 p=0.940, RF X 2(3)=1.39 p=0.708, SVM X 2(3)=0.34 p=0.953
and LSTM X 2(3)=0.25 p=0.970) for leave-some-out verification. For cross-validation,
there was no statistical significance between RF and LSTM for the four datapoint
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quantities, but KNN and SVM showed significant differences from Kruskal–Wallis tests
(KNN X 2(3)=8.47 p=0.0372, RF X 2(3)=4.56 p=0.21, SVM X 2(3)=17.86 p<0.001 and
LSTM X 2(3)=6.34 p=0.096). Running Dunn’s post-hoc tests found no difference for
the datapoint amounts for KNN but, as shown in Figure 4.14, there is clear significant
difference for SVM, where less datapoints produced lower accuracies. Overall, these
results do not disprove the null hypothesis that the number of datapoints in a window
effects terrain classification accuracies. As there is only a difference for cross-verification
SVM, 10 datapoint stride windows were used for the rest of the analysis, but the final
algorithm was assessed at 100 datapoints as well.

Table 4.16 Leave-some-out terrain classification percentage accuracies for different
numbers of datapoints per window

KNN RF SVM LSTM

10 45.45% 54.40% 52.10% 45.58%

20 44.55% 53.13% 51.78% 47.35%

50 44.31% 53.25% 52.10% 47.39%

100 44.19% 52.09% 52.87% 47.53%
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Fig. 4.13 Leave-some-out accuracy results for terrain classification across different number
of datapoints per window. The boxplot shows the classification accuracy for each number
of datapoints (10, 20, 50, 100) using four machine learning algorithms: K-Nearest
Neighbors (KNN), Long Short-Term Memory (LSTM), Random Forest (RF), and Support
Vector Machines (SVM). The number of datapoints didn’t affect the accuracies using all
algorithms.

Table 4.17 Cross-validation terrain classification percentage accuracies for different
numbers of datapoints per window

KNN RF SVM LSTM

10 85.27% 82.59% 77.31% 80.78%

20 85.02% 82.32% 79.95% 81.65%

50 84.34% 81.62% 82.10% 82.23%

100 84.30% 81.66% 84.29% 81.99%
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Fig. 4.14 Cross-validation accuracy results for terrain classification across different number
of datapoints per window. The boxplot shows the classification accuracy for each number
of datapoints (10, 20, 50, 100) using four machine learning algorithms: K-Nearest
Neighbors (KNN), Long Short-Term Memory (LSTM), Random Forest (RF), and Support
Vector Machines (SVM). The only significant difference with using fewer datapoints was
with the SVM algorithm, the number of datapoints didn’t affect the accuracies using the
other algorithms.

Effects of variables used on terrain classification accuracies.

Reducing the number of features reduces the computational burden associated with
running a classifier. Also, understanding which IMU sensors and associated features are
critical to the accuracies of the classifiers could allow for a simpler system or reduced
system requirements. For this analysis the variables compared were:

• Accelerations – X, Y, and Z components of the acceleration and the resultant
acceleration

• Gyroscope - X, Y, and Z components of the gyroscopic data

• Magnetometer - X, Y, and Z components of the magnetometer data

• Free accelerations - X, Y, and Z components of the free acceleration and the
resultant free acceleration
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• Cadence – the cadence per stride

• Velocity - X, Y, and Z components of the velocity data

• AGM – Acceleration, Gyroscope and magnetometer data

• AGMF - Acceleration, Gyroscope, magnetometer and free acceleration data

• AGMFC - Acceleration, Gyroscope, magnetometer, free acceleration and cadence
data

• All – all the data

The mean accuracies for leave-some-out and cross-validation verification are displayed in
Tables 4.18 and 4.19, and the results visualised in Figures 4.15 and 4.16. Significance
tests showed significant differences for all the algorithms from Kruskal–Wallis tests (KNN
X 2(9)=40.66 p<0.0001, RF X 2(9)=23.70 p<0.0001, SVM X 2(9)=42.23 p<0.0001,
LSTM X 2(9)=31.42 p<0.0001) for leave-some-out validation, which looking at the
results is expected because there is clear difference between the box plots for cadence
and the other variables for each algorithm. Dunn’s post-hoc tests found the gyroscope
produced significantly lower accuracies than AGMFC and all for KNN, RF and SVM, and
lower than AGMF for RF and SVM. Cadence produced significantly lower accuracies
than AGMFC and all for all algorithms, AGMF for KNN, RF and SVM and AGM for
SVM. There was no statistical significance between the combined variables AGM, AGMF,
AGMFC and ‘All’. For the individual variables the only significant difference was obtained
for free acceleration producing significantly higher accuracies than cadence for LSTM.
For the cross-validation assessment, significance tests showed significant differences
for all the algorithms from Kruskal–Wallis tests (KNN X 2(9)=45.41 p<0.0001, RF
X 2(9)=44.75 p<0.0001, SVM X 2(9)=47.99 p<0.0001, LSTM X 2(9)=45.28p<0.0001).
Dunn’s post-hoc tests found cadence came out significantly worse than all combined
features. Gyroscope data produced significantly lower accuracies than AGMFC for all
algorithms, all the data for RF, SVM and LSTM, AGMF for KNN, RF and LSTM and
AGM for RF and LSTM. Magnetometer accuracies were significantly lower than all the
data for SVM and LSTM, and AGMFC for SVM. The velocity data accuracies were
lower than all the data for SVM. The post-hoc tests did not show a significant difference
between any of the individual variables, but cadence produced lower mean accuracies.
There was no significant difference between the combined features, but AGM produce
lower mean accuracies than other combined variables. Results for significance testing are
displayed in Table 4.20. These results disprove the null hypothesis and show that the
variables used to in terrain classification do have an effect on the classification accuracies.
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Since AGMFC produced higher mean accuracies than the other combinations on 3 of the
leave-some-out tests, it will therefore be used for the rest of the analysis.

Table 4.18 Leave-some-out terrain classification percentage accuracies for different
variables. AGM = accelerations, gyroscope and magnetometer, AGMF = accelerations,
gyroscope, magnetometer and free accelerations, AGMFC= accelerations, gyroscope,
magnetometer, free accelerations and cadence.

KNN RF SVM LSTM

Accelerations 36.80% 44.12% 42.14% 40.36%

Gyroscope 29.47% 36.32% 29.03% 32.86%

Magnetometer 28.57% 41.48% 35.80% 34.00%

Free Accelerations 40.91% 50.03% 48.60% 46.22%

Cadence 21.85% 26.79% 23.37% 28.53%

Velocity 34.50% 41.82% 37.43% 40.08%

AGM 41.82% 49.49% 49.39% 41.15%

AGMF 44.87% 54.18% 52.28% 43.32%

AGMFC 45.46% 54.36% 52.83% 46.94%

All 45.45% 54.40% 52.10% 45.58%
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Table 4.19 Cross-validation terrain classification percentage accuracies for different
variables. AGM = accelerations, gyroscope and magnetometer, AGMF = accelerations,
gyroscope, magnetometer and free accelerations, AGMFC= accelerations, gyroscope,
magnetometer, free accelerations and cadence.

KNN RF SVM LSTM

Accelerations 76.46% 76.26% 58.96% 71.60%

Gyroscope 73.66% 74.07% 48.26% 62.75%

Magnetometer 80.77% 79.47% 47.98% 66.74%

Free Accelerations 80.04% 77.52% 57.54% 74.16%

Cadence 33.65% 36.29% 25.75% 30.45%

Velocity 76.07% 76.21% 54.06% 72.64%

AGM 84.85% 82.68% 70.08% 79.49%

AGMF 85.67% 83.18% 74.44% 80.18%

AGMFC 85.61% 82.83% 75.17% 80.59%

All 85.27% 82.59% 77.31% 80.78%
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Fig. 4.15 Leave-some-out accuracy results for terrain classification across different variables and variable groups. The boxplot shows the classification accuracy for each
variable (acceleration, gyroscope, magnetometer, free accelerations, cadence, velocity, AGM = accelerations, gyroscope and magnetometer, AGMF = accelerations,
gyroscope, magnetometer and free accelerations, AGMFC= accelerations, gyroscope, magnetometer, free accelerations and cadence.) using four machine learning
algorithms: K-Nearest Neighbors (KNN), Long Short-Term Memory (LSTM), Random Forest (RF), and Support Vector Machines (SVM). The combined variable groups
produced higher accuracies than the individual variables. AGMFC produced higher mean accuracies than the other combinations on 3 of the leave-some-out tests.

110



4.3
R
esults

Fig. 4.16 Cross-validation accuracy results for terrain classification across different variables and variable groups. The boxplot shows the classification accuracy for each
variable (acceleration, gyroscope, magnetometer, free accelerations, cadence, velocity, AGM = accelerations, gyroscope and magnetometer, AGMF = accelerations,
gyroscope, magnetometer and free accelerations, AGMFC= accelerations, gyroscope, magnetometer, free accelerations and cadence.) using four machine learning
algorithms: K-Nearest Neighbors (KNN), Long Short-Term Memory (LSTM), Random Forest (RF), and Support Vector Machines (SVM). The combined variable groups
produced higher accuracies than the individual variables.
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Table 4.20 Significant differences in mean accuracies for terrain classification across
different variables. Gyr = Gyroscope, Cad = Cadence, Mag = Magnetometer, Vel =
Velocity

Model Mean (%) ± SD Mean (%) ± SD Difference (%) p-value
Leave-Some-Out Results

KNN

Gyro 29.47 ± 4.89 AGMFC 45.46 ± 2.65 15.99 0.05
Gyro 29.47 ± 4.89 All 45.45 ± 3.28 15.98 0.046
Cad 21.85 ± 3.48 AGMFC 45.46 ± 2.65 23.61 0.002
Cad 21.85 ± 3.48 All 45.45 ± 3.28 23.6 0.002
Cad 21.85 ± 3.48 AGMF 44.87 ± 3.82 23.02 0.004

RF

Gyro 36.32 ± 3.03 AGMFC 54.36 ± 3.79 18.04 0.029
Gyro 36.32 ± 3.03 All 54.40 ± 4.01 18.08 0.029
Gyro 36.32 ± 3.03 AGMF 54.18 ± 3.35 17.89 0.04
Cad 26.79 ± 2.02 AGMFC 54.36 ± 3.79 27.57 0.002
Cad 26.79 ± 2.02 All 54.40 ± 4.01 27.61 0.002
Cad 26.79 ± 2.02 AGMF 54.18 ± 3.35 27.39 0.003

SVM

Gyro 29.03 ± 2.65 AGMFC 52.82 ± 3.98 23.8 0.011
Gyro 29.03 ± 2.65 All 52.10 ± 4.23 23.07 0.017
Gyro 29.03 ± 2.65 AGMF 52.28 ± 3.94 23.25 0.018
Cad 23.37 ± 3.08 AGMFC 52.82 ± 3.98 29.46 0.002
Cad 23.37 ± 3.08 All 52.10 ± 4.23 28.73 0.003
Cad 23.37 ± 3.08 AGMF 52.28 ± 3.94 28.91 0.004
Cad 23.37 ± 3.08 AGM 49.39 ± 4.12 22.7 0.034

LSTM
Cad 28.53 ± 3.48 AGMFC 46.94 ± 4.09 18.41 0.007
Cad 28.53 ± 3.48 All 45.58 ± 4.47 17.05 0.032
Cad 28.53 ± 3.48 FA 46.94 ± 4.09 13.36 0.009

Cross-Validation

KNN
Gyro 73.66 ± 1.84 AGMFC 85.61 ± 0.63 11.95 0.009
Gyro 73.66 ± 1.84 AGMF 85.67 ± 1.04 12.01 0.011

RF

Gyro 74.07 ± 0.50 AGMFC 82.83 ± 0.25 8.76 0.018
Gyro 74.07 ± 0.50 All 82.59 ± 1.08 8.52 0.028
Gyro 74.07 ± 0.50 AGMF 83.18 ± 0.85 9.11 0.009
Gyro 74.07 ± 0.50 AGM 84.85 ± 0.85 8.61 0.028

SVM

Gyro 48.26 ± 0.53 AGMFC 75.17 ± 1.09 26.91 0.046
Gyro 48.26 ± 0.53 All 77.31 ± 0.37 29.05 0.032
Mag 47.98 ± 0.58 All 77.31 ± 0.37 29.33 0.001
Mag 47.98 ± 0.58 AGMFC 75.17 ± 1.09 27.19 0.023
Vel 54.06 ± 1.10 All 77.31 ± 0.37 23.25 0.05

LSTM

Gyro 62.75 ± 0.56 AGMFC 80.59 ± 0.75 17.84 0.017
Gyro 62.75 ± 0.56 All 80.78 ± 0.82 18.03 0.006
Gyro 62.75 ± 0.56 AGMF 80.18 ± 1.60 17.43 0.027
Gyro 62.75 ± 0.56 AGM 79.49 ± 1.73 16.74 0.043
Mag 66.74 ± 1.25 All 80.78 ± 0.82 14.04 0.046
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Effects of normalisation on terrain classification.

The data were normalised against the mean for the individual person and individual strides.
Leave-some-out and cross-validation mean accuracies are displayed in Tables 4.21 and
4.22, with the results visualised in Figures 4.17 and 4.18. For all trials, normalising per
stride produced smaller accuracies, so a combined trial was run with raw and normalised
per person data (RP). For leave-some-out there was significant differences found only
between RF and LSTM results from Kruskal–Wallis tests (KNN X 2(4)=6.71 p=0.15,
RF X 2(4)=9.56 p=0.048, SVM X 2(4)=5.00 p=0.29, LSTM X 2(4)=9.59 p=0.048), but
post-hoc test found no significant difference between individual normalisation methods.
For cross-validation, there was significance found in all models from Kruskal–Wallis
tests (KNN X 2(4)=18.07 p=0.0012, RF X 2(4)=19.37 p<0.001, SVM X 2(4)=22.90
p<0.001, LSTM X 2(4)=17.21 p=0.002). From Dunn’s post-hoc tests normalised per
stride produced significantly lower accuracies than the raw data for RF, normalised per
person, RP and all the data for LSTM and RP and all the data for SVM. The raw data
were significantly lower than all the data for SVM, but these accuracies were not as
high as the other algorithms. Results for significance testing are displayed in Table 4.23.
These results disprove the null hypothesis and show that normalisation method does have
an effect on terrain classification accuracies. RP data will be used for the rest of the
analysis, as it produced the highest mean accuracies for 4 of the tests.

Table 4.21 Leave-some-out terrain classification percentage accuracies for different
normalisation techniques. RP = raw and person combined.

KNN RF SVM LSTM

Raw 42.22% 51.40% 51.55% 46.03%

Stride 37.73% 45.37% 46.85% 41.89%

Person 44.99% 53.79% 52.00% 48.17%

RP 45.67% 53.81% 51.39% 48.77%

All 45.46% 54.36% 52.83% 46.94%
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Fig. 4.17 Leave-some-out accuracy results for terrain classification across different nor-
malisation methods. The boxplot shows the classification accuracy for each variable (raw
data, normalised per stride, normalised per person, RP = raw and person combined and
all data) using four machine learning algorithms: K-Nearest Neighbors (KNN), Long
Short-Term Memory (LSTM), Random Forest (RF), and Support Vector Machines (SVM).
There was no significant difference between the normalisation techniques.

Table 4.22 Cross-validation terrain classification percentage accuracies for different
normalisation techniques. RP = raw and person combined.

KNN RF SVM LSTM

Raw 83.03% 84.91% 65.62% 77.90%

Stride 82.00% 78.69% 61.93% 76.53%

Person 85.24% 82.12% 66.57% 80.99%

RP 85.71% 83.00% 71.36% 81.00%

All 85.61% 82.83% 75.17% 80.59%
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Fig. 4.18 Cross-validation accuracy results for terrain classification across different
normalisation methods. The boxplot shows the classification accuracy for each variable
(raw data, normalised per stride, normalised per person, RP = raw and person combined
and all data) using four machine learning algorithms: K-Nearest Neighbors (KNN), Long
Short-Term Memory (LSTM), Random Forest (RF), and Support Vector Machines (SVM).
Normalising per stride produced significantly lower accuracies for SVM, LSTM and RF.

Table 4.23 Significant differences in mean accuracies for cross-validation test between
normalisation method. Per = normalised per person

Model Mean (%) ± SD Mean (%) ± SD Difference (%) p-value

RF Stride 78.69 ± 0.82 Raw 84.91 ± 0.74 6.22 <0.001

LSTM

Stride 76.53 ± 0.67 Per 80.99 ± 1.12 4.46 0.021

Stride 76.53 ± 0.67 RP 81.00 ± 0.90 44.47 0.015

Stride 76.53 ± 0.67 All 80.59 ± 0.75 4.06 0.048

SVM

Stride 61.93 ± 0.82 RP 71.36 ± 1.42 9.43 0.013

Stride 61.93 ± 0.82 All 75.17 ± 1.09 14.24 <0.001

Raw 65.62 ± 0.55 All 75.17 ± 1.09 9.55 0.015

Effects of types of prosthesis on terrain classification accuracies.

To see if separating the two types of prosthesis, transtibial (TT) and transfemoral (TF),
will have an effect on the accuracy of the terrain classifier, trials were run with the data
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split by the prosthetic type. As this reduces the number of participants for the trials, the
participants were split into 4 groups for the leave-some-out assessment. The groups were
randomly assigned using the same method as done in section 4.2.13. There were twelve
TT participants, three in each group, and nine TF participants, i.e. three groups of two
and one group of three. The participants groups are displayed in Table 4.24.

Table 4.24 Participant groups for type of prosthesis trials

Group 1 Group 2 Group 3 Group 4

TT P1, P15, P18 P11, P13,
P20

P6, P8, P17 P2, P7, P5

TF P3, P16 P4, P12, P21 P10, P19 P9, P14

Table 4.25 and 4.26 display the mean accuracies and Figures 4.19 and 4.20 visualise the
results for leave-some-out and cross-validation trials. There is no significant difference
between the accuracies for leave-some-out trials from ANOVA tests (KNN F (1, 2)=2.03
p=0.18, RF F (1, 2)=0.22 p=0.81, SVM F (1, 2)=0.36 p=0.71, LSTM F (1, 2)=1.46
p=0.28). For cross-validation trials only SVM model showed statistical significance
from Kruskal–Wallis tests (KNN X 2(2)=2.22 p=0.33, RF X 2(2)=3.86 p=0.15, SVM
X 2(2)=10.82 p=0.005, LSTM X 2(2)=3.12 p=0.21). Dunn’s post -hoc tests found
that just classifying the TF data is significantly better than classifying all the data
(TF M=77.76% SD= 1.71, All M=71.36% SD=1.42, difference=6.11% p=0.0034);
however, these are the lowest cross-validation accuracies, and the other models showed no
significant difference. Isolating TF does improve the mean accuracy for leave-some-out,
but the variation is higher than when all participants are combined. It can therefore be
said that separating data by prosthetic types does not improve the accuracies of the
terrain classification which proves the null hypothesis.

Table 4.25 Leave-some-out terrain classification percentage accuracies for different
prosthesis types. TT= Transtibial, TF = Transfemoral.

KNN RF SVM LSTM

TT 43.59 50.16 47.47 42.83

TF 50.46 53.29 52.49 44.68

Both 45.67% 53.81% 51.39% 48.77%
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Fig. 4.19 Leave-some-out accuracy results for terrain classification when splitting different
prosthetic types. The boxplot shows the classification accuracy for each prosthetic
type (Transtibial-TT, Transfemoral-TF, both combined) using four machine learning
algorithms: K-Nearest Neighbors (KNN), Long Short-Term Memory (LSTM), Random
Forest (RF), and Support Vector Machines (SVM). There was no significant difference
between models.

Table 4.26 Cross-validation terrain classification percentage accuracies for different
prosthesis types. TT= Transtibial, TF = Transfemoral.

KNN RF SVM LSTM

TT 85.01% 82.91% 75.48% 79.80%

TF 86.45% 84.31% 77.47% 79.12%

Both 85.71% 83.00% 71.36% 81.00%
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Fig. 4.20 Cross-validation accuracy results for terrain classification when splitting different
prosthetic types. The boxplot shows the classification accuracy for each prosthetic
type (Transtibial-TT, Transfemoral-TF, both combined) using four machine learning
algorithms: K-Nearest Neighbors (KNN), Long Short-Term Memory (LSTM), Random
Forest (RF), and Support Vector Machines (SVM). For SVM the combined produced
lower accuracies but there was no significant difference for the other models.

Effect of walking aide use on terrain classification accuracies.

One of the final comparisons aimed to explore whether the classifiers work better if they
know that a stride was taken with a walking aid or not. This was done by splitting the
data into strides with a walking aid and without. Tables 4.27 and 4.28 display the mean
accuracies and Figures 4.21 and 4.22 visualise the results. For leave-some-out, there
was no significance between the results from Kruskal–Wallis tests (KNN X 2(2)=5.82
p=0.054, RF X 2(2)=2.06 p=0.36, SVM X 2(2)=1.46 p=0.48, LSTM X 2(2)=1.04
p=0.59). Isolating walking aid use did improve the mean accuracy but isolating strides
without a walking aid decreased the accuracies. For cross-validation there was significance
found in all models except RF from Kruskal–Wallis tests (KNN X 2(2)=6.86 p=0.032,
RF X 2(2)=5.66 p=0.059, SVM X 2(2)=8.18 p=0.017, LSTM X 2(2)=12.02 p=0.003).
Dunn’s post-hoc tests found having the data combined produced better accuracies for all
but SVM, with a significant improvement over classifying just the data with a walking aid
for KNN (With M=83.24% SD=1.38, combined M=85.71% SD=1.31, difference=2.46%
p=0.039) and LSTM (With M=73.19% SD=2.14, combined M=81.00% SD=0.90,
difference=7.81% p=0.016), but isolating strides with a walking aid had significantly
higher accuracies for SVM (With M=74.93% SD=1.53, combined M=71.36% SD=0.14,
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difference=3.57% p=0.022). Separating the data by walking aid use does not improve
the accuracies of the classification models which proves the null hypothesis.

Table 4.27 Leave-one-out terrain classification percentage accuracies for trials with and
without a walking aid

KNN RF SVM LSTM

With 49.18% 57.88% 53.98% 45.21%

Without 41.59% 51.01% 49.35% 42.68%

Both 45.67% 53.81% 51.39% 48.77%

Fig. 4.21 Leave-some-out accuracy results for terrain classification across trials with and
without a walking aid. The boxplot shows the classification accuracy for each variable
(with, without and both together) using four machine learning algorithms: K-Nearest
Neighbors (KNN), Long Short-Term Memory (LSTM), Random Forest (RF), and Support
Vector Machines (SVM). There was no significant difference between the trials.
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Table 4.28 Cross-validation terrain classification percentage accuracies for trials with and
without a walking aid

KNN RF SVM LSTM

With 83.25% 81.16% 74.93% 73.19%

Without 83.38% 81.76% 71.54% 77.56%

Both 85.71% 83.00% 71.36% 81.00%

Fig. 4.22 Cross-validation accuracy results for terrain classification across trials with and
without a walking aid. The boxplot shows the classification accuracy for each variable
(with, without and both together) using four machine learning algorithms: K-Nearest
Neighbors (KNN), Long Short-Term Memory (LSTM), Random Forest (RF), and Support
Vector Machines (SVM). Data not separated produced higher accuracies for KNN, LSTM
and RF but lower for SVM.

Effects of number of participants on terrain classification.

One of the limitations for this study is the limited number of participants (n=21) that were
tested. Although it was higher than similar studies concerned with lower limb prosthetics
[121][40][122], twenty-one participants may not have fully captured the variability in
gait in the lower limb prosthetic user population. To investigate how the number of
participants that are used to train the classifier affects the accuracy of the classifier at
classifying data from unseen participants, a trial was run where the number of participants
used to train the algorithms was changed from 1 to 20. The participants were randomly
assigned to groups, and twenty-one groups were created for each trial. The mean
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accuracies for the trials are displayed in Table 4.29. The results are visualised in Figure
4.23. As hypothesised, increasing the number of participants increases the accuracies
produced by the classifier. With the trial where twenty participants and one participant
were used to train the algorithm, there was a larger variation in results compared to the
other trials, as shown in Table 4.30, which demonstrates the variation in gait measures
between participants. This larger variation in the trial where each participant was tested
individually reduced the average accuracies, as seen as a slight plateau in the RF and
LSTM plots in Figure 4.23. This indicated that with a larger participant pool higher
accuracies could be achieved. The cross-validation results demonstrate the accuracies
that could potentially be achieved by the terrain classifier if all the variations in gait
could be captured in the training dataset.

Table 4.29 Terrain classification percentage accuracies for different number of participants
used to train the classification models.

Participants used to train KNN RF SVM LSTM

20 42.90% 51.17% 50.73% 49.85%

18 40.51% 50.63% 48.69% 49.63%

14 37.66% 48.33% 46.85% 43.77%

11 36.83% 47.11% 45.81% 41.43%

7 34.69% 43.61% 43.25% 38.44%

3 31.42% 36.93% 36.25% 30.89%

1 26.19% 28.33% 28.05% 23.36%
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Fig. 4.23 Average percentage accuracy against the number of participants used to train the
classification models. One to twenty participants were used to train four machine learning
models: K-Nearest Neighbors (KNN), Long Short-Term Memory (LSTM), Random Forest
(RF), and Support Vector Machines (SVM). Using more participants to train the models
produced higher average percentage accuracies for all models.

Table 4.30 Variance of terrain classification percentage accuracies for different number of
participants used to train the classification models.

Participants used to train KNN RF SVM LSTM

20 165.83 190.66 124.99 149.14

18 10.06 23.38 12.11 28.98

14 35.24 16.67 11.58 18.62

11 8.87 8.87 17.73 0.47

7 19.91 24.91 8.04 1.27

3 14.59 9.87 8.64 8.48

1 48.34 72.02 61.67 77.09

Final system informed by previous findings for terrain classification.

The following summarises the findings of the terrain classification trials:
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• Using only a prosthetic shank-mounted IMU maintained high classification accuracy,
demonstrating the system’s efficiency without the need for additional sensors on
the body.

• Splitting data into windows that cover an entire stride consistently provided the
best classification performance, enhancing the system’s robustness.

• Using 10 datapoints per window would reduce computational resource and data
storage needs without affecting the classification accuracies.

• Velocity is a feature that can be removed to reduce the computational need
whereas accelerations, gyroscope, magnetometer, and free accelerations produce
high classification accuracies.

• Normalising per person, and combining this with the raw data, produces the best
accuracies, whereas normalising by stride was shown to not improve classification
accuracies, which, if eliminated, will reduce data processing.

• It was shown that splitting the data by prosthetic type or walking aid use does not
improve classification accuracies, which reduces data processing.

• Using more participants to train the classifiers will improve the accuracies produced
by the classifier.

• SVM and RF performed better with leave-some-out tests, whereas RF and KNN
performed the best for cross-validation tests.

The chosen classifiers were run using 100 datapoints per stride to compare to the 10
datapoints per stride used for most of the analysis. Tables 4.31 and 4.32 display the
100 data point trials and 10 data point trials for leave-one-out and cross-validation and
Figures 4.24 and 4.26 visualise the results. The 10 datapoint trials were statistically
similar for all leave-one-out trials, but for cross-validation the 100 data point trial was
significantly better for SVM and RF whilst significantly worse for KNN. The difference
between the cross-validation RF is statistically significant but is only a 1.58% increase in
mean accuracy. Using 10 datapoints would allow for collecting data at a lower sampling
rate.

The 10 datapoint data were re-optimised, using the same methods as described in
section 4.2.14, to see if this would improve the classification accuracies. For RF the hyper-
parameters that the optimisers output were: number of trees – 300, number of predictors
– 70, minimum leaf size - 1. For KNN, the hyperparameters that the optimisers output
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were: number of neighbours – 1, how distance is calculated - Standardized Euclidean.
For SVM, the hyperparameters that the optimisers output were: box constraint – 26.998,
kernel size – 4.823, coding method – one vs all. The results for the optimised trials
are shown in Tables 4.31 and 4.32 for the leave-some-out and cross-validation analysis,
and comparison between the new optimised outcomes and the previous 10 datapoint
results are visualised in Figures 4.25 and 4.27. The optimised trials were better for
all cross-validation tests, but not significantly. For leave-some-out, the optimised trial
was significantly worse for SVM running Dunn’s test (Optimised M=30.20% SD=3.93,
current M=51.39% SD=7.56, difference=21.19% p=0.0012). The optimiser works by
looking at all the data whereas the leave-some-out trials exclude some participants from
the training dataset to use as the test dataset. The reduced box constraint and kernel
scale could increase the likelihood of overfitting which would affect the accuracies. The
optimised RF leave-some-out trials produced the highest leave-some-out mean accuracy
of all trials in this analysis. Due to this and the high cross-validation accuracy, the
optimised RF classifier was used to classify the terrain in Chapter 6.

Table 4.31 Leave-some-out terrain classification percentage accuracies for trial with 100
and 10 datapoints and 10 datapoints with the models optimised.

KNN RF SVM

100 datapoints 45.41% 54.62% 50.46%

10 datapoints 45.67% 53.81% 51.39%

10 datapoints opti-
mised

46.61% 56.89% 30.20%
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Fig. 4.24 Leave-some-out accuracy results for terrain classification across trials 10 and
100 datapoints. The boxplot shows the classification accuracy for 10 and 100 datapoints
using the three best performing machine learning algorithms from the previous analysis:
K-Nearest Neighbors (KNN), Random Forest (RF), and Support Vector Machines (SVM).
Using 10 datapoints was not significantly different to 100 datapoints.
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Fig. 4.25 Leave-some-out accuracy results for terrain classification across trials with 10
datapoints using models with the hyperparameters that have been used for all of the
analysis and models that have had their hyperparameters optimised. The boxplot shows
the classification accuracy for the two types of models (10 -using hyperparameters used in
previous analysis, 10 optimised – using optimised hyperparameters) using the three best
performing machine learning algorithms from the previous analysis: K-Nearest Neighbors
(KNN), Random Forest (RF), and Support Vector Machines (SVM). The optimised trials
produced a significantly lower accuracy for SVM, but this was the model that produced
lower accuracies.
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Table 4.32 Cross-validation terrain classification percentage accuracies for trial with 100
and 10 datapoints and 10 datapoints with the models optimised.

KNN RF SVM

100 datapoints 82.20% 84.58% 84.97%

10 datapoints 85.71% 83.00% 71.36%

10 datapoints opti-
mised

85.65% 83.64% 73.00%

Fig. 4.26 Cross-validation accuracy results for terrain classification across trials 10 and
100 datapoints. The boxplot shows the classification accuracy for 10 and 100 datapoints
using the three best performing machine learning algorithms from the previous analysis:
K-Nearest Neighbors (KNN), Random Forest (RF), and Support Vector Machines (SVM).
Using 10 datapoints only produced significantly lower accuracies with the SVM model.
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Fig. 4.27 Cross-validation accuracy results for terrain classification across trials with 10
datapoints using models with the hyperparameters that have been used for all of the
analysis and models that have had their hyperparameters optimised. The boxplot shows
the classification accuracy for the two types of models (10 -using hyperparameters used in
previous analysis, 10 optimised – using optimised hyperparameters) using the three best
performing machine learning algorithms from the previous analysis: K-Nearest Neighbors
(KNN), Random Forest (RF), and Support Vector Machines (SVM). The optimised trials
produced higher mean accuracies but not to a significant level.

Following this detailed investigation of the effects on terrain classification accuracies in
relation to use of sensors, windows, data points per window, variables, normalization,
prosthesis type and terrain/walking aid use, effects of the same on classification of walking
aid use will be discussed in the subsequent sections.

4.3.3 Effects on ‘walking aid use’ classification accuracies.

This section investigates walking aid recognition from the IMU data using machine
learning algorithms. The same style of analysis was run on the walking aid use recognition
models as for the terrain classification. The only difference was that LR models were
also assessed because LR models look at binary results such as walking aid use/non-use
and give a baseline accuracy that other models can be compared against.
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Effects of sensor location and combination on walking aid use recognition
accuracies.

As before, to investigate how IMUs in the different locations can recognise walking aid
use, trials were run for each IMU with 100Hz data split into strides of 100 datapoints.
The mean leave-some-out and cross-validation accuracies are displayed in Tables 4.33
and 4.34, and the results visualised in Figures 4.28 and 4.29. Trunk and the combined
trials produced the higher accuracies for KNN, RF and SVM for both leave-some-out
and cross-validation, but for LR and LSTM produced lower accuracies. There were
no significant differences between the leave-some-out trials from Kruskal–Wallis tests
(KNN X 2(4)=5.29 p=0.26, RF X 2(4)=0.28 p=0.99, SVM X 2(4)=1.41 p=0.84, LR
X 2(4)=4.86 p=0.30, LSTM X 2(4)=3.27 p=0.51). There were significant differences,
however, for all the cross-validation trials from Kruskal–Wallis tests (KNN X 2(4)=18.35
p=0.0011, RF X 2(4)=12.87 p=0.012, SVM X 2(4)=20.53 p<0.0001, LR X 2(4)=15.49
p=0.0038, LSTM X 2(4)=19.14 p<0.0001). Results for Dunn’s post hoc significance
testing are displayed in Table 4.35 The prosthetic shank IMU was significantly worse
than the trunk and the combined IMUs for KNN. For RF, the other shank IMU was
significantly worse than the combined IMUs. For SVM, the other shank and trunk IMUs
were significantly better than combined, and the prosthetic shank IMU was significantly
worse than the trunk IMU. For the LR trials, the combined IMUs performed significantly
worse than the prosthetic shank, other shank and thigh IMUs. The combined IMUs also
performed significantly worse for the LSTM trials to the other shank and thigh IMUs.
These results disprove the null hypothesis that IMU location does not have an effect
on walking aid recognition accuracies. As the ideal system would be solely prosthetic
mounted, there is no significant difference using the prosthetic shank IMU to any other
IMU location when looking at leave-some-out data, and although the prosthetic shank
IMU performs statistically significantly worse for KNN and SVM trials, the actual mean
accuracies are only slightly smaller (KNN 2.5±1%, SVM 1.9±0.6%), hence only the
prosthetic shank IMU will be used for the rest of the analysis.
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Table 4.33 Leave-some-out walking aid recognition percentage accuracies for different
IMU positions. PS = Prosthetic shank, OS = Other shank, TR = Trunk, TH = Thigh.

KNN RF SVM LR LSTM

PS 55.08% 61.45% 64.39% 53.70% 54.59%

OS 52.44% 61.43% 62.58% 55.35% 56.55%

TR 54.83% 65.5% 67.95% 55.65% 59.84%

TH 53.48% 60.68% 60.61% 48.43% 56.49%

All 51.40% 66.50% 67.45 48.99% 64.45%

Fig. 4.28 Leave-some-out accuracy results for walking aid recognition for different IMU
positions. The boxplot shows the classification accuracy for each IMU position (PS =
Prosthetic shank, OS = Other shank, TR = Trunk, TH = Thigh, all combined) using four
machine learning algorithms: K-Nearest Neighbors (KNN), Long Short-Term Memory
(LSTM), Random Forest (RF), and Support Vector Machines (SVM). There was no
significant difference for all models.
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Table 4.34 Cross-validation walking aid recognition percentage accuracies for different
IMU positions. PS = Prosthetic shank, OS = Other shank, TR = Trunk, TH = Thigh.

KNN RF SVM LR LSTM

PS 74.31% 79.39% 82.21% 65.15% 69.29%

OS 75.22% 79.11% 83.97% 65.76% 70.79%

TR 77.24% 80.29% 84.84% 58.01% 68.91%

TH 76.63% 79.41% 83.45% 65.24% 71.43%

all 78.21% 81.71% 75.04% 53.19% 65.61%

Fig. 4.29 Cross-validation accuracy results for walking aid recognition for different IMU
positions. The boxplot shows the classification accuracy for each IMU position (PS =
Prosthetic shank, OS = Other shank, TR = Trunk, TH = Thigh, all combined) using four
machine learning algorithms: K-Nearest Neighbors (KNN), Long Short-Term Memory
(LSTM), Random Forest (RF), and Support Vector Machines (SVM). PS produces lower
accuracies to the TR and combined IMUs for KNN, and Trunk for SVM. OS produced
lower accuracies than the combined IMUs for RF. The combined IMUs produced lower
accuracies than PS, OS and TH IMUs for LR, OT and TR for SVM, and OS and TH for
LSTM.
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Table 4.35 Significant differences in mean accuracies for walking aid recognition cross-
validation test between IMU locations

Model Mean (%) ± SD Mean (%) ± SD Difference (%) p-value

KNN

PS 74.31 ± 0.80 Trunk 77.24 ± 0.83 2.93 0.026

PS 74.31 ± 0.80 All 78.21 ± 1.23 3.90 0.0026

RF OS 79.11 ± 0.45 All 81.71 ± 0.90 2.60 0.017

SVM

All 75.04 ± 0.34 OS 83.97 ± 0.69 8.93 0.02

All 75.04 ± 0.34 Trunk 84.84 ± 0.68 9.80 <0.001

PS 82.21 ± 0.49 Trunk 84.84 ± 0.68 2.63 0.034

LR

All 53.19 ± 1.60 PS 65.15 ± 0.43 11.96 0.026

All 53.19 ± 1.60 OS 65.76 ± 0.96 12.57 0.002

All 53.19 ± 1.60 Thigh 65.24 ± 0.46 12.05 0.03

LSTM

All 65.61 ± 2.48 OS 70.79 ± 0.92 5.18 0.026

All 65.61 ± 2.48 Thigh 71.43 ± 1.29 5.82 0.007

Effect of window type on walking aid use recognition accuracies.

Trials were run to see how different window types affect walking aid recognition accuracies.
Tables 4.36 and 4.37 display the mean accuracies for each window type using each
classifier, and Figures 4.30 and 4.31 visualise the results. The leave-some-out trials
produced statistically similar accuracies for all the window types for each classifier
from Kruskal–Wallis tests (KNN X 2(7)=7.02 p=0.43, RF X 2(7)=1.24 p=0.99, SVM
X 2(7)=5.12 p=0.64, LR X 2(7)=5.69 p=0.58, LSTM X 2(7)=3.22 p=0.86). For the cross-
validation tests all models produced statistically significant results from Kruskal–Wallis
tests (KNN X 2(6)=32.01 p<0.001, RF X 2(6)=33.16 p<0.001, SVM X 2(6)=32.98
p<0.001, LR X 2(6)=31.82 p<0.001, LSTM X 2(7)=25.13 p<0.001). From Dunn’s
post-hoc tests, the stride-window produced significantly higher accuracies than the 2s,
and 1.5s time-windows for RF, 2s, 1.5s and 0.5s time-windows for SVM and the 2s, 1.5s
and 0.2s time-windows for LSTM. For RF, the 0.1s time-window produced significantly
higher accuracies then the 2s, 1.5s and 0.5s time-windows. The 0.1s time-window also
produced significantly higher accuracies then the 2s and 0.5s time windows for KNN,
and the 2s time window for SVM and LR. The 1s time window produced significantly
higher accuracies than the 2s and 0.5s for KNN, the 2s and 1.5s for LR, and 2s for SVM.
Results for significance testing are displayed in Table 4.38. These results disprove the null
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hypothesis that windowing method does not have an effect on walking aid recognition
accuracies. The highest accuracies for both the leave-some-out and cross-validation being
produced by splitting the data into strides in the SVM test, this was the method used for
the rest of the analysis.

Table 4.36 Leave-some-out walking aid recognition percentage accuracies for different
window types.

KNN RF SVM LR LSTM

0.1s 58.12% 61.64% 58.64% 63.46% 61.55%

0.2s 57.88% 61.81% 59.01% 54.85% 61.68%

0.5s 56.08% 62.19% 60.63% 48.13% 59.14%

1s 53.89% 61.55% 62.68% 50.91% 60.79%

1.5s 52.77% 61.15% 61.96% 49.93% 59.52%

2s 51.99% 61.42% 61.46% 50.73% 57.48%

Step 55.08% 61.45% 64.39% 53.70% 54.59%

Individual 59.52% 59.24% 62.65% 54.39% 60.43%

Table 4.37 Cross-validation walking aid recognition percentage accuracies for different
window types.

KNN RF SVM LR LSTM

0.1s 77.96% 81.88% 79.53% 65.64% 62.18%

0.2s 73.55% 76.96% 77.19% 55.69% 61.05%

0.5s 69.20% 72.90% 72.01% 56.23% 62.74%

1s 77.78% 74.96% 78.61% 72.35% 66.24%

1.5s 70.56% 66.06% 68.97% 50.65% 60.20%

2s 64.40% 68.81% 65.87% 51.22% 59.12%

Step 74.31% 79.39% 82.22% 65.15% 69.29%
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Fig. 4.30 Leave-some-out accuracy results for walking aid recognition across different windowing methods. The boxplot shows the classification accuracy for windowing
method (time-based windows 0.1s, 0.2s, 0.5s, 1s, 1.5s and 2s, stride-based window and individual datapoints) using four machine learning algorithms: K-Nearest Neighbors
(KNN), Long Short-Term Memory (LSTM), Random Forest (RF), and Support Vector Machines (SVM). There was no significant different between methods.
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Fig. 4.31 Cross-validation accuracy results for walking aid recognition across different windowing methods. The boxplot shows the classification accuracy for windowing
method (time-based windows 0.1s, 0.2s, 0.5s, 1s, 1.5s and 2s, stride-based window and individual datapoints) using four machine learning algorithms: K-Nearest Neighbors
(KNN), Long Short-Term Memory (LSTM), Random Forest (RF), and Support Vector Machines (SVM). The stride-based window produced the highest accuracy in the
SVM test.
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Table 4.38 Significant differences in mean accuracies for walking aid recognition cross-
validation test between windowing methods

Model Mean (%) ± SD Mean (%) ± SD Difference (%) p-value

KNN

0.1s 77.96 ± 0.26 2s 64.40 ± 1.01 13.56 <0.001

0.1s 77.96 ± 0.26 0.5s 69.20 ± 0.59 8.76 0.013

1s 77.78 ± 0.66 2s 64.40 ± 1.01 13.38 <0.001

1s 77.78 ± 0.66 0.5s 69.20 ± 0.59 8.58 0.022

RF

Stride 79.39 ± 0.82 2s 68.81 ± 1.01 10.58 0.034

Stride 79.39 ± 0.82 1.5s 66.06 ± 1.22 13.33 0.003

0.1s 81.88 ± 0.31 2s 68.81 ± 1.01 13.07 0.002

0.1s 81.88 ± 0.31 1.5s 66.06 ± 1.22 11.32 <0.001

0.1s 81.88 ± 0.31 0.5s 72.90 ± 0.54 8.98 0.042

SVM

Stride 82.21 ± 0.49 2s 65.87 ± 1.15 16.34 <0.001

Stride 82.21 ± 0.49 1.5s 68.97 ± 0.72 13.25 0.002

Stride 82.21 ± 0.49 0.5s 72.01 ± 0.78 10.21 0.042

0.1s 79.53 ± 0.16 2s 65.87 ± 1.15 13.66 0.003

1s 78.61 ± 0.70 2s 65.87 ± 1.15 12.74 <0.001

LSTM

Stride 69.29 ± 1.26 2s 61.09 ± 1.73 10.17 0.013

Stride 69.29 ± 1.26 1.5 60.20 ± 2.75 9.09 0.007

Stride 69.29 ± 1.26 0.2s 61.05 ± 0.07 8.24 0.004

LR

0.1s 65.64 ± 0.09 2s 50.32 ± 0.82 14.42 0.016

1s 72.35 ± 0.81 2s 50.32 ± 0.82 21.13 <0.001

1s 72.35 ± 0.81 1.5s 50.65 ± 1.18 21.70 <0.001

Effects of number of datapoints per window on walking aid use recognition
accuracies.

As splitting the data into windows that contain a whole stride performed better than the
other window types, this is the window type that will be used for the rest of the analysis.
As with the terrain classification, to understand if the number of datapoints affects the
accuracies of the classifiers, trials were run with windows of 10, 20, 50 and 100 datapoints.
Table 4.39 and 4.40 display the mean accuracies and Figures 4.32 and 4.33 visualise the

136



4.3 Results

results. For leave-some-out trials none of the models produced a statistically significant
result from Kruskal–Wallis tests (KNN X 2(3)=0.55 p=0.91, RF X 2(3)=0.55 p=0.91,
SVM X 2(3)=1.86 p=0.60, LR X 2(3)=0.19 p=0.98, LSTM X 2(3)=0.70 p=0.87). For
cross-validation trials only LR produced a statistically significant result from Kruskal–Wallis
tests (KNN X 2(3)=1.84 p=0.61, RF X 2(3)=2.29 p=0.51, SVM X 2(3)=6.19 p=0.10,
LR X 2(3)=15.48 p=0.001, LSTM X 2(3)=3.62 p=0.31). Dunn’s post-hoc tests showed
the only significant difference for the cross-validation LR accuracy when splitting the data
into 100 datapoints which performed significantly worse than 20 datapoint splits (100
datapoint M=65.15% SD=0.43, 20 datapoints M=73.25% SD=0.55, difference=8.10%
p<0.001). These results prove the null hypothesis that the number of datapoints in a
window does not effect walking aid recognition accuracies. As there is no significant
reduction in accuracy using 10 datapoints in any of the trials, this will reduce the
computational need to run the analysis, and hence strides split into 10 datapoints will be
used for the remaining analysis.

Table 4.39 Leave-some-out walking aid recognition percentage accuracies for different
numbers of datapoints per window.

KNN RF SVM LR LSTM

10 55.97% 60.07% 59.61% 53.61% 57.02%

20 55.17% 62.07% 60.22% 54.64% 55.96%

50 54.69% 61.99% 62.74% 50.90% 55.57%

100 55.08% 61.45% 64.39% 53.7% 54.59%
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Fig. 4.32 Leave-some-out accuracy results for walking aid recognition for number of
datapoints in a window. The boxplot shows the classification accuracy for each number of
datapoints (10, 20, 50, 100) using four machine learning algorithms: K-Nearest Neighbors
(KNN), Long Short-Term Memory (LSTM), Random Forest (RF), and Support Vector
Machines (SVM). There was no significant difference for all models.

Table 4.40 Cross-validation walking aid recognition percentage accuracies for different
numbers of datapoints per window.

KNN RF SVM LR LSTM

10 74.85% 78.71% 83.10% 70.86% 66.66%

20 74.79% 79.60% 83.32% 73.25% 67.75%

50 74.60% 79.25% 83.28% 71.78% 67.39%

100 74.31% 79.39% 82.22% 65.15% 69.29%
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Fig. 4.33 Cross-validation accuracy results for walking aid recognition for number of
datapoints in a window. The boxplot shows the classification accuracy for each number of
datapoints (10, 20, 50, 100) using four machine learning algorithms: K-Nearest Neighbors
(KNN), Long Short-Term Memory (LSTM), Random Forest (RF), and Support Vector
Machines (SVM). The 100 datapoint window trial using LR produced lower accuracies
than the 20 datapoint window. There was no significant difference between the other
trials.

Effects of variables used on walking aid use recognition accuracies.

Another way to reduce the computational need to recognise walking aid use is to reduce the
features (i.e. variables) that are used by the different models. Identifying irrelevant features
could also simplify the sensor system by eliminating the need for certain measures to be
recorded. As with the terrain classification, section 4.3.2, each feature was run separately
to see how the accuracies were affected. The features that produced the highest mean
accuracies were then combined and run in separate trials to see how combining certain
variables affects the accuracies. There was no significant difference between the leave-
some-out trials from Kruskal–Wallis tests (KNN X 2(8)=2.59 p=0.96, RF X 2(8)=3.75
p=0.88, SVM X 2(8)=4.52 p=0.81, LR X 2(8)=4.26 p=0.83, LSTM X 2(8)=2.94 p=0.94).
For the cross-validation, tests showed significance for all the classifiers from Kruskal–Wallis
tests (KNN X 2(8)=35.51 p<0.001, RF X 2(8)=38.09 p<0.001, SVM X 2(8)=42.18
p<0.001, LR X 2(8)=18.50 p=0.018, LSTM X 2(8)=32.48 p<0.001). Dunn’s post-hoc
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tests showed KNN magnetometer and cadence were significantly worse than AGV and
AGVC. For RF, magnetometer and cadence produced significantly lower accuracies to
AGV and AGVC, cadence was also significantly lower than all the variable combined.
For SVM, magnetometer and cadence produce significantly lower accuracies than AGV,
AGVC and all the variables combined. Free accelerations also produced lower accuracies
than AVGC. Cadence produced significantly lower accuracies than accelerations, AVG,
AVGC and all the variables combined for LR. Results for significance testing are displayed
in Table 4.43.. All the combined measures were statistically similar for all models. The
combination of accelerations, gyroscope, velocities and cadence produced the highest
mean accuracies for seven out of the ten algorithms, and this included SVM which had
the highest mean accuracies for both verification techniques. AVGC was therefore used
for the subsequent analysis. These results disprove the null hypothesis that the variables
used to classify walking aid use have no effect on the walking aid recognition accuracies.

Table 4.41 Leave-some-out walking aid recognition percentage accuracies for different
variables. AGV = accelerations, gyroscope and velocity, AGVC = accelerations, gyroscope,
velocity and cadence.

KNN RF SVM LR LSTM

Accelerations 54.81% 65.04% 59.76% 59.58% 59.56%

Gyroscope 57.40% 55.68% 58.39% 56.98% 55.47%

Magnetometer 54.65% 60.66% 55.32% 57.63% 55.03%

Free Accelerations 55.25% 61.33% 59.24% 56.47% 57.02%

Cadence 55.83% 59.59% 61.53% 62.84% 61.82%

Velocity 54.94% 61.04% 59.43% 54.88% 53.75%

AGV 57.42% 61.75% 62.67% 56.12% 55.13%

AGVC 57.93% 61.36% 63.83% 57.80% 61.55%

All 55.97% 60.07% 59.61% 53.61% 57.02%
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Table 4.42 Cross-validation walking aid recognition percentage accuracies for different
variables. AGV = accelerations, gyroscope and velocity, AGVC = accelerations, gyroscope,
velocity and cadence.

KNN RF SVM LR LSTM

Accelerations 74.96% 77.84% 78.94% 72.36% 66.94%

Gyroscope 75.48% 76.80% 76.54% 68.23% 63.34%

Magnetometer 70.00% 72.90% 68.59% 67.02% 62.32%

Free Accelerations 73.56% 73.92% 73.87% 66.99% 64.27%

Cadence 65.66% 66.39% 63.08% 63.05% 62.94%

Velocity 75.51% 77.88% 76.79% 69.06% 65.73%

AGV 76.35% 79.06% 83.51% 73.23% 63.78%

AGVC 76.67% 79.21% 84.16% 71.72% 65.65%

All 74.85% 78.71% 83.10% 70.86% 66.66%
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Fig. 4.34 Leave-some-out accuracy results for walking aid recognition across different variables and variable groups. The boxplot shows the classification accuracy for each
variable (acceleration, gyroscope, magnetometer, free accelerations, cadence, velocity, AGV = accelerations, gyroscope and velocity, AGVC = accelerations, gyroscope,
velocity and cadence, and all variables combined) using four machine learning algorithms: K-Nearest Neighbors (KNN), Long Short-Term Memory (LSTM), Random
Forest (RF), and Support Vector Machines (SVM). There was no significant difference between the results.
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Fig. 4.35 Cross-validation accuracy results for walking aid recognition across different variables and variable groups. The boxplot shows the classification accuracy for each
variable (acceleration, gyroscope, magnetometer, free accelerations, cadence, velocity, AGV = accelerations, gyroscope and velocity, AGVC = accelerations, gyroscope,
velocity and cadence) using four machine learning algorithms: K-Nearest Neighbors (KNN), Long Short-Term Memory (LSTM), Random Forest (RF), and Support
Vector Machines (SVM). Magnetometer and cadence produced lower accuracies than combined variable trials for KNN, RF and SVM. There was no significant difference
between the different variable combinations.
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Table 4.43 Significant differences in mean accuracies for walking aid recognition cross-
validation test between variables. Cad = Cadence, Mag = Magnetometer, Acc =
Acceleration, FA = Free Acceleration

Model Mean (%) ± SD Mean (%) ± SD Difference (%) p-value

KNN

Mag 70.00 ± 1.27 AGV 76.35 ± 0.54 6.35 0.021

Mag 70.00 ± 1.27 AGVC 76.67 ± 0.47 6.67 0.004

Cad 65.66 ± 0.49 AGV 76.35 ± 0.54 10.69 0.002

Cad 65.66 ± 0.49 AGVC 76.67 ± 0.47 11.01 <0.001

RF

Mag 72.90 ± 0.42 AGV 79.06 ± 0.47 6.16 0.021

Mag 72.90 ± 0.42 AGVC 79.21 ± 0.83 6.31 0.001

Cad 66.39 ± 0.76 AGV 79.06 ± 0.47 12.67 0.02

Cad 66.39 ± 0.76 AGVC 79.21 ± 0.83 12.82 <0.001

Cad 66.39 ± 0.76 All 78.71 ± 0.92 12.32 0.005

SVM

Mag 68.59 ± 0.99 AGV 83.51 ± 1.18 14.92 0.01

Mag 68.59 ± 0.99 AGVC 84.16 ± 0.13 15.57 0.003

Mag 68.59 ± 0.99 All 83.10 ± 0.42 14.51 0.04

Cad 63.08 ± 0.52 AGV 83.51 ± 1.18 20.43 <0.001

Cad 63.08 ± 0.52 AGVC 84.16 ± 0.13 21.08 <0.001

Cad 63.08 ± 0.52 All 83.10 ± 0.42 20.12 0.004

FA 73.87 ± 0.42 AGVC 84.16 ± 0.13 10.29 0.028

LR

Cad 63.05 ± 0.55 Acc 72.36 ± 0.99 9.31 0.004

Cad 63.05 ± 0.55 AGV 73.23 ± 2.29 10.18 0.001

Cad 63.05 ± 0.55 AGVC 71.72 ± 3.74 8.67 0.017

Cad 63.05 ± 0.55 All 70.86 ± 1.34 7.81 0.032

Effects of normalisation on walking aid use recognition accuracies.

The data were normalised per stride and per person. To see if this is necessary, trials
were run to see how the different normalisation methods and the not normalised raw
data affect the classification accuracies. Normalising per stride produced smaller mean
accuracies in eight out of the ten trials compared to raw and normalised per person
data, so as with the terrain classification, a combined measure was run which only
included raw and normalised per person data (RP). For leave-some-out trials there was no
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significant difference between the accuracies from Kruskal–Wallis tests (KNN X 2(4)=1.72
p=0.79, RF X 2(4)=0.86 p=0.93, SVM X 2(4)=1.75 p=0.78, LR X 2(4)=1.70 p=0.79,
LSTM X 2(4)=0.92 p=0.92). For the cross-validation trials all modes showed statistical
significance from Kruskal–Wallis tests (KNN X 2(4)=18.47 p<0.001, RF X 2(4)=14.22
p=0.007, SVM X 2(4)=21.2 p<0.001, LR X 2(4)=9.93 p=0.042, LSTM X 2(4)=12.39
p=0.015). Dunn’s post-hoc tests found RP and all the normalisation methods combined
produced similar accuracies for all models. For KNN, RF and SVM trials, RP and all
the methods combined produced significantly higher accuracies than normalising per
stride. RP was also significantly higher than raw data for KNN, and all combined had
higher accuracies than Raw for SVM. Normalised per stride was significantly worse than
normalising per person for LSTM. Results for significance testing are displayed in Table
4.46. These results disprove the null hypothesis that normalisation technique has no
effect on walking aid recognition accuracies. As RP and all combined normalisation
methods were statistically similar, RP will be used for the rest of this analysis.

Table 4.44 Leave-some-out walking aid recognition percentage accuracies for different
normalisation techniques. RP = raw and person combined.

KNN RF SVM LR LSTM

Raw 55.53% 60.46% 61.91% 57.58% 54.56%

Stride 56.41% 59.04% 58.28% 62.06% 55.11%

Person 54.93% 61.76% 62.54% 61.05% 57.37%

RP 57.47% 61.83% 63.18% 55.41% 60.11%

All 57.93% 61.36% 63.83% 57.80% 61.55%
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Fig. 4.36 Leave-some-out accuracy results for walking aid recognition across different
normalisation methods. The boxplot shows the classification accuracy for each variable
(raw data, normalised per stride, normalised per person, RP = raw and person combined
and all data) using four machine learning algorithms: K-Nearest Neighbors (KNN), Long
Short-Term Memory (LSTM), Random Forest (RF), and Support Vector Machines (SVM).
There was no significant difference between the normalisation techniques.

Table 4.45 Cross-validation walking aid recognition percentage accuracies for different
normalisation techniques. RP = raw and person combined.

KNN RF SVM LR LSTM

Raw 74.30% 78.07% 78.92% 69.63% 65.87%

Stride 74.04% 76.31% 77.34% 68.97% 63.40%

Person 75.03% 78.29% 80.69% 70.75% 67.29%

RP 77.11% 79.63% 83.45% 72.70% 66.02%

All 76.67% 79.21% 84.16% 71.72% 65.65%
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Fig. 4.37 Cross-validation accuracy results for walking aid recognition across different
normalisation methods. The boxplot shows the classification accuracy for each variable
(raw data, normalised per stride, normalised per person, RP = raw and person combined
and all data) using four machine learning algorithms: K-Nearest Neighbors (KNN), Long
Short-Term Memory (LSTM), Random Forest (RF), and Support Vector Machines (SVM).
There was no significant difference between the normalisation techniques. RP and all
the data combined produced higher accuracies than normalising per stride for KNN, RF
and SVM. Normalizing per person had higher accuracies than normalising per stride for
LSTM.

Table 4.46 Significant differences in mean accuracies for walking aid recognition cross-
validation test between normalisation method. Per= normalised per person

Model Mean (%) ± SD Mean (%) ± SD Difference (%) p-value

KNN

Stride 74.01 ± 0.72 RP 77.11 ± 0.68 3.07 0.010

Stride 74.01 ± 0.72 All 76.67 ± 0.47 2.63 0.024

Raw 74.30 ± 1.13 RP 77.11 ± 0.68 2.81 0.037

RF
Stride 76.31 ± 1.33 RP 79.63 ± 0.94 3.32 0.010

Stride 76.31 ± 1.33 All 79.21 ± 0.83 2.90 0.037

SVM

Stride 77.34 ± 0.41 RP 83.45 ± 0.80 6.11 0.008

Stride 77.34 ± 0.41 All 84.16 ± 0.13 6.82 <0.001

Raw 78.92 ± 1.09 All 84.16 ± 0.13 5.24 0.03

LSTM Stride 63.40 ± 1.66 Per 67.29 ± 0.40 3.89 0.005
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Effects of prosthetic type on walking aid use recognition accuracies.

As with the terrain classification, trials were run to see if splitting the data into prosthetic
types would affect the accuracies of walking aid recognition. For the leave-some-out
trials, the participants data were split into the same groups used in the previous analysis
for terrain classification, section 4.3.2. Table 4.24 displays the grouping used for the
trials. Mean accuracies for each of the leave-some-out and cross-validation trials are
shown in Tables 4.47 and 4.48 and visualised in Figures 4.38 and 4.38. There was
no significant improvement in the accuracies by splitting the data by prosthetic type
compared to leaving the data combined for leave-some-out trials from Kruskal–Wallis tests
(KNN X 2(2)=5.09 p=0.079, RF X 2(2)=4.38 p=0.11, SVM X 2(2)=3.38 p=0.18, LR
X 2(2)=0.90 p=0.64, LSTM X 2(2)=1.20 p=0.55). For the cross-validation verification
Kruskal–Wallis tests found significance for all models (KNN X 2(2)=11.2 p=0.004, RF
X 2(2)=11.52 p=0.003, SVM X 2(2)=10.82 p=0.005, LR X 2(2)=6.03 p=0.049, LSTM
X 2(2)=9.50 p=0.009). Dunn’s post-hoc tests found the TF trials were significantly worse
than the combined data for LSTM (TF M=57.64% SD=2.23, Combined M= 66.02%
SD=0.96, difference=8.38% p=0.039), but TF was significantly better for LR (TF
M=74.67% SD=2.93, Combined M=72.70% SD=1.32, difference=1.97% p=0.048).
There was no significant difference between TT and combining all the data for any model
this proves the null hypothesis that splitting the data by prosthetic type does not improve
walking aid recognition accuracies. Hence, for this research, both prosthetic types will be
combined.

Table 4.47 Leave-some-out walking aid recognition percentage accuracies for data split
into prosthetic type. TT = Transtibial, TF = Transfemoral

KNN RF SVM LR LSTM

TT 60.93% 70.47% 67.48% 48.54% 62.86%

TF 50.19% 52.11% 54.26% 51.32% 53.77%

Both 57.47% 61.83% 63.18% 55.41% 60.11%
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Fig. 4.38 Leave-some-out accuracy results for walking aid recognition when splitting
different prosthetic types. The boxplot shows the classification accuracy for each prosthetic
type (Transtibial-TT, Transfemoral-TF, both combined) using four machine learning
algorithms: K-Nearest Neighbors (KNN), Long Short-Term Memory (LSTM), Random
Forest (RF), and Support Vector Machines (SVM). There was no significant difference
between the trials.

Table 4.48 Cross-validation walking aid recognition percentage accuracies for data split
into prosthetic type. TT = Transtibial, TF = Transfemoral

KNN RF SVM LR LSTM

TT 81.67% 78.55% 85.56% 74.66% 71.36%

TF 72.34% 77.33% 81.84% 74.67% 57.64%

Both 77.11% 79.63% 83.45% 72.70% 66.02%
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Fig. 4.39 Cross-validation accuracy results for walking aid recognition when splitting
different prosthetic types. The boxplot shows the classification accuracy for each prosthetic
type (Transtibial-TT, Transfemoral-TF, both combined) using four machine learning
algorithms: K-Nearest Neighbors (KNN), Long Short-Term Memory (LSTM), Random
Forest (RF), and Support Vector Machines (SVM). TF produced accuracies lower than
the combined data for LSTM but higher for LR. There was no significant difference
between TT and the combined data for any model.

Effects of terrain on walking aid use recognition accuracies.

Trials were run to see if the walking aid classification produced better accuracies with
the data first split into the different terrains. As different participants walked a different
number of strides on each terrain, and some did not have data collected on some terrains,
only a cross-validation test was run for this part of the analysis. With cross-validation, all
the strides are grouped together and split into equal groups, whereas if leave-some-out was
to be used the number of strides in the test data could be close to the number used to train
the classifiers and this could affect the accuracies. Kruskal–Wallis tests found statistical
significance in all models (KNN X 2(8)=26.98 p<0.001, RF X 2(8)=25.55 p=0.001,
SVM X 2(8)=28.42 p<0.001, LR X 2(8)=34.51 p<0.001, LSTM X 2(8)=31.11 p<0.001).
Dunn’s post-hoc tests found no individual terrain produced accuracies significantly higher
than for the trials with all terrains combined. Due to this it would not be beneficial
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to split the data into terrains before classifying walking aid use which proves the null
hypothesis.

Table 4.49 Cross-validation walking aid recognition percentage accuracies for different
terrains.

KNN RF SVM LR LSTM

Flat 64.28% 70.08% 74.11% 65.64% 55.34%

Grass 77.94% 80.32% 84.77% 79.03% 65.97%

Up
Stairs

77.86% 79.00% 80.43% 69.43% 59.43%

Down
Stairs

81.41% 83.10% 80.70% 70.28% 62.39%

Up Slope 79.34% 81.15% 86.05% 78.27% 68.90%

Down
Slope

83.49% 83.69% 87.53% 78.85% 68.23%

Uneven 79.76% 81.73% 85.47% 80.67% 64.73%

Gravel 78.65% 80.02% 83.61% 74.52% 63.63%

All 77.11% 79.63% 83.45% 72.70% 66.02%
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Fig. 4.40 Cross-validation accuracy results for walking aid recognition across different terrain. The boxplot shows the classification accuracy for each variable (Flat ground,
Grass, Stair ascent, Stair descent, Ramp ascent, Ramp descent, Gravel, Uneven terrain and all combined) using four machine learning algorithms: K-Nearest Neighbors
(KNN), Long Short-Term Memory (LSTM), Random Forest (RF), and Support Vector Machines (SVM). No trial with a single terrain isolated produced accuracies
significantly higher than the trials with all the terrains combined.
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Final system informed by previous findings for walking aid use recognition.

The following summarizes the findings of the walking aid use classification :

• An IMU on the trunk is the best single IMU to identify walking aid use, and using
a combination of the four IMUs produced the best accuracies, but there was not a
large difference between this and a single IMU on the prosthetic shank.

• Splitting the data into windows that contain a whole stride produced the best
accuracies.

• Reducing the data to 10 datapoints did not reduce the accuracies of the classifiers.

• Acceleration, gyroscope, velocities and cadence combined produced the best accura-
cies, whereas magnetometer and free accelerations did not improve the accuracies.

• A combination of data normalised per person and raw data produce the best
accuracies.

• There could be benefits to analysing TT participants separately but not TF partici-
pants.

• There is no benefit in classifying data for separate terrains.

• RF and SVM produced better accuracies than LR, LSTM and KNN.

An optimiser was run on RF and SVM classifiers with just the accelerations, gyroscope,
velocity and cadence data, split into stride-based window of 10 datapoints, with raw data
and data normalised per person, to see if adjusting the hyperparameters would improve
the classification accuracies. The hyperparameters for the RF model were: number of
trees – 350, number of predictors – 78, minimum leaf size – 1. The hyperparameters
for the SVM model were: box constraint – 915.93, kernel score – 12.962, and using one
vs one coding. The optimised classifiers were then compared to the previous classifiers.
Table 4.50 and 4.51 display the mean accuracies and Figures 4.41 and 4.42 visualises
the results for leave-some-out and cross-validation. There was no significant difference
between the optimised classifiers and the previous ones for any of the classifiers and
verification tests from Kruskal–Wallis tests (Leave-some-out - RF X 2(1)=0.27 p=0.60,
SVM X 2(1)=0.53 p=0.46, cross-validation - RF X 2(1)=1.84 p=0.17, SVM X 2(1)=0.27
p=0.60). SVM produced a better accuracy for both leave-some-out and cross-validation.
The optimised SVM classifier did produce the highest accuracies for both leave-some-out
and cross-validation.
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Table 4.50 Leave-some-out walking aid recognition percentage accuracies for trial with
10 datapoints using the previous models and the models with optimised hyperparameters.

RF SVM

previous 61.83% 63.18%

Optimised 59.91% 65.03%

Fig. 4.41 Leave-some-out accuracy results for walking aid recognition across trials with
10 datapoints using models with the hyperparameters that have been used for all of the
analyses and models that have had their hyperparameters optimised. The boxplot shows
the classification accuracy for the two types of models (Previous -using hyperparameters
used in previous analysis, Optimised – using optimised hyperparameters) using the best
performing machine learning algorithms from the previous analysis: Random Forest (RF),
and Support Vector Machines (SVM). There is no significant difference between the
trials.
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Table 4.51 Leave-some-out walking aid recognition percentage accuracies for trial with
10 datapoints using the previous models and the models with optimised hyperparameters.

RF SVM

Previous 79.63% 83.45%

Optimised 80.40% 84.42%

Fig. 4.42 Cross-validation accuracy results for walking aid recognition across trials with
10 datapoints using models with the hyperparameters that have been used for all of the
analysis and models that have had their hyperparameters optimised. The boxplot shows
the classification accuracy for the two types of models (Previous -using hyperparameters
used in previous analysis, Optimised – using optimised hyperparameters) using the best
performing machine learning algorithms from the previous analysis: Random Forest
(RF), and Support Vector Machines (SVM). The optimised trials produced higher mean
accuracies but not to a significant level.
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4.4 Discussion and Conclusions

4.4.1 Terrain classification

For terrain classification there remain questions on how different terrains are classified.
One of these questions is at what degree should ground be classified as a slope. According
to UK building regulations a 1:20 incline is considered a slope [176]. For this research,
all slopes were steeper then 1:20. On all the slopes used outside the motion capture
laboratory there were variations in their steepness. This could have affected the accuracies
and could have increased gait variations. This could make the model more robust and
improve the accuracies for real-world use, as the model was trained on more variations
of slope walking. How to define uneven terrain is another question. For this research,
cobble stones and uneven pavement were used as uneven terrain, but there was no set
requirement as to how uneven the terrain had to be to be labelled as uneven; it was
decided by the researcher conducting the study. Even with terrain that was considered
very uneven there could be places where the terrain is flat but as the whole section was
labelled uneven these strides would be considered uneven. This could be a source of
lower accuracies when classifying uneven terrain as seen in the confusion matrixes Figures
4.43 and 4.44.

Figure 4.43 is the confusion matrix for the leave-some-out trial for the optimised RF
model. As can be seen, the model slightly over-classified strides as flat, and this could
have been because there were more flat strides than for any other terrain. Most of this
overclassification comes from grass, uneven and gravel. Stair ascending and descending
produced the best accuracies. Jamieson [40] found that accuracies increased when
grouping flat terrain with uneven, gravel and grass as one group, and the results from
this research would suggest the same. The cross-validation confusion matrix, Figure
4.44, shows some of these issues but also seems to show some problems with classifying
stair ascending. Jamieson [40] achieved a leave-some-out accuracy of 56.68% and a
cross-validation accuracy of 78.46%, whereas for the model created in this research using
the same terrain groupings achieved a leave-some-out accuracy of 79.02% and a cross-
validation accuracy of 90.29%. These accuracies are much higher but as can be seen in
Figure 4.45 and 4.46 the model overfits for flat terrain due to the disproportion of strides
in the flat terrain group. There are methods that could counter this overfitting, weighting
the classes to force the model to prioritise different classes, running the optimisers to
adjust the model or collecting more data on stairs and ramps to balance the stride in
each class grouping [177].
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Fig. 4.43 Confusion matrix for terrain classification RF leave-some-out 1-Flat 2-Grass
3-Stair ascent 4-Stairs descent 5-Ramp ascent 6-Ramp descent 7-Uneven terrain 8-Gravel.
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Fig. 4.44 Confusion matrix for terrain classification RF Cross-validation 1-Flat 2-Grass
3-Stair ascent 4-Stairs descent 5-Ramp ascent 6-Ramp descent 7-Uneven terrain 8-Gravel.
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Fig. 4.45 Confusion matrix for terrain classification RF leave-some-out 1-Flat 2-Stair
ascent 3-Stair descent 4- Ramp ascent, 5-Ramp descent.

159



System Design: Classification of terrain and walking aid use using real-world
data.

Fig. 4.46 Confusion matrix for terrain classification RF Cross-validation 1-Flat 2-Stair
ascent 3-Stair descent 4- Ramp ascent, 5-Ramp descent.

Another question is how to deal with transition steps. In this research transitions
steps were not identified. Some studies have found transitions steps to be different
[120][107][121], and therefore they could affect accuracies if not labelled correctly. There
is also the question of when a stride should be classified as a certain terrain. For this
research as the stride is counted during the swing phase, the terrain the foot lands on
during the stride is labelled but no analysis was done to identify which parts of the gait
are the most important for the classifiers and therefore where the transition between
different gait patterns for different terrains occurs. Transition steps would eliminate this
by giving them a different label.

4.4.2 Walking aid use classification

Sixty-one percent of the strides recorded were taken without a walking aid. This means
the leave-some-out accuracies achieved by the walking aid use recognition models were
only 4.03% higher than the percentage split in strides between strides with a walking
aid and without. The cross-validation accuracies were much higher but still had 16.33%
misclassification. If a patient only used a walking aid for a proportion of their daily
strides or didn’t use one at all but the classifier says they use one for 16.33% of their
day, this could change the view a clinician has on this patient and therefore affect their
K level assessment. Walking aids are used to increase balance and offload [178][179]. If
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offloading could be measured, by measuring foot pressure or load through the prosthesis,
this combined with the IMU data could have potential to produce a better classification
accuracy. Figure 4.47 shows the confusion matrix for the leave-some-out trial of the
optimised SVM model. The model is overclassifying to without a walking aid which could
be due to the number of strides with a walking aid being 61% of all the steps. Class
weighting techniques could be used to adjust for this overclassification but if the research
was to continue and collect more data with a walking aid this could also help fix this
issue. The cross-validation confusion matrix, Figure 4.48, also shows signs of this issue.

Fig. 4.47 Confusion matrix for walking aid recognition Leave-some-out SVM optimised
trial. 1-withouth a walking aid 2-with a walking aid.
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Fig. 4.48 Confusion matrix for walking aid recognition cross-validation SVM optimised
trial. 1-withouth a walking aid 2-with a walking aid..

One question that arises in this research was what to class as a walking aid. This research
counted handrails as a walking aid as it was deemed that a participant would use it to
offload and therefore could change their gait.

The only personal walking aid used in the research was a walking stick. This was
the only personal walking aid the participants were comfortable using and used in their
everyday life. There is currently no information on what are the most commonly used
walking aids for lower limb prosthetic users. If available, the participants were asked
to use their own walking stick but if it was not available a walking stick was provided.
Due to this, the classifier has not been trained on other walking aids, such as walking
frames or rollators, so it cannot be assumed it would be able to classify their use. If it is
deemed that other walking aids would need to be classified; further research would have
to capture data of participants using these walking aids.

For this research sliding windows were not assessed. In previous research sliding windows
have shown to be effective [96], but there has been no consensus on the best window
style and if windows should be sliding. Sliding windows in their nature do produce
additional datapoints as the same data is used in multiple windows, but this is not unique
information. For this research it was deemed that comparing time-based windows to a
stride-based window was more important. Further research could be done to compare
sliding time-based windows to a stride-based window, but at present the stride-based
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window produced the best accuracies.

The demographics of the participants did not perfectly match the estimated demographics
of prosthetic users in the UK[12]. Only 10% of the participants were female. However,
about 30% of lower limb prosthetic users are female in the United Kingdom. The range
of age was 33 to 85 years with 85% above the age of 54. In comparison, 70% of lower
limb prosthetic users in the United Kingdom are above 54. However, 54% of lower limb
prosthetic users in the United Kingdom are TT and 37% TF, with 94% being unilateral,
which are closely matched in this research with 55% TT, 40% TF and 95% unilateral.
The demographics of the study do not perfectly match the demographics of lower limb
prosthetic users in the United Kingdom, especially for sex, but come close in relation
to unilateral/bilateral and TT/TF. For this research it was decided that, instead of
restricting participant number to meet the demographics of prosthetic users in the UK,
collecting as much data as possible was more important. The 20 participants recruited
for this research provided a larger sample than for any similar study found in Chapter 3,
with the largest being 9 transtibial by Du, L [130]. All the participants conducted the
study in just 2 areas in the country, Greater Manchester and South Hampshire, and this
means that the classifiers are only trained on terrain in these areas and therefore may
not be able to classify terrain and variations in terrain that occur in different parts of the
country.

The leave-some-out analysis was carried out in five groups of participants to reduce
computational time compared to individual leave-one-out analysis. This allowed for more
aspects of the analysis to be investigated, for example different windowing methods
and effects of splitting the data by prosthesis type. This did reduce the classification
accuracies, as shown in section 4.3.2, but the comparative accuracies are still valid.
The cross-validation analysis was conducted as 5-fold, whereas some previous studies
have used 10-fold [109][106][112]. This may have increased sensitivity to anomalies and
variability in results. However, the reduced computational time enabled a more extensive
analysis. The largest variance was observed in the isolated velocity LSTM model (mean
accuracy: 72.64%, variance: 4.84), but this variance is not substantial.

In conclusion;
The cross-validation and leave-some-out accuracies achieved in the terrain recognition
were higher than achieved by a similar study that used a thigh mounted accelerometer to
classify the terrain a lower limb prosthetic user was traversing [40]. Collecting more data
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could help to increase the leave-some-out accuracy and get it closer to the cross-validation
accuracy. This research has proven that it is possible to classify the terrain a lower
limb prosthetic user is traversing using a prosthetic shank mounted IMU, but more data,
from more participants in different locations, would have to be collected to improve the
accuracies and make the classifiers more robust.

The walking aid recognition showed issues of overclassification. This could be due
to the percentage difference in strides with a walking aid as compared to without that
were used to train the classifier. Collecting more data of walking aid use could help
reduce this issue. Alternatively, additional sensors that could measure the amount of
offloading in combination with the IMU could help to increase the accuracies.

This chapter designed a first system comprised of sensors and algorithms for
classification of terrain and walking aid use using real-world data. The next
chapter (Chapter 5) will utilize in-lab 3D motion capture to record lower limb
prosthetic users traversing different terrains with and without a walking aid,
to then use the data to create virtual IMUs, to see if sensor placement on
the limb would affect the accuracy of the classification algorithms.
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Chapter 5

System refinement: Simulating
virtual sensors from
stereophotogrammetry data to
explore effects of sensor position
on activity classification accuracies.

5.1 Background

In the previous chapter (Chapter 4), a first sensor system and associated algorithms
for activity classification were designed. The purpose of this chapter was to refine the
system through use of simulated, virtual sensors, and thereby improve the accuracies of
the machine learning classification models created in Chapter 4.

Machine learning classification works best with data with high variance between classes
but low variance within classes [180]. During the data collection for Chapter 4, the
location of the IMU on the prosthetic shank was not consistent as it was set where it
was convenient for the participant. Hence sometimes the IMU was placed closer to the
ankle and sometimes closer to the knee, and for some participants it was moved slightly
along the shank during the study because the original location proved problematic for
the participant. This could have caused variability in the data as the acceleration pattern
changes along the shank for a stride. The best IMU location is where the signal variance
is highest between different terrains and walking aid use conditions, but lowest for the
same terrain or walking aid use condition. To calculate where this position would be,
virtual sensors can be created from stereophotogrammetry data [181][182].
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Studies have previously found that small changes in IMU position can create high errors
in different measures [183][184][185]. Angular velocities should be consistent along a
limb, as long as the IMU is placed with the same orientation and on the same plane.
Magnetometer data, which measures orientation, should also be consistent along a limb
if the IMU is placed with the same orientation. Creating virtual accelerometers from
stereophotogrammetry data has previously been done in work by Tresadern, et al. [182]
and Tong and Granat [181]. The same method as Tresadern, et al. [182] will be used in
this research.

5.1.1 Aims of Chapter 5

• To collect 3D motion capture stereophotogrammetry data alongside sensors data
inside the gait lab for lower limb prosthetic users transversing different terrains ,
providing a comprehensive dataset for analysing sensor placement effects.

• To simulate virtual sensor data in different positions along the prosthetic limb and
assess the effects of sensor placement on classification accuracies for activity and
terrain types.

5.2 Methodology

In this work, stereophotogrammetry data were collected in a motion capture laboratory
that could then be used to simulate virtual sensor data. Data collection took place at
the University of Salford where a Qualisys motion capture system was used, with the
cameras calibrated before each participant so that the position error was less than 1mm.
Data were collected for traversing four different types of terrain, including flat ground,
stairs, ramp and uneven terrain, and these terrain data were obtained for walking with
and without a walking aid. Ethical approval was granted to collect the required gait lab
data (Ethical approval numbers for University Ethics: 4743 Appendix D.2).

The following Methods sections describe the different walking conditions that data
were collected for, the participants, and data collection aspects, as well as virtual sensor
design.

5.2.1 Terrain

Flat Ground
Flat ground walking trials took place on the smooth, vinyl flooring of the motion capture
laboratory. The capture area the participants walked in was 5.0m long and 2.0m wide.
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Stairs
The set of stairs used for this research had three steps on one side and four on the other,
with a flat section on the top. This gave some variation in the step size and allowed both
stair assending and deceding to occur in the same trial, reducing the number of trials the
participants were asked to do. All the steps were 260mm in depth. The three steps on
the one side were 200mm high, and the four steps on the other side were 150mm high.
150mm is the minimum height regulated in the UK for a set of stairs [176]. 220mm is
the maximum height for private stairs and 190mm for utility stairs [176], to have the
higher stairs within this range, and to ensure the stairs are the same height wihtin the
600mm height, 200mm was chosen as the higher stair height. The flat section on the
top was 700mm long. The set of stairs had a uniform width of 620mm. There was also
an adjustable hand rail that was set at a comfortable height for the participants. Figure
5.1 displays the dimensions of the stairs. Each participant was asked to complete four
trials on the stairs with and without a walking aid.

Fig. 5.1 Set of stairs used for data collection in the gait lab. Lengths in mm.

Ramp
The ramp used in the research was 1500mm long and 130mm high to give a constant
gradient of 4.95°, which is larger than the 1:20 (2.9°) deemed a slope [176]. There was a
flat section at the top of the ramp that was 1500mm long. The ramp and flat section
were both 1500mm wide. Participants did separate ascending and descending trials, to
eliminate the participant turning 180° during a trial. Due to this, each participant was
asked to complete 4 ascending and descending trials with and without a walking aid.
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Fig. 5.2 Ramp set up as used for data collection in the gait lab. Lengths in mm.

Uneven Ground
To simulate uneven terrain, artificial cobblestones were produced that could be used in
the motion capture laboratory. Twenty of the cobblestones that were traversed as part
of the data collection at the University of Salford campus in Chapter 4 were randomly
selected, and their height, width, length and their distance to the neighbouring cobble
stones were measured. The maximum and minimum for each of these measurements
were used to design individual cobblestones for the gait lab set up, thereby recreating a
realistic replica of a cobblestone path for this indoor study.

Table 5.1 Cobblestone dimensions

Measurement Measurement
range

Length 120mm – 175mm

Width 60mm – 90mm

Height 12mm – 19mm

Distance between
stones

40mm – 55mm

Specifically, the cobblestones were designed by randomly allocating a measurement within
the range measured for height, width, and length. To increase the unevenness of the
terrain, it was decided to allow the distance between the cobblestones to be increased.
The cobblestones were designed on a 200mm by 125mm rectangle, with the cobblestone
placed randomly at least 10mm from one of the 200mm and 125mm edges. This ensured
the minimum distance between the cobblestones to be 10mm but the largest distance
could be 150mm and 120mm. The cobblestones were then randomly ordered into a 5
by 16 grid, i.e. a total of 80 cobblestones made up the cobblestone pathway which was
2000mm by 1000mm in its overall dimensions. Figure 5.3 visualises the the artificial
cobblestones. With an average healthy stride length of 780mm [186], this guaranteed
that at least one stride was taking off and landing on the cobble stones for each foot.
The largest distances between the cobblestones when put into the gird were 129mm and
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101mm, and the smallest distances were 15mm and 16mm. Appendix H.1 displays the
dimensions for each cobble stone. The cobblestones were machined out of medium-density
fibreboard.

Fig. 5.3 Artificial cobblestones

5.2.2 Walking aid use

The only personal walking aid used by participants taking part in the research was a
walking stick. This was the only personal walking aid the participants were comfortable
using and used in their everyday life. If available, the participants were asked to use their
own walking stick but if it was not available a walking stick was provided.

5.2.3 Participants

This study used a subset of participants that had also been used in the algorithm creation
study (Chapter 4), and they had to meet the same inclusion and exclusion criteria as
detailed in Chapter 4. There were ten participants who were all unilateral prosthetic
users and which provided informed consent. All the participants were male. Six of the
participants were transtibial and four were transfemoral. The age range was 53 to 85
years old with 90% above 54. Table 5.2 displays the details for each participant.
Three of the participants did not feel comfortable walking up or down the stairs with a
walking aid, hence they did not complete that part of the study. All other trials were
completed by all participants. Table 5.3 displays the trials performed by each participant.
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Table 5.2 Participant Information.

Participant
no.

Participant
no. from
Chapter 4

Age Sex Transtibial
(TT)/ Trans-
femoral (TF)

1 1 85 Male TT
2 2 63 Male TT
3 3 69 Male TF
4 5 74 Male TT
5 6 69 Male TT
6 8 56 Male TT
7 9 53 Male TF
8 10 59 Male TF
9 11 72 Male TT
10 12 64 Male TF

Table 5.3 Trials completed by each participant. ‘wi’: with walking aid, ‘wo’: without
walking aid.

Participant
no.

Flat Up
Stairs

Down
Stairs

Up Slope Down
Slope

Uneven

1 wi/wo wo wo wi/wo wi/wo wi/wo
2 wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo
3 wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo
4 wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo
5 wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo
6 wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo
7 wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo
8 wi/wo wo wo wi/wo wi/wo wi/wo
9 wi/wo wi/wo wi/wo wi/wo wi/wo wi/wo
10 wi/wo wo wo wi/wo wi/wo wi/wo

5.2.4 Procedure

Marker Placement
The motion capture marker placement used a six degrees of freedom model, as shown in
Figure 5.4. The six degrees of freedom model was chosen because it has shown to produce
smaller errors than the conventional gait model and does not require excessive maker
placements, so is not off-putting for the participants, but fully identifies the locations
this research is focusing on [187].
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Fig. 5.4 Six degrees of freedom gait model.

Trial Procedure
The procedure for the study was the same as detailed in Chapter 4 (section 4.2.5). After
establishing that the participant was comfortable conducting the trial, the procedure was
as follows:

• Participant confirms they are ready.

• Start motion capture.

• Start IMU recording.

• Give the participant the signal to start.

• Participant stamps their prosthetic leg on the floor twice.

• The participant conducts the trial.

• The participant finishes the trial and stands still.

• IMU recording is stopped.
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• Motion capture recording is stopped.

As in Chapter 4, the participants were asked to stamp their prosthetic leg twice to make
it easier to align the video and IMU data.

5.2.5 Analysis

Feature Importance
The first stage of the analysis was to investigate which aspects of the accelerations are
key for the classification models from Chapter 4. Then it was investigated whether the
variation of these features of the accelerations are increased when the IMU is placed at
different locations. To identify what features of the accelerations had the biggest influence
on the classification models, three different techniques were used with the outcomes
scored and collated to rank the features based on their influence on the classification
outcome.

Minimum Redundancy Maximum Relevance (mRMR)
Minimum Redundancy Maximum Relevance, mRMR is a feature selection technique used
to identify features with high relevance but low redundancy [188]. Higher relevance
means features that are more aligned to the target class, and low redundancy means
features that are less correlated to other features. The mRMR function used for this
project was the built-in Matlab mRMR function that returns a score for each feature, with
higher scores given to more important features, i.e. features that have high relevance
and low redundancy [189].

Neighborhood component analysis (NCA)
Neighborhood component analysis, NCA was developed by J. Goldberger et al. at the
University of Toronto [190]). This analysis aims to learn a low-dimensional representation
of data such that the classification accuracy is maximized. The algorithm learns a linear
transformation of the feature space, allowing it to identify the most informative features
while reducing the dimensionality. Similar to KNN algorithms, a NCA algorithm tries
to minimise the distance between data points of the same class while maximising the
distance between different classes. The built-in Matlab function for NCA was used for
this project. The feature weights output of this function was used to determine the most
influential features which have larger weights [191].

Recursive Feature Elimination (RFE)
Recursive Feature Elimination, RFE ranks features by their importance based on how
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much they contribute to the model’s predictions. The main idea behind RFE is to
recursively remove the least important features of a model until the optimal subset of
features is found [192]. RFE was used for the KNN, SVM and RF algorithms for terrain
classification, and RF and SVM for walking aid recognition to identify the features that
are most important to each algorithm.

Scoring
The three methods, mRMR, NCA and RFE, were run on the reduced featured data set
determined in Chapter 4. This included the accelerations, gyroscope, magnetometer, free
accelerations and cadence data for terrain classification, and accelerations, gyroscope,
velocity and cadence data for walking aid recognition, with data normalised per participant
and raw data. Table 5.4 displays the features included in both analyses. As the data
set is time-dependant, the mean, median and maximum for each feature importance
method were calculated for each feature. RFE was also run on leave-some-out and
cross-validation data. To reduce the computational need, the data were run in strides
with 10 data points per stride, which from Chapter 4 did not significantly reduce the
accuracies of the algorithms. There were 24 values for feature importance for terrain
classification and 18 for walking aid recognition, as described in Table 5.4. For three
methods each features will be ranked with 1 being the most important and the least
important feature having the heights rank. Then the total rankings will be summed up
and the overall most important features will be determined, as having the lowest overall
score. As the gyroscope and orientation measures do not change with IMU placement,
only the acceleration data were analysed.

Table 5.4 Features used for terrain and walking aid classification.

Feature Reference name Terrain / walking
aid classification

Acceleration in the vertical direction
(w/gravity)

X Both

Acceleration in the medio-lateral direction
(w/gravity)

Y Both

Acceleration in the anterior-posterior direc-
tion (w/gravity)

Z Both

Acceleration in the vertical direction (w/o
gravity)

Free X Terrain

Acceleration in the medio-lateral direction
(w/o gravity)

Free Y Terrain
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Acceleration in the anterior-posterior direc-
tion (w/o gravity)

Free Z Terrain

Rate of turn along the vertical direction Gyroscope X Both

Rate of turn along the medio-lateral direction Gyroscope Y Both

Rate of turn along the anteriorposterior di-
rection

Gyroscope Z Both

3D magnetic field in the vertical direction Magnetometer X Terrain

3D magnetic field in the medio-lateral direc-
tion

Magnetometer Y Terrain

3D magnetic field in the anteriorposterior
direction

Magnetometer Z Terrain

Delta_velocity (dv) in the vertical direction Velocity X Walking aid

Delta_velocity (dv) in the mediolateral di-
rection

Velocity Y Walking aid

Delta_velocity (dv) in the anteriorposterior
direction

Velocity Z Walking aid

Resultant accelerations (w/gravity) Resultant Both

Resultant accelerations (w/o gravity) Free Resultant Terrain

Number of strides per second Cadence Both

Normalised per person acceleration in the
vertical direction (w/gravity)

NPP X Both

Normalised per person acceleration in the
medio-lateral direction (w/gravity)

NPP Y Both

Normalised per person acceleration in the
anterior-posterior direction (w/gravity)

NPP Z Both

Normalised per person acceleration in the
vertical direction (w/o gravity)

NPP Free X Terrain

Normalised per person acceleration in the
medio-lateral direction (w/o gravity)

NPP Free Y Terrain

Normalised per person acceleration in the
anterior-posterior direction (w/o gravity)

NPP Free Z Terrain

Normalised per person rate of turn along the
vertical direction

NPP Gyroscope X Both

Normalised per person rate of turn along the
medio-lateral direction

NPP Gyroscope Y Both
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Normalised per person rate of turn along the
anteriorposterior direction

NPP Gyroscope Z Both

Normalised per person 3D magnetic field in
the vertical direction

NPP Magnetome-
ter X

Terrain

Normalised per person 3D magnetic field in
the medio-lateral direction

NPP Magnetome-
ter Y

Terrain

Normalised per person 3D magnetic field in
the anteriorposterior direction

NPP Magnetome-
ter Z

Terrain

Normalised per person delta_velocity (dv)
in the vertical direction

NPP Velocity X Walking aid

Normalised per person delta_velocity (dv)
in the mediolateral direction

NPP Velocity Y Walking aid

Normalised per person delta_velocity (dv)
in the anteriorposterior direction

NPP Velocity Z Walking aid

Normalised per person resultant accelerations
(w/gravity)

NPP resultant Both

Normalised per person resultant accelerations
(w/o gravity)

NPP Free resul-
tant

Terrain

Normalised per person number of strides per
second

NPP Cadence Both

5.2.6 Creating virtual sensors

The process of creating the virtual accelerometer data was taken from Tresadern, et al.
[182]. The process involved creating a reference coordinate frame and inferring its position
and orientation with respect to the world reference frame. The world reference frame is
the reference frame created by the Qualisys system in the motion capture laboratory, and
this is fixed for all trials. For this research only the prosthetic shank was investigated. It
was assumed that the prosthetic shank is a rigid body. Therefore, the reference frame
for this study was taken to be between the medial and lateral malleolus makers and
the medial and lateral epicondyle makers for the prosthetic leg. The dynamics of the
reference coordinate frame are calculated by finite differencing from the position and
orientation. To investigate how the acceleration changes along the shank, accelerations
were calculated at three positions. The three positions were mid-shank, towards the knee
and towards the ankle. The positions towards the knee and towards the ankle were taken
at 5% of the shank length away from the knee and ankle so were 90% of the shank
length away from each other. These positions were chosen as it would be impractical to
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position an IMU directly at the knee or ankle joint. All the virtual sensors were placed on
the anterior of the shank. With the virtual accelerations created, the same 5Hz second
order Butterworth filter was used as was in Chapter 4, to smoothen the data.

To check the accuracy of the virtual sensor algorithm, accelerations were calculated at
the location of a real IMU and the signals compared. A pilot study with a healthy adult
was carried out with the participant walking on flat ground. The IMU was placed on
the shank cluster and the four markers of the cluster used as the reference frame. It
was assumed that the plane of the IMU and cluster were the same, and that the IMU
records accelerations from the centre of the casing. The cross-correlation between the
resultant acceleration was calculated and the results displayed in Figure 5.5, this method
was also used by Tong et al. [181]. The highest peak for the cross-correlation is at zero
which indicates no phase shift between the signals. Pearson correlation coefficient was
calculated for the three acceleration components and resultant acceleration against the
real IMU signals to obtain a general understanding of the overall similarity. Although this
technique has not previously been conducted on acceleration data it has on time series
data [193]. Table 5.5 displays the calculated coefficients and Figures 5.6 and 5.7 display
the comparison between the real and virtual accelerations. The coefficients show great
similarities between the X, Z, and resultant accelerations. There is a slightly lower value
in the Y accelerations but it is still a strong correlation so was deemed acceptable for
this study.
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Fig. 5.5 Cross-correlation between IM and virtual signal for resultant acceleration. The
highest peak is at 0 which indicates no phase shift between the signals

Table 5.5 Pearson correlation coefficients for comparison of real and simulated sensor
data.

Acceleration Pearson correlation coeffi-
cient

X accelerations 0.9658

Y accelerations 0.8725

Z accelerations 0.9320

Resultant accelerations 0.9532
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Fig. 5.6 Real and virtual acceleration comparisons for all 3 axis. There is strong correlation between the virtual and real accelerations.

Fig. 5.7 Real and virtual acceleration comparisons of the resultant acceleration. There is strong correlation between the virtual and real accelerations
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5.2.7 Stride count method

For this research only the acceleration data were processed. This means the same method
of identifying and splitting the data into strides as Chapter 4, using the Y component
of the gyroscope data, could not be used. Instead, the resultant accelerations of the
prosthetic shank were used. As found in Chapter 4 section 4.2.7 this method had a
11.54% error in stride count and a 10.93% error in precision. To combat this error, each
trial was manually checked and stride count and locations where a stride is counted
manually changed if needed. This was possible due to the relatively small number of
strides being assessed (585 strides). Figure 5.8 shows the resultant acceleration, Y
component of the gyroscope data and force plate reading for a flat walking trial. The
step count was always taken on the first spike of the resultant acceleration data which
can be seen is in a similar location as the spike in the Y compound of the gyroscope
data, which is in the swing phase of the stride.

Fig. 5.8 Stride count comparison. Gyroscope Y axis (red) was used in Chapter 4 and
strides counted at the peaks, Resultant Accelerations (light blue) was used in the study
document in this chapter and peaks counted at the first peak after the minimum. Force
plate (black) is included to indicate where heel strike and toe off is for the second stride.

5.2.8 Assessing variance between types of terrain to identify

promising IMU position(s) for classification

Larger variance between conditions, but low variance within, is vital for successful activity
classification. To assess the variance between acceleration signals for each terrain pair and
each virtual IMU location, Kruskal-Wallis tests were run on the data to produce p values
for each terrain comparison pair for the three IMU placements. Kruskal-Wallis tests were
run because some of the data were not normally distributed. The Kruskal-Wallis tests
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were run for all features at one hundred stride segments. The p values were calculated
for each feature at each time segment. The smallest p values will then be investigated,
looking at the feature and time segment to see if the plot of the acceleration feature
shows large variance at that time point. This was done for each of the three virtual IMU
placements.

In addition, the Cohen’s d, which is a standardised mean difference (SMD) method
where the mean difference between two datasets is divided by the pooled standard devia-
tion [194], was also calculated. SMD is a simple technique that can be used alongside
Kruskal-Wallis to check the results make logical sense. As with the Kruskal-Wallis
assessment, SMD was run for comparison of every terrain pair. The maximum SMD was
found with the feature and percentage of a stride where it was produced.

5.2.9 Machine learning

As a final test to see how IMU placement affects the classification, the data for the
three simulated IMUs were used to train and test the classification models developed in
Chapter 4. The number of useable strides each participant performed on each terrain
is displayed in Table 5.6. Due to the low number of strides and the variability between
the number of strides that each participant performed on the different terrains, 5-fold
cross-validation was chosen as the assessment method for the classification results. The
percentage accuracy was calculated the same way as in Chapter 4.

Table 5.6 Number of strides each participant performed on each terrain.

Participant Flat Up
Stairs

Down
Stairs

Up
Ramp

Down
Ramp

Uneven

1 15 6 8 8 13 10
2 11 14 13 4 4 4
3 21 20 19 4 4 13
4 18 16 16 5 7 9
5 23 21 18 5 6 13
6 4 10 10 4 3 4
7 15 17 13 5 6 9
8 8 4 4 4 4 2
9 11 13 14 3 6 3
10 14 11 10 3 5 15

The data from three IMUs were also combined and used to train and test the classification
models. This was done to see whether having different IMU locations in the same dataset
affects the accuracies of the classifiers.
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5.3 Results

5.3.1 Terrain classification

Results for the terrain classification analysis are presented first. As stated earlier on, this
analysis looked firstly at which features affected the accuracies of the terrain classification
models created in Chapter 4 most, and if there were differences in these features for
the three simulated IMU positions. Then the analysis investigated how variance of the
accelerations changes between each terrain comparison, and how this variance changes
between the three simulated IMU locations. The final analysis then used the simulated
accelerations to train and test terrain classification modes to investigate how the accuracies
are affected by the different IMU locations, and also how combining data from IMUs in
different locations could affect the accuracies.

Feature importance Three feature importance methods, mRMR, NCA and REF,
were run on the data collected in Chapter 4. The features were then scored based on
the results of each analysis, as described in section 5.2.5. The scored results for all
the measures for feature importance in terrain classification of the real-world data are
presented in Table 5.7. The total score, average score and median score, is displayed for
each feature.
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Table 5.7 Feature importance for terrain classification. Acceleration feature highlighted
in grey. Total score, average score, and median score is displayed for each feature

Features Total Average Median
NPP Free Z 222 9.25 7
Gyroscope Y 233 9.71 8
NPP Free Y 245 10.21 9.5
NPP Gyroscope Y 265 11.04 11
NPP Magnetometer Z 289 12.04 14
NPP Z 290 12.08 10.5
NPP Magnetometer X 293 12.21 8.5
NPP X 306 12.75 12.5
NPP resultant 312 13.00 13
X 316 13.17 13
Free Z 343 14.29 14
NPP Free resultant 348 14.50 13.5
Free Y 352 14.67 13
Magnetometer X 363 15.13 18
Y 376 15.67 18
NPP Y 379 15.79 15
Magnetometer Z 386 16.08 18
Z 393 16.38 19
Gyroscope X 394 16.42 17
Resultant 408 17.00 16.5
NPP Gyroscope Z 411 17.13 16
Gyroscope Z 414 17.25 17.5
NPP Magnetometer Y 415 17.29 18.5
NPP Cadence 430 17.92 20
Magnetometer Y 443 18.46 21
Free resultant 459 19.13 22
NPP Free X 464 19.33 21.5
NPP Gyroscope X 522 21.75 25.5
Free X 529 22.04 24
Cadence 560 23.33 26.5

Table 5.8 presents the acceleration measures from Table 5.9. It should be noted that
features can score lower because they are similar to another feature, so are deemed to be
more redundant and not providing unique information.
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Table 5.8 Acceleration scores from Table 5.7 Total score, average score, and median
score is displayed for each feature.

Features Total Average Median
NPP Free Z 222 9.25 7
NPP Free Y 245 10.21 9.5
NPP Z 290 12.08 10.5
NPP X 306 12.75 12.5
NPP resultant 312 13.00 13
X 316 13.17 13
Free Z 343 14.29 14
NPP Free resultant 348 14.50 13.5
Free Y 352 14.67 13
Y 376 15.67 18
NPP Y 379 15.79 15
Z 393 16.38 19
Resultant 408 17.00 16.5
Free resultant 459 19.13 22
NPP Free X 464 19.33 21.5
Free X 529 22.04 24

For Table 5.8 it can be seen that accelerations in X, Y and Z planes are relevant for the
classification accuracy. Table 5.8 suggests that normalised per person accelerations are
more influential to the classification accuracy than non-normalised accelerations. The
most influential features for individual acceleration axis and resultant accelerations were
examined. Plots of the mean normalised per person free acceleration in the Z and Y axis
and normalised per person acceleration in the X axis and NPP resultant accelerations
against proportion of a stride are presented for the simulated accelerations in Figures 5.7
to 5.10.

It can be seen in Figure 5.9, normalised per person free accelerations in the Z axis,
there is clear variance between stairs ascending and descending to the other terrains at
0.2 of a stride for the ankle and mid-shank. The variation for stair use to the other
terrains for the knee is more apparent towards the end of the stride, where there is also
variation for flat terrain.

Figure 5.10 shows, that normalised per person free accelerations in the Y axis, for
the ankle and mid-shank, did not produce a smooth plot;, this could be because the
values are relatively small. At the knee there is clear variation between stair ascending and
descending to the other terrains, at between 0.8 and 0.9 of the stride. Stair ascending
also has variance to the other terrains at the end of the stride.
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For normalised per person accelerations in the X axis, Figure 5.11, there is variation for
stair descending to the other terrains for all placements at about 0.8 of the stride;, the
variation is lower for the knee. The ankle also has clear variation for stair ascending and
descending to the other terrains at about 0.15 of a stride.

Figure 5.12 shows that, for normalised per person resultant accelerations, there is
clear variation between stair descending and the other terrain at about 0.8 of the stride
for all locations. There are also variations between flat and the other terrains at this
point for the ankle and mid-shank, with 0.2 of the stride being another place for this
variation for the ankle.
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Fig. 5.9 NPP free Z for ankle (top), mid shank (middle), and knee (bottom). For the
normalised per person free accelerations in the Z axis there is clear variance between
stairs ascending and descending to the other terrains at 0.2 of a stride for the ankle (top)
and mid-shank (middle). The variation for the knee (bottom) is more apparent towards
the end of the stride, where there is also variation for flat terrain.

185



System refinement: Simulating virtual sensors from stereophotogrammetry
data to explore effects of sensor position on activity classification accuracies.

Fig. 5.10 NPP free Y for ankle (top), mid shank (middle), and knee (bottom). The
mean normalised per person free accelerations in the Y axis for the ankle (top) and
mid-shank (middle) did not produce smooth plots, this could be because the values were
relatively small. At the knee (bottom) there was clear variation between stair ascending
and descending to the other terrains, at between 0.8 and 0.9 of the stride. Stair ascending
had variance to the other terrains at the end of the stride.

186



5.3 Results

Fig. 5.11 NPP X for ankle (top), mid shank (middle), and knee (bottom). There is
variation for stair descending to the other terrains for all placements at about 0.8 of
the stride, but the variation is lower for the knee (bottom). The ankle (top) also has
clear variation for stair ascending and descending to the other terrains at about 0.15 of a
stride.
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Fig. 5.12 NPP resultant for ankle (top), mid shank (middle), and knee (bottom). There
is clear variation between stair descending and the other terrain at about 0.8 of the stride
for all locations. There are also variations between flat and the other terrains at this
point for the ankle (top) and mid-shank (bottom), with 0.2 of the stride being another
place for this variation for the ankle.

188



5.3 Results

In summary, from the plots it can be seen that there is larger variation at the ankle
between stair ascending and descending to the other terrains for normalised per person
free accelerations in the Z axis, accelerations in the X axis and resultant accelerations.
The knee had larger variation for stair ascending and descending for normalised per person
free accelerations in the Y axis. The only other terrain that showed variation was flat.
There was variation between flat and the other terrains for the ankle and mid-shank in
normalised per person resultant accelerations, and at the knee for normalised per person
free accelerations in the Z axis. From these plots no location has clear variations for
ramp ascending and descending and uneven terrain. The ankle location seemed to show
the larger variation for most of the features, but it cannot be said that the ankle will
produce higher classification accuracies.

Variance Assessments
A larger variance in IMU acceleration signals across different terrains should produce a
high classification accuracy. To investigate this, variance tests were run between terrains
for each simulated IMU position. Kruskal-Wallis tests were run on the data to produce p
values between each terrain pair for the three IMU placements. The Kruskal-Wallis tests
were run for all features with the strides broken down into one hundred segments. The
minimum p value, the feature that produced it, the percentage of the stride it occurred
and the calculated SMD are presented in Tables 5.9, 5.11 and 5.13, with a detailed
breakdown in appendix E.1. The p values were all significant (p<0.0001).

The SMD was also calculated where the lowest p values were found. For the an-
kle the SMD was above 1 for all terrains against stair use, which was not the case for the
mid-shank and knee placements. The mid-shank stair descending against uneven terrain
produced a SMD of 0.89 and at the knee stair descending against ramp descending and
uneven produced SMD values below 1. For all the placements the lowest SMD values
were found for ramp against uneven terrain, ramp ascending against ramp descending,
flat against uneven terrain and flat against ramp ascending.

Knee IMU placement had worse values when classifying flat terrain against all other
terrains. Ankle placement performed best in seven of the fifteen terrain comparisons, the
mid-shank was best in five of the comparisons and the knee placement was best for three.
This would suggest that placing the IMU at the ankle could improve the classification of
terrain but probably not with a significant difference.
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Similar to the Kruskal-Wallis tests, the feature and percentage of the stride that produced
the largest SMD was also found for comparison between each terrain individually, these
are presented in Tables 5.10, 5.12 and 5.14, with a detailed breakdown in appendix -.
The ankle produced the largest SMDs for ten of the comparisons, the mid-shank for three
and the knee for two. Twelve of the features and percentage of stride points that produce
the largest SMD also produced the smallest P values. Thirteen of the highest SMD
were on the same feature as the lowest P values, with ten of these within 3% of stride
from each other. The smallest P values and largest SMD was the most aligned for the
ankle where 5 were the same and 3 were within 3%. Similar to the Kruskal-Wallis, the
ankle had SMD values over 1 for all terrains against stair use; mid-shank also produced
this result. The knee did not produce a SMD over 1 for stair descending against ramp
descending and uneven terrain. The same terrain comparisons also produced the lowest
SMD values as with the p values. At the ankle flat against ramp descending produced a
SMD values just below 1 at 0.93.

42% of the most influential features from the Kruskal-Wallis were aspects of the resultant
acceleration. Accelerations normalised per person were more influential compared to
accelerations that have not been normalised, with 69% of the most influential features
being normalised per person. There isn’t a significant difference between free accelerations
and recorded accelerations, with free accelerations being more influential for 54% of the
tests.

From this analysis it can be said that the ankle placement produced larger variations
when comparing each terrain separately. This would suggest that for higher classification
accuracies measuring the accelerations towards the ankle of the prosthetic shank will
produce the highest accuracies. Stair use showed the greatest variation when compared to
the other terrains, this suggests that it should be possible to obtain higher classification
accuracies for stair use than between the other terrains.
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Table 5.9 SMD for lowest P values when comparing accelerations at the ankle of different
terrains

Table 5.10 Highest SMD when comparing accelerations at the ankle of different terrains

Table 5.11 SMD for lowest P values when comparing accelerations at the mid-shank of
different terrains.
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Table 5.12 Highest SMD when comparing accelerations at the mid-shank of different
terrains.

Table 5.13 SMD for lowest P values when comparing accelerations at the knee of different
terrains.

Table 5.14 Highest SMD when comparing accelerations at the knee of different terrains.
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Machine Learning
Up to this point in the analysis, each feature was looked at individually, the machine
learning algorithms used in Chapter 4 will also look at interactions between features so
the previous analysis can only give an indication on the most influential features and the
location that could enhance these features to produce better accuracies. To getter a better
understanding on how placement influences accuracies of the terrain classification, the sim-
ulated data were used to train and test the machine learning algorithms used in Chapter 4.

The mean accuracies of the 5-fold cross-validation trials for each algorithm and IMU
placement are presented in Table 5.15. There is no significant difference between the
accuracies for the different placements found from Kruskal–Wallis tests. Ankle placement
performed better for RF and SVM compared to Knee and mid-shank, but for KNN, which
produced the best accuracies, all placements produced similar results (ankle M=83.59%
SD=4.43, mid-shank M=82.91% SD=1.95, knee M=83.25% SD=2.39, X2(2)=0.57
p=0.75). This is visualised in Figure 5.13.

Kruskal–Wallis tests were run on the results, as Shapiro-Wilk tests and variance check
showed that the data did not meet the requirements for AVNOA, and found significance
between the positions for all models (RF X2(3)=13.03 p=0.0046, KNN X2(3)=11.14
p=0.011, SVM X2(3)=13.15 p=0.0043). Dunn’s post-hoc tests were run and when
combining all the sensors the accuracies reduced significantly compared to ankle and
mid-shank for SVM, ankle for RF and knee for KNN. Results of significance test are
displayed in Table 5.16. There was no significance between the 3 locations individually,
but the ankle placement produced the highest mean accuracy for all models. This shows
that consistent location will improve the classification accuracies.

Table 5.15 Terrain classification accuracy results.

Location RF KNN SVM

Ankle 83.08% 83.59% 82.22%

Mid-shank 81.03% 82.91% 81.88%

Knee 79.15% 83.25% 78.80%

Combined 70.43% 70.60% 74.19%
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Fig. 5.13 Classification accuracy results. For all models the combined data produced
lower accuracies with significant difference to the ankle and mid-shank for SVM, ankle
for RF and knee for KNN.

Table 5.16 Significant differences in mean accuracies for Terrain classification for test
between location. Mid = Mid-shank

Model Mean (%) ± SD Mean (%) ± SD Difference (%) p-value

RF All 70.43 ± 1.58 Ankle 83.08 ± 2.38 12.65 0.003

SVM
All 74.19 ± 1.98 Ankle 82.22 ± 2.12 8.03 0.008

All 74.19 ± 1.98 Mid 81.88 ± 1.98 7.69 0.017

KNN All 70.60 ± 1.99 Knee 83.25 ± 2.39 12.65 0.016

In summary, the analysis using mRMR, NCA, and RFE identified that the most influen-
tial features for terrain classification were largely related to normalized accelerations, but
all aspects of the accelerations are important (X, Y, Z, and resultant). This suggested
that normalizing the data per participant generally increased the feature’s importance,
highlighting the benefit of individualized normalization in improving classification accuracy.
Plots of mean accelerations show higher variance at the ankle placement. Variance tests
also showed higher variances overall at the ankle location when comparing between
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terrains. It was shown that using data from a consistent position will produce higher
classification accuracies. The Ankle position did produce slightly higher mean accuracies
but not significantly higher. The subsequent sections will report on the same outcomes
but for walking aid use.

5.3.2 Walking aid use.

Feature Importance
The same procedure as for terrain classification was carried out for walking aid use
recognition. As LR was also used for walking aid use recognition in Chapter 4, RFE was
also performed on LR algorithms which means 30 different variables contributed to the
feature importance score. Table 5.17 presents the scored results for feature importance
for walking aid use recognition.
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Table 5.17 Feature importance for walking aid use recognition. Acceleration feature
highlighted in grey. Total score, average score, and median score is displayed for each
feature.

Features Total Average Median
Cadence 103 5.72 4
NPP Velocity Y 151 8.39 7
Gyroscope X 154 8.56 7
Velocity Y 156 8.67 6
Velocity X 169 9.39 9.5
NPP Y 184 10.22 12
NPP Velocity Z 188 10.44 9
Z 193 10.72 11
Velocity Z 195 10.83 9.5
Gyroscope Z 200 11.11 11
NPP Gyroscope Y 202 11.22 13
Resultant 207 11.50 10
Y 212 11.78 11.5
NPP Gyroscope Z 217 12.06 12
Gyroscope Y 218 12.11 11
NPP Gyroscope X 218 12.11 12
NPP Cadence 236 13.11 15.5
NPP Z 242 13.44 13.5
NPP resultant 244 13.56 15
X 278 15.44 16
NPP Velocity X 293 16.28 15.5
NPP X 294 16.33 18.5

The delta velocity is the change in velocity between datapoints, acceleration can be
calculated by the delta velocity divided by the delta time, if the delta time is constant
the delta velocity should be the same but in proportion with the sampling rate. The
acceleration output from the IMU is the acceleration recorded at a datapoint. There
can be difference between the raw delta velocity and acceleration data, but once filtered
and normalised the delta velocity and recorded acceleration should be exactly the same.
Figure 5.14 shows the mean and standard deviation for normalised per person acceleration
and velocity along the X axis against proportion of a stride, for the data collected in
Chapter 4. The plots are basically identical and for the virtual sensors, the sampling rate
was always constant at 100Hz, so for this research velocity data was then ignored.
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Fig. 5.14 Acceleration X and Velocity X with +/- 1 standard division bands. These
features produced identical signals.

Table 22 presents just the acceleration data from Table 5.18.

Table 5.18 Acceleration importance from Table 5.21. Total score, average score, and
median score is displayed for each feature.

Features Total Average Median
NPP Y 184 10.22 12
Z 193 10.72 11
Resultant 207 11.50 10
Y 212 11.78 11.5
NPP Z 242 13.44 13.5
NPP resultant 244 13.56 15
X 278 15.44 16
NPP X 294 16.33 18.5

Unlike the terrain classification, the X component of the acceleration does not have a
significant influence on the accuracies. All other aspects of the acceleration are suggested
to be influential to the accuracy of walking aid use recognition. The normalisation does
not seem to have as big an influence as for terrain classification. Plots for the three
features suggested to be the most influential are presented in Figures 5.13 to 5.15. The
plots show the mean measures against proportion of a stride and a standard difference
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variation for strides with and without a walking aid.

There does not seem to be a significant variation in Figure 5.15, normalised per person
Y axis accelerations, when comparing strides with and without a walking aid, for all of
the virtual sensor placements. The largest variation seems to be for the ankle at about
0.95 of the stride.

In Figure 5.16, Z axis accelerations, there does not seem to be a significant varia-
tion when comparing strides with and without a walking aid, for any of the virtual sensor
placements. The largest variation is from the ankle at 0.2 of the stride.

Figure 5.17, resultant accelerations, does not seem to show significant variation when
comparing strides with and without a walking aid, for any of the virtual sensor placements.
The largest variation seems to come with the ankle at about 0.15 of a stride.
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Fig. 5.15 NPP acceleration Y for ankle (top), mid shank (middle), and knee (bottom)
with +/- 1 standard division bands. There does not seem to be a significant variation in
the normalised per person Y axis accelerations when comparing strides with and without
a walking aid, for any of the virtual sensor placements. The largest variation seems to be
for the ankle at about 0.95 of the stride.
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Fig. 5.16 Acceleration Z for ankle (top), mid shank (middle), and knee (bottom) with
+/- 1 standard division bands. There does not seem to be a significant variation in the Z
axis accelerations when comparing strides with and without a walking aid, for any of the
virtual sensor placements. The largest variation is from the ankle at 0.2 of the stride.
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5.3 Results

Fig. 5.17 Resultant accelerations for ankle (top), mid shank (middle), and knee (bottom)
with +/- 1 standard division bands. There does not seem to be a significant variation in
the resultant accelerations when comparing strides with and without a walking aid, for
any of the virtual sensor placements. The largest variation seems to come with the ankle
at about 0.15 of a stride.
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System refinement: Simulating virtual sensors from stereophotogrammetry
data to explore effects of sensor position on activity classification accuracies.

In summary the plots do not show a significant difference between strides with and
without a walking aid. The ankle seemed to produce larger variation between walking aid
use and none use but this still does not appear significant.

Variation Assessments
A Kruskal-Wallis test was carried out in the same way as for the terrain classification,
section 5.3.1, and the results are presented in Table 5.19. As with the terrain classification,
the lowest p values for each location were significant (p<0.0001). The feature and
percentage of a stride that produced the largest SMD for all three locations was the
same as the feature and percentage of a stride that produced the lowest P value.

The highest SMD for all locations were small and did not suggest a significant dif-
ference. For the knee and mid-shank location, the largest SMD was for the resultant
accelerations at 1% of the stride;, looking at Figures 5.17 there does not seem to be a
large variation at this point which would align with the low SMD. For the ankle, the
point of highest SMD was for the Z axis accelerations at 94% of the stride, looking at
Figure 5.16 there does seem to be slight variation at this point but not significant which
aligns with the low SMD. These results would suggest that ankle accelerations would
produce better walking aid recognition accuracies but that accelerations alone will not
produce high classification accuracies.

Table 5.19 Results for Kruskal-Wallis and SMD tests. All SMD are small which suggests
low variance between strides with and without a walking aid.

Position Ankle Mid-shank Knee
Percentage of
stride

94% 1% 1%

Feature Z Resultant Resultant
SMD 0.284 0.251 0.237

Machine Learning
As with the terrain classification, section 5.3.1, the simulated accelerations were used to
train and test the machine learning algorithms used in Chapter 4. Table 5.20 display the
mean accuracies for the 5-fold cross-validation for the 3 simulated locations and trials run
when the data of the 3 locations are combined and Figure 5.18 visualises these results. The
accuracies would suggest that a knee-placed IMU would be more accurate at recognising
walking aid use when using a RF or SVM algorithm. The mean accuracy for SVM for
the knee placement is the highest. Combining the three locations seems to produce the
worst accuracies. Kruskal–Wallis tests were run on the results, as Shapiro-Wilk tests and
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5.3 Results

variance check showed that the data did not meet the requirements for AVNOA, and
found significance between the positions for SVM models (RF X2(3)=5.67 p=0.13, SVM
X2(3)=8.74 p=0.033). Dunn’s post-hoc tests were run and the only significant result was
that the knee accelerations are significantly better than the combined accelerations for
SVM (Knee M=76.07% SD=6.33, Combined M=67.01% SD=2.79, difference=9.06%
p=0.026).

Table 5.20 Walking aid classification accuracy results.

Location RF SVM

Ankle 69.91% 70.26%

Mid-shank 70.26% 71.79%

Knee 74.19% 76.07%

Combined 65.47% 67.01%

Fig. 5.18 Classification accuracy results. Combined data produce the lowest accuracies
and significantly lower than the knee for SVM.
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System refinement: Simulating virtual sensors from stereophotogrammetry
data to explore effects of sensor position on activity classification accuracies.

5.4 Discussion and Conclusions

5.4.1 Terrain classification

The results for the terrain classification analysis did not show conclusively where the
ideal location would be in order to collect acceleration data from a prosthetic shank that
produces the highest classification accuracies. It can, however, be said that a consistent
location would improve the accuracies. This backs up evidence presented by Ruder [183],
Tan [184] and Lutzner [185] that found small deviation in IMU placement can cause
discrepancies in the accuracies produced.

Stair use produced the greatest variability when compared to the other terrains, which
would suggest that stair use would produce higher classification accuracies. This was
evident when looking at the confusion matrices. Figure 5.19 displays the confusion matrix
for the KNN classifier using the ankle accelerations. Class 2 is stair ascending and class
3 is stair descending. Stair use produced the highest classification accuracies. Ramp
ascending (class 4) produced the lowest classification accuracies and was misclassified
as flat, the most common, and had uneven misclassified as ramp ascending frequently.
These results match the SMD results from section 5.3.1. These insights gained are in
agreement with Jamieson [40].

Fig. 5.19 Confusion matrix Ankle KNN, 1=flat, 2=stairs ascending, 3=stairs descending,
4=ramp ascending, 5=ramp descending, 6=uneven. Stair use (class 2 and 3) produce
the highest classification accuracies and ramp ascend (class 4) produces the lowest.
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5.4 Discussion and Conclusions

5.4.2 Walking aid use

Like for the terrain classification, the analysis did not conclusively find the ideal location
for acceleration to be measured on a prosthetic shank to produce the highest walking
aid use recognition accuracies. The knee acceleration produced the highest classification
accuracies, but the ankle seemed to show the most variance in the data. Also mirroring
the terrain classification, having data from varying locations had a negative effect on
the accuracies. All the confusion matrixes showed similar results where the classification
models did not overclassify, and produced similar accuracies for strides with and without a
walking aid. This is demonstrated in the knee SVM confusion matrix, Figure 5.20, where
the split is even between the classes. This is contrary to the results shown in Chapter 4
where the models overclassified to walking without a walking aid. The difference in the
dataset for this study was that the split between strides with and without a walking aid
was even (293 without a walking aid and 292 with a walking aid).

Fig. 5.20 Confusion matrix SVM Knee, 1=without walking aid, 2=with walking aid. The
accuracies are consistent for both walking aid use (class 2) and non-use (class 1), which
indicates that the model is not overfitting.

Notably, the accuracies produced in this study and Chapter 4 for walking aid recognition
appear not acceptable for clinical use. The low levels of variance in the acceleration
data are a contributing factor to this, and we question whether it would be possible to
accurately classify walking aid use with just an IMU.
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System refinement: Simulating virtual sensors from stereophotogrammetry
data to explore effects of sensor position on activity classification accuracies.

5.5 Limitations

Due to the restrictions in the motion capture laboratory, this research could only investi-
gate flat ground, uneven ground, ramp and stair traversing. Chapter 4 also looked at
grass and unstable (gravel) terrain. This means that the results of this study will not
completely align to the models that were produced in Chapter 4 and how the untested
terrains affect the accuracies of the tested terrains remains unknown. From the results
in Chapter 4 there were only a small number of strides that were misclassified between
stair and ramp use to unstable and grass. There was some misclassification between
flat and uneven terrain strides to grass. Not many of the strides on one of the tested
terrains were misclassified as unstable but unstable was misclassified as flat 39% of the
time. Taking this into consideration, it can be assumed that the untested terrains would
not have a huge effect on the accuracies of the tested terrains.

Only strides where the participant had toe off and the next heel strike on the ter-
rain were counted for this research. Therefore, transition strides were not included. This
was to eliminate these as a potential source of error in the findings. Due to restriction in
the motion capture laboratory only a short section of uneven terrain and ramp could be
used and meant that only one or two strides would be recorded for these terrains per
trial. This is evident when looking at the number of strides per terrain, Table 5.21. This
could be affecting the accuracies in this study for these terrains.

Table 5.21 Strides recorded per terrain

Terrain Number of strides

Flat 143

Stair ascending 132

Stair descending 125

Ramp ascending 45

Ramp descending 58

Uneven 82

This research was carried out in a motion capture laboratory under idealised conditions.
These results may hence not necessarily be replicated in real-world conditions.

In conclusion:
Although no conclusive location to place a prosthetic shank-mounted IMU was determined
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5.5 Limitations

for producing higher terrain classifications or walking aid recognition accuracies, the
significant impact that sensor placement consistency has on classification accuracy has
been demonstrated. The findings provide valuable insights into how terrain and walking
aid usage can be distinguished, especially with the ankle placement showing promising
results in terrain classification, particularly for stair use. Unfortunately, the accuracies
produced in this study and Chapter 4 for walking aid recognition seem too low to be
useful for clinical decision-making. The low levels of variance between walking aid use
found in this study could explain the low accuracies.

Nevertheless, this chapter’s attempt to refine the system and improve classification
accuracies produced useful insights.

The next chapter (Chapter 6) will conclude this body of work with a clinical
evaluation of the system.
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Chapter 6

Clinical evaluation of prosthesis
users’ real-world activity data
recorded from the objective sensor
system.

6.1 Background

In the previous two chapters (Chapters 4 and 5), a sensor system and associated algo-
rithms were designed and refined, and associated accuracies reported. The purpose of
this chapter was to assess if real-world data collected with the objective sensor system
for lower-limb prosthesis users meets clinical needs - specifically, if the system’s outputs
align with the requirements identified by clinicians in Chapter 2.

Based on the sensor classification models developed in Chapter 4 and the initial clinician
input in Chapter 2, this chapter uses real-world longitudinal data to assess the system’s
clinical utility. In Chapter 2, interviews conducted with clinical experts were analysed
and outcomes influenced the direction of the research that was subsequently presented in
Chapters 3, 4 and 5. The interviews set out the needs and requirements that this research
aimed to fulfil. To assess whether those requirements are met by the system, longitudinal
real-world data, collected from lower limb prosthesis users, and associated output on
free-living activities needed to be shared with clinicians together with standard clinical
outcomes. A final set of interviews with the clinicians was able to informed whether the
research delivered a system that met their clinical needs.

In support of this approach, a previous research study started by conducting quali-

209



Clinical evaluation of prosthesis users’ real-world activity data recorded from
the objective sensor system.

tative research with clinical experts before development of an activity tracking system
[40], however in this study, no qualitative research after the system was developed took
place. The authors acknowledged that this was a drawback to their research and devel-
opment. To the author’s knowledge no comparable research of a similar nature to this
project exists that conducted a final qualitative assessment to evaluate the technology
developed. Yet, qualitative data collection and analysis have been shown to be a powerful
tool for technology development in healthcare [195]. Conducting qualitative research to
not just influence design and development but to evaluate and refine products, and to
ensure they meet the needs of a target user is vital to ensure uptake. The target users
for the system this research has developed are clinicians that conduct K level assessments
and who prescribe prosthetic components. Hence obtaining their views regarding the
system and the data it produces is paramount to verify that the system is indeed meeting
their needs, and to inform on any further development.

6.1.1 Aims of Chapter 6

The overarching aim of this chapter was to determine whether the system’s real-world data
outputs meet the practical needs and requirements of clinicians working with lower-limb
prosthetic users.

The specific aims were:

• To use the new sensor system to collect longitudinal real-world activity data for
three amputees, share the outcomes in the form of short activity reports with
clinicians.

• To conduct semi-structured interviews with clinicians to obtain their views on the
sensor system and its outputs.

6.2 Methods

To investigate whether the IMU system developed in Chapter 4 has clinical relevance,
semi-structured interviews were conducted with four clinical experts. To be able to
demonstrate the capabilities of the system, three lower limb prosthetic users were first
monitored with the system over a two-week period. The prosthetic users’ data were then
classified using the classification models developed in Chapter 4. To investigate whether
the system data may provide additional insights to those obtained through standard
clinical assessments, each prosthetic user was also assessed by a clinician using a standard
K level assessment. The interviewees were then presented with a summary of the clinical
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assessment and a short report that summarized the system output for each participant
at least 24 hours before the interview took place.

Ethical approval was granted to collect the real-world activity data and conduct the
interviews (Ethical approval numbers for University Ethics: 4743, Appendix D.2).

6.2.1 Data collection

Participants
To ensure that the classification accuracies were as high as possible. it was decided
to only recruit participants that had participated in the earlier data collection that had
served to create the classification models, as discussed in Chapter 4. This reduced the
variability of the data compared to the data that trained the models. Out of the twenty
lower limb prosthetic users who participated in the data collection, three were able to
participate in this longitudinal real-world monitoring study and provided informed consent.
Details of the participants are given in Table 6.1. All three participants were male and
above 60 years old. Two were transtibial and one was transfemoral.

Table 6.1 Participant details.

Participant Participant
number from
Chapter 4

Age Sex Prosthetic
type

1 2 64 Male Transtibial

2 1 86 Male Transtibial

3 10 60 Male Transfemoral

Sensors
The Xsens Awinda used for the data collection that created the classification models
cannot collect longitudinal data, so this type of IMU was not suitable for this study.
Instead, x-io IMU 3s were used, because they can store data for up to 20 days and have
a battery life of 13 hours, whereas the Xsens Awinda cannot store data and only has a
6-hour battery life. The 13-hour battery life was the largest found for IMUs that matched
the Xsens Awinda, but it did mean that during the data collection the participants had to
charge the IMU at night while they were not using their prosthetic. The x-io IMU3 can
record at a sampling rate up to 400Hz, but as found in Chapter 4 only a sampling rate
of 20Hz had to be used given the frequency content of prosthetic gait kinematics. Table
6.2 displays the specification comparison between the x-io IMU 3 and the Xsens Awinds.
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Table 6.2 IMU specification comparison data.

x-io IMU3 Xsens Awinda

Gyroscope range ±2000°/s ±2000°/s

Gyroscope noise 0.014°/s/
√
Hz 0.01°/s/

√
Hz

Accelerometer range ±235m/s2 ±160m/s2

Accelerometer noise 190 µg/
√
Hz 200 µg/

√
Hz

Magnetometer range ±1.3 Gauss (X,Y)
±2.5 Gauss (Z)

±1.9 Gauss

Magnetometer noise 0.3 mGauss/
√
Hz 0.2 mGauss/

√
Hz

Static accuracy
(roll/pitch)

0.5° RMS 0.5° RMS

Static accuracy (head-
ing)

1° RMS 1° RMS

Real-world data collection with sensor system
For the data collection the participants attended an individual training session at the
University of Salford. During this session the participants were taught how to charge the
IMU, how to remove and attach the IMU to their prosthesis shank and what the IMU
warning lights meant. A housing was designed to attach the IMU to a prosthesis shank
that ensured the orientation of the IMU match the orientation used in the data collection
documented in Chapter 4. The 2-week data collection started at the end of the training
session for each participant. At the end of the data collection the participants were given
the choice to either post the IMU to the University of Salford via a prepaid envelope
provided to them, or return the IMU when they came in for their clinical assessment.

Clinician Interviews
The aim of the semi-structured interviews was to gather an understanding of the opinions
of clinical experts on the objective system and its output that had been developed to assist
them with lower limb prosthetic prescriptions. This involved obtaining the interviewees
views on the data that the system can produce, its clinical relevance, if it could affect a
lower limb prosthetic prescription, how the data is being displayed and any improvement
or changes that could be made to the system. The rationale for using semi-structured
interviews was the same as for the initial interviews conducted in Chapter 2. It was
important to obtain individual views and not just a general consensus, and with the small
number of eligible clinicians, conducting the research through interviews made recruiting
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easier as the researcher could meet individuals when it suited them.

The development of the interview guide was influenced by the work of Kallio et al.
[86], to obtain the necessary information and to give the participants an understanding
of the questions that would be asked and why. The interview guide (Appendix C.2) was
sent to all participants before the interviews to give participants an understanding of the
type of questions that would be asked and why.

All interviews were conducted via video call and audio was recorded using an exter-
nal General Data Protection Regulation (GDPR) compliant recording device. The audio
was then transcribed, and any identifying details of the participants were removed from
the transcripts. The recordings were transcribed using speech to text software and then
manually checked and corrected where needed. The transcripts were analysed using
thematic analysis based on a framework approach described by Braun and Clarke [87].

6.2.2 Data analysis

Activity Periods
As data were recorded continuously, there were sections of the collected data where the
participant was not walking using their prosthesis. As the classification models have only
been trained to classify stride data, the stride data had to be extracted from the collected
data. To do this, first the strides were identified, in the same way as in Chapter 4, by
identifying peaks in the Y component of the gyroscope data. To ensure that only stepping
periods were included, data had to have 3 peaks in a 7.5s period. This eliminated peaks
that were not strides. To align with most common activity monitors, the stride count
was transferred to step count through multiplying by 2.

Activity classification
For terrain classification, as stated in Chapter 4, the classification model that was used
was an optimised RF model, and for the walking aid recognition the optimised SVM
model was used. The data were split into windows that contained a whole stride, each of
which contained 10 datapoints.

The x-io IMU3 units do not output delta velocity but as discovered in Chapter 5
section 5.3.2 the delta velocity data were similar to the acceleration data in any case.
However, to check whether there were any implications of using IMUs that do not output
delta velocity, the data collected in Chapter 4 were re-run with the SVM model that
was then to be used in this study without the delta velocity data. Reassuringly, the
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mean accuracies for walking aid recognition for both leave-some-out and cross-validation
were similar to the results with delta velocity from Chapter 4, see Table 6.3. All other
features used matched the optimised models set out in Chapter 4 section 4.3.2 for terrain
classification and section 4.3.3 for walking aid recognition.

Table 6.3 SVM walking aid recognition percentage accuracy comparing IMU input data
with and without delta velocity output.

Leave-some-out Cross-validation

With Velocity 65.03% 84.42%

Without Velocity 65.23% 83.85%

Standard K level assignment
One clinician conducted all three clinical assessments and assigned K levels to the 3
prosthesis users as per standard practice. The assessments were conducted at the
University of Salford in the prosthetic and orthotic clinic room, to be as similar as
possible to current clinical practice. The clinician had 8 years of experience conducting K
level assessments for prosthetic component prescription. The assessments were twenty
minutes long, as this was the same length as the clinician would usually have to conduct
clinical assessments. The assessments were conducted as close to a clinical assessment
as possible, and consisted of the clinician having a conversation with the prosthetic user
about their activity and medical history, and ended with the clinician deciding on an
appropriate K level for each participant.

Lower limb prosthetic participant report
For each participant, a report was compiled. The report included a summary of the clinical
assessment that included the information that the clinician deemed key for deciding the
participants K level. The report also included a summary of the participants activity data,
which was displayed in 2 parts. The first part was a summary of the data that included
the average daily steps in total and on each terrain, the average recorded cadence and a
percentage of the steps that were at a cadence 20% higher than the average, and the
percentage of steps that used a walking aid. The amount of steps at a cadence 20%
higher than mean cadence was included as the ability to vary cadence was highlighted by
the clinical experts in Chapter 2 and the ability to increase cadence requires more energy
consumption and demonstrates a higher activity level [196]. The second part was a table
that displayed data for each day of the data collection period, this included the number
of steps on each terrain and in total, the average daily cadence and the percentage of
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steps that day that were at a cadence 20% higher than the participants’ average cadence,
and the number of steps taken with and without a walking aid plus the percentage of
steps taken with a walking aid. The reports are presented in section 6.3.1.

6.2.3 Clinician Participants

Participants for the interviews were recruited in multiple ways. First the participants of the
interviews in Chapter 2 were invited. The interviews in Chapter 2 set the requirements for
the system and to see if those requirements were met it was the intention to interview the
same clinical experts where possible. Only three of the six from the initial interviews could
participate. New clinical experts were therefore then recruited who had not participated
in the initial interviews but had to meet the same inclusion criteria. This did, however,
have the benefit that three clinicians were able to assess the system output in relation to
what they had initially stated is their need, whilst the new clinician was able to provide
a fresh, unbiased perspective as would be the case if the system went into clinical practice.

The inclusion criteria were: experience with activity level assessments in users of lower
limb prostheses, able to provide informed consent, and able to do an interview over the
phone in the English language.

Participants were recruited through the International Society of Prosthetics and Orthotics
and links connected to the Centre of Doctoral Training in Prosthetics and Orthotics
at the University of Salford. Identified clinicians were emailed the studies participant
information sheet and if they were interested in participating to respond to the researcher
to arrange the interview. Details of the participants are displayed in Table 6.4.

Table 6.4 Clinician participant information.

Participant
number

Participant number
from chapter 2

Background Type of
clinic

C1 P4 Amputee specialist physio-
therapist - 20 years’ expe-
rience

NHS

C2 P1 Prosthetist - 27 years’ ex-
perience

Blatchford

C3 P3 Prosthetist - 16 years’ ex-
perience

Blatchford

C4 N/A Prosthetist – 23 years’ ex-
perience

NHS
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6.3 Results

This section presents the results from the data collected with the sensor system on
lower limb prosthetic users, as well as clinician feedback on that data obtained from the
interviews. The results are organised into two main sections, summaries of the activity
data collected from lower limb prosthetic users in the real-world that were provided to the
clinicians, and thematic analysis of clinician feedback on the system’s clinical relevance
and areas for improvement.

6.3.1 Prosthesis user activity data summaries as presented to

clinicians

In the next few sections, summaries of the clinical K level assessment, with an assigned K
level, as well as a summary from the IMU data output and a breakdown of daily activities
are shown for the three prosthesis user participants as they had been presented to the
clinician interviewees.
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Participant 1  

Clinical assessment summary  

•              Transtibial Left leg  

•              Cause: Trauma  

•              64 years old  

•              Hobbies include walking (approximately 4 to 5 miles a day) 

•              Carer for his wife  

•              Does not play sport  

•              Does not smoke  

•              Drinks a bit  

•              Type 2 diabetes  

•              Skin condition is good  

•              Oxford scale 5 for muscle strength in amputated limb  

•              No knee instability  

•              Walks unaided 

•              Is able to don and doff their prosthetic unaided  

Assessed as a K3 

 

Summary of recorded data   

On average: 7905 steps per day  

Average steps on grass a day: 672 

Average stairs climbed a day: 254 

Average stairs descended a day: 132 

Average steps up a slope a day: 614 

Average steps down a slope a day: 976 

Average steps on uneven terrain a day: 205 

Average steps on unstable terrain a day: 244    

Average cadence: 73.9 Steps per minute  

% of steps above 20% average Cadence: 27.4% 

% of walking aid use: 0% 



 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14 Day 15 

Flat 512 2418 5242 6788 6854 2926 7174 2682 5822 4392 6238 4636 5886 6440 4112 

Grass 74 282 424 474 1232 706 978 324 1690 344 1156 786 516 592 496 

Up Stairs 92 506 254 370 168 160 174 190 244 308 336 210 214 396 174 

Down 
Stairs 

8 32 172 240 164 42 66 60 152 266 174 146 234 112 120 

Up Slope 2426 426 62 106 212 1352 1162 172 788 62 1074 298 84 476 512 

Down 
Slope 

470 3868 2520 1012 1020 818 1436 464 910 194 340 362 336 560 336 

Uneven 10 48 210 308 668 176 522 22 252 82 74 220 162 130 194 

Unstable 106 374 492 100 170 178 344 78 280 126 468 152 174 324 288 

Total 3698 7954 9376 9398 10488 6358 11856 3992 10138 5774 9860 6810 7606 9030 6232 

Cadence 
steps per 
minute 

65.1 73.9 72.3 73.6 74.4 75.6 79 74.7 77 67.3 72.1 71.5 70.3 74.2 72.3 

% above 
20% 

normal 
Cadence 

28.2 3.2 25.6 25.2 29.7 33.4 40.4 35.7 32.4 21.8 31.3 23.8 21.3 30.6 21.5 

Without a 
walking 

aid 
1849 3976 4688 4699 5244 3179 5928 1996 5069 2883 4930 3404 3803 4515 3116 

With a 
walking 

aid 
0 1 0 0 0 0 0 0 0 4 0 1 0 0 0 

% walking 
aid use 

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

 



Participant 2 

Clinical assessment summary  

•              Transtibial left leg  

•              Cause: Trauma 

•              86 years old 

•              Has a pacemaker  

•              Has high blood pressure  

•              Has asthma 

•              Has type 2 diabetes  

•              Does not smoke  

•              Drinks a bit  

•              Walks dog daily (approximately 3 to 4 miles) 

•              Hip replacement in contralateral leg 

•              No pain in contralateral leg  

•              Fibular amputated longer than tibia, which does cause reddening of skin at end of residual 

limb  

•              Reddening of skin also on tibia head  

•              Walks unaided 

•              Is able to don and doff their prosthetic unaided  

Assessed to be a K3, but noted that current prescription is a K2 leg 

 

Summary of recorded data   

On average: 6562 steps per day  

Average steps on grass a day: 967 

Average stairs climbed a day: 133 

Average stairs descended a day: 66 

Average steps up a slope a day: 585 

Average steps down a slope a day: 960 

Average steps on uneven terrain a day: 419 

Average steps on unstable terrain a day: 166    

Average cadence: 91.8 Steps per minute  

% of steps above 20% average Cadence: 16.5% 

% of walking aid use: 0% 



 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14 Day 15 

Flat 3604 3088 3614 2758 2412 4066 3222 2582 3654 2588 4258 2632 3314 2216 4954 

Grass 396 850 296 1288 1610 660 538 954 1544 1228 436 1874 1084 856 886 

Up Stairs 132 106 202 126 150 120 90 122 204 76 170 128 136 80 158 

Down 
Stairs 

72 62 126 72 66 30 52 60 74 60 102 50 50 28 86 

Up Slope 604 516 286 730 632 866 820 624 642 552 290 418 652 652 498 

Down 
Slope 

332 712 216 1150 1108 956 966 822 1136 1666 1158 1162 1416 1170 436 

Uneven 260 462 102 364 478 264 380 250 1124 470 266 788 506 288 290 

Unstable 142 184 136 112 218 102 214 118 270 146 222 152 188 68 220 

Total 5542 5980 4978 6600 6674 7064 6282 5532 8648 6786 6902 7204 7346 5358 7528 

Cadence 
steps per 
minute 

95.2 85.8 84.5 87.4 87 94.5 91.1 91.8 96.2 96.4 90.4 93.3 92.6 98.5 90.5 

% above 
20% 

normal 
Cadence 

18.4 6.1 0.8 5.4 7.6 16.6 8.7 20.2 25.2 22.2 30.7 17.4 11.4 30.4 21.5 

Without a 
walking 

aid 
2771 2990 2489 3300 3337 3532 3141 2766 4324 3393 3451 3602 3673 2679 3764 

With a 
walking 

aid 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

% walking 
aid use 

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

 



Participant 3 

Clinical assessment summary  

• Transfemoral left leg  

• Cause: Compartment syndrome 3 years after a fall 

• 60 years old 

• Has type 2 diabetes  

• Does not smoke  

• Drinks a little   

• Lives alone 

• Can walk 11Km, regularly walks 5Km  

• Does not run and no desire to  

• Cycles 12 to 15 miles a day  

• Goes to the gym regularly  

• Coaches archery  

• Desire to play golf  

 

Assessed to be a K4 

 

During assessment had a fall on day 3 that restricted normal 

activities.  

Summary of recorded data   

On average: 4032 steps per day  

Average steps on grass a day: 208 

Average stairs climbed a day: 131 

Average stairs descended a day: 12 

Average steps up a slope a day: 482 

Average steps down a slope a day: 364 

Average steps on uneven terrain a day: 35 

Average steps on unstable terrain a day: 23    

Average cadence: 73.4 Steps per minute  

% of steps above 20% average Cadence: 23.8% 

% of walking aid use: 1% 



 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14 

Flat 3492 6692 1770 1944 1500 1684 2462 1252 1402 946 4174 5592 2680 3302 

Grass 194 234 142 256 4 164 162 92 82 118 322 344 354 438 

Up Stairs 36 1236 50 56 78 60 48 52 38 14 42 36 58 30 

Down 
Stairs 

10 50 18 14 4 12 8 12 20 8 4 4 6 4 

Up Slope 522 1142 162 208 58 206 212 46 132 78 1064 1578 438 902 

Down 
Slope 

518 1088 120 270 24 180 122 42 152 86 510 1292 136 550 

Uneven 64 22 18 98 8 16 20 8 24 12 46 64 68 22 

Unstable 30 46 18 28 34 20 16 28 10 8 32 18 26 6 

Total 4866 10510 2298 2874 1710 2342 3050 1532 1860 1270 6194 8928 3766 5254 

Cadence 
steps per 
minute 

75.9 77.9 59.1 66.8 65.1 60.3 59.7 54.4 67.7 61.7 78.8 83.5 67.9 80.4 

% above 
20% 

normal 
Cadence 

19.6 28.7 8.9 11.8 17.3 9.7 5.0 3.8 24.3 1.9 3.6 54.5 12.6 40.9 

Without a 
walking 

aid 
2432 5247 1129 1428 838 1151 1500 733 924 629 3095 4464 1874 2626 

With a 
walking 

aid 
1 8 20 9 17 20 25 33 6 6 2 0 9 1 

% walking 
aid use 

0% 0% 2% 1% 2% 2% 2% 4% 1% 1% 0% 0% 1% 0% 

 



6.3 Results

6.3.2 Interview Results

This section presents the results of the clinician interviews, which were conducted to
evaluate the real-world activity data of the lower limb prosthetic users that was collected
by the sensor system. Thematic analysis of the interview transcripts revealed the following
six themes: “General feedback” and “Clinical use”, “Presentation of system output”, “Com-
parison of system data with clinical assessments”, “Charging”, “Areas for improvement”,
with some of these containing a number of subthemes.

Theme 1: General feedback on the system

This theme had two subthemes, namely ”Positives” and “Output data of the system”
which are discussed in the following two sections.

Positives
When asked about their general thoughts on the data that the system produced, the
interviewees gave very positive responses:

“I found the data very helpful.” (C1)

“I thought it was really good, honestly, really, the thing is, good stuff.”
(C2)

“I think it’s amazing data. It’s really, really impressive. Well done. Well done.
But, yeah, no, I think it’s incredibly useful.” (C4)

C4 even inquired about when the system would be available for clinical use:

“Yeah, when can we use this? It’s Fantastic, it’s really good.” (C4)

Output data of the system
Delving deeper and asking about the measures that the system produced, the interviewees
were happy with the measures and thought they were all clinically relevant:

“Those kind of core skills data presented in the summary are really the key
ones that we focus on clinically, and they are some of the ones that people
identified as important when we did our research about important outcome
domains, that some of those core skills underpin that participation. So that’s
good.” (C1) “No, there’s nothing there that I think why? Why is that there,
no, all of that is everything in there is what we’d want to know.” (C3)
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Initially when asked if there were any other measures that they thought would improve
the clinical relevance, two of the interviewees said that there was nothing they could
think of:

“There’s nothing screaming out there that I’d think, Oh, we’re missing.” (C3)

“I don’t think there’s anything else that we would want to know. I don’t
think so.” (C4)

However, there were other measure that these interviewees mentioned later as the inter-
view progressed, namely force/load and temporal measures.

Regarding force/load measurement, three reasons were given as to why including load
through the prosthesis would aid in clinical decision making. The first reason provided
was that some manufacturers specify that a K4 prosthetic should be given if the user is
putting high stress through the prosthesis, e.g.:

“K4 you’re then saying exhibiting high impact stress or energy levels. So,
whether there’s any way to capture data related to those factors.” (C1).

The second reason provided was to see if the user is putting 50% of their body weight
through their prosthesis:

“To see actually they are putting 50% of the body weight through the
prosthetic.” (C3)

This was viewed as a means to reduce the risk of long-term health issues relating to
uneven gait:

“In terms of protection of the body and, you know, osteoarthritis and spine. . . ”
(C3)

The third and final reason given to support a need for load measurement was to see if
the user is not only offloading their prosthesis but also has the ability to put additional
load through it:

“Taking some weight off, you’re offloading your leg. Does it allow you to,
kind of measure.” (C4)

“A lot of them will say that they will carry things. I don’t know. Would your
sensors show you that, like if you were taking more weight?” (C4)

Regarding measures relating to wear time and active time were also said to be of interest.
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“One of the things that I’ve always found quite interesting is how long someone
wears a device.” (C2)

With one reason for this being to better understand how much a user uses their prosthesis,
which is a criterium for prescription:

“A lot of the criteria for different prescriptions are around full time users
so, and yet you can’t tell the people that are full time users and then the
ones that aren’t, and it’s very hard to have that discussion if you don’t really
know.” (C4)

And this interviewee further emphasised that there remains uncertainty about what their
patients are saying:

“If they say that they wear their leg all day, but actually the reality is they
just leave it against a wall all day. . . ” (C4)

Three of the interviewees stated that active time would be useful not only to judge active
periods but also periods of inactivity:

“If you could determine standing active time, where they’re walking, and
how much the leg is used from, from morning to night, then it would help
with getting prescriptions right.” (C2)

“It’s good to know the periods of inactivity, and how long they’re wear-
ing the leg for, maybe that’d be quite, that could be quite useful.” (C3)

“It’s just about that inactivity would be useful, that’d be really useful.”
(C4)

In summary, clinicians provided overwhelmingly positive feedback on the system’s output,
particularly highlighting its clinical relevance and the utility of the data it generates.
One clinician even enquired about the system’s availability for widespread use. The only
additional measures the participants brought up that would be desired clinically were load
through the prosthesis, wear time and active time. Active time could already be obtained
from the current data, by quantifying stepping periods. The load through the prosthesis
could not be obtained with just an IMU, for such an additional sensor would need to be
integrated. Measuring the load through the prosthesis was discussed in Chapter 4 as a
way of improving walking aid recognition. Load through the prosthesis could then also
serve as an accurate way of measuring wear time.
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Theme 2: Clinical use

The interviewees further considered how the system could be used clinically, and how it
would be helpful for their clinical decision making. Their answers regarding this theme
could be categorised into three subthemes: 1) supporting current practice, 2) impact of
the system on current practice, and 3) benefit of additional information about patients.

Supporting current practice
Three of the interviewees talked about how the system data could be used to support
current practice by proving and justifying clinical decisions, enabling more in-depth
conversations on patients’ lives, and proving deeper insights into their patients’ lives.

“I think it actually proves the K levels. It helps you actually have a data
driven way of assessing someone’s K levels as just now, it’s a 20-minute
interview. Someone turns up, they tell you something, you look at them, you
go, with your gut feeling is that person really doing that or are they not.” (C2)

“Yeah, because then it can support clinical decision making.” (C3)

“I think it definitely has a place. And I think especially when we are being
asked to justify why we’re prescribing specific things.” (C4)

One reason why they thought the system data would help is because of the subjectiveness
of their current assessments:

“It’s always good to know extra data with prosthetics, because we’re always
lacking a little bit behind everywhere else, aren’t we, because it’s, it’s so
subjective.” (C3)

C3 expanded on the subjectiveness by adding that this can mean that sometimes the
clinician cannot fully believe what their patients are saying:

“The patient walks approximately four to five miles a day. We’re just going
off them saying that. So, we take it with a pinch of salt.” (C3)

C4 gave a reason for why being able to justify prescriptions would be beneficial to a
clinic, i.e. because of the cost of prothesis components:

“I think it’s probably more it would be more frequently used than you can
imagine, because you’re talking about money here, talking about spending
money, saving money, justifying prescriptions.” (C4)
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They also commented on how the system could be used practically:

“If you had something like this for us to be able to see two weeks prior to
them coming in for a review, going to get you to wear this. It would allow
us to have a much fuller conversation about why we’re going to change their
prescription.” (C4)

Impact of the system on current practice
Three of the interviewees further talked about how the system data could change the
assessments by facilitating in-depth conversations about their patients’ activities:

“Often they come in and you say, kind of how do you spend your time? And
they go, I like to watch a bit of telly. And then you’re like, come on, I need
more than that. But it’s really hard to get it out. And then, whereas this
could help really make those conversations more specific.” (C1)

“You can then go into it and say, Well, what, what were you doing on
this day that you can, that allowed you to achieve that many and why in the
days?” (C3)

“More prompts, more information, to dig a little bit deeper. And it also does
affect the ability to justify the prescription.” (C4)

“We say to people, you know, do you go up down slopes? That’s kind
of it. We don’t really go into the detail of what type of slope, what kind of
surfaces? Is it grass? Is it gravel? Has It got a rail? Whereas this would give
you a bit more of a prompt to ask the detail around.” (C4)

C4 gave a bit more context on why current assessments don’t always obtain these details
whereas having the system data could:

“It’s not necessarily that we don’t want to know these things. I think we just
have so many other things to ask them. I think this would allow us to kind
of go, okay, well, talk me through, what does that slope look like?” (C4)

And that the sensor data could make having difficult conversations easier:

“I think data, in my mind is always that ability to actually have those
conversations without it becoming very personal, you know, feelings and all
that kind of stuff. At least, you can kind of use the data to kind of have the
kind of more difficult conversation” (C4)
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C1 also highlighted that the questions prompted by the sensor data could also verify the
sensor data:

“Because when you’ve got numbers like that, you’re, yeah, I would, I would
kind of, well, what I’d be saying, like, what happened with all your stair
climbing? Like you’d be trying to, you’d be able to pull out some of the
inaccuracies in data by verifying it with the patient as best you could.” (C1)

Benefit of additional information about patients
C1 discussed how the system data could give more detail about their patients’ lives that
could affect clinical decisions:

“It would give you an insight into how they live their lives, that’s what’s
often really useful. It can direct those conversations to really unpick what’s
going on for the patient, and that then affects your clinical decision making,
because ultimately, you’re trying to match your products to the patient’s
life.” (C1)

Notably, C4 suggested that the objective system data could potentially be more accurate
than insights gained through subjective assessments during a single clinic visit:

“I would say it’s much, much more accurate than what we currently have by
far.” (C4)

And the justification for this was that the system can collect data for two weeks whereas
current assessments happen at one specific time:

“A lot of the K levels are based on the way that they walk into the building,
along with kind of what they say they’re doing, the physio team will do an
amputee mobility predictor, but that is one point in time. And the problem
with that is, if they’re having a bad day, then it’s bad. If they’re having a
good day, is good, but it’s not consistent.” (C4)

In summary, the clinical experts felt the system data could be used to support current
assessments to justify decisions, facilitate conversations that provide more detail about
their patients’ lives, help with difficult conversations and to obtain more information
about their patients’ activities. This would make prescriptions more objective and help
clinicians be more confident in making clinical decisions.
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Theme 3: Presentation of system output

How the system data were presented was also discussed. All of the interviewees gave
generally positive feedback on how the data were presented:

“I liked the summary, that was really useful.” (C1)

“It was nice and simple, was dead straight forward so you can easily print off
and stick in a patient’s notes. So that was good.” (C2)

“It’s good to have it broken down” (C3)

“Summary I quite like.” (C4)

C1 and C4 highlighted the percentage of strides above 20% normal cadence as an aspect
they both liked:

“The other thing I liked was percentage of steps above 20% average cadence,
because that was quite useful to think about variable cadence.” (C1) “You’ve
got the percentage of steps above cadence. I think that is a nice thing to be
able to ask a question about, okay, so you walked a wee bit faster. Do you
remember what it was you were doing that kind of thing that would allow us
to prompt.” (C4)

There were three suggestions made by the participants to improve the way the data is
displayed. These were having the data visualised in charts/graphs, having normative data
and having percentages instead of just numbers.
Regarding the former, two of the interviewees commented on how the table with the
daily data may not get read:

“It’s not exciting to look at.” (C3)

“A lot of numbers in a table like that could be maybe not confusing, but it’s
just harder to read.” (C4)

C4 also justified this by pointing out that a clinical team might not have the time to
decipher the table:

“I just know that the clinical team will probably not spend the time that they
should do to actually try and understand that.” (C4)

C2 suggested a bell curve for the cadence of different steps:
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“If you can get a bell curve that would show how much time or how many
steps a day on average, they took at different walking speeds. Then it would
help.” (C2)

C4 suggested graphs might help but wasn’t completely confident with the suggestion:

“It’s almost like you want to have, a kind of graph, but I don’t know if people
would be off be put off by that.” (C4)

But they did make it known that it would be beneficial to change how the table is
currently displayed:

“I feel like it needs to get split up. It’s quite a lot to look at.” (C4)

Regarding inclusion of normative data, two of the interviewees thought that typical values
for each K level would be helpful:

“I suppose normative data is really useful.” (C1)

“I don’t know if you can do this, is to see, is there a normal value, like,
so, like, could you compare?” (C4)

C4 expanded on this comment by explaining that the clinician might be comparing values
against their own measures and not typical prosthetic users:

“I think as a clinical team, it would be difficult to know if that was good or
bad, because they’ll be basing it on their own step counts, which is unrealistic.
So, a guy, for example, would know that actually 6500 steps a day is pretty
good for an amputee, but I would think a lot of my clinical team might think
that’s pretty poor.” (C4)

Further regarding the presentation of the data, C4 thought it would be easier to read
the daily table if some of the numbers were percentages of daily steps instead of just
numbers:

“A percentage. Because, quite honestly, if you’re doing the table, you can
see quite clearly how many steps go up down each day. So maybe it’s more
of a percentage rather than a proportion, rather than a number.” (C4)

In summary, all the participants liked the summary of the system’s data they had been
presented with, but some of the participants thought the table of daily activities might
not be easy to read, especially for clinicians. Visualizing the data might help, with the use
of charts and graphs being suggested, and alternatively percentages of daily steps taken
under the various conditions might also make the data easier to understand. Normative
data were also suggested, but before provision of such will become possible more data is
needed be collected in the real-world.
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Theme 4: Comparison of system data with clinical assessments

The interviewees were asked to examine the system’s data presented on the lower limb
prosthetic users and compare it with the outcomes of the standard clinical assessments.
Their thoughts on the comparison was then obtained.

For prosthesis user 1, C1 said that the system data might have changed the prescription
for the participant, raising their K level to a K4:

“For prosthesis user 1, when I looked at his clinical assessment, I felt like he
was a K three, so I thought that matched well. But then, when I looked at
his summary data, he seemed really active. So, he was like some days he was
right up on 10,000 steps a day, and most days he was hitting that kind of six
to 8000 that you might expect for people with a disability. He did a lot of
stairs. He did a lot of uneven ground and a lot of slope, and so it made me
think about whether he should have actually been a K4 user.” (C1)

They further elaborated:

“That kind of data. So, the total number of steps, the steps on different
surfaces and during different activities, and the number and the percentage
of cadence made me think he should have been a K4 which is interesting,
because clinically I wouldn’t have put him into K4, so that was that one.”
(C1)

Contrary to this, interviewees C2 and C4 both thought the step count for participant 1
was low in relation to the clinical assessment outcomes:

“Just seemed to me to be quite low.” (C2)

“I think it says 4 to 5 miles a day. And so, I think the sensor data seems to
be a wee bit lower than what the patient reports. But I would have thought
that four to five miles a day would have been more than 7900 steps.” (C4)

For prosthesis user 2, interviewee C1 thought the system data matched the clinical data:

“Participant two, I thought, was pretty straightforward. Like, his clinical
assessment and his data, I thought, like were kind of reasonably well matched.”
(C1)

Whereas C3 was surprised that the participant was as active as they were from the system
data compared to the clinical assessment outcomes:
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“Participant 2, you wouldn’t have necessarily predicted him to be as active
because of his condition and his age compared to participant 1, but that,
you know, it shows that an 86 year old with a load of comorbidities, hip
replacements and everything, can be as active as other people. And I think
maybe sometimes we underestimate an aging population. So, I think that’s
quite useful to see that this man is, obviously a very active man, despite
everything else.” (C3)

For prosthesis user 3, the interviewees acknowledged that the participant’s fall might
have affected the recorded data:

“I probably would have put him as a K3, but it’s possible that his fall could
have made his activity data look worse than it was.” (C1)

Interviewee C3 commented on the same prosthesis user that their step count was low
compared to the clinical assessment outcomes:

“Participant 3, yeah, reading, what? Reading, you know, type two diabetes,
compartment syndrome, after a fall, doesn’t smoke, drinks, lives alone, walks
11 kilometres regularly, walks five doesn’t run, but cycles a lot, goes to the
gym, but then looking at his step count, it’s lower than I would have thought
it would be.” (C3)

But said that, the breakdown of daily activities was able to help explain this:

“Some days his, his total step over 10,000 and then other days, it’d be 1500.”
(C3)

And this was perceived to potentially help direct clinical assessments to understand why
there are inconsistencies:

“It’s good to have it broken down, and then you can then go into it and say,
well, what, what were you doing on this day that you can, that allowed you
to achieve that many and why in the days?” (C3)

Interviewee C1 also commented on how the system data could change the prescriptions
they would give the participants:

“I just had the clinical and then actually, I’m looking at the summary data
and thinking, oh, my judgments, my assumptions, based on kind of all that
clinical data might not actually be that accurate as to how these people live
their lives. So, the two together was a really nice combination to help make
a decision.” (C1)
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They also remarked that it might make them think about what additional support the
participants might need in addition to just prosthetic components:

“It would also really make me think about the types of prosthesis. Because if
he’s doing like, he’s doing quite a lot of like, if they’re doing quite a lot of
slope walking, it’s like, does he live on a hill? Have we got them on the right
knee to be able to cope with the slopes? And what’s this slope technique
like, it would prompt me to kind of think about some of the skills and make
sure that they’re good enough for him to be able to do what he needed to
do” (C1)

In summary, the interviewees had different clinical opinions on the participants’ data,
highlighting the need for an objective system that can support their clinical decision
making. The different assessments of the system data gave further arguments for
normative data to set benchmarks for each K level to take some bias out of their decision
making. The differences highlighted between the clinical assessments and the system
data emphasises the subjective nature of the clinical assessment and how patients can
have different views on their own activity levels compared to what they actually achieve.

Theme 5: Charging

It was explained to the interviewees that the system used for the data collection needed
to be charged by the participants every night. The interviewees were then asked if they
thought this could be an issue. None of them thought this should be an issue as most
patients are already used to charging equipment at night:

“No. So, micro processer prosthetic feet as an example, have to be charged
every day.” (C2)

“Most people have a mobile phone. They charge that every night. I don’t
think that’s an issue anymore.” (C3)

“No, I don’t see it being a problem. I think people are very good at charging
things up. I don’t think it’s that much of an issue.” (C4)

Interviewee C3 did give some considerations to the charging that could further eliminate
any issues:

“Don’t think that’d be an issue, as long as it was an easy charging point.
We’ve had issues before with charging points being tiny pins that snap.” (C3)
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“Now there’s a lot of magnetic charging that patients seem to find a lot
easier.” (C3)

“You just need to make sure that people understand, the cognitive abili-
ties there to understand that. And it’s very simple to, you know, it’s very
clear how to charge it. But I don’t, I don’t think that’s an issue anymore.”
(C3)

In summary, none of the interviewees thought a system that needs to be charged at
night will be an issue. Consideration should be given to how the system is charged to
make it easy and simple to use.

Theme 6: Areas for improvement

There were a couple of negative points that the interviewees made about the data
presented, that were in relation to lack of clarity regarding some of the definitions, and
also the extent to which activity data are separated in the system’s output, both of which
are indicating areas of improvement in future work.

Lack of clarity
The definitions of uneven and unstable terrain were highlighted by three of the interviewees
as areas of uncertainty within the system’s data:

“The difference between uneven terrain or unstable terrain, and that, I don’t
know if I’d know what the difference was between that.” (C1)

“I didn’t really follow what you, how you differentiate them.” (C2)

“What’s the difference then, between uneven and unstable?” (C4)

No definitions were given in the report regarding this, so this is something that should be
added in future.

Extent to which activity data are separated.
Two of the interviewees would have preferred if grass, uneven and unstable data were
combined:

“You could combine all of your grass, uneven terrain and unstable terrain,
into uneven terrain, and you could put it all in together.” (C1)
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“I’m just wondering if there’s a need for it to be broken down into that
detail, or if you can put them together.” (C4)

C1 gave a justification for this:

“There’s nothing in the K levels that differentiates the type of uneven surface.
It just kind of talks about uneven surfaces.” (C1)

In contradiction to this, interviewee C2 preferred them to be separate:

“I prefer them separate.” (C2)

Justifying this with:

“The better you break it down, as long as people understand what the
differences are, I think you have a better chance of being able to get the
best prescription” (C2)

And they gave an example to further this argument:

“If you have someone, for example, who lives in Brighton and is down at the
beach all the time, then they’re going to have very different requirements
than someone who lives in Sheffield and is living in the city centre.” (C2)

In summary, while clinicians were generally positive about the system, they identified
several areas where improvements could enhance its usability and clinical relevance. In
addition to desiring load measurement and wear and activity times, discussed under
output data of the system, definitions need to be added to the system’s data, especially
for uneven and unstable terrain. Furthermore, there were contrasting thoughts on whether
the data needs to be split up into as may categories as it currently has been, and perhaps
an option to combine when creating output summaries may be the solution.

6.4 Discussion and Conclusions

The system developed for assessing real-world activity in lower-limb prosthesis users was
generally well-received by clinicians, who found its output to be both clinically relevant and
useful in supporting their K-level assessments. The measures that have been produced by
the system were all deemed to be clinically relevant , with only load through the prosthesis
and wear or active time as additional measures suggested that would be desirable.

Notably, load through the prosthesis cannot be measured by the current system. An IMU
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does not have the capability to measure or accurately estimate load, so an additional
sensor would be required in future to produce this outcome. Pressure sensors and load
cells have previously been used in lower limb prosthetic user activity studies. Wang et al.
[170] and Chen et al. [171] both used just pressure sensing insoles to accurately distin-
guish between sitting, standing, walking, stair use and stepping over an obstacle. Chen
et al. only incorporated one lower limb prosthetic user and 5 able-bodied participants,
and only tested the accuracies with 5-fold cross-validation, whilst Wang et al. only tested
one participant who was a lower limb prosthetic user. Mai and Commuri [161] used a
pressure sensor in the socket to accurately classify stair walking and stair use, but again
only for one participant. Liu et al. [172], Xu et al. [173], Liu et al. [125] and Fan and He
[162] combined an IMU with load or pressure measurements for locomotion recognition
for lower limb prosthetic users. All these studies classified between flat, stair and ramp
steps, but with limited participants and all in controlled conditions. Similar studies using
IMUs and pressure or load sensors have shown good accuracies at terrain classification
for exoskeletons [127][126][107][102][105]. This suggests that additional measurement
of load through the prosthesis could improve the terrain classification accuracies that are
presently solely IMU-based. Notably, no studies have specifically investigated walking aid
recognition from the pressure or load through a prosthesis or insole yet, but Youdas et al.
[179] found that participants could offload 25% of body weight using a walking stick and
Thies et al. [178] found members of an elderly population would load a walking frame
with about 12% body weight. This level of offloading should be detectable with pressure
or load data as well, therefore incorporating a load or pressure output may also enhance
walking aid use classification.

In contrast to load, active time can already be obtained from the system data and
does not require additional instrumentation. The step detection could be used to cal-
culate the length of stepping periods, which would then provide the active time of the
user. Prosthesis wear time could also be estimated from the current data by identifying
periods of non-activity and assuming the prosthesis is not being worn if there is a long
periods where there is no prosthesis. Balkman et al. [42] used a limb presence monitor
to measure wear time. Griffiths et al. [169] found that a shank-mounted accelerometer
could classify between sitting, standing, stepping and lying. Alternatively, this may also
be obtained through load measurements: as a user applies load to a prosthesis when it is
being worn, this could serve as a means to quantify prosthesis wear time.

Notably, all the interviewees gave positive feedback on the summary of the partici-
pants activities they were provided with, saying that having the data presented in a
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simple way and easy to read was useful. There were contrasting opinions about the
daily activity table, however, some saying that having the daily data would be helpful
in seeing how activity changed over the data collection period and could explain some
discrepancies between the clinical assessment and the system data, but the interviewees
had generally negative views on how it was displayed in that table. One suggestion some
of the interviewees had was to visualise the data in some way. A bell curve of cadences
was given as one example.

All the interviewees thought the system was clinically relevant and when comparing
the system data to the clinical assessment summaries they thought that the sensor data
could have changed the K level for some of the participants that they otherwise would not
have assigned to them. They all thought the data would be very useful to have to add
to their clinical assessment, to justify decisions, prompt in-depth questions on patients’
lives, and enable difficult conversations to be had objectively. The use of the data to
prompt questions was a positive that the interviewees were very enthusiastic about, as it
would allow them to get more information about their patients and, therefore, a greater
understanding of their lives, which could help them ensure that their patients are getting
the right prescription and support. None of the interviewees thought that a system that
needed to be charged every night would be an issue for lower limb prosthetic users. This
is as long as the method of charging is easy and straight forward, and magnetic charging
ports were suggested as a potential solution for this.

There was debate as to whether to have the activity data split as it currently is, or to
combine uneven, grass and unstable terrain all together. The argument for combining
these activities into one was that K level descriptions do not distinguish between different
uneven terrains and that it would be easier to understand if they are combined. The
argument for keeping them split is that it would give the clinicians more detail about
their patients’ activities. Currently with the data split, the accuracies obtained for
leave-some-out were 56.89% and 83.64% for cross-validation, with uneven, grass and
unstable combined the accuracies increase to 65.70% for leave-some-out and 87.29% for
cross validation. This increase in accuracy is purely down to the high accuracy in the
combined uneven class with the accuracies from the other classes unchanged, as can be
seen in Figures 6.1 and 6.2. Perhaps providing clinicians with an option to combine, for
better accuracies and simpler interpretation, may be the solution.
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Clinical evaluation of prosthesis users’ real-world activity data recorded from
the objective sensor system.

Fig. 6.1 Confusion matrix for leave-some-out: 1-flat, 2-up stairs, 3-down stairs, 4-up
slope, 5-down slope, and 6- combined uneven.

Fig. 6.2 Cross-validation confusion matrix: 1-flat, 2-up stairs, 3-down stairs, 4-up slope,
5-down slope, and 6- combined uneven.

Limitations of the collected data
The accuracies achieved by the models in Chapter 4 were not perfect and although the
participants used in this data collection had provided some of the data used to train the
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models, the terrain they traversed was different to that used to train the models. Hence it
cannot be assumed that the same cross-validation accuracies were achieved. Due to this,
the terrain classification and walking aid use were only an estimation. However, walking
aid use was checked with the participants, and they all said they did not use a walking
aid during the collection period, so the low number of steps with a walking aid can be
assumed to be representative of the participants. i.e. they may have walked with support
of another person or holding on to handrail or furniture on occasion. Participant 3 had a
fall on day 3 of the data collection period. This restricted the participant’s activities sub-
sequently and could also explain the suggestion of an increase in walking aid use post day 3.

The method for counted steps was assessed and verified in Chapter 4, section 4.2.7,
hence the step count and cadence was deemed to be accurate for the collected data.

Even with these limitations, the data were acceptable for the purpose of the study
which had the aim to investigate clinicians’ thoughts on the system and its output data,
presented as examples of what the system is designed to produce. At this time, the
data were not being used for any clinical decision making; further training data would be
needed from a larger sample to further improve accuracies. Importantly, the interviewees
were made aware of these limitations of the data before the interviews.

In conclusion:
The system and the data that are produced were perceived as clinically relevant. Clinicians
believed that the system’s data on their patients’ everyday life would enhance clinical
decision making and improve outcomes for their patients, as well as help justify the
prescription that they receive. Load through the prosthesis is a measure that clinicians
do desire, and which could also improve the classification accuracies, in particular for
walking aid use. The summary of the prosthetic users’ activities as it had been presented
to clinicians was perceived as useful as is, but finding a better way to visualise the daily
activities table data could make it easier for clinicians to understand.
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Chapter 7

Conclusions and future work

7.1 Background

The aim of the thesis was to develop a clinically-useful, sensor-based system to improve
current K level assessments by providing objective information on real-world activity, in
particular to address shortfalls in classification at the K2–K3 border. This was to be
achieved through a set of 4 objectives:

• To investigate the clinical requirements for the objective system to aid in clinical
decision making through interviews that explore clinicians’ perceptions regarding
shortfalls of current clinical activity assessments for K level assignments, and which
objective measures they feel would improve their K level assignment. (Chapter 2)

• To review the literature around sensors and algorithms to inform system design.
(Chapter 3)

• To design a system comprised of sensors and algorithms that output these measures,
utilizing both, real-world and in-lab data collection. (Chapters 4 and 5)

• To explore clinicians’ views regarding the developed system and its outcome
measures in the context of real amputee data to assess the clinical benefit the
system could provide and identify avenues for further development. (Chapter 6)

K levels are defined by the user’s ability to traverse environmental barriers, change cadence
and ambulation skill. From the current K level definitions, Table 1.1, a K2 can traverse
low level environmental barriers and has limited community ambulation, and a K3 has the
ability to traverse most environmental barriers, vary their cadence and conduct activities
beyond simple locomotion. It has been shown that if a lower limb prosthetic user is not
given an adequate prosthetic that meets their activity needs it could lead to the patient
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becoming less active and/or not using their prothesis.

This chapter presents a comprehensive discussion of the key findings from this research
and will further summarize significance, limitations and directions for future work. It
begins with a summary of the results from Chapter 2, which involved interviews with
clinical experts to identify current limitations in K-level assessments and opportunities for
improvement. This chapter also explores the outcomes of Chapters 3-5, which focused
on developing and testing an objective system for terrain and walking aid classification
using machine learning models and IMU sensors, trained and tested on data collected in
the real-world and the inside the lab. A discussion of its clinical usefulness as explored
in Chapter 6 then follows. Finally, limitations and directions for future work will be
discussed.

7.2 Thesis findings

7.2.1 Investigating the clinical requirements for the objective

system through interviews (Chapter 2)

Interviews were carried out with clinical experts to gain an understanding of current clinical
shortfalls in relation to lower limb prosthetic prescriptions and which objective measure
if recorded in the real-world would have clinical benefit. The interviews found that the
assessments of K levels are mainly based on a conversation between the clinician and
their patient, with no set guidelines on how these conversations should take place. The
clinician then has to make a subjective decision on the patient’s K level which determines
the prosthesis components the patient will be prescribed. The clinicians identified that
this, in conjunction with the vagueness of the K level descriptions, is the main source of
problems with current prosthetic prescriptions. These results are reinforced by findings
from Jamieson [40] that found that patients do not keep their clinicians updated on
their activity levels except when needed and Limb et al. [41] and Balkman et al. [42]
that showed that self-reported measures of activity are not accurate when compared to
objective measures. The clinical experts highlighted step count, cadence, walking aid use
and the terrain a prosthetic user traverses as the key objective measures that would help
with clinical decision making. Terrain was also found by Jamieson [40] to be a measure
clinicians desired to know for prosthetic component prescriptions. A few studies had
previously investigated step count and cadence against K level and found some alignment
but had over 11% misalignment between these measures and the assigned K level. This
highlights the need for terrain and walking aid use as measures to be combined with step
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count and cadence to improve prosthetic component prescriptions. It was also stated
that longer term monitoring would be beneficial, because activity levels can differ on a
daily basis, as found by Knols et al. [43] where timed walked tests did not correlate to
long term step count data. This was also shown in Chapter 6 where daily step count
varied for all participants, the lowest variation to mean daily steps was 25% and the
highest was 160%. For acceptance from prosthetic users, the system will have to be
mounted to the prosthesis only. The importance of getting the assessments correct was
highlighted by Agrawal et al. [37] that found that the components a prosthetic user uses
can have a large effect on their activity levels.

7.2.2 Reviewing the literature around sensors and algorithms

to inform system design (Chapter 3)

A review of the current literature provided a number of useful insights for system design:
it showed that terrain classification has been previously investigated but very few studies
incorporated terrain outside of a laboratory setting, recruited a substantial number of
lower limb prosthetic user participants, investigated complex terrain, for example uneven
terrain or unstable terrain, or used sensors only attached to a prosthesis. Machine learning
models have been used and shown to be able to classify terrain from wearable sensor data
but there is no consensus on the best techniques or methods for its implementation. Very
few studies have explored walking aid recognition using wearable sensors and none have
studied walking aid recognition for lower limb prosthetic users. The studies that have
investigated walking aid recognition using wearable sensors have used wrist worn sensors
which would reduce the acceptability of the system for the prosthetic users. The insights
gained from the literature review led to a list of specifications that were then taken
forward to system design, namely that IMUs were to be used to capture activity data at
100 Hz, which were then to be low pass filtered and normalized, and furthermore that
KNN, LR, SVM, RF and LSTM algorithms would be compared for terrain classification
whilst the same plus LR algorithms would need to be compared for walking aid recognition,
and, finally, use of a variety of time-based and stride-based windows as well as analysing
individual datapoints would need to be investigated.

7.2.3 System design (Chapters 4 and 5)

Chapters 4 and 5 then aimed to develop an objective system to classify terrain and
walking aid use that would be robust so it could be used to aid clinical decision making
in the real-world. In doing so, gaps in the research previously found around algorithms
and sensors were filled.
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In Chapter 4, data were collected of lower limb prosthetic users walking outdoors
over different terrain (flat ground, stairs, ramps, grass, gravel and uneven terrain) with
and without a walking aid using four IMUs attached to different parts of the participant’s
body and prosthesis. Twenty participants were recruited, eleven unilateral transtibial,
eight unilateral transfemoral and one bilateral with one transtibial and transfemoral
prosthetic. The data were collected at either the University of Salford or at a location
convenient for the participant, and this variety should have helped making the model be
more robust.

For terrain classification, four machine learning algorithms were compared (KNN, RF,
SVM and LSTM). Other aspects of the model were also investigated to see how the IMU
location, sampling rate, windowing method, variable inclusion and normalisation technique
affected the accuracies of the classifiers. It was also investigated whether splitting the
data for transtibial and transfemoral prosthetics and whether or not a walking aid was
being used could help improve the accuracies. It was found that a single prosthetic-shank
mounted IMU was only needed to produce high terrain classification accuracies. Splitting
the data into windows that contain a whole stride was the best performing windowing
method, which is a consideration that future similar studies should bear in mind as this
method is not the most utilised in the literature. It was found that windows of just 10
datapoints could be employed to maintain a high accuracy, which means that a sampling
rate of 20Hz is needed. Accelerations, gyroscope, magnetometer and free accelerations
were needed to maintain high accuracies, whereas velocities did not affect accuracies.
Normalising the data per person and keeping the raw data upheld the high accuracies, but
normalizing per stride did not. Splitting the data by prosthetic type or whether a walking
aid was used did not affect the accuracies. A RF model produced the highest leave-
some-out accuracy at 56.89% and a KNN model produced the highest cross-validation
accuracy at 85.71%. the The KNN model produced a low leave-some-out accuracy of
45.67% whereas the RF model produced an 83.64% cross-validation accuracy, ; due to
this the RF model was taken forward to the subsequent chapters. The leave-some-out
accuracy might seem low but the most comparable study by Jamieson [40] produced a
leave-some-out accuracy of 56.68% when only categorising the terrain as either flat, stair
ascent, stair descent, ramp ascent and ramp descent, ; with the same terrain grouping the
RF model produces a leave-some-out accuracy of 79.02%. The cross-validation accuracy
was also higher than Jamieson, with the RF model producing an accuracy of 90.29% and
Jamieson achieving 78.46%;, the KNN model out performed the RF model again and
produced an accuracy of 93.32%. These accuracies are comparable to other studies that
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classified limited terrain in laboratory conditions [121][120][107], and the cross-validation
accuracies showed the accuracies that could be achieved. Collecting data on a variety of
terrains will help to make the models more robust but the limited number of strides on
each variation in the current data could be lowering the leave-some-out accuracies; this
highlights the need for a larger dataset to be collected incorporating different variation in
the terrain. The variation in lower limb prosthetic [197] could also be contributing to the
lower leave-some-out accuracies. Although the dataset contained data from more lower
limb prosthetic users than had been collected in previous studies (9 by Du et al. [130]),
a larger dataset would be needed to achieve high accuracies for clinical use.

For the walking aid recognition five machine learning algorithms were compared (KNN,
RF, SVM, LSTM and LR). LR was incorporated in the walking aid recognition devel-
opment but not the terrain classification as LR works best with binary classification.
The same aspects of the models as for the terrain classification were also investigated
(IMU location, sampling rate, windowing method, variable inclusion and normalisation
technique). It was also investigated if analysing the data separately for different terrains
and prosthetic types would affect the accuracies. It was found that the IMU on the trunk
produced the best accuracies at 67.95% leave-some-out and 84.84% cross-validation,
but the prosthetic shank IMU produced accuracies that were only slightly lower with
the same conditions of 64.39% leave-some-out and 82.21% cross-validation. Due to
the requirement that the system only mounted to the prosthesis it was deemed that
just the prosthetic shank IMU would be used as the accuracies were similar to the trunk
IMU. Splitting the data into windows containing a whole stride again produced the best
accuracies and it was found that reducing the window to 10 datapoints did not affect
the accuracies. Free acceleration and magnetometer data did not improve the accuracies,
whereas accelerations, gyroscope and cadence data were critical. As with the terrain
classification, normalising per person and raw data combined produced the best accuracies
and splitting the data into prosthetic type or terrain did not affect the accuracies. A
SVM model produced the highest accuracies with 65.03% leave-some-out and 84.42%
cross-validation. Considering that 61% of the strides in the data were taken without
a walking aid, the leave-some-out accuracy is low. The confusion matrix, Figure 7.1,
shows that less than 50% of the strides without a walking aid were correctly classified,
which suggests that the model overclassified to without a walking aid, but even with this,
strides without a walking aid were misclassified 26.1% of the time. The cross-validation
accuracy theoretically shows what could be achieved if all variation is accounted for, but
as seen in the confusion matrix, Figure 7.2, strides with a walking aid were misclassified
19.8% of the time and without 12.9% of the time. which might not be acceptable for
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clinical use. As walking aids are used to increase balance and offload, measuring the load
through the prosthesis could be a more accurate method of classifying walking aid use.

Fig. 7.1 Confusion matrix for walking aid recognition Leave-some-out SVM optimised
trial. 1-without a walking aid 2-with a walking aid.

Fig. 7.2 Confusion matrix for walking aid recognition Cross-validation SVM optimised
trial. 1-without a walking aid 2-with a walking aid
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The location of the IMU on the prosthetic shank was not fixed for the data collection.
The IMU was attached to the pylon and where possible aimed to be attached in the
middle of the shank, but on some of the participants prothesis this was not possible,
so the location did vary. To investigate if this could be affecting the accuracies and if
there is an ideal location, Chapter 5 looked at the variance of features between classes
(terrains and walking aid use), the theory being that a larger variance will increase the
classification accuracies. The variance was examined in a couple of ways, first looking at
the classification models and identifying the most important features then seeing how
these features changed over the shank, and comparing classes individually to see which
features produce the largest variance and which shank location produce large variances.
Stereophotogrammetry data were used to create virtual sensor signals and the virtual
signals were looking at how acceleration changed along the shank, as gyroscope and
orientation data should be consistent. Three locations were chosen, towards the knee, mid
shank and towards the ankle. The stereophotogrammetry data were captured in a Qualisys
motion capture laboratory which restricted the terrain that could be tested. Flat ground,
stair use, ramp walking and cobble stones were the terrains used and data were collected
on each with and without a walking aid. Ten lower limb prosthetic users were recruited
for this part of the study, six transtibial and four transfemoral. For terrain classification,
all aspects of the accelerations were deemed important, although acceleration normalised
had more influence than raw accelerations. The ankle accelerations produced higher
variance for more terrain comparisons, but when data for the three locations were put
into the classification model there was no significant difference between the locations. It
was found that a consistent location did improve the accuracies, however. For walking
aid recognition the x component (vertical) of the acceleration had a smaller influence
over the classifier. There was no difference in the highest variance between the three
locations, but the knee signals did produce higher classification accuracies, and again
using data from different locations reduced the accuracies.

7.2.4 Clinical evaluation of the system (Chapter 6)

A final study was undertaken to evaluate the system that had been developed. This was
achieved by obtaining clinical experts’ opinions and thoughts on the system. Data were
collected from three lower limb prosthetic users (two transtibial and one transfemoral)
over two weeks, and the data were classified with the models created in the preceding
work. The prosthetic users also had a clinical assessment to be assigned a K level as
per standard clinical practice. Interviews were then conducted with four clinical experts.
This was the first study to evaluate a real-world, long-term data collection system for
lower limb prosthetic users, designed specifically to assist clinicians in K-level assessments
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through objective sensor-based data. The clinical experts were presented with a report
on each participant, that summarised the clinical assessment and the assigned K level,
and further presented the system data in a summary and a daily breakdown, before the
interviews took place. All the interviewees gave positive feedback on the system and
viewed the data as clinically relevant. The clinicians all thought that the data would be
beneficial for supporting K level assessments and could improve clinical outcomes for
patients. They all also liked how the data summary was presented. The only additional
data that they thought could also be clinically beneficial was load through the prosthesis
and wear/active time. The only other improvement that was suggested was to have
the daily breakdown data easier to read: the data had been presented to the clinical
experts in a table, which some of them felt could be too hard to read for clinicians and
visualising the data might make it easier. Another suggestion was to reduce the amount
of terrain categories by combining uneven, grass and unstable to one group. If this
was to be implemented, the current classification accuracies would improve to 65.70%
leave-some-out and 87.29% cross-validation.

7.3 Limitations

There were a several limitations to this research that will be discussed in this section.
These limitations include participant recruitment, time limitations, and data analysis.

7.3.1 Recruitment of participants

Although more lower limb prosthetic users were recruited for the data collection in Chapter
4 than in any previous similar research, participants were only recruited from a few sources.
Eleven of the twenty participants were professional patients at the University of Salford,
one was a professional patient at the University of Strathclyde, two through ManFit (a
prosthetic users fitness initiative in Greater Manchester) and six through Portsmouth
Enablement Centre NHS. This meant that the data collection only took place in Greater
Manchester and South Hampshire, which could limit the variation in terrain that the
models have been trained on. Before the system could be ready to be used clinically,
data would have to be collected from more varied locations and terrains to ensure the
robustness of the model.

7.3.2 Time limitations

Several factors contributed to delays in aspects of the research that resulted in time
limitations on the later sections of the research. Recruitment for the data collection
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in Chapter 4 was a large contributor to these delays. University of Salford and NHS
ethical approval had been obtained in July 2022, but the first participant was not able to
be recruited until November of 2022. Initially, recruitment was intended to take place
through the Manchester University NHS Foundation Trust Specialised Ability Centre, but
after three months the centre was unable to recruit any participants so alternative avenues
of recruitment had to be pursued. To reduce the burden on participants, a change to the
study procedure was made meaning that data could be collected at a location convenient
for the participant. This did have the benefit that data were collected from more varied
terrains. These delays meant, however, that the data collection continued until March
2024 which reduced the time for model development and subsequent clinical evaluation.

7.3.3 Data analysis

There were a few areas of the data analysis that had to be reduced due to time restrictions.
One of these was testing different aspects of the model. In Chapter 3, the IMU position,
windowing method, sampling rate, variables and normalisation were individually tested but
due to time restrictions the interactions between them were not explored. The processing
time for some of the trial iterations were over 24 hours, which when there were five
iterations per model for each trial made running all combination of model aspects not
feasible. This means that from this research it can not be said that reducing the sampling
rate to 20Hz is acceptable for all windowing methods, but only for windows of a stride that
contains 10 datapoints for prosthetic shank IMU data. The time limitations also meant
that not all techniques could be tested, one example of this is sliding windows. Sliding
windows is a time-based windowing technique where the windows overlap and has been
used in previous studies but did not show to produce higher accuracies than stride-based
or time-based non-sliding windows, although comparisons between the methods on similar
data has not been conducted. Future development could look at sliding windows to
compare them against stride-based windows.

The data collected for Chapter 4 were collected in real-world environments but un-
der test conditions. The participants walked on each terrain in separated trials. Gait
can change between test conditions and free real-world walking [198]. It would be ideal
if data could be collected in a free real-world. For this, a system to record the terrain
on every step would have to be investigated. This could be new research, following the
participant and video recording their movements for a period of time, with the system
recording data and then labelling the data using the video recordings. This may provide
more data and more natural gait data but will increase processing time to label the data.
A visual system attached to the participant or their prosthesis that can identify terrain,
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for examples such as the camera system from Qian et al. [129] or the laser system Luo
et al. [115] investigated, could be used to label data and would reduce processing time,
and all the participants would freely walk to collect data.

There are questions about how to classify different terrains. One of these questions is
when does a terrain fit into a certain category. One example of this is slopes, for the data
collection a slope was considered if it was steeper than 1:20, which was informed by the
UK building regulations [176]. This does not mean that only slopes steeper than 1:20 will
be classified as a slope by the model, the steepness a slope will need to be to be classified
is not known. It is also not known if a much steeper slope will be classified, but McIntosh
et al. [199] and Strutzenburger et al. [200] did not find a significant different between
gait parameters for slopes between 5° and 12°, but neither of these study incorporated
prosthetic users. Uneven terrain is another area for debate. For the data collection there
were no strict criteria for uneven terrain; it was decided on by the researcher conducting
the trial. This could result in an overlap between terrain considered flat and terrain
considered uneven. Thomas et al. [201] investigated objective measures to assess the
complexity of different terrains, but these measures required multiple photographs to be
taken from different angles to be taken for each terrain which would not be feasible in a
free world condition. It would also increase the data processing time.

Active time was not included in the reports in Chapter 6. Active time could have
been calculated from the recorded data if each stepping bout is taken as an active period.
Wear time was mentioned by some clinical experts in Chapter 2 as a measure that could
help clinical decision making but not active time. Active time however was highlighted
by the clinical experts in Chapter 6 as an additional measure they think would have a
clinical benefit.

Load through the prosthesis was another measure that the clinical experts in Chap-
ter 6 mentioned would be of clinical benefit. It is a measure that has been utilised in
previous studies to aid in terrain classification [125][97][107] and wear time [71]. It is also
a measure that could aid in walking aid recognition by detecting offloading, although this
has not been tested previously. Load through the prosthesis was not included as part of
the system in this research. IMUs alone had previously been used to classify terrain, and
load through the prosthesis was not mentioned by the clinical experts in Chapter 2, due to
this only IMUs were used in Chapters 4-6. Another factor would be that without altering
the participants prosthesis the only method of recording load through a prosthesis that
has been previously studied is measuring the pressure the prosthetic foot exerts on a shoe
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with a pressure sensing insole. For long-term real-world use this would mean no data will
be recorded when the participant is not wearing shoes and also will require the participant
to move the pressure sensing insole to the shoe they are wearing if they change shoes.
The insole would also need to be synchronised with the IMU in the morning as the IMU
does not record data while it is being charged. This would increase the burden on the
participant which may not be acceptable for clinical use.

7.4 Success of this Thesis

Meeting Objective 1: “To investigate the clinical requirements for the objective system
to aid in clinical decision.” - The work in Chapter 2 was undertaken to understand the
current clinical shortfalls, which were mainly due to the subjectivity of the assessments
and the interpretation of the vague K level definitions. The objective measures that
could have clinical benefit were also obtained, and they were the cadence and cadence
variations a prosthetic user walks at, the terrain they are able to traverse, whether they
use a walking aid and their step count.

Meeting Objective 2: “Review the literature around sensors and algorithms to inform
system design.” - Chapter 3 reviewed the literature concerned with sensors and algorithms,
and produces insights and specification for the subsequent system design.

Meeting Objective 3: “Design a system comprised of sensors and algorithms that outputs
the clinically-relevant measures” - Chapters 4 developed an IMU system that is able
to classify terrain, count steps and measure cadence using a single prosthetic shank
mounted IMU. Walking aid recognition was not proven to be able to be classified from
a single prosthesis mounted IMU to the accuracies that would be needed for clinical
use, however, load measures were identified as a solution to be investigated in future work.

Building on the successes of Chapter 4, Chapter 5 refined Objective 3 by optimis-
ing IMU placement. It was discovered that consistent IMU location is required to produce
higher classification accuracies and that measuring acceleration towards the ankle of the
prosthetic shank will improve terrain classification accuracies.
Meeting Objective 4: “To explore clinicians’ views regarding the developed system and
its outcome measures” - Chapter 6 had clinical experts evaluate the system developed in
the preceding work, to assess the clinical benefits it could have and avenues for further
development. This was done by using the new system to collect real-world long-term data
on lower limb prosthetic users and presenting the processed data to clinical experts. The
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data recorded were deemed to be of clinical benefit. The further development identified
was to incorporate load through the prosthesis and wear time to the system.

7.5 Strength and Significance

One strength of this PhD lay in the qualitative research that aimed to obtain clinical
experts views to not only direct the research to ensure it is clinically relevant but also to
evaluate the system post-development. To the authors knowledge no previous similar
research has taken this approach. The post-development evaluation highlights the benefits
of conducting clinically directed research, with the feedback on the system that the
clinical experts provided being positive, finding the system clinically relevant, it was also
highlighted that the system data could affect K level decisions and therefore improve
patient outcomes. Their involvement also obtained further development ideas that would
not have been considered if it had not been for the post-development evaluation.

Another strength lay in the sample size. Previously the largest sample of lower limb
prosthetic users that had been studies in similar research was nine [130], whilst in this
research twenty were able to be recruited. Although the recruitment pathways were
limited, this emphasises the success of the recruitment strategy. Collecting data in a
location that is convenient for the participant made it easier for participants to take part
in the study, which increased recruitment.

Furthermore, the terrain classification accuracies achieved from a single prosthesis mounted
IMU with data collected on real-world terrain are comparable to studies using much more
complex systems in laboratory conditions, this will reduce cost and burden on prosthetic
users. The use of real-world terrain will make the models more robust and the accuracies
more reliable. This pushed the system closer to clinical readiness than previous research.
It was also identified that keeping the location of the IMU would increase locomotion
activity classification accuracies, which has not previously been investigated. The research
also showed that a single prosthesis mounted IMU can not classify walking aid use to an ac-
ceptable accuracy for clinical use, but identified load measures as a solution to be pursued.

Finally, a few aspects of the machine learning models were compared in ways that
had not been done previously on similar data. The windowing method is one of these;
previously studies had compared window size but not different methods. This research
showed that splitting data into strides produced the highest accuracies. Only thirteen
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out of ninety-one reviewed in Chapter 3 used a stride-base window. It was also found
that the sampling rate could be reduced to 20Hz without affecting the high accuracies.
Another finding from this research was that a consistent location for the IMU will result
in higher classification accuracies. Moreover, whilst there was not a particular location
that significantly produced higher classification accuracies, there was higher variance
between terrain accelerations towards the ankle.

7.6 Recommendation for future Work

To build on the success of thesis future work is planned to improve the system and progress
towards the system being used clinically to improve outcomes for lower limb prosthetic
users. The planned future work includes incorporating load through the prosthesis into
the system, further data collection to improve model accuracies and robustness, and
conducting a reliability study to see how the system affects K level assignments.

Load through the prosthesis is a measure that has been highlighted in a number of
areas of this thesis. It will give clinics data on the amount of stress their patients
are putting through their prosthesis which will give justification for certain prosthesis
components. It could also potentially improve terrain and walking aid classification
accuracies. Another use for this data would be to calculate wear time, which is the other
measure clinical experts thought would be of benefit. Initially it is planned to obtain
these data through pressure sensing insoles to gather an understanding on how these data
could be used and their benefit to the system. If it is deemed a benefit to the system,
then further development will investigate how these data could be gathered in way that
is acceptable to lower limb prosthetic users.

Although this research was able to collect data from twenty lower limb prosthetic
users on a variety of real-world terrains, the leave-some-out accuracies indicated that
more data is needed before the system could be used clinically. The classification models
have to be robust enough to be able to classify the variety of terrain that a lower
limb prosthetic user could traverse. They will also have to be able to incorporate the
variance in gait for different lower limb prosthetic users. These data will also ideally
be collected in free-world conditions and not test-conditions to capture a more natural gait.

Finally, to understand how the system data affects the consistency of K level assignments
from different clinicians, a reliability study is needed. The study would involve two groups
of clinicians from multiple clinics, every clinician in each group will assess a pool of
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lower limb prosthetic users to assign each a K level. Specifically, one of the groups of
clinicians will only use their current clinical assessments to decide the prosthetic users
K levels, whilst the other clinician group will be given data collected by the system on
each prosthetic user over a two-week period to support their K level assessments. The
intra-reliability between the assigned K levels will be assessed. If there is less variance
in the assigned K levels for the group that were aided by the system data, it will show
how the system can help to standardise K level assignment between clinicians and clinics.
Qualitative data would also need to be obtained from the prosthetic users and clinicians
to help lead further development and to further explore the clinical benefit of the system,
plus the acceptance from patients.
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Appendix A

Outcome measures from Balk et al

A.1 Outcome measures from Balk et al

Outcome measures that Balk et al. investigated:

• 1 Leg Standing Balance

• 180 Degree Turn Test

• 2MWT (2 Minute Walk Test)

• 6MWT (6 Minute Walk Test)

• AAS (Amputee Activity Survey)

• ABC (Activities-specific Balance Confidence)

• ADAPT (Assessment of Daily Activity Performance in Transfemoral Amputees)

• AMP (Amputee Mobility Predictor with, AMPPRO, or without prosthesis, AMPno-
PRO)

• AMPSIMM (Amputee Single Item Mobility Measure)

• Barthel Index

• BBS (Berg Balance Scale)

• Climbing Stairs Questionnaire ES-3

• Employment Questionnaire

• FAC (Functional Ambulation Categories)
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Outcome measures from Balk et al

• FAI (Frenchay Activities Index)

• FIM (Functional Independence Measure)

• FSST (Four Square Step Test)

• Functional Reach Test

• Houghton Scale

• L Test (L Test of Functional Mobility)

• LCI (Locomotor Capabilities Index)

• LEMOCOT (Lower-Extremity Motor Coordination Test)

• NQ-ACGC (Quality of Life in Neurological Conditions – Applied Cognition/General
Concerns)

• OPCS (Office of Population Censuses and Surveys Scale)

• OPUS (Orthotics Prosthetics Users Survey)

• Patient Activity Monitor

• PEQ, PEQ-MS (Prosthetic Evaluation Questionnaire, Mobility Subscale)

• PFI (Physical Function Index)

• PGI (Patient Generated Index)

• PLUS-M (Prosthetic Limb Users Survey of Mobility)

• PPA (Prosthetic Profile of the Amputee)

• PROMIS-29 (Patient-Reported Outcomes Measurement Information System 29-
Item Profile)

• PROS (Prosthetist’s Perception of Client’s Ambulatory Abilities)

• PSFS (Patient-Specific Functional Scale)

• Q-TFA (Questionnaire for Persons with a Transfemoral Amputation)

• Rising and Sitting Down Questionnaire

• RMI (Rivermead Mobility Index)
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A.1 Outcome measures from Balk et al

• SAT-PRO (Satisfaction with Prosthesis Questionnaire)

• SCS (Socket Comfort Score)

• SF-12/SF-36/SF-36V (Short Form Health Surveys 12, 36, and 36V)

• SIGAM (Special Interest Group of Amputation Medicine)

• Single beam test

• SIP-PD (Sickness Impact Profile-Physical Dimension)

• Tandem Test

• TAPES (Trinity Amputation and Prosthesis Experience Scales)

• TFP (Transfemoral Fitting Predictor)

• TUG (Timed Up and Go)

• TWT (Timed Walking Test)

• Walking Questionnaire

• WHOQOL-BREF (World Health Organization Quality-of-Life Scale – Brief Version)
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Appendix B

Components Limbs 4 Life
recommend for each K level

B.1 Components Limbs 4 Life recommend for each

K level

Table B.1 Components Limbs 4 Life recommend for each K level [8]

K1 K2 K3 K4

Massons TeuFel
WLD31

OPC Knee Leg-
works All Terrain
Premium

Ossur POW-
ERKNEE Micropro-
cessor Knee

OttoBock Genuim
Knee Microproces-
sor

OPC Knee Proteor
1M112

OPC Proteor Matik
Pneumatic

OPC Plié3 Knee OttoBock 3R80
Knee Hydraulic

Ossur Locking
Knee Mech

Ossur Balance
Knee OFM1

Ossur Knee RHEO
XC Microprocessor

OPC BioDaptinc
Moto Knee Sports

OttoBock 3 R31
Prosedo Knee hy-
draulic

Ossur Balance
Knee OFM2

OttoBock 3E80
Knee MicroProces-
sor

OPC Proteor
EasyRide Knee
Sports

OttoBock 3 R41
Knee Mechanical

Ossur Knee OP4
Pneumatic

OttoBock 3R60
Knee Pneumatic

Ossur Cheetah
Knee Hydraulic

OttoBock 1s101
SACH

Ossur Total Knee
1900

OttoBock 3 R78
Knee Pneumatic

OttoBock 3S80
KneeSports

OttoBock 1M10
Adjust Articulated

OttoBock Pheon 3
R62 Knee mechani-
cal

OttoBock 3R92
Knee Pneumatic

OttoBock Pro
Carve KneeSports
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Components Limbs 4 Life recommend for each K level

OPC Seattle natu-
ral SACH

OttoBock 3 R90
Knee Mechanical

OttoBock C Leg4
Knee MicroProces-
sor

Massons Willow-
Wood MetaArc
Dynamic

Ossur Flex-Foot
Balance K1 articu-
lated

OttoBock Kenevo
Knee MicroProces-
sor

OPC Blatchford
Orion3 MicroPro-
cessor

Massons Willow-
Wood MetaShock
Dynamic

Massons Willow-
Wood SACH foot

Massons Willow-
Wood DuraWalk
multi axis

OPC CollegePark
Capital Knee Hy-
draulic

OPC Fillauer aeris
performance 2 Dy-
namic

Massons Willow-
Wood Single Axis
foot

OPC Blatchford
Multiflex

OPC Nabtesco Al-
lux 2 Microproces-
sor

OPC Fillauer Allpro
Dynamic

Ossur Flex foot bal-
ance with D/P flex-
ion articulated

OPC College Park
Breeze Foot SACH
flexible

OPC Nabtesco
Symphony Knee
Hydraulic

OPC Rush Foot
HiPro flex

OPC college Park
Odyssey Hydraulic

OPC Proteor
HyTrek Hydraulic

Ossur Pro Flex XC

OPC College Park
Tribute multi axis

OPC Freedom
Quattro Micropro-
cessor

Ossur Pro Flex XC
torsion Dynamic

OPC Fillauer Foot Ossur Mauch Knee
Hydraulic

Ossur Reflex Shock
Dynamic

Ossur Balance foot
J articulated

Ossur Paso Knee
Pneumatic

OttoBock 1A1-1
Empower Micropro-
cessor

Ossur Balance Foot
S torsion dynamic
response

Ossur Total Knee
2000 Hydraulic

OttoBock IC50 Ta-
leo Dynamic

OttoBock IC11
Terion Dynamic

QLD Pros VGK Go
Knee Fluidic

OttoBock IC61
Vertical Shock
Dynamic

OttoBock VS4 Kin-
trol Articulated

QLD Pros VKG S
fluidic knee

OttoBock IC63 Tri-
ton LP Dynamic

OttoBock VS5 Re-
store dynamic

QLDPros VGK X
Fluidic lightweight

OttoBock Maver-
ick Xtreme AT Dy-
namic
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B.1 Components Limbs 4 Life recommend for each K level

Massons Willow-
Wood Impulse
Response foot

Massons Wil-
lowWood Koa
Dynamic

OPC Freedom Inno-
vation Kinterra Hy-
draulic

Ossur Proprio Mi-
croprocessor

Ossur Pro Flex
Pivot Dynamic
response

Ossur Talux Dy-
namic Response

OttoBock 1B1
Meridium Micrpro-
cessor foot

OttoBock IC30
Trias Dynamic

OttoBock IC40
CWalk Dynamic

QLDPros Xtend
Foot Dynamic
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Appendix C

interview guides

C.1 Interview guide 1
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A study to understand perspectives of clinicians regarding activity levels and activity level 
assessments of lower limb amputees. 
 

Interview Guide 
Version (10-03-21)  

Interviews are planned with 6 healthcare/clinical professionals who work with lower limb 

prosthetic patients, to gain an understanding of their experiences with activity level assessments. 

In particular, we will explore the way they conduct the assessments and how they distinguish 

between K2 and K3 activity levels. The interviews will also explore how the clinicians view activity 

level assessments, how activity levels change over time, and how the assessments could be 

improved. The intent of the interviews is to inform a questionnaire that will be distributed to gain 

further understanding of the issues.  

Inclusion criteria: 1) conduct activity level assessments for lower limb prosthetic patients, 2) able 

to provide informed consent, 3) able to do an interview over the phone in the English language. 

Exclusion criteria: 1) the study finishes while they are deciding to take part. 

A general opening question may be “What is your general experience with assessment of activity 

levels?”, to be followed by a series of trigger questions, for example:  

• What standards do you use to assess activity levels? 

• What information or data do you use to decide on the patient K level? 

• How do you distinguish between K2 and K3? 

• Do you see activity levels change over time? 

• Do you ever change a patient’s K level? 

• What information or data would be useful for better K level assignment? 

• What activities do K2/3 patients do? 

• Do you think there is anything a patient would not want to have measured? 

• How would you improve activity assessments? 

• What do you think a perfect activity assessment tool needs to take into account? 

• How do kinematic variables (like stride length, cadence, stride symmetry, ext.) influence 

activity level assessments?  

• How do you assess kinematic variables?  

• How do kinetic variables (like ground reaction force, muscle activation, ext.) influence 

activity level assessments?  

• How do you assess kinetic variables? 

• How does activity of daily living affect activity level assessments?  

• How do you assess activity of daily living?  

Follow up questions may be asked such as: 

• What do you think would be the consequences of this? 

• How does this affect the patient/yourself? 

• How do you feel about this? 

• Does this worry you? 

• What do you think may help with this problem? 

• Why do you think this is? 

• What are your views on this? 



C.2 Interview guide 2

C.2 Interview guide 2
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Interview Guide 
Version (14-11-23)  

Interviews are planned with all clinicians who assessed patients that took part in the real-

world study to monitor lower limb prosthetic patient’s activity levels using the data from the 

sensor system. These interviews will be conducted to explore the clinicians’ experiences 

with using the sensor system.  

The Inclusion Criteria: 1) assessed patients’ K levels using the data from the sensor system   

 

A general opening question may be “What are your thoughts on the sensor data?” which 

will be followed by a series of trigger questions throughout the interview, for example:  

• Could you see any problems with the sensor system? 

• Would the sensors affect your assessments? 

• Do you find the data interesting?  

• Would the data affect your activity level assessments?  

• Does the data surprise you?  

• Is the data useful? 

• Is there any other data you would like? 

• What are your thoughts on the presentation of the data? 

• Is there any parts of the data you do not think are relevant?  

• Are there any other improvement you would like?  

For all interviewees, follow up questions may be asked such as: 

• How did this affect you? 

• How do you feel about this? 

• Does this worry you? 

• What do you think may help with this problem? 

• Why do you think this is? 

• What are your views on this? 



Appendix D

Ethical approvals

D.1 University of Salford ethical approval 1

From: ethics <ethics@salford.ac.uk> Sent: 07 May 2021 10:05 To: Sibylle Thies
<S.Thies@salford.ac.uk> Subject: Ethics Application: Panel Decision Importance: Low
The Ethics Panel has reviewed your application: A study to understand perspectives of
clinicians regarding activity levels and activity level assessments of lower limb amputees.
Application ID: 1710
The decision is: Application Approved.
If the Chair has provided comments, these are as follows:
Please use the Ethics Application Tool to review your application.

D.2 University of Salford ethical approval 2

From: ethics Sent: 18 March 2022 10:35 To: Matthew Wassall Cc: Sibylle Thies Subject:
App Ref. 5924: Ethics Application: Approval
Importance: Low
The Ethics Panel has reviewed your application: To develop a system to better understand
the activities of lower limb prosthesis users in everyday life. Application ID: 4743
The decision is: Application Approved.
If the Chair has provided comments, these are as follows: N/A
You will no longer be able to edit your application in the system.

D.3 IRAS ethical approval
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Mr Matthew Wassall 

PhD Student 

University of Salford 

5 Hulton Street 

Statham St 

Salford 

M5 3GE 

 
Email: approvals@hra.nhs.uk 

HCRW.approvals@wales.nhs.uk 

 

14 July 2022 

 

Dear Mr Wassall   

 

 

 

 

Study title: To develop a system to better understand the activities 

of lower limb prosthesis users in everyday life 

IRAS project ID: 314743  

Protocol number: N/A 

REC reference: 22/EM/0134   

Sponsor University of Salford 

 

I am pleased to confirm that HRA and Health and Care Research Wales (HCRW) Approval 

has been given for the above referenced study, on the basis described in the application form, 

protocol, supporting documentation and any clarifications received. You should not expect to 

receive anything further relating to this application. 

 

Please now work with participating NHS organisations to confirm capacity and capability, in 

line with the instructions provided in the “Information to support study set up” section towards 

the end of this letter. 

 

How should I work with participating NHS/HSC organisations in Northern Ireland and 

Scotland? 

HRA and HCRW Approval does not apply to NHS/HSC organisations within Northern Ireland 

and Scotland. 

 

If you indicated in your IRAS form that you do have participating organisations in either of 

these devolved administrations, the final document set and the study wide governance report 

(including this letter) have been sent to the coordinating centre of each participating nation. 

The relevant national coordinating function/s will contact you as appropriate. 

HRA and Health and Care 
Research Wales (HCRW) 

Approval Letter 

 



 

 

 

Please see IRAS Help for information on working with NHS/HSC organisations in Northern 

Ireland and Scotland.  
 

How should I work with participating non-NHS organisations? 

HRA and HCRW Approval does not apply to non-NHS organisations. You should work with 

your non-NHS organisations to obtain local agreement in accordance with their procedures. 

 

What are my notification responsibilities during the study?  

  

The standard conditions document “After Ethical Review – guidance for sponsors and 

investigators”, issued with your REC favourable opinion, gives detailed guidance on reporting 

expectations for studies, including: 

• Registration of research 

• Notifying amendments 

• Notifying the end of the study 

The HRA website also provides guidance on these topics, and is updated in the light of 

changes in reporting expectations or procedures. 

 

 

Who should I contact for further information? 

Please do not hesitate to contact me for assistance with this application. My contact details 

are below. 

 

Your IRAS project ID is 314743. Please quote this on all correspondence. 

 

Yours sincerely, 

Kelly Rowe 

 

Approvals Manager 

 

Email: approvals@hra.nhs.uk 

 

  

Copy to: Dr Sibylle Thies 

 
 

   

 

  



 

 

List of Documents 

 

The final document set assessed and approved by HRA and HCRW Approval is listed below.   

 

 Document   Version   Date   

Contract/Study Agreement template [Model Non commercial PIC 
agreement]  

    

Copies of materials calling attention of potential participants to the 
research [Flyer and poster]  

1  01 June 2022  

Evidence of Sponsor insurance or indemnity (non NHS Sponsors 
only) [Insurance certificate]  

1  01 August 2021  

IRAS Application Form [IRAS_Form_26052022]    26 May 2022  

IRAS Application Form XML file [IRAS_Form_26052022]    26 May 2022  

IRAS Checklist XML [Checklist_01062022]    01 June 2022  

Other [Cover letter for IRAS 314743 approval response ]  1  12 July 2022  

Other [PIC agreement]  1  16 May 2022  

Other [Local Covid risk assessment ]  1  21 January 2022  

Other [Data protection checklist]  1  21 January 2022  

Other [Risk assessment]  1  05 May 2022  

Participant consent form [Consent form]  2  07 March 2022  

Participant information sheet (PIS) [PIS]  3  11 July 2022  

Research protocol or project proposal [Study protocol]  2  12 July 2022  

Summary CV for Chief Investigator (CI) [CV Matthew Wassall]    13 May 2022  

Summary CV for supervisor (student research) [CV Malcolm Granat]  1  01 June 2022  

Summary CV for supervisor (student research) [CV Sibylle Thies]  1  01 April 2022  

 

 



IRAS project ID 314743 

 

Information to support study set up 
 

The below provides all parties with information to support the arranging and confirming of capacity and capability with participating NHS 

organisations in England and Wales. This is intended to be an accurate reflection of the study at the time of issue of this letter.   

 

Types of 

participating 

NHS 

organisation 

Expectations related to 

confirmation of 

capacity and capability 

Agreement to be 

used 

Funding 

arrangements  

Oversight 

expectations 
HR Good Practice Resource 

Pack expectations 

 Participating 
NHS 
organisations will 
be Participant 
Identification 
centres and 
provide 
information to 
patients. 

Research activities 

should not commence at 

participating NHS 

organisations in England 

or Wales prior to their 

formal confirmation of 

capacity and capability 

to deliver the study in 

accordance with the 

contracting expectations 

detailed. Due to the 

nature of the activities 

involved, organisations 

will be expected to 

provide that confirmation 

to the sponsor  

Within 35of receipt of the 

local information pack 

After HRA/HCRW 

The sponsor has 

provided the 

appropriate model 

non-commercial 

PIC agreement that 

it intends to use as 

a contract between 

participating 

organisations and 

NHS organisations 

acting as their 

Participant 

Identification 

Centres (PICs). 

No application for 
external funding 
has been made.  

Neither a PI or 

local collaborator 

is expected at 

participating NHS 

organisations 

The study is limited to NHS 
organisations acting as PICs 
and HR good practice 
arrangements are not expected 
for the trial. 



 

 

Approval has been 

issued. If the 

organisation is not able 

to formally confirm 

capacity and capability 

within this timeframe, 

they must inform the 

sponsor of this and 

provide a justification. If 

the sponsor is not 

satisfied with the 

justification, then the 

sponsor may escalate to 

the National 

Coordinating Function 

where the participating 

NHS organisation is 

located. 

 

Other information to aid study set-up and delivery 

This details any other information that may be helpful to sponsors and participating NHS organisations in England and Wales in study set-up. 

The applicant has indicated that they do not intend to apply for inclusion on the NIHR CRN Portfolio. 
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Variance Assessments results
Terrain Classification

E.1 Variance Assessments results Terrain Classifi-

cation
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V
ariance

A
ssessm

ents
results

T
errain

C
lassification

Table E.1 Results at lowest p values ankle. F=Flat ground, Su=Stair ascent, Sd=Stair descent, Ru= Ramp ascent, Rd=Ramp descent, Un=Uneven terrain

Terrain F to Su F to Sd F to Ru F to Rd F to Un Su to
Sd

Su to
Ru

Su to
Rd

Su to
Un

Sd to
Ru

Sd to
Rd

Sd to
Un

Ru to
Rd

Ru to
Un

Rd to
Un

% of
stride

22 22 20 20 18 85 31 11 21 99 13 84 51 64 74

Feature Free re-
sultant

NPP
Free re-
sultant

Free X NPP re-
sultant

NPP X NPP re-
sultant

Free X NPP X NPP
Free re-
sultant

NPP
Free Z

NPP X NPP re-
sultant

Free re-
sultant

X Z

SMD 2.10 2.52 0.52 0.93 0.61 0.79 1.42 1.25 1.05 1.36 1.55 1.06 0.61 0.55 0.50

Table E.2 Results at highest SMD ankle. F=Flat ground, Su=Stair ascent, Sd=Stair descent, Ru= Ramp ascent, Rd=Ramp descent, Un=Uneven terrain

Terrain F to Su F to Sd F to Ru F to Rd F to Un Su to
Sd

Su to
Ru

Su to
Rd

Su to
Un

Sd to
Ru

Sd to
Rd

Sd to
Un

Ru to
Rd

Ru to
Un

Rd to
Un

SMD 2.27 2.52 0.72 0.93 0.68 0.79 1.86 1.32 1.05 2.05 1.58 1.16 0.61 0.65 0.52
% of
stride

22 22 20 20 20 85 21 34 21 14 12 86 51 10 77

Feature NPP
Free re-
sultant

NPP
Free re-
sultant

NPP re-
sultant

NPP re-
sultant

NPP re-
sultant

NPP re-
sultant

NPP
Free Z

NPP X NPP
Free re-
sultant

NPP X NPP X NPP re-
sultant

Free re-
sultant

NPP X Z

Table E.3 Results at lowest p values Mid shank. F=Flat ground, Su=Stair ascent, Sd=Stair descent, Ru= Ramp ascent, Rd=Ramp descent, Un=Uneven terrain

Terrain F to Su F to Sd F to Ru F to Rd F to Un Su to
Sd

Su to
Ru

Su to
Rd

Su to
Un

Sd to
Ru

Sd to
Rd

Sd to
Un

Ru to
Rd

Ru to
Un

Rd to
Un

% of
stride

24 22 20 20 18 100 31 84 87 84 23 99 62 53 74

Feature Free re-
sultant

NPP
Free re-
sultant

NPP re-
sultant

NPP re-
sultant

NPP X NPP
Free re-
sultant

Free X NPP
Free Z

NPP
Free X

NPP
Free X

Free Z NPP
Free re-
sultant

Free re-
sultant

Resultant Z

SMD 1.63 1.66 0.78 0.82 0.66 0.80 1.40 1.12 0.95 1.57 1.06 0.89 0.46 0.46 0.61
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C
lassification

Table E.4 Results at highest SMD mid-shank. F=Flat ground, Su=Stair ascent, Sd=Stair descent, Ru= Ramp ascent, Rd=Ramp descent, Un=Uneven terrain

Terrain F to Su F to Sd F to Ru F to Rd F to Un Su to
Sd

Su to
Ru

Su to
Rd

Su to
Un

Sd to
Ru

Sd to
Rd

Sd to
Un

Ru to
Rd

Ru to
Un

Rd to
Un

SMD 1.63 1.76 0.78 0.82 0.66 0.80 1.57 1.25 1.03 1.76 1.06 1.02 0.53 0.55 0.62
% of
stride

24 86 20 20 18 100 22 34 85 22 22 83 63 77 77

Feature Free re-
sultant

NPP
Free re-
sultant

NPP re-
sultant

NPP re-
sultant

NPP X NPP
Free re-
sultant

NPP
Free Z

NPP X NPP
Free Z

NPP
Free Z

Free Z NPP
Free X

X Z Z

Table E.5 Results at lowest p values knee. F=Flat ground, Su=Stair ascent, Sd=Stair descent, Ru= Ramp ascent, Rd=Ramp descent, Un=Uneven terrain

Terrain F to Su F to Sd F to Ru F to Rd F to Un Su to
Sd

Su to
Ru

Su to
Rd

Su to
Un

Sd to
Ru

Sd to
Rd

Sd to
Un

Ru to
Rd

Ru to
Un

Rd to
Un

% of
stride

99 84 38 13 88 100 99 99 99 84 3 79 80 53 51

Feature NPP
Free Z

NPP
Free re-
sultant

NPP
Free Z

X NPP re-
sultant

NPP
Free Y

NPP
Free Z

NPP
Free Z

Free Z NPP re-
sultant

Z NPP re-
sultant

X Free Z NPP Y

SMD 1.53 1.47 0.50 0.61 0.47 0.74 1.84 1.28 1.21 1.35 0.92 0.86 0.57 0.49 0.44

Table E.6 Results at highest SMD knee. F=Flat ground, Su=Stair ascent, Sd=Stair descent, Ru= Ramp ascent, Rd=Ramp descent, Un=Uneven terrain

Terrain F to Su F to Sd F to Ru F to Rd F to Un Su to
Sd

Su to
Ru

Su to
Rd

Su to
Un

Sd to
Ru

Sd to
Rd

Sd to
Un

Ru to
Rd

Ru to
Un

Rd to
Un

SMD 1.53 1.53 0.50 0.63 0.50 0.74 1.96 1.28 1.21 1.42 0.92 0.86 0.57 0.50 0.50
% of
stride

98 85 38 10 89 100 98 98 99 86 86 85 62 29 47

Feature NPP
Free Z

NPP
Free re-
sultant

NPP
Free Z

X NPP
Free Z

NPP
Free Y

NPP
Free Z

NPP
Free Z

NPP
Free Z

NPP
Free re-
sultant

NPP
Free re-
sultant

NPP
Free re-
sultant

X X X
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Recruitment poster

F.1 Recruitment poster
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Lower Limb 
Prosthetic Patients 

Required  
We are running a study looking at developing a sensor system to 

assess a lower limb prosthetic users activity levels. The system aims 

to support prosthetists in their prescription of prosthesis 

components to better meet patients’ needs.   

The study will small, non-intrusive  involve sensors being attached 

to your body and prosthesis and measurements being taken as 

you traverse different terrain. Video or motion tracking data will 

also be gathered to validate the sensor data.  

We need  lower limb prosthetic patients 

that are comfortable with climbing/ de-

scending stairs/ramps, walking on uneven 

ground,  have experience using a walking 

aid and do not regularly participation in 

an active sport.   

If you would like to take part in the study please contact the re-

search team.  

Email: m.wassall@edu.salford.ac.uk  

Tel: +44-(0)161-2952679, the phone will likely go to voice mail 

where you can leave your details that the researcher can contact 

you on.  
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Criterion “YES” = 2 “Partial” = 1 “No” = 0

C1: Question Objective The question and the objective of
the study are clearly mentioned.

The question and the objective of
the study seems not clear

The question and the objective of
the study are not provided.

C2: Study design The study design is appropriated to
the question/objective

The study design is not appropriated
to the question/objective.

C3: Subjects characteristics The following parameters are given:
Healthy volunteers: number of vol-
unteers, gen-der, mean and SD for
the age, height, and weight. Other-
wise: number of volunteers, gender,
inclusion/exclusion criteria, mean
and SD for the age, height, and
weight.

The following parameters are given:
Healthy volunteers: number of
volunteers, gender, mean with-
out SD for the age, height, and
weight. Otherwise (2 options):
o number of volunteers, gen-
der, inclusion/exclusion criteria and
mean without SD for the age,
height, weight, number of volun-
teers, gen-der, mean and SD for
the age, height, and weight. Inclu-
sion/exclusion criteria are not given.

Data are missing compared to “Par-
tial”.

C4: Experimental protocol The following parameters are given:
Studied locomotion tasks; Walking
speed; Transitioning leg (if applica-
ble);Number of trials / locomotion
task

The following parameters are given:
Studied locomotion tasks. One of
the following parameters are given:
Walking speed; Transitioning leg (if
applicable); Number of trials / loco-
motion task

More parameters are missing com-
pared to partial.

C5: Critical Tim-ing The critical timings for each transi-
tion are given (if applicable).

The critical timings are given but
precisely for each transition (e.g.
critical timing occurred at foot con-
tact on the new locomotion mode
or at foot off of the previous loco-
motion mode) (if applicable)

The critical timings are not provided,
even though the transitions are stud-
ied.
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C6: Filter The filters implemented for each sig-
nal are given with the corresponding
parameters (e.g. Low-pass 4th or-
der Butterworth filter with a 10 Hz
cutoff frequency).

The filters implemented for at least
one signal are given with the corre-
sponding parameters. Or the filters
implemented for all signals are given
without the corresponding parame-
ters (e.g. cutoff frequency)

The filters of the signals are not
provided.

C7: Analysis windows For each analysis window, the fol-
lowing information are provided: Be-
ginning and end of each window;
Beginning or end of each window
and window length. If multiple win-
dows or sliding windows are used,
the overlap or the window increment
is provided

One information is not provided
(window length or window incre-
ment or overlap or beginning or end
of each analysis window). For in-
stance, the beginning of the window
is provided but the end or window
length are not provided.

No information concerning analysis
window are given.

C8: Features The feature set is clearly defined.
The equations of each feature are
provided or given with references.

The feature set is clearly defined but
features equations are not given (no
references). Or the equations are
given but a feature reduction tech-
nique is used but the final feature
set is not explicitly provided (for in-
stance PCA to reduce the size of the
feature set, but the final number of
features is not given).

The extracted features are not men-
tioned. Note that if the raw data
of the sensors were fed into the Ma-
chine Algorithm, the criterion was
rated 2 out of 2.

C9: Algorithms The tested algorithms are clearly
mentioned, the parameters of each
algorithm are provided.

The tested algorithms are men-
tioned.

The tested algorithms are not men-
tioned.
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C10: Evaluation The evaluation process of each algo-
rithm is provided (e.g. K-fold cross
validation with K = 4)

The evaluation process is given but
the parameters are not given (e.g.
K not provided for K-fold cross vali-
dation). As a result, the data split
between train/dev/test sets is un-
clear.

The evaluation

C11: Results The results for each algorithm are
given (mean and standard devia-
tion).

The results for each algorithm are
given with-out the standard devia-
tion.

The mean and the standard devia-
tion are not given. Or the mean and
the standard deviation are given but
the results are not provided for one
of the tested algorithms.

C12: Conclusion The conclusion is supported by the
results

The conclusion is not supported by
the results. Note that if the re-
sults were rated 0 out of 2, the
conclusion can still be supported by
the results. For instance, the accu-
racy of the tested algorithms was
estimated from graphics readings
and the conclusion is sup-ported by
those estimations (higher/lower per-
formances).
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Artificial cobblestone dimensions

H.1 Artificial cobblestone dimensions

Table H.1 Artificial cobblestone dimensions.

Cobblestone
number

Length
(mm)

Width
(mm)

Height
(mm)

Lengthways
distance
from edge
(mm)

Widthways
distance
from edge
(mm)

1 168 61 17 58 15

2 123 85 16 36 63

3 136 82 12 20 42

4 150 66 19 10 16

5 146 84 16 39 16

6 138 61 16 37 23

7 160 83 13 34 12

8 155 90 16 22 22

9 133 75 17 33 59

10 169 63 18 56 31

11 136 89 15 33 59

12 163 86 12 15 14

13 139 87 15 14 10

14 148 77 16 30 12

15 168 79 14 30 19

16 169 74 12 13 25

17 122 71 14 49 58

18 155 64 19 49 27

19 133 73 19 51 63

20 153 74 15 19 35

21 128 76 15 17 18

22 134 80 18 37 40

23 150 85 19 21 15

24 126 64 19 53 61

25 121 82 18 36 78
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26 149 66 15 37 36

27 149 76 12 45 16

28 123 70 18 38 31

29 130 86 13 33 34

30 141 69 19 22 11

31 170 66 14 19 22

32 165 70 14 16 16

33 146 78 15 14 23

34 160 64 16 33 36

35 163 61 18 63 23

36 130 89 13 31 44

37 163 66 19 52 21

38 168 68 18 35 18

39 128 81 15 14 31

40 126 84 19 26 30

41 126 70 13 45 57

42 122 76 17 22 42

43 131 89 12 36 67

44 135 79 17 24 65

45 122 85 17 30 58

46 156 73 12 14 27

47 141 82 14 41 36

48 126 90 16 12 70

49 151 61 18 17 43

50 153 81 16 14 40

51 157 90 16 31 21

52 172 65 17 17 23

53 142 62 18 36 49

54 151 77 12 36 27

55 130 80 18 11 26

56 170 83 15 23 14

57 149 82 13 34 41

58 141 63 17 21 57

59 135 86 14 28 51

60 135 69 19 18 49

61 142 72 15 27 20

62 150 73 19 13 48

63 160 80 13 37 29

64 147 87 13 22 13

65 130 64 12 48 39

66 163 79 16 14 15

67 152 61 17 26 28

68 128 60 13 51 44
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69 150 87 14 30 46

70 169 71 15 23 19

71 171 72 17 47 13

72 165 80 19 23 19

73 129 76 19 45 67

74 167 77 13 48 17

75 172 65 19 58 26

76 159 64 13 21 31

77 174 74 14 18 18

78 164 76 13 43 15

79 127 76 18 21 12

80 142 63 18 31 27
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