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Abstract: The current research addresses the peristaltic transport mechanism that propels fluid 

through a conduit through rhythmic contraction and relaxation of the conduit walls, a phenomenon 

evident in numerous biological systems, including the gastrointestinal tract. Motivated by 

applications in nano-pharmacological drug delivery and thermo-biomagnetic therapy, a 

mathematical and computational analysis of radiative heat transfer in peristaltic pumping of a 

magnetohydrodynamic (MHD) couple stress nanofluid through a tapered asymmetric passage, 

with the influences of a porous medium and wall slip, is presented. Buongiorno’s two-component 

nanoscale model is deployed and the Stokes couple stress non-Newtonian model utilized. 

Physically the porous medium is modelled with a drag force formulation and simulates the 

presence of obstructions and deposits in the gastric tract and blood vessels. The governing 

equations for the couple stress nanofluid are reduced by employing the long-wavelength 

approximation and the low Reynolds number condition, both standard approaches in fluid 

dynamics research. Analytical solutions are derived for axial velocity, temperature profile, 

nanoparticle concentration, stream function, and pressure gradient, providing a comprehensive 

understanding of the flow dynamics. Furthermore, numerical integration methods are utilized to 

calculate the average pressure increase (ΔP) and the heat transfer coefficient (Z). The impact of 

critical parameters namely the Hartmann number (M), Brownian motion parameter (𝑁𝑏), 
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thermophoresis parameter (𝑁𝑡), Prandtl number (Pr), slip parameter (L) and radiation parameter 

(Rn) on fluid dynamics is examined through comprehensive graphical representations. The 

findings indicate that peristaltic pumping efficiency is superior in a uniform channel relative to a 

non-uniform channel, underscoring the influence of channel geometry on flow performance. 

Moreover, the synergistic effects of thermophoresis and Brownian motion result in a substantial 

elevation of fluid temperature, enhancing thermal energy transfer throughout the system. 

Increasing wall slip parameter diminishes the friction between the fluid and the channel walls, 

facilitating smoother fluid flow and decreasing thermal resistance. Stronger radiative heat flux 

promotes energy absorption in the system, resulting in accelerated fluid cooling at the boundary 

of the conduit (channel). Increasing non-uniformity parameter associated with asymmetry (m) 

leads to a diminished nanoparticle concentration. Increasing Brownian motion nanoscale 

parameter elevates nanoparticle concentrations. A strong modification is also computed with 

thermophoretic nanoscale parameter. Heat transfer coefficient displays oscillatory behavior 

attributable to the contraction and expansion of the channel walls. The complete flow zone is 

categorized into four quadrants (peristaltic pumping zone, increased flow zone, free pumping zone 

and retrograde pumping zone) based on the pressure difference (𝛥𝑃) and time average of the flux 

over one period of the wave (𝛩), each indicating a distinct flow behavior. Increasing Hartmann 

magnetic number augments peristaltic pumping. An increase in Grashof number (Gr) i.e. thermal 

buoyancy parameter correlates with enhanced pumping throughout all four quadrants. This study 

offers significant insights into enhancing peristaltic transport processes in industrial, medicinal, 

and environmental contexts, especially concerning MHD nanofluids inside intricate geometries 

featuring porous media and slip circumstances. 

Key words: Brownian motion and Thermophoresis parameter; Peristalsis; Tapered nonuniform 

channel; Thermal radiation; Couple stress fluid. 

 

1. Introduction 

Recently, researchers have exhibited an increased interest in the study of the peristaltic movement, 

motivated by its expanding uses in industry and medicine. Peristalsis, a mechanism of fluid 

transport, is essential for numerous bodily functions, including the movement of urine from the 

kidneys to the bladder, the transportation of food through the esophagus, the regulation of blood 

flow in small vessels, and the facilitation of bile, lymphatic fluid, and chyme movement in the 
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digestive system. This natural mechanism is essential to the functioning of medical devices such 

as dialysis machines, blood pumps, and heart-lung systems. Peristaltic flow has consistently 

captivated researchers because of its essential function in numerous biological and commercial 

processes. Latham [1] basic experimental research established the basis for extensive studies on 

peristaltic transport across diverse flow conditions and geometries. Shapiro and Jaffrin [2] 

established a significant early mathematical model that analyzed peristaltic flow based on long 

wavelength and low Reynolds number assumptions. This foundational work facilitated future 

investigation into more intricate flow conditions. Radhakrishnamacharya and Radhakrishnamurty 

[3] did a heat transfer analysis in peristaltic transport across non-uniform channels, whereas Gupta 

and Sheshadri [4] examined the challenges of peristaltic pumping in non-uniform tubes. Eytan and 

Elad [5] offered significant insights into fluid dynamics by examining intra-uterine fluid 

movements induced by uterine contractions in a non-pregnant uterus. Further research, including 

that of Srinivas and Kothandapani [6], investigated the heat transfer phenomena in peristaltic 

transport within asymmetric channels, while Muthuraj and Srinivas [7] examined 

magnetohydrodynamic oscillatory flow with heat transfer in undulating channels. Peristaltic 

transport in non-Newtonian fluids has gained significant attention due to its importance in 

biological systems, beyond the study of Newtonian fluids. The couple-stress fluid theory, initially 

introduced by Stokes [8], offers a framework for comprehending the intricate rheological behavior 

of these fluids. This theory has been applied to biological situations, such as blood flow, with 

Chaturani [9] examining the viscosity of Poiseuille flow for couple-stress fluids, and Srivastava 

[10] analyzing the peristaltic transport of these fluids. Mekheimer [11] further investigated couple-

stress fluid transport in both uniform and non-uniform channels, enhancing the comprehension of 

these flows in medical applications. Sobh [12] recently examined the impact of coupling tensions 

and slip flow on peristaltic transport in both uniform and non-uniform channels, contributing to 

the expanding body of knowledge. 

 

Nanofluids, pioneered by Choi [13], signify a new frontier in fluid dynamics research. These 

fluids, composed of nanoparticles dispersed in a base liquid, have improved thermal conductivity 

and distinctive flow properties, rendering them appropriate for numerous industrial and biological 

applications. Choi et al. [14] established that micrometer-sized particles were ineffective for heat 

transfer in real applications, while nanoparticles markedly enhance thermal conductivity without 
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obstructing flow pathways. Buongiorno [15] highlighted the critical role of Brownian diffusion 

and thermophoresis in the mechanics of slip flow involving nanofluids. Nanofluids, particularly 

those containing metallic nanoparticles such as silver, copper, and aluminum, demonstrate 

potential use in confined spaces where efficient heat transfer is essential. Nadeem and Akram [16] 

conducted a further investigation into heat transfer in peristaltic flows of magnetohydrodynamic 

fluids with partial slip, enhancing the comprehension of nanofluid transport in restricted settings. 

The biological applications of nanofluids are substantial. Magnetic cell separation, medication 

delivery, and contrast enhancement in magnetic resonance imaging are several applications. 

Prakash et al. [17] and Landeghem et al. [18] investigated the application of magnetic nanoparticles 

in medical diagnostics, thermotherapy, and imaging, whereas Tripathi and Anwar [19] examined 

the function of nanofluids in drug delivery systems. Akbar and Nadeem [20, 21] explored the 

peristaltic flow of nanofluids in arteries and intestines, including slip effects and the stress-strain 

characteristics of the fluid. Their updated research [22] examined the flow of nanofluids in non-

uniform tubes, emphasizing the influence of slip and temperature effects on peristaltic transport. 

 

Subsequent inquiries into MHD peristaltic flow have revealed the impact of nanoparticle 

interactions with biological systems. Nadeem et al. [23] examined the effects of temperature and 

also with velocity slip on magnetohydrodynamic peristaltic flow, incorporating carbon nanotubes 

within asymmetric channels. Nadeem and Ijaz [24] inspected the influence of metallic 

nanoparticles on blood circulation in arteries impacted by stenosis and aneurysm, illustrating the 

potential of nanofluids in biomedical applications. Aly and Ebaid [25] surveyed the influence of 

velocity second slip boundary conditions on the peristaltic flow of nanofluids in asymmetric 

channels, enhancing the comprehension of flow dynamics in practical applications. Furthermore, 

Habibi et al. [26] emphasised the influence of a high-gradient magnetic field on nanoparticle 

distribution within pulsatile blood flow, demonstrating the prospective applications of 

nanotechnology in medical therapies. Deepalakshmi et al. [27, 28] offered significant insights into 

the intricate dynamics of electromagnetic peristaltic flow along with wall properties involving 

multi-phase non-Newtonian thermo-solutal transport. Their study highlighted the application of 

magnetic fields, combined with an understanding of the Hall effect, can effectively control the 

behaviour of non-Newtonian fluid flow. Precise solutions addressing the influence of Hall current 

and thermal radiation on oscillatory Darcy blood flow in a stenosed artery was characterized by 
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Shankar et al. [29]. Kothandapani et al. [30] investigated the peristaltic motion of 

magnetohydrodynamic Carreau fluid in tapered asymmetric channels. The research proposed by 

Shankar et al. [31,32] aims to investigate blood flow in a stenosed artery modeled as a Newtonian 

fluid, taking into account the effects of a magnetic field, chemical reactions, thermal radiation, 

radiative heat flux, and a porous medium. Kothandapani and Prakash [33] analyzed Williamson 

nanofluids subjected to magnetic fields and thermal radiation. Nevertheless, these investigations 

failed to account for the distinct characteristics of couple-stress nanofluids within porous media. 

Rafiq and Khan [34,35] assessed the thermal and mass transfer features of nanofluids using the 

Buongiorno model, which accurately represents the effects of Brownian motion and 

thermophoretic diffusion, highlighting their unique qualities. The research investigates the 

dynamics of a magneto-couple stress nanofluid affected by chemical reaction within a 

peristaltically driven, symmetric, nonuniform channel. Alhazmi et al. [36] performed a 

comprehensive examination of a mathematical model for pair stress magneto-nanofluids, solving 

the governing equations of motion through long wavelength and low Reynolds number 

approximations, in light of its significance to biological flow dynamics. The investigation by Nisar 

et al. [37] explains the effects of thermally convective boundary conditions and zero mass flux 

constraints on flexible channel walls, emphasizing their significance in fluid flow analysis. Yasmin 

and Bilal et al. [38-40] emphasized that an increase in the thermophoresis coefficient intensifies 

the temperature distribution, as a higher concentration of particles enhances thermophoretic 

activity. These findings hold significant potential for medical applications, particularly in 

nanoparticle-based drug delivery systems for targeting cancer cells. A clear understanding of the 

peristaltic mechanism is essential for analyzing various biological flow systems. Akram et al. 

[41,42] conducted a numerical investigation into the double-diffusive peristaltic flow of a non-

Newtonian six-constant Jefferys nanofluid within an irregular medium. Additionally, Akram et al. 

[43-45] examined the distinctive rheological properties of magneto-pseudoplastic nanofluids, 

emphasising the impact of the pseudoplastic characteristics of nanoparticles and their interaction 

with a magnetic field on flow dynamics. Furthermore, they formulated a mathematical model for 

Sisko fluids and pseudoplastic nanofluids, integrating double-diffusive convection and an angled 

magnetic field with diverse waveforms, utilising a simple solution approach. 
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Despite previous studies which have examined different aspects of peristaltic pumping separately 

(e.g. nanofluids, magnetic body force, slip effects etc), the generalized multi-physical problem of 

magnetohydrodynamic (MHD) couple stress nanofluids within tapered asymmetric channels 

containing porous media (i.e. fatty deposits, obstructions etc) is still largely unexamined. This is 

the motivation for the present investigation, which fills the research gap by examining the 

peristaltic motion of MHD couple-stress nanofluids with wall slip in tapered asymmetric porous 

channels which is relevant to electromagnetic non-Newtonian flows in physiological systems. The 

current study also generalizes previous investigations by amalgamating multiple physics aspects 

including magnetohydrodynamics (MHD), non-Newtonian couple stress behaviour which can 

represent actual biofluids, porous medium drag effects, convective and radiative heat transfer, 

geometric asymmetry of blood vessels and wall slip effects, which provides a more comprehensive 

approach to actual medical fluid dynamics analysis. By applying the assumptions of long 

wavelength and low Reynolds number, the governing equations are streamlined, yielding 

analytical solutions for the flow variables. The impact of essential parameters on flow 

characteristics is subsequently examined, yielding new insights into this intriguing domain of 

biological fluid dynamics of relevance to pharmacology, thermo-magnetic therapy and other 

biomedical treatments. The necessity of well-defined research questions enhances the manuscript 

and also aim to the study's technical rigor and ensure its contribution to the field. 

 How do magnetohydrodynamic (MHD) and couple stress effects influence the peristaltic 

transport of nanofluids in tapered asymmetric porous channels? 

 What is the impact of slip boundary conditions on the flow dynamics and heat transfer 

characteristics of MHD couple stress nanofluids in physiological systems? 

 How do porous medium drag effects (e.g., fatty deposits, obstructions) alter the peristaltic 

motion and thermal behavior of the nanofluid? 

 In what manner do convective and radiative heat transfer mechanisms contribute to the 

overall energy distribution in the flow system? 

 How do key non-dimensional parameters (e.g., Hartmann number, couple stress parameter, 

slip coefficient) affect velocity, temperature, and concentration profiles? 

 

2. Mathematical Formulation 
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The peristaltic transport of a MHD couple stress nanofluid in an infinite two-dimensional tapered 

asymmetric porous channel with slip effects is studied herein. The effect of radiative heat transfer 

is also considered. The boundary of the left- and right-hand side walls are  1 ,Y H X t  and 

 2 ,Y H X t , where (U) and (V) are the velocities of axial and transverse directions respectively 

and (X) is the axial direction and (Y) is the transverse direction. The half width of the channel is d 

with the wave speed (c). The channel walls are maintained at temperatures (𝑇0) and (𝑇1) 

respectively, which are high enough to induce radiative heat transfer. (𝐶0) and (𝐶1) denote the 

concentrations of the right and left side walls, respectively.  

  

 

Fig. 1 Geometry of a tapered asymmetric channel  

The channel boundaries are modelled by the following equations, which simulate sinsusoidal 

wave motions on the walls: 

  

 1 1

2
( , ) sinH X t d m X a X ct

 
      

 




  

       (1)

 2 2

2
( , ) sinH X t d m X a X ct

 
        

 





 

      (2)
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Where (𝑎1) and (𝑎2) are the amplitudes of the right and left hand side walls, (𝜆) is the wavelength, 

the phase difference (𝜙) varies in the range 0    , 0  that corresponds to the symmetric 

channel with waves out of phase and 𝜙 = 𝜋 with waves in phase, and further (𝑎1), (𝑎2), (d) and 

(𝜙) satisfy the condition of the inlet of the divergent channel : 

 

 
22 2

1 2 1 22 cos 2a a a a d            (3) 

 

The equations regulating the flow of an incompressible couple stress nanofluid [10,11] are 

presented as follows:
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     (8)

 

Where 𝜕 𝜕𝑡′⁄  is the material time derivative,  (𝜇) is the coefficient of viscosity, (P) is the pressure 

in fixed frame, (𝜂) denotes the constant related to couple stress, (𝑘0) represents the permeability 

parameter of the porous medium, (𝜎′) signifies the electric conductivity coefficient, (𝐵0)indicates 

the transverse magnetic field, (g) refers to gravitational acceleration, (𝛽𝑡)is the thermal expansion 

coefficient, (𝜌𝑓)is the constant density of the base fluid, (𝜌𝑝) is the density of the particle, (T) is 

the temperature of the fluid, (𝛽𝑐) denotes the concentration expansion coefficient, (𝐶′𝑓) the 

volumetric expansion coefficient is also referenced. (K) represents the thermal conductivity of the 

nanofluids, (C) denotes the nanoparticle concentration, (𝐶′𝑝) is the specific heat at constant 
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pressure, (𝐷𝐵) marks the Brownian diffusion coefficient, (𝑇𝑚) refers to the fluid mean 

temperature, (𝐷𝑇) signifies the thermophoretic diffusion coefficient, (𝑄0) indicates the constant 

heat addition/absorption which may correspond to a thermal probe in biomedicine which creates a 

hot spot. In the mathematical model a Lorentzian magnetic drag force term appears which is 

characteristic of MHD pumping flows and acts transverse to the direction of the applied magnetic 

field. Here the Darcy-Brinkman model has been deployed which includes a linear drag force in the 

momentum equations for low Reynolds number propulsion. The radiative heat flux in the X – 

direction is negligible as compared to Y – direction but still represents physically achievable 

conditions in for example thermo-magnetic radiation therapy in biomedicine. Assuming the 

biofluid is optically thick, the Rosseland diffusion approximation for radiation hat transfer is valid 

and the associated radiative heat flux (𝑞𝑟) is given by

 

 

3

016 *
.

3 *
r

T T
q

k Y

 
 


          (9)

 
Where (𝜎∗)  and (𝑘∗) are the Stefan-Boltzmann constant and mean absorption coefficient 

respectively. 

In order to describe the fluid flow in the non-dimensional form, we introduce the following non 

dimensional quantities, 
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Applying all non-dimensional quantities in governing equations (4) - (8) and introducing the 

stream function 

,u v
y x

 
  
 

 


       

The equations (5) – (8) expressed in terms of the stream function (𝜓) are presented as follows, 
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Where (t) is the dimensionless time, (x) is the dimensionless axial coordinate, (y) is the 

dimensionless transverse coordinate, (u) and (v) are dimensionless axial and transverse velocity 

components, (p) is the dimensionless pressure, (R) is the Reynolds number, (𝛿) is the wave 

number, (M) is the Hartmann number, (k) is the porosity parameter, (𝜃) is the dimensionless 

temperature, (𝜎) is the dimensionless rescaled nanoparticle volume fraction, (Pr) is the Prandtl 

number, (Gr) is the local Grashof number, (Br) is the local nanoparticle Grashof number, (𝑁𝑏) is 

the Brownian motion parameter, (𝑁𝑡) is the thermophoresis parameter, (𝑅𝑛) is the radiation 

parameter, (𝛽) is the non-dimensional heat source/sink parameter and (Sc) is the Schmidt number.  

Reducing all the equations under long wavelength and low Reynolds number approximation, and 

neglecting the first and higher order of (𝛿), the Eqs. (10) – (13) become, 
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Eliminating of pressure term from Eqs. (14) and (15) gives, 
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nR
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The corresponding boundary conditions in terms of stream function are given by [2, 5, 13],  
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Where (a) and (b) are the amplitudes of left and right walls respectively, (m) is the non - uniform 

parameter, (F) is the flux in the wave frame and (a), (b), (𝜙) and (d) satisfies the relation: 

 
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The time averaged flow over a period at a fixed position X is defined as 
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Where (q) is the rate of volume flow in the moving frame.  

If we find dimensionless mean flows (F), in the laboratory frame and (𝛩) in the wave frame to 
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Where (𝛩)  is the time average of the flux over one period of the wave and (F) is the flux. 

After using non dimensional quantities in Eq. (29), it is found that Eq. (27) becomes [13, 14, 19, 

24],   

      , sin2 sin 2F x t a x t b x t                                                                                    (30)
 

In which,  
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h
F udy              (31) 

3. Exact analytical solution of the problem 

Solving the Eqns. (18) - (20) subject to the boundary conditions (22) and (23), the temperature, 

concentration and and stream function solutions are determined as follows: 
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   (34) 

𝑓1 is obtained by assuming  𝛾 =  𝛾1 (i.e. by assuming the slip parameters of temperature and 

concentration are equal),  
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The mathematical expression for axial velocity is derived from Equation (34). 
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The expression for pressure gradient is obtained from Eq. (14), 
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The non-dimensional form for the heat transfer coefficient (Z) and the pressure rise (𝛥𝑃) is 

expressed as follows: 

2x yZ h             (37)
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4. Results and Discussion 

 The pressure gradient (𝑑𝑃 𝑑𝑥⁄ ), velocity (u), temperature (θ), concentration (σ), and 

streamlines (ψ) of the couple stress nanofluid model are examined by numerical and graphical 

methods. The impact of several parameters, including the Hartmann magnetic number (M), Prandtl 

number (Pr), heat source/sink parameter (β), Grashof number (Gr), nanoparticle Grashof number 

(Br), Brownian motion parameter (𝑁𝑏), thermophoresis parameter (𝑁𝑡), radiation parameter (𝑅𝑛), 

couple stress parameter (S), slip parameter (L), and non-uniform parameter (m) on axial velocity, 

pressure gradient, temperature, concentration, heat transfer coefficient, and average pressure rise 

is illustrated in Figs. 2–29.   

4.1 Velocity distribution 

The variation of fluid parameters related to axial velocity (u) is thoroughly illustrated in Figs. 2–

7, demonstrating that the velocity profiles possess a parabolic nature. Each graph elucidates how 

various fluid dynamic parameters affect the velocity distribution within the channel, enhancing an 

appreciation of the key transport phenomena of relevance to medical applications. The influence 

of the Hartmann number (M) on the velocity (u) is analyzed from Fig. 2. The graph indicates that 

an increase in the Hartmann number correlates with a significant rise in velocity near the channel 

walls. This phenomenon arises from the magnetic field effect, which diminishes velocity at the 

channel center (core zone) while augmenting it around the walls, associated with a re-distribution 

in linear momentum. Conversely, in the central region of the channel, an increase in (M) leads to 

a reduction in velocity. This phenomenon indicates a non-uniform interaction between the 

magnetic field and the fluid flow, resulting in varied velocity over the channel’s cross-section. Fig. 

3 displayed the influence of the couple stress parameter (S) on the velocity field. The results 

indicate a complex interaction in which an increase in (S) correlates with an elevation in velocity 

in specific portions of the channel, whereas in other areas, the velocity diminishes. In specific 

places, this resistance may produce a more uniform velocity distribution, perhaps enhancing flow 

velocity near the centre of the domain, particularly in shear-driven flows within channels. The dual 

effect is likely attributable to the impact of couple tensions, which generate resistance in certain 

regions while facilitating flow in others.  Fig. 4 analyzes the influence of the thermophoresis 
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parameter (𝑁𝑡) on velocity. Analogous to the couple stress parameter, an increase in (𝑁𝑡) results 

in an elevation in velocity in certain regions and a reduction in others. Thermophoresis, the 

movement of particles induced by temperature gradients, results in variations in flow patterns, with 

increased particle motion in areas of elevated temperature gradients. Fig. 5 emphasizes the impact 

of the slip parameter (L) on velocity profiles. It is evident that the slip parameter influences velocity 

in a manner akin to the non-Newtonian couple stress parameter (S). Both characteristics exert 

alternating influences on velocity, resulting in areas of both enhanced and diminished flow. This 

indicates that the slip at the channel barrier intricately influences the velocity distribution, 

contingent upon the particular area within the channel. This greater slip parameter results in a more 

pronounced effect of the velocity gradient near the surface, causing acceleration of the fluid in that 

specific region. A similar behavior of the slip parameter has been observed in the findings of 

Shankar et al. [28]. The local Grashof number (Gr), indicating the ratio of buoyancy to viscous 

forces, significantly influences velocity, as explored in Fig. 6. In the region –ℎ2 < y < 0.4, the 

velocity escalates with an increase in (Gr), propelled by buoyant forces. In the interval 0.4 < y < 

ℎ1, the velocity diminishes, signifying that viscous forces prevail over buoyancy, resulting in a 

divergent impact on flow dynamics. Fig. 7 illustrates the impact of the nanoparticle Grashof 

number (Br), which quantifies the buoyancy effect resulting from the concentration gradients of 

nanoparticles. Analogous to the (𝑁𝑡) thermophoresis parameter, (Br) exhibits an increase in 

velocity in certain locations while demonstrating a decrease in others. This indicates that 

differences in nanoparticle concentration substantially affect fluid dynamics and velocity 

distribution inside the channel.  

 

Fig. 2 Velocity profile (u) for (M) 

 

Fig. 3 Velocity profile (u) for (S) 
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Fig. 4 Velocity profile (u) for (𝑁𝑡) Fig. 5 Velocity profile (u) for (L) 

 

Fig. 6 Velocity profile (u) for (Br) 

 

Fig. 7 Velocity profile (u) for (Gr) 

 

 Figures 8 to 11 are illustrated to examine the influence of different physical parameters on 

the pressure gradient across one wavelength period (0,1).  Figs. 8 and 9 indicate that the pressure 

gradient decreases with the increase in permeability of the porous medium (k) and couple stress 

parameter (S). With an increase in permeability, i.e. progressive depletion of obstructive material 

in the conduit (channel), the fluid encounters less drag and resistance from the porous medium 

solid fibers, hence reducing the requirement for a substantial pressure gradient to sustain the same 

flow rate. An elevation in (S) introduces supplementary shear resistance due to the fluid’s 

microstructural interactions. This diminishes the velocity gradient in high-shear areas, resulting in 

a smaller pressure gradient. Fig. 10 presents the effect of phase difference (𝜙) on the pressure 

gradient. It is noted that the pressure gradient decreases in both the wide and the narrow part of 

the channel. Furthermore, it is observed that the narrow region in the channel shifts to the left with 

an increase in phase shift  (𝜙). Fig. 11 clearly shows that an increase in thermophoresis parameter 
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(𝑁𝑡) results in an increase in the amplitude of the pressure gradient. As (𝑁𝑡) grows, the 

thermophoretic force exerted on particles intensifies, resulting in enhanced migration of particles 

towards cooler areas. This redistribution locally modifies the fluid density and viscosity, 

potentially resulting in fluctuations in the pressure necessary to maintain the flow. 

 

 

Fig. 8 Pressure Gradient profile (𝑑𝑝 𝑑𝑥⁄ ) for 

(S) 

 

Fig. 9 Pressure Gradient profile (𝑑𝑝 𝑑𝑥⁄ ) for 

(k) 

  

 

Fig. 10 Pressure Gradient profile (𝑑𝑝 𝑑𝑥⁄ ) for 

(𝜙) 

 

Fig. 11 Pressure Gradient profile (𝑑𝑝 𝑑𝑥⁄ ) for 

(𝑁𝑡) 

 

 

4.2 Temperature distribution   

 

 Figs 12 - 15 analysis investigates the temperature profiles for different values of the slip parameter 

(𝛾), radiation parameter (𝑅𝑛), Brownian motion parameter (𝑁𝑏), and Prandtl number (Pr). Fig. 
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12 illustrates and examines the influence of the radiation parameter (𝑅𝑛) on the fluid temperature. 

We observe that a rise in (𝑅𝑛) leads to a decrease in fluid temperature. The inverse connection 

arises from increased radiative heat transfer, which facilitates energy dissipation from the fluid 

and reduces the temperature. The fluid dissipates additional energy as (𝑅𝑛) increases, thereby 

diminishing the internal thermal energy. Fig. 13 illustrates that as (𝛾) (slip parameter) escalates, 

the temperature concurrently climbs, presumably due to less frictional resistance at the interfaces, 

facilitating enhanced heat accumulation within the fluid. Fig. 14 illustrates the temperature profile 

for different Prandtl number (Pr) values. The Prandtl number denotes the ratio of momentum 

diffusivity to thermal diffusivity, with distinct fluids exhibiting various Pr values. The graphic 

indicates that when the Prandtl number (Pr) increases—from 0.015 for mercury, 0.71 for air, 7 for 

water, to 11.2 for water at 4°C the temperature of the fluid rises. Lower Prandtl numbers, such as 

those associated with mercury, demonstrate a linear temperature distribution, whereas higher 

Prandtl numbers, like those for water, display a parabolic distribution. This transition signifies that 

when (Pr) increases, the thermal conductivity of the fluid diminishes, resulting in more 

pronounced temperature gradients within the flow. Fig. 15 illustrates that an elevation in the 

Brownian motion parameter (𝑁𝑏) corresponds with an increase in temperature. Similarly, Bilal et 

al. [38,39] emphasized that an increase in the Brownian motion parameter (𝑁𝑏)  intensifies the 

temperature distribution, as a higher concentration of particles enhances thermophoretic activity. 

Brownian motion is accelerated by the heat energy of fluid molecules. As the temperature 

escalates, the kinetic energy of these molecules correspondingly increases, resulting in more 

intense and frequent collisions with suspended particles. This increased activity leads to a rise in 

the fluid’s temperature. 

 

 

4.3 Concentration Distribution  

 

Figs. 16–19 show how the nanofluid’s concentration changes with different parameters. They 

show how the heat source/sink parameter (𝛽), non-uniform parameter (m), thermophoresis 

parameter (𝑁𝑡) and Brownian motion parameter (𝑁𝑏) affect the concentration of nanoparticles. In 

Fig. 16, an increase in (𝛽) (heat source) diminishes the concentration. As (𝛽) grows, the heat 
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source produces supplementary thermal energy within the system, amplifying temperature 

gradients. These gradients can induce solutes or particles to migrate from areas of elevated 

temperature due to thermal diffusion or thermophoretic processes. Fig. 17 demonstrates that 

increased non-uniformity (m) leads to a diminished nanoparticle concentration, suggesting that 

irregular flow patterns induced by non-uniformity distribute particles more uniformly, hence 

decreasing local concentrations. Fig. 18 illustrates that a variation in the thermophoresis parameter 

(𝑁𝑡). Enhanced (𝑁𝑡) facilitates the temperature-dependent diffusion of particles. This 

phenomenon disperses the particles throughout a wider area, reducing their concentration, 

especially in areas of elevated temperature. A more pronounced thermophoretic effect results in a 

greater decrease in concentration adjacent to the heat source or in areas of increased temperature. 

Fig. 19 shows that as the amount of (𝑁𝑏) goes up, the concentration goes up too. This is because 

increased Brownian motion causes more random particle movement, which leads to more 

nanoparticles building up in the fluid. The Brownian motion parameter (𝑁𝑏) indicates the 

magnitude of random, thermally induced particle movement in a fluid. As (𝑁𝑏) increases, the 

kinetic energy of the particles escalates, resulting in more intense motion. 

This improved mobility facilitates improved mixing and diminishes the probability of particle 

sedimentation, thereby elevating the total concentration of particles in the fluid. 

 

 

Fig. 12 Temperature profile (𝜃) for (𝑅𝑛) 

 

Fig. 13 Temperature profile (𝜃) for (𝛾) 
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Fig. 14 Temperature profile (𝜃) for (Pr) 

 

Fig. 15 Temperature profile (𝜃) for (𝑁𝑏) 

 

 

 

Fig. 16 Concentration profile (𝜎) for (𝛽) 

 

 

Fig. 17 Concentration profile (𝜎) for (m) 

 

Fig. 18 Concentration profile (𝜎) for (𝑁𝑡) 

 

Fig. 19 Concentration profile (𝜎) for (𝑁𝑏) 

 

4.4 The heat transfer coefficient 
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Figs 20–23 depict the behavior of the heat transfer coefficient (Z) in relation to diverse physical 

characteristics, elucidating the impact of these parameters on heat transfer efficiency within the 

fluid system. The data indicate that the heat transfer coefficient displays oscillatory behavior 

because of the contraction and expansion of the channel walls, a crucial aspect influencing heat 

transport within the system. Fig. 20 analyzes the influence of the heat source/sink parameter (𝛽) 

on the heat transfer coefficient (Z). It indicates that as (𝛽) rises, (Z) also ascends. A more potent 

heat source results in increased heat generation inside the fluid, hence augmenting the total rate of 

heat transfer. This suggests that elevated (𝛽) values enhance heat transmission by augmenting the 

thermal energy present in the system. Fig. 21 illustrates the effect of the radiation parameter (𝑅𝑛) 

on (Z). In contrast to the other factors, a rise in (𝑅𝑛) results in a reduction in the heat transfer 

coefficient. Radiation promotes energy absorption in the system, resulting in accelerated fluid 

cooling at the boundary of the conduit (channel) and consequently diminishing the heat available 

for transfer. The efficiency of heat transmission diminishes with increased radiation levels, 

resulting in a fall in (Z). Fig. 22 illustrates the effect of the slip parameter (𝛾) on the heat transfer 

coefficient. An elevation in (𝛾) leads to an augmentation in (Z). The slip parameter diminishes the 

friction between the fluid and the channel walls, facilitating smoother fluid flow and decreasing 

thermal resistance. This enhances the efficiency of heat movement along the channel, resulting in 

an elevated heat transfer coefficient. Fig. 23 illustrates the effect of the Prandtl number (Pr) on the 

heat transfer coefficient. As (Pr) rises, (Z) also ascends. Elevated Prandtl numbers are indicative 

of fluids with less thermal diffusivity (like water), which retain heat inside the fluid and improve 

the heat transmission mechanism. This results in a more effective heat exchange and an elevated 

value of (Z) as (Pr) increases.  

 

Fig. 20 Coefficient of heat transfer (Z) for (𝛽) 
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Fig. 21 Coefficient of heat transfer (Z) for 

(𝑅𝑛) 

  

 

 

Fig. 22 Coefficient of heat transfer (Z) for (𝛾) 

 

Fig. 23 Coefficient of heat transfer (Z) for 

(Pr) 

4.5 Pressure drop 

The correlation between the average pressure rise (𝛥𝑃) and the time-averaged flow rate (𝛩) for 

several parameter values, including the non-uniform parameter (m), Hartmann number (M), slip 

parameter (L), and Grashof number (Gr), is computed and illustrated in Figs. 42–45. The complete 

flow zone is categorized into four quadrants according to the signs of (𝛥𝑃) and (𝛩), each 

indicating a distinct flow behavior: 

 Quadrant I (𝛥𝑃 > 0, 𝛩 > 0) pertains to the peristaltic pumping zone, characterized by 

positive pressure increase and flow rate. 

 Quadrant II (𝛥𝑃 < 0, 𝛩 > 0) represents the increased flow zone, wherein the pressure 

decline facilitates the positive flow rate. 

 Quadrant III, the free pumping area is defined by 𝛥𝑃 = 0, where the positive flow (Q > 0) 

is solely attributed to peristalsis, compensating for the lack of a pressure differential. 

 Quadrant IV (𝛥𝑃 > 0, 𝛩 < 0) represents the retrograde pumping zone, characterized by 

flow moving in the opposite direction despite an increase in pressure. 

Each picture illustrates the influence of various physical characteristics on the interaction between 

(𝛥𝑃) and (𝛩) in these locations. 
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Fig. 24 depicts the correlation between the average pressure increase (𝛥𝑃) and the time-averaged 

flow rate (𝛩) for different values of the Hartmann number (M). As (M) grows, the correlation 

between (𝛥𝑃) and (𝛩) exhibits greater linearity, signifying a more direct connection between 

pressure rise and flow rate. Moreover, an elevation in M augments peristaltic pumping in quadrant 

I, as the magnetic field (denoted by (M)) heightens the barrier to fluid movement, necessitating a 

bigger pressure increase for an equivalent flow rate. This leads to enhanced peristaltic pumping as 

(M) increases. Fig. 25 illustrates the impact of the non-uniform parameter (m) on (𝛥𝑃) and (𝛩). 

It is noted that an increase in m results in improved peristaltic pumping throughout the expanded 

flow zone (quadrant II). This indicates that channel non-uniformity enhances the fluid’s capacity 

to flow in reaction to the pressure differential. As (m) grows, the system demonstrates enhanced 

fluid transport efficiency, leading to elevated flow rates for a specified pressure increase. This 

phenomenon is especially evident in the augmented flow zone, where (𝛥𝑃) is negative but the 

flow rate persists as positive. An analogous trend in analysis [29] reveals a linear relationship 

between (𝛥𝑃) and (𝛩), where for larger values of M, the observed trends are inverse to those of 

m in both cases when (𝛥𝑃) > 0  and (𝛥𝑃) < 0. Fig. 26 examines the influence of the slip 

parameter (L) on the correlation between (𝛥𝑃) and (𝛩). The findings indicate that as (L) increases, 

peristaltic pumping diminishes in all areas. An increased slip parameter diminishes the friction 

between the fluid and the channel walls, facilitating enhanced fluid motion with a lower requisite 

pressure increase. The reduction in the necessary pressure for a specific flow rate leads to less 

peristaltic pumping, especially in quadrant I, where both (𝛥𝑃) and (𝛩) are positive. The impact 

of the Grashof number (Gr) on (𝛥𝑃) and (𝛩) is depicted with variations in Fig. 27. An increase 

in (Gr) correlates with enhanced pumping throughout all quadrants. The Grashof number denotes 

the ratio of buoyant forces to viscous forces, and as (Gr) grows, buoyant effects become 

increasingly predominant. This leads to enhanced fluid dynamics for a certain pressure increase, 

hence improving peristaltic pumping universally. Quadrant I exhibit a significant enhancement in 

peristaltic pumping with elevated (Gr), as buoyant forces facilitate fluid motion more efficiently. 
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Fig. 24 Average pressure rise (𝛥𝑃) for (M) 

 

Fig. 25 Average pressure rise (𝛥𝑃) for (m) 

 

 

Fig. 26 Average pressure rise (𝛥𝑃) for (L) 

 

 

Fig. 27 Average pressure rise (𝛥𝑃) for (Gr) 
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Fig. 28 Streamline plot for varying couple stress parameter (S) (a) 𝑆 =  3, (b) 𝑆 =  5 

 

4.6 Streamline plots 

In peristaltic motion, a prominent phenomenon known as “trapping” occurs, characterized by fluid 

boluses constrained within specific regions of the flow. These boluses, observed in streamline 

patterns, represent portions of the couple stress fluid moving at the wave speed, as if they are 

“captured” by the peristaltic waves propagating along the deformable microchannel walls. 

Trapping typically arises under specific conditions, notably when the amplitude ratio is large. This 

phenomenon has been examined for various values of the couple stress parameter (S) and porosity 

parameter (k) in the context of couple stress nanofluid flow within a tapered, magnetised porous 

channel. The results, depicted in Figs. 28 and 29, highlight the influence of these parameters on 

the trapping mechanism and the behaviour of boluses in this specific flow configuration. Fig. 28 

explains the couple stress parameter (S) escalates, boluses in the streamline plots enlarge, 

manifesting as more substantial recirculatory zones. These boluses may additionally migrate 

deeper into the domain due to increased rotating effects. In systems involving couple stress fluids, 

larger boluses can enhance heat and mass transfer by increasing the recirculation of the fluid, 

improving overall system performance. Fig. 29 depicts the streamline variation with varying 

values of porosity parameter (k). As porosity rises, the fluid's contact with the porous material 

diminishes shear forces that frequently contribute to bolus development. The diminished strength 

of secondary flow immediately constrains the magnitude and intensity of recirculatory zones. 
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Fig. 29 Streamline plot for varying (k) porosity parameter (a) 𝑘 =  0.3, (b) 𝑘 =  0.5  

 

 

 

 

 

Conclusions 

The current study, motivated by applications in nano-drug transport in the gastric tract and 

biomagnetic thermal radiation therapy, has investigated the peristaltic motion of a 

magnetohydrodynamic (MHD) couple stress nanofluid in a tapered asymmetric channel containing 

a non-deformable porous medium with slip effects and radiative heat transfer. The governing 

equations for the couple stress nanofluid are simplified by employing long wavelength and low 

Reynolds number approximations, enabling the linearisation of the equations. Analytical solutions 

for key flow variables including velocity, pressure gradient, temperature, nanoparticle 

concentration profiles, and the heat transfer coefficient were produced and examined through 

graphical representations. The principal conclusions are as follows: 

(i) Velocity is elevated i.e. flow acceleration is produced with increasing values of the Brownian 

motion parameter (𝑁𝑏), non-uniform parameter (m), and slip parameter (L). These factors improve 
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fluid dynamics by facilitating nanoparticle movement and diminishing boundary resistance. The 

velocity diminishes as the Hartmann number (M) and Grashof number (Gr) increase.  

(ii) Stronger magnetic field (M) produces a Lorentz force that inhibits flow i.e. induces core zone 

flow deceleration, whilst thermal buoyancy effects (Gr) diminish fluid velocity adjacent to the 

channel walls.  

(iii) The pressure gradient is elevated with the Hartmann number (M) and the slip parameter (L). 

An intensified magnetic field increases resistance to fluid motion, necessitating a greater pressure 

gradient, whereas augmented slip at the boundaries diminishes friction, also demanding a larger 

pressure gradient to maintain flow.  

(iv) Temperature increases with the elevation of both the thermophoresis parameter (𝑁𝑡) and the 

Brownian motion parameter (𝑁𝑏). These factors facilitate the heat transfer process by propelling 

particles from hotter to cooler areas (𝑁𝑡) and inducing random thermal motion (𝑁𝑏), both of which 

increase the fluid's total temperature. 

(v) Nanoparticle concentration magnitudes exhibit a declining tendency with increases in the heat 

source parameter (𝛽), slip parameter (𝛾), non-uniform parameter (m), thermophoresis parameter 

(𝑁𝑡), and Prandtl number (Pr). These parameters enhance nanoparticle diffusion, hence 

diminishing local concentrations. The concentration profile is enhanced with thermal radiation 

parameter (𝑅𝑛), as radiative effects lead to energy accumulation which influences nanoparticle 

diffusion.  

(vi) The heat transfer coefficient (Z) rises with the heat source parameter (𝛽), non-uniform 

parameter (m), thermophoresis parameter (𝑁𝑡), Brownian motion parameter (𝑁𝑏), and Prandtl 

number (Pr). These parameters augment thermal conductivity and energy transmission within the 

system, resulting in an increased rate of heat transfer to the walls of the conduit.  

(vii) Pumping efficiency is more effective in a uniform channel than in a non-uniform channel. 

Non-uniformity engenders flow resistance and anomalies in the pumping transport, hence 

diminishing the efficacy of peristaltic pumping systems. A homogeneous channel facilitates 

smoother fluid movement, resulting in enhanced pumping efficiency. 

 

This paper offers an extensive examination of peristaltic transport in a magnetohydrodynamic 

couple stress nanofluid as a model of nano-drug transport in the gastric tract, and features many 

factors, such as magnetic fields, thermophoresis, Brownian motion, and slip effects. The results 
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illustrate the crucial influence of these factors on regulating fluid velocity, temperature, 

nanoparticle concentration, pressure, and heat transfer within the system. These multi-physical 

aspects when considered simultaneously provide a more generalized appraisal of actual thermo-

magnetic radiation and nano-drug applications, enabling a deeper understanding of the interplay 

of multiple effects on pumping efficiency. The analytical answers and insights obtained can inform 

the design of more efficient systems for heat transfer, medication delivery, and other fluidic 

processes. Future studies may address 3-D pumping, alternate non-Newtonian models e.g. 

Eringen’s micropolar model (which includes angular momentum of suspended particles), 

alternative radiative flux models e.g. Schuster-Schwarzchild two-flux model and additionally may 

consider non-Darcy inertial (Forchheimer) effects for porous media.   
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Nomenclature   

X,Y   Laboratory reference frame 𝛾 Slip parameter 

𝑥, 𝑦   Wave frame of reference  𝜇  Fluid dynamic viscosity 

S  Couple stress fluid K Thermal conductivity 
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𝐻1, 𝐻2  Upper and lower channel walls    𝜌𝑓,𝜌𝑝 Density of the base fluid and particle 

𝑑1, 𝑑2 
 Half-width of the microchannel 

 𝛽𝑡, 𝛽𝑐 
Thermal and concentration expansion 

coefficient 

𝑎1, 𝑏1  Wave amplitude 𝜎′ Electric conductivity coefficient  

𝑇0, 𝑇1  Wall Temperature  𝑘∗ Rosseland mean absorption coefficient 

t  Time period C Nanoparticle concentration 

𝜆  Wavelength 𝐶′𝑝 Specific heat at constant pressure 

c  Wave velocity 𝑁𝑏 Brownian diffusion coefficient 

𝐵0 Uniform magnetic field 𝑁𝑡 Thermophoresis parameter 

𝜙  Phase difference  R Reynolds number 

T  Temperature of the fluid M Hartmann number 

P  Pressure of the liquid k Porous parameter 

g  The acceleration caused by gravity Gr Thermal grashof number 

𝑄0  Heat addition/absorption Sc Schmidt number 

𝑘0  Permeability of a porous medium 𝑅𝑛 Radiation parameter 

𝑞𝑟  Radiation heat flux Pr Prandtl number 

m Non-uniform parameter Br Local nanoparticle Grashof number 
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