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A B S T R A C T

Systematic decametric resolution global mapping of vegetation biophysical variables, including fraction of 
absorbed photosynthetically active radiation (fAPAR), fraction of vegetation cover (fCOVER), and leaf area index 
(LAI), is required to support various activities, including climate adaptation, crop management, biodiversity 
monitoring, and ecosystem assessments. The Canada Centre for Remote Sensing (CCRS) version of the Simplified 
Level 2 Prototype Processor (SL2P-CCRS) enables global mapping of these variables using freely available me
dium resolution multispectral satellite data from Sentinel-2 (S2) and Landsat-8/9 (LS) data. In this study, fiducial 
reference measurements (RMs) from the National Ecological Observatory Network (NEON) supplemented with 
regional measurements from CCRS were used to evaluate the consistency between SL2P-CCRS estimates of 
fAPAR, fCOVER and LAI from LS and S2 data and to quantify their temporal stability. SL2P-CCRS estimates of 
fCOVER (Accuracy (A) ~ 0.03, Uncertainty (U) ~ 0.13) and fAPAR (A ~ − 0.03, U ~ 0.13) from LS and S2 were 
unbiased, and generally similar between sensors, based on 6569 LS-RMs and 4932 S2-RMs matchups. However, 
LAI estimates, especially for woody wetlands, deciduous forest, and mixed forest, were underestimated, with 
better estimates obtained using S2 (A ~ − 0.33, U ~ 0.98) than LS (A ~ − 0.43, U ~ 1.13). For all variables, SL2P- 
CCRS LS estimates were highly correlated to S2 estimates overall (R2 0.80 to 0.82) but up to 35 % lower for LAI 
over broadleaf and mixed forests and between lower 10 % and 20 % otherwise. The inter-annual stability of 
SL2P-CCRS estimates from both LS and S2 fell within the Global Climate Observing System (GCOS) requirements 
with the mean (standard deviation) values of − 0.01 yr− 1 (0.06 yr− 1) for LS LAI, 0.02 yr− 1 (0.09 yr− 1) for S2 LAI, 
and 0 yr− 1 (0.01 yr− 1) for fCOVER and fAPAR from both LS and S2. The stability of both S2 and LS vegetation 
biophysical products indicate that are well suited for quantify the physical response of vegetation to climate 
variability, disturbances and regeneration.

1. Introduction

Systematic global mapping of vegetation biophysical variables, 
including fraction of absorbed photosynthetically active radiation 
(fAPAR), fraction of vegetation cover (fCOVER), and leaf area index 
(LAI), is required at decametric resolution to support climate adaptation, 
crop management, biodiversity monitoring, and ecosystem assessments 
(see Table 1; WMO, 2022; Group on Earth Observation Global Agricul
tural Monitoring, 2023; Group on Earth Observation Biodiversity 
Observation Network, 2023). Satellite data records (SDRs) of 

multispectral imagery are primary inputs for algorithms capable of 
mapping these variables globally (WGClimate, 2017). Currently, only 
the Sentinel-2A and Sentinel-2B (S2) and Landsat 8 and Landsat 9 (LS) 
imagers offer systematic global coverage of such SDRs at decametric 
resolution in a free and open manner (European Space Agency, 2013; 
Gascon et al., 2017; United States Geological Survey, 2019; United 
States Geological Survey, 2022).

Biophysical variables maps derived from LS and S2 imagery have 
attained Committee on Earth Observation Satellites (CEOS) Validation 
Stage 3 (NASA Land Product Validation Subgroup, 2024) based on 
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comparisons to fiducial reference measurements (RMs) at significant 
number of locations and time periods representative of global conditions 
(Fang et al., 2019; Ganguly et al., 2012; Kang et al., 2021; Brown et al., 
2021a; Fernandes et al., 2023; Fernandes et al., 2024a; Amin et al., 
2021). CEOS Stage 4 validation requires: i. quantification of the tem
poral stability of product accuracy, defined as the change in long-term 
bias at interannual time scales (Fernandes et al., 2014), to derive long- 
term trends and anomalies; and ii. the consistency between S2 and LS 
based products to satisfy the ≤10-day temporal resolution requirement 
of Global Climate Observing System (GCOS). CEOS Stage 4 validation of 
S2 and LS fAPAR, fCOVER and LAI products has not yet been achieved 
due to the limited temporal overlap of SDRs and RMs. Recently available 
multi-annual RMs representative of North American biomes, coincident 
with S2 and LS SDRs, opened possibilities for Stage 4 validation of 
vegetation products over North America (Brown et al., 2020a; Fernandes 
et al., 2024b).

Several globally applicable algorithms are available for mapping 
biophysical variables from LS and S2 bi-directional surface reflectance 
(reflectance, ρ) SDRs (Ganguly et al., 2012; Weiss and Baret, 2016; Pipia 
et al., 2021; Fernandes et al., 2024a; Wan et al., 2024). These algorithms 
use either look-up-table or regression estimators, both calibrated using 
either canopy radiative transfer models (RTMs), other products, or 
empirical databases (Baret and Buis, 2008; Fang et al., 2019; Ma and 
Liang, 2022). In this study, we consider algorithms calibrated using 
RTMs since the same code and priors can be applied to both S2 and LS 
SDRs with minor changes in sensor specifications (Weiss and Baret, 
2020), and since they are widely used for mapping coarse resolution 
vegetation variables products (Lacaze et al., 2015; Yan et al., 2016; 
Disney et al., 2016; Yan et al., 2018; Fang et al., 2019).

RTMs represent vegetation using either spatially homogeneous or 
spatially heterogenous patterns (Widlowski et al., 2007). Numerical and 
empirical studies indicate that heterogeneous RTMs are required for 
unbiased LAI estimation over shrubs and forests (Myneni et al., 1997; 
Shabanov et al., 2005; Gonsamo and Chen, 2014; Brown et al., 2019; 
Fernandes et al., 2024a). The Landsat equivalent of the MODIS fAPAR/ 
LAI algorithm (Ganguly et al., 2012) and the Canada Centre for Remote 
Sensing (CCRS) version of the S2 Simplified Level 2 Prototype Processor 
(S2LP-CCRS, Fernandes et al., 2024a) use heterogeneous RTMs. This 
study validates SL2P-CCRS since its free and open code allows it to be 
recalibrated and applied to both LS and S2. For a given sensor, SL2P- 
CCRS uses four land cover specific neural network regression algo
rithms for needleleaf forest (NF), broadleaf forest (BF), mixed forest 
(MF) and other land cover classes (OTHER) to estimate a given bio
physical variable. Each algorithm being calibrated using radiative 
transfer model simulations with parameters for land surface conditions, 
acquisition geometry and spectral characteristics sampled from priors 
representative of global Sentinel-2 or Landsat Operation Line Imager 
acquisitions.

For this study, SL2P-CCRS regressions were recalibrated for LS using 
a calibration database produced by applying LS spectral response 
functions (NASA Landsat Science, 2013) to a database of 1 nm resolution 
ρ simulated using the sampling scheme, same RTM and priors as used for 

S2 but with uniform sampling of LS acquisition geometry. Identical 
priors and RTMs were used to increase the consistency between LS and 
S2 estimates, to the extent the algorithms are not overly sensitive to 
differences in spectral sampling, acquisition geometry, and spatial res
olution. Nevertheless, studies using regression algorithms calibrated 
with SAILH model suggest LS retrievals could have greater uncertainty 
than coincident S2 retrievals for canopies with high LAI values due to 
the absence of equivalent S2 red-edge bands with LS data (Djamai and 
Fernandes, 2018; Dong et al., 2023). User requirements for products 
based on these algorithms are cited in terms of uncertainty and stability 
for retrievals at a given location (World Meteorological Organization 
(WMO), 2022); with uncertainty defined in a general sense as “ a 
parameter, associated with the result of a measurement, that charac
terizes the dispersion of the values that could reasonably be attributed to 
the measurand” (Working Group 1 of the Joint Committee for Guides in 
Metrology, 2008) and stability defined in the long-term change in bias 
over time where bias corresponds to the expected value of the difference 
between the measurement and reference (Fernandes et al., 2014). As 
such, it is essential to quantify the relative uncertainty and bias between 
S2 and LS vegetation variables estimates to facilitate characterization of 
seasonal vegetation dynamics and long-term vegetation trends.

CEOS recommends using both comparison to RMs (validation) and 
comparison of products (intercomparison) to quantify the thematic 
performance of different combinations of mapping algorithms and SDRs 
(Fernandes et al., 2014). Validation allows one to quantify whether the 
likelihood products would satisfy user requirements and to identify 
systematic limitations due to SDRs or algorithms. In this study, SL2P- 
CCRS S2 and LS retrievals are validated over the same sites, although 
with different temporal sampling, to address both tasks. Intercompar
ison is also conducted over the validation sites to determine if the 
validation results are also reflected in between-product differences. 
CEOS has not previously identified methods for quantifying the tem
poral stability of vegetation variables estimates from products. Thus, 
statistics corresponding to both the expected value and confidence in
terval of stability are derived for fAPAR, fCOVER and LAI products here 
for the first time.

Our study addressed two questions based on the performed valida
tion and intercomparison: 

1. How do SL2P-CCRS fAPAR, fCOVER, and LAI estimates from LS 
compare to estimates from S2 in terms of accuracy (A), precision (P) 
and uncertainty (U) with respect to RMs and in terms of product 
intercomparison?

2. What is the stability (S) of products estimates from LS and S2 over 
North American sites with sufficient RMs temporal samples?

We hypothesized that: 

1. LS fAPAR and fCOVER will be similar to corresponding S2 estimates 
and have similar A, P, U but LS LAI will show a larger negative bias 
and greater uncertainty compared to S2 due to LS having no red-edge 
bands.

Table 1 
Vegetation biophysical variables definitions and Global Climate Observing System (GCOS) threshold thematic user requirements. Uncertainty corresponds to 
maximum of the absolute difference between the estimate and reference value as a percentage of the reference measurement and the absolute difference between the 
estimate and measurement value. Stability corresponds to the change in bias per year assuming fAPAR ∊ [0,1] and LAI ∊[0,10].

Acronym Variable Definition GCOS requirements

Uncertainty Stability

fAPAR Fraction of absorbed photosynthetically active 
Radiation

Fraction of PAR effectively absorbed by plants (for direct sun 
illumination)

maximum (10 %, 
0.05)

0.03 
year− 1

fCOVER Fraction of green vegetation cover Green vegetation cover per unit horizontal ground area maximum (10 %, 0.05 N/A
LAI Leaf area index Half the total green foliage area per unit horizontal ground area maximum (20 %, 0.5) 0.06 

year− 1
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2. Both LS and S2 will show much lower S (i.e. better) than retrieval 
uncertainty since stability is less sensitive to local biases due to RTM 
error or uncertainties in specification of priors required for RTM 
inversion.

The study scope was limited to vegetated North American sites, 
where multi-annual sampling of RMs were available for numerous sites. 
The scope was further limited in that S2 SDRs only spanned 2019 to 
2023 due to the absence of recently processed S2 Collection 1 SDRs on 
the Google Earth Engine (GEE) platform on which SL2P-CCRS is 
currently deployed. Even so, our study included the largest validation 
dataset applied to simultaneously validate LS and S2 fAPAR, fCOVER 
and LAI over North America to date.

Our study is novel in that, i. it is the first study to provide a Stage 4 
validation of a globally applicable system for mapping both vegetation 
variables from S2 and LS SDRs, ii. it presents a first quantification of 
stability of derived products, and iii. it quantifies the consistency of S2 
and LS based products using a representative sample of matchups. We 

expect that users will gain a better understanding of the thematic per
formance of both LS and S2 products from SL2P-CCRS, especially with 
respect to time series stability over regions representative of our vali
dation sites. Our findings will also provide algorithm producers a better 
understanding of conditions under which improvements are needed to 
satisfy user requirements, as well as a characterization of a baseline 
mapping system (SL2P-CCRS) for benchmarking new algorithms. 
Finally, the methods presented will contribute to improve good practice 
for product validation.

2. Materials and methods

2.1. Materials

2.1.1. Reference measurements
RMs were acquired at 47 National Ecological Observatory Network 

(NEON, 2024) and 10 CCRS sites across North America (Fig. 1; Table A1
in Appendix A). These 57 sites corresponding to 47 sites used for 

Fig. 1. NEON and CCRS sites across North America. Symbols indicate dominant NLCD forest class or otherwise.

Table 2 
NEON and CCRS Elementary Sampling Units (ESUs) and reference measurements (RMs) by National Land Cover Database (NLCD) class (forested classes are in bold). 
SL2P-CCRS algorithm is indicated for each class.

NLCD land cover class (Abbrev.) SL2P-CCRS Groupings of NLCD classes NEON CCRS

#ESUs #RM #ESUs #RMs

Evergreen forest (EF) NF 263 3427 9 48
Deciduous forest (DF) BF 249 3923 5 7
Mixed forest (MF) MF 49 639 3 9
Woody wetland (WW) BF 88 326 0 0
Cultivated crops (CC) OTHER 50 702 0 0
Emergent herbaceous wetland (EHW) OTHER 19 79 0 0
Grassland herbaceous (GH) OTHER 165 2101 0 0
Pasture hay (PH) OTHER 32 934 0 0
Sedge herbaceous (SH) OTHER 20 126 0 0
Shrub scrub (SS) OTHER 139 1704 0 0
Total ​ 1074 13,961 17 64
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previous S2 validation studies (Brown et al., 2021b; Fernandes et al., 
2023; Fernandes et al., 2024a) and 10 additional NEON sites. NEON sites 
are representative of 20 North American ecoclimatic domains and span 
11 United States of America National Land Cover Database classes 
(NLCD) (USGS, 2024) (Table 2). A total of 1074 20 m × 20 m square 
elementary sampling units (ESUs) were visited across the NEON sites 
during the growing seasons of 2013 through 2022. For each NEON site, a 
minimum of three ESUs were sampled bi-weekly during the growing 
season at each NEON site and the remainder were sampled near peak 
season.

Additionally, 48 EF, 7 DF, and 9 MF ESUs were measured across the 
CCRS sites; with each 30 m × 35 m ESU sampled once during July and 
August between 2019 and 2020. For both NEON and CCRS, fAPAR, 
fCOVER, and LAI RMs were simultaneously measured at each ESU on 
each sampling date.) and 10 CCRS sites across North America (Fig. 1; 
Table A1 in Appendix A). These 57 sites corresponding to 47 sites used 
for previous S2 validation studies (Brown et al., 2021b; Fernandes et al., 
2023; Fernandes et al., 2024a) and 10 additional NEON sites. NEON sites 
are representative of 20 North American ecoclimatic domains and span 
11 United States of America NLCD classes (Table 2). A total of 1074 
elementary sampling units (ESUs) were visited across the NEON sites 
during the growing seasons of 2013 through 2022. For each NEON site, a 
minimum of three ESUs were sampled bi-weekly during the growing 
season at each NEON site and the remainder were sampled near peak 
season. Additionally, 48 EF, 7 DF, and 9 MF ESUs were measured across 
the CCRS sites; with each ESU sampled once during July and August 
between 2019 and 2020. For both NEON and CCRS, fAPAR, fCOVER, 
and LAI RMs were simultaneously measured at each ESU on each sam
pling date.

RMs were derived from in-situ digital hemispherical photographs 
(DHPs), processed using free and open-access software packages, cor
rected for biases due to woody material using empirical or site-specific 
calibration, and characterized in terms of uncertainty using RMs for 
vegetation protocols. These approaches are documented in previous 
studies (Brown et al., 2021a; Fernandes et al., 2023; Fernandes et al., 
2024a), so only details relevant to the current study are given below.

DHPs were measured within a 20 m square for the NEON sites and 
15 m × 35 m rectangle for the CCRS sites, centred on each ESU using a 
cross-sampling design for the NEON sites and two parallel 35 m long 
transects for the CCRS sites. For each date, co-located upward and 
downward looking DHPs were sampled at ~1 m height at 12 locations 
for the NEON sites and 14 locations for the CCRS sites, spaced evenly 
along the sampled cross or line transects. NEON DHPs were acquired 
using 36.3-megapixel Nikon D810 or D800 cameras (Nikon, 2024a) with 
a Nikon 16 mm Fisheye lens (Nikon, 2024b). CCRS DHPs were acquired 
using 45.7-megapixel Nikon D850 cameras (Nikon, 2024c) with a Nikon 
8 mm Fisheye lens (Nikon, 2024d). Both NEON and CCRS DHPs cor
responded a 180◦ diagonal field of view. As in Brown et al. (2020a), DHP 
images were visually quality controlled ESUs with images demon
strating fixed pattern noise, overexposure, colour balance issues, vari
able illumination, or foreign objects within the field-of-view were 
discarded, as were ESUs with less than 12 images or images acquired in 
lossy formats. For CCRS, enhanced using Nikon ViewNX-I (Nikon, 
2024e) to improve visual separation of canopy versus soil or sky. Only 
regions in images within 60◦ of nadir were processed to constrain the 
spatial footprint of measurements and minimize RM uncertainty due to 
camera tilt. Subsequently, the spatial support of downward measure
ments fell within the nominal ESU boundary while the spatial support of 
upward measurements was a circle centred on the ESU with diameter 
~1.5 times the canopy height (Fernandes et al. 2023).

HemiPy (Brown et al., 2023) and CAN-EYE V6.45 (INRAE, 2022) 
were respectively used to estimate the fraction of woody and green cover 
per horizontal ground area (fCANOPY), the fraction of PAR intercepted 
by woody and green elements (fIPAR), and plant area index (PAI) 
defined as half of the total vegetation surface area per unit horizontal 
ground area at the NEON and CCRS sites. PAI was corrected for 

clumping using the approach of Lang and Yueqin (1986) corresponding 
to an expected bias of ~− 5 % and upper bound on bias of ~− 10 % 
(Fernandes et al., 2024a). RMs uncertainty was quantified as described 
in Fernandes et al. (2023) and Brown et al. (2021b).

Coefficients corresponding to the woody-to-total area ratio were 
applied to relate fCANOPY, fIPAR, and PAI to fCOVER, fAPAR, and LAI 
(Table B1 in Appendix B). For canopies with a height less than 19 m, 
coefficients were estimated from values based on destructive sampling 
at sites with the same land cover class (Brown et al., 2021a). ESU specific 
coefficients were derived for NEON overstory canopies with >=19 m tall 
using CAN-EYE as qualitative assessment of DHPs showed far greater 
woody area than expected based on woody-to-total area ratios for 
shorter canopies with the same land cover. For these NEON ESUs, 
CANEYE was first applied to DHP imagery to estimate PAI and then 
applied once more to the DHP imagery, enhanced using View-NXi to 
highlight green pixels, to estimate LAI (Appendix C, Table C1). This 
approach required manual labelling of substantial portions of imagery, 
so it was not feasible to apply for LAI estimation for all sites. This 
approach has not been validated for NEON ESUs so an uncertainty of 
0.19 for the ratio of woody-to-total area is assumed based on validation 
of a similar approach using HemiPy over a broadleaf forest (Brown et al. 
2021b). ESU fAPAR, fCOVER, and LAI RM estimates and their un
certainties were derived by a weighted sum of corresponding overstory, 
and understory measurements described in Brown et al. (2021a).

2.1.2. Satellite data
GEE LS Level 2 (L2) LANDSAT/LC08/C02/T1_L2 (Google Earth En

gine, 2013), LANDSAT/LC09/C02/T1_L2 Google Earth Engine, 2021) 
and S2 Level-2A (L2A) (Google Earth Engine, 2017) ρ products were 
used as input to SL2P-CCRS. These data are reformatted versions of 
original USGS products (for LS) and European Space Agency (for S2) 
Level 2 ρ products.

LS L2 products include ρ gridded at 15 m resolution for one 
panchromatic band and 30 m resolution for nine bands within the 
shortwave spectrum (Table 3) derived from Operational Land Imager 
(Knight and Kvaran, 2014; Levy et al., 2024) measurements of top-of- 
atmosphere radiance using the Landsat Surface Reflectance Code 
(Vermote et al., 2018), in addition to the acquisition geometry, and a 
mask indicating clear sky land pixels based on the fMASK4.0 algorithm 
(Qiu et al., 2019). LS L2 products have a geolocation uncertainty of <13 
m 90 % circular error probable (CEP; Storey et al., 2014) and a radio
metric uncertainty of ~0.05ρ + 0.005 for flat terrain (Doxani et al., 
2018). fMASK 4.0 has a clear sky omission error of 4.8 % and commis
sion error of 4.6 % (Qiu et al., 2019).

S2 L2A products include ρ gridded at 10 m resolution for four bands, 
20 m resolution for six bands and 60 m resolution for three bands 
derived from Multispectral Instrument (Drusch et al., 2012) measure
ments of top-of-atmosphere radiance using Sen2Cor Version 2.4.0 
(Müller-Wilm, 2018, Table 4), as well as the mean acquisition geometry 
for the product granule and a gridded 20 m resolution scene classifica
tion map indicating clear sky land pixels. S2 L2A products have a geo
location uncertainty < 12.5 m 95 % CEP (Gascon et al., 2017) and a 
radiometric uncertainty of ~0.05ρ + 0.005 for flat terrain (Djamai and 

Table 3 
LS bands (SL2P-CCRS input bands are in bold).

Band Resolution (m) Central Wavelength (nm) Description

B1 30 443 Coastal/Aerosol
B2 30 482 Blue
B3 30 562 Green
B4 30 655 Red
B5 30 865 Near-Infrared
B6 30 1610 Short Wave Infrared
B7 30 2200 Short Wave Infrared
B8 15 590 Panchromatic
B9 30 1375 Cirrus
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Fernandes, 2018; Doxani et al., 2018). Sen2Cor has a clear sky omission 
error of 3 % and commission error of 6 % (European Space Agency, 
2020). For each L2A product, the matching S2Cloudless cloud proba
bility product (Zupanc, 2017) was used to reduce clear sky commission 
errors. L2A product pixels were flagged as cloudy if the S2Cloudless 
cloud probability was greater than 50 %.

2.1.3. Land cover
The 30 m resolution circa 2020 North America Land Cover Moni

toring System (NALCMS) land cover map was used to determine the 
SL2P-CCRS regression algorithm applied to each S2 or LS pixel (Table 2). 
The thematic error of NALCMS product has been assessed over Canada 
with 79.9 % correct labelling for all 18 classes and 83 % correct labelling 
of forest classes (Latifovic et al., 2012). NALCMS products matched the 
nominal LS sampling grid, so resampling was not required when using 
SL2P-CCRS with LS SDRs. Nearest neighbour resampling was used to 
assign NALCMS land cover to 20 m S2 pixels. Additional uncertainty in 
SL2P-CCRS S2 retrievals due to resampling was negligible as ESUs were 
located within patches of undisturbed homogeneous land covers (Brown 
et al., 2020a; Fernandes et al., 2023) and the SL2P-CCRS RTM land cover 
classes were highly generalized.

2.2. Methods

2.2.1. NEON RMs quality control
NEON RMs were subjected to additional quality control since Hem

iPy, in contrast to CANEYE, is completely automated. This resulted in 
rare cases where images with poor exposure or illumination resulted in 
excess shadows that were classified in vegetation. Since such cases were 
isolated in time, we used a time series filter to detect and censor them. 
For each variable, a moving window temporal filtering was applied to 
measurements at each ESU to identify spurious RMs. The ith RM (RMi) 
with associated uncertainty R̃Mi, was flagged as spurious if the three 
following conditions held simultaneously: 

|RMi − RMl| > max
(

R̃Mi, εV

)

(1) 

|RMi − RMr| > max
(

R̃Mi, εV

)

(2) 

(RMi − RMl).(RMi − RMr) > 0 (3) 

where RMl and RMr are respectively the previous and the next RMs 
acquired within +/− 15 days and εV is an empirical land cover specific 
threshold (e.g. Fig. C1 in Appendix C). Eqs. (1) and (2) identified mea
surements whose first derivative exceed the actual magnitude of the 
estimate, and the maximum expected absolute uncertainty of non- 
outlier estimates while Eq. (3) only censored identified measurements 

for time periods with monotonic trends to preserve peak or minimum 
phenology values. Only 0.31 % of LAI, 0.97 % of fCOVER, and 0.93 % of 
fAPAR RMs were flagged and removed from validation (Table C1 in 
Appendix C).

2.2.2. Correcting NEON RMs estimates for ESUs with moss
Exploratory data analysis identified a constant SL2P-CCRS bias of 

~0.9 for LAI, ~0.25 for fAPAR, and ~0.25 for fCOVER for RMs from 
Alaskan tundra sedge sites (BARR, TOOL, and DEJU) for both LS and S2 
(Fig. C1 in Appendix C). These sites had only downward DHPs as 
overstory vegetation was absent. Examination of DHPs indicated virtu
ally 100 % moss cover that had been labelled by HemiPy as non- 
vegetated area. Moss canopy LAI values range from 1 to over 20, with 
significant between species differences (Niinemets and Tobias, 2019). 
Moss canopy LAI is inversely correlated with leaf thickness so the 
functional role of moss LAI in controlling carbon and water fluxes differs 
from vascular plants (Zotz and Kahler, 2007). For example, Niinemets 
and Tobias (2019) noted that “for acrocarpous moss T. ruralis, already 
the upper 2 mm of canopy reduces the light level to only 20 % of incident 
light”. This suggests that moss LAI cannot be considered directly when 
validating satellite LAI products since the high LAI values are accom
panied by extremely thin foliage with different functional and structural 
characteristics to vascular vegetation. At the same time, a method is 
required to characterize the ability of satellite products to track vascular 
LAI at mossy sites. Keeping in mind the limitation to vascular LAI, RMs 
for all mossy ESUs were increased by the observed bias between all 
satellite products and RMs matchups, irrespective of sensor. Land cover 
specific thematic metrics were reported to isolate this class should our 
approach be refined by future studies.

2.2.3. Estimation of LS and S2 vegetation variables
The Landscape Evolution and Forecasting (LEAF; Fernandes et al., 

2021) was used to extract LS and S2 L2A clear sky land pixels whose 
centroid fell within 30 m of an ESU centroid, for S2, and 45 m, for LS, of 
an ESU centroid and within ±7 days of a RM. The nearest NALCMS land 
cover pixel was associated with each sampled S2 and LS reflectance.

A Python implementation of SL2P-CCRS (Djamai, 2024), identical to 
that implemented in the GEE code for LEAF, was applied to each 
sampled measurement. SL2P-CCRS uses separate land cover specific 
neural networks correspond to groupings of NLCD classes (Table 2), 
using ρ measured for a LS or S2 pixel (Table 3 for LS and Table 4 for S2) 
together with available acquisition geometry, to estimate each variable. 
All neural networks correspond to a single, 5 tangent-sigmoid node, 
hidden layer network identical to that used in the original SL2P algo
rithm (Weiss and Baret, 2016) and calibrated using batch training as 
described in Fernandes et al. 2023. Additionally, SL2P-CCRS flags 
measurement whose ρ does not lie within +/− 0.05 of RTM simulations 
used for calibration or if the estimate falls outside the range of variable 
values within the simulations. NF and BF algorithms are calibrated using 
simulations produced by applying sensor specific spectral response 
functions to database of 1 nm resolution ρ simulated by the 4SAIL2 
heterogeneous RTM (Verhoef and Bach 2007) sampled with represen
tative priors calibrated with field measurements available prior to 2024 
and nominal sensor acquisition geometry (Fernandes et al. 2024a). 
Previously, SL2P-CCRS used the average of the NF and BF algorithm 
estimates for MF. In this study, the MF algorithm is updated to use the 
same neural network architecture as the BF algorithm but a calibration 
database using 4SAIL2 simulations with input parameters sampled from 
the union of the BF and NF priors. The OTHER class is mapped using the 
SL2P algorithm (Weiss and Baret, 2016) based on the 4SAIL homoge
neous RTM (Verhoef, 1985) with priors corresponding to global in-situ 
measurements available prior to 2016.

For each biophysical variable, the trimmed median residual between 
a given RM and matching SL2P-CCRS estimates was computed for S2 
and LS products. Trimming corresponded to discarding residuals 
exceeding the 90 %ile for a given RM. It was applied since perfect spatial 

Table 4 
S2 bands (SL2P-CCRS input bands are in bold).

Band Resolution 
(m)

Central Wavelength 
(nm)

Description

B1 60 443 Coastal/Aerosol
B2 10 490 Blue
B3 10 560 Green
B4 10 665 Red
B5 20 705 Vegetation red edge
B6 20 740 Vegetation red edge
B7 20 783 Vegetation red edge
B8 10 842 Near-Infrared
B8a 20 865 Near-Infrared
B9 60 940 Water vapour
B10 60 1375 Cirrus
B11 20 1610 Short Wave Infrared
B12 20 2190 Short Wave Infrared 

(SWIR)
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matching and clear sky identification was not possible for the large 
sample size used in our study, and it did not result in changes in sta
tistical tests of differences in performance between sensors or estimates 
of stability but improved the representativeness of the measurement 
error modelled when fitting conditional A, P, U curves.

2.2.4. Validation and intercomparison
Following good practice (Fernandes et al., 2014) scatter plots as well 

as the population A, U, coefficient of determination (R2), and uncer
tainty agreement ratio (UAR) were computed separately for LS and S2 
products for all matchups and for each NLCD class based on the 
following equations. 

A =
1
N
∑N

i=1
(ŷi − yi) (4) 

U =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1
(ŷi − yi)

22

√

(5) 

P =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1
(ŷi − yi − A)22

√

(6) 

R2 =

[∑N
i=1(ŷi − ŷ).(yi − y))

∑N
i=1(ŷi − ŷ)2

.(yi − y)2

]2

(7) 

UAR =
1
N
∑N

i=1
I
(⃒
⃒
⃒
⃒
ŷi − yi

yi

⃒
⃒
⃒
⃒ ≤ εrel ∪ |ŷi − yi| ≤ εmax

)

(8) 

where, ŷi , yi are respectively the SL2P-CCRS estimate and RM for the ith 

of N comparisons, y, ŷ are their corresponding average values, εrel, εmax 
are respectively the relative and maximum target uncertainty require
ment, and I is the indicator function.

Good practice also requires quantifying the A, P and U conditional on 
a given RM value to reduce the impact of the sampling distribution of 
RMs on validation results and to isolate problematic retrieval conditions 
(Fernandes et al., 2014). Ideally, one would have sufficient samples to 
produce conditional A, P and U curves for each NLCD class. Due to the 
imbalanced nature of RMs sampling within a given NLCD class, condi
tional A, P, U curves were fitted for RMs grouped as either forested or 
non-forested ESUs. This partitioning was useful since SL2P-CCRS as
sumes a homogenous canopy for non-forested classes and a heteroge
neous canopy for forested classes (Fernandes et al., 2024a). For each 
group and sensor, A and U, conditional on either the RM (producer 
validation) or the product estimates (user validation), were estimated by 
fitting third order polynomial weighted least squares regressions to re
siduals and absolute residuals as described in Fernandes et al. (2023). 
Weights corresponded to the Euclidean sum of the standard error of 
sampled product estimates and the RM one standard deviation. P, con
ditional on the RM, was estimated by fitting third order polynomial 
weighted least squares regressions to absolute residuals after first sub
tracting the modelled conditional A.

Intercomparison was performed using all clear sky S2 and LS ρ data 
between April and September inclusively for 3 × 3 pixels centred on 
each ESU whose dates matched within +/− 1 day. SL2P-CCRS was 
applied to each sampled measurement to produce estimates of fAPAR, 
fCOVER, and LAI. Following good practice, kernel density plots of 
matchups for groupings of NLCD classes corresponding to SL2P-CCRS 
neural network regression algorithms, and, given the fact there were 
sufficient intercomparisons samples for each NLCD class, NLCD class 
specific A and U statistics were derived.

At each site, for each NLCD class present, S was estimated as the 
slope of the ordinary least squares regression of the average annual bias 
of ESUs corresponding to that NCLD class (see Fig. E1 in Appendix E). 
The 95 % confidence interval of the regression slope was used as the 
precision of estimated S. Only results for sites with at least 5 years for LS, 
or 4 years for S2, due to the shorter input records, with at least 5 inter- 
annual samples per year were reported. GCOS indicates that stability 
should be reported using units expressed as % change in bias per decade 
(GCOS, 2022). However, given that S was quantified with as few as 5 
years at some sites we use units of % change in bias per year to avoid an 
implication that we actually used 10 years of annual bias estimates at all 
sites. This approach is still in compliance with CEOS good practices for 
validation (Fernandes et al., 2014) cited in the GCOS requirements 
(GCOS, 2022). Additionally, the 95 % confidence interval of the S 
quantify the potential decrease in precision of our estimates of S due to 
at sites with less than 10 years of comparisons.

3. Results

3.1. Validation

A total of 4932 S2-RM matchups (Fig. 2) and 6569 LS-RM (Fig. 3) 
matchups were used during validation. The RMs range of LAI, fCOVER, 
and fAPAR matchups are, respectively, [0.0, 6.87], [0, 0.99], and [0, 
0.95] for S2, and [0.02, 5.88], [0, 0.96], and [0, 0. 93] for LS. RM his
tograms were qualitatively similar between sensors although LS had a 
slightly greater relative frequency of extreme values. However, RMs 
histograms differed between NLCD land cover, with forest classes 
dominating values above the 50 %ile for each variable. For fCOVER and 
fAPAR, S2 and LS R2, A, U and UAR for all matchups were virtually 
identical at respectively ~0.8, ~0.03, ~0.13 and ~0.60. However, for 
LAI, A, U, and UAR were better for S2 (respectively, 0.33, 0.98, and 
0.65) compared to LS (respectively, 0.43, 1.13, and 0.51).

The of matchups by land cover class were comparable between S2 
and LS (Fig. 4) with the most matchups over the EF and DF forest classes 
primarily due to the considerable number of ESUs for these classes 
(Table 2). EHW and SH had the least matchups, ranging between 35 and 
79 depending on sensor and NLCD class (Tables D1 and D2 in Appendix 
D). Between sensors, difference in metrics were, in most cases, smaller 
than the between land cover differences, with the largest between sensor 
A (U) difference of ~0.4 (~0.32) for LAI observed for DF, ~0.04 
(~0.03) for fCOVER observed for MF and EHW, and ~0.03 (~0.02) for 
fAPAR observed for MF and GH. However, substantial differences in A 
and U were observed between forested and non-forested classes. In 
terms of accuracy, forested classes were underestimated by between 
~0.5 and ~2 for LAI and between ~0.05 and ~0.20 for fAPAR, while 
non-forested classes were slightly overestimated by ~0.5 for LAI and 
~0.1 for fAPAR (Fig. 4). fCOVER was also slightly overestimated for 
non-forest classes but was almost unbiased for forest classes. LAI U 
ranged between ~0.2 and ~0.7 for non-forested classes and between 
~0.8 and ~2 for forested classes. However, fCOVER and fAPAR U, both 
ranging between ~0.05 and 0.20, did not show systematic forest/non- 
forest trends, indicating that the accuracy error contributes more to U 
for LAI than fAPAR and fCOVER.

Conditional A, P, U curves were generally monotonic for forested 
classes except for extreme fCOVER and fAPAR values where sampling 
was limited (Fig. 5). For LS, LAI A trended quasi-linearly from ~0.5 at 
LAI 0 to ~− 3 at LAI 6, while both fCOVER and fAPAR A trended 
monotonically from ~0.15 at very low values to ~− 0.15 at the highest 
values. LS P was almost constant across the range of each variable at 
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~0.5 for LAI, ~0.08 fCOVER, and ~0.09 for fAPAR. As a result, LS LAI U 
increased from ~0.1 at LAI 0 to ~3 at LAI 7. LS fCOVER and fAPAR U 
was typically ~0.1 but increased to ~0.15 at extremely low values due 
to a positive bias. S2 LAI A was similar to LS for LAI < 3 but showed a 
proportional improvement over LS for LAI > 3, with an A of ~− 2 at LAI 
7 versus ~− 3 for LS. The improvement in A for S2 versus LS combined 
with similar P for both sensors translated into a modest improvement in 
S2 U compared to LS for LAI > 3 but only minor differences for LAI < 3. 
fCOVER and fAPAR A were slightly better for S2 versus LS above fCO
VER > 0.5 and fAPAR > 0.7, respectively, but otherwise no significant 
between-sensor differences were observed for these variables.

Conditional A, P, U curves for non-forested classes were quasi- 
monotonic for LAI, with only slight improvements for S2 versus LS at 
LAI > 4 and fCOVER or fAPAR > 0.7 (Fig. 6). For both S2 and LS, LAI A 
showed a similar trend as observed for forests, but with underestimation 
reaching ~− 2.5 rather than ~− 3 at LAI 7. Precision error was ~0 at LAI 
0 and gradually increased to ~1 at LAI 5. As a result, LAI U increased 
gradually with LAI reaching ~2.5 at LAI 7. P for fCOVER and fAPAR was 
almost constant at ~0.8 and ~0.6, respectively. However, sinusoidal A 
and U curves were observed for fCOVER with overestimation below 0.5 
and underestimation for larger values. Additionally, a positive inflection 
in U was observed for fCOVER and fAPAR > 0.9 but this is likely due to 
insufficient samples to constrain the 3rd order polynomial fit.

3.2. Intercomparison

Intercomparison resulted in ~11,800 NF, ~13,200 BF, ~2000 MF 
and ~19,000 OTHER matchups for each variable (Fig. 7, Table E1 in 
Appendix E). For fCOVER and fAPAR, LS and S2 retrievals agreed within 
0.15 at 50 %ile and 0.20 at 10 %ile irrespective of land cover, with S2 
estimates slightly higher than matching LS estimates (linear regression 
slope of ~0.88) although overall correlation was high (R2 0.80 to 0.83, 
Appendix E).

LAI intercomparisons, in contrast to fAPAR and fCOVER, were 
different between NF and OTHER classes versus BF and MF classes 
although overall correlation between LS and S2 was high (R2 0.80, 
Appendix E). For NF and OTHER, LAI agreed within 0.5 at 50 %ile and 1 
at 10 %ile with a linear regression slope of 0.82 for NF and 0.80 for 
OTHER, indicating S2 LAI was slightly higher than matching LS LAI. In 
contrast, the linear regression slope of 0.62 for BF and 0.67 for MF 
indicated S2 LAI was consistently larger than LS LAI.

The same metrics shown in Fig. 4 were also computed for in
tercomparisons (Fig. 8) to determine the relative magnitude of between- 
sensor differences versus differences between each sensor and RMs for 
each NLCD class.

For LAI, intercomparison A was ~0 for non-forested and EF classes 
and ranged from ~–0.25 to ~− 0.55 for WW, MF, and DF classes. fAPAR 
and fCOVER intercomparison A were bimodal between non-forested and 

Fig. 2. Scatter plots of SL2P-CCRS estimates of LAI (a), fCOVER (b), and fAPAR (c) obtained from S2 data versus matching RMs together with population validation 
metrics. Dashed lines bound target user requirement around solid 1:1 line. Colours corresponds to NLCD land cover class.

Fig. 3. Scatter plots of SL2P-CCRS estimates of LAI (a), fCOVER (b) and fAPAR (c) obtained from LS data versus matching RMs together with population validation 
metrics. Dashed lines bound target user requirement around solid 1:1 line. Colours corresponds to NLCD land cover class.
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Fig. 4. NLCD class specific A and U validation statistics for SL2P-CCRS estimates of LAI, fCOVER, and fAPAR obtained from LS and S2 data together with match-up 
sample size N (histograms).

Fig. 5. APU curves and the corresponding 95 % confidence intervals (dashed contours) for SL2P-CCRS estimates of LAI (a), fCOVER (b) and fAPAR (c) obtained from 
forested classes compared to APU curves for the corresponding estimates from S2. Dashed grey lines bound target user requirements.

Fig. 6. APU curves and the corresponding 95 % confidence intervals (dashed contours) for SL2P-CCRS estimates of LAI (a), fCOVER (b) and fAPAR (c) obtained from 
non-forested classes compared to APU curves for the corresponding estimates from S2. Dashed grey lines bound target user requirements.
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forested classes, with a positive bias between 0.01 and 0.04 for the 
former (except for SS) and a negative bias between − 0.02 and − 0.05 for 
the latter. These accuracy errors were generally less than 50 % of the 
corresponding validation A. This was expected since SL2P-CCRS RTMs 
and RTM priors are identical for S2 and LS. However, U was generally 
much larger than A, ranging from 0.18 to 1 for LAI and from 0.05 to 0.1 
for fCOVER and fAPAR. Even so, intercomparison U for a given cover 
class was generally less than 75 % of the corresponding validation U for 
that class (compare Figs. 4 and 8).

3.3. Stability

S was quantified for 46 sites for LS (Fig. 9) and ~30 sites for S2 

(Fig. 10). LS S ranged from ~− 0.15 yr− 1 to 0.08 yr− 1 for LAI with a 
mean (standard deviation) across sites of − 0.01 (0.06) yr− 1, and from 
− 0.02 yr− 1 to 0.02 yr− 1 for fCOVER and fAPAR with a mean (standard 
deviation) of 0 (0.01) yr− 1. S2 S values ranged between − 0.17 yr− 1 and 
0.25 yr− 1 for LAI with a mean (standard deviation) of 0.02 (0.09) yr− 1 

and from − 0.03 yr− 1 to 0.03 yr− 1 for fCOVER and fAPAR with a mean 
(standard deviation) of 0 (0.01) yr− 1. LS S confidence intervals ranged 
from 0.01 to 0.38 for LAI and from 0 to 0.06 for fAPAR and fCOVER. 
However, confidence intervals for S2 S were ~3 times greater than LS S 
due to the shorter time span of S2 and RM matchups versus LS and RM 
matchups.

LS S was weakly correlated with bias (R ~ 0.43 for LAI, ~0.10 for 
fCOVER, and ~0.06 for fAPAR) and with the site average RMs 

Fig. 7. Density contour plots of SL2P-CCRS LAI (a), fCOVER (b) and fAPAR (c) estimates from LS data compared to the corresponding estimates from S2 data 
(reference): continuous (dashed) lines present 50 %ile (10 %ile) and continuous black line present the 1:1 line.

Fig. 8. Class specific A and U statistics between SL2P-CCRS estimates of LAI, fCOVER, and fAPAR from LS and the corresponding estimates from S2 (reference), 
together with the samples size (histogram) and the variation range of estimates from S2 (bars) as a function of NLCS land cover class.
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magnitude (R ~ − 0.41 for LAI, ~− 0.02 for fCOVER, and ~− 0.03 for 
fAPAR). Similarity, S2 S was weakly correlated with bias (R ~ − 0.13 for 
LAI, ~− 0.06 for fCOVER, and ~0.18 for fAPAR) and with the site 
average RMs magnitude (R ~ 0.22 for LAI, ~0 for fCOVER, and ~− 0.16 
for fAPAR) (Tables F1 and F2 in Appendix F).

4. Discussion

This study focussed on the thematic performance of SL2P-CCRS es
timates, derived from four satellite imagers, for three biophysical 
vegetation variables, fAPAR, fCOVER, and LAI, related to vegetation 

status and function. These variables are useful both for modelling and 
monitoring applications but one cannot ignore the fact that spectral 
vegetation indices are also widely used for monitoring vegetation status 
and trends (Giovos et al., 2021; Gao et al. 2020; Ferchichi et al., 2022). 
Our study focused on vegetation biophysical variables, rather than 
spectral vegetation indices, as they can be easily validated and are thus 
well suited for quantifying trends and anomalies of vegetation 
properties.

Our use of RMs from in-situ networks (Brown et al., 2020a; Fer
nandes et al., 2024a) allowed us to incorporate the uncertainty of esti
mated residuals when computing validation statistics. These networks 

Fig. 9. Scatter plots of LS S versus annual bias mean for SL2P-CCRS estimates of LAI, fCOVER and fAPAR: x error bars (CI: S confidence interval), y error bars (std.: 
annual bias standard deviation), circles size (RMs mean), and color (groupings of NLCD classes).

Fig. 10. Scatter plots of S2 S versus annual bias mean for SL2P-CCRS estimates of LAI, fCOVER and fAPAR: x error bars (CI: S confidence interval), y error bars (std.: 
annual bias standard deviation), circles size (RMs mean), and color (groupings of NLCD classes).
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are being supplemented by new regional networks that leverage auto
mated measurements and data processing (e.g. Brown et al., 2021a; 
Brown et al., 2023) but it is critical that they continue long term 
monitoring. This study extends our previous CEOS Level 3 validation of 
vegetation variables from S2 to LS and, for the first time for such 
products, quantifies time-dependent bias in terms of both inter-annual 
stability and biases that could arise when combining products from 
different sensors. We directly quantify annual bias by comparisons to 
RMs. Our approach is in contrast to other studies (Fang et al., 2021; Kang 
et al., 2021) that approximate stability using inter-annual trends in the 
theoretical retrieval uncertainty associated with product retrievals, that 
themselves likely correspond to precision rather than bias and are not 
traceable to RMs. These other approaches are useful for quantifying 
drifts in algorithms precision due to changes in sensor characteristics, 
pre-processing, or land surface conditions but do not reflect GCOS sta
bility requirements or CEOS good practices for quantifying these re
quirements. Indeed, even our study, while following these good 
practices reports stability as a % change in bias per year rather than per 
decade as some of our sites had less than 10 years of annual bias 
estimates.

Inter-annual stability is a fundamental requirement for use cases 
such as environmental accounting (Chraibi et al. 2022) and vegetation- 
climate studies that rely on trend analysis (Xie et al., 2021) and for use 
cases, such as reclamation assessments, afforestation and reforestation 
assessment, and disturbance mapping that rely on anomalies (Rochdi 
et al. 2014; Diniz et al., 2015; Hermosilla et al. 2019; Hird et al., 2021). 
Quantifying sensor dependent biases is required since currently, only a 
combination of LS and S2 imagers have the potential for meeting GCOS 
requirements for ≤10-day products. Moreover, these biases highlight 
the potential degradation in product performance when using strategies 
such as harmonizing sensors to the lowest common spectral sampling (e. 
g. the Harmonized Landsat and Sentinel 2 products, Claverie et al., 
2018).

Our study used perhaps the largest RMs dataset for simultaneous 
fCOVER, fAPAR, and LAI validation to date in terms of spatial and 
temporal sampling. There are other sources of fAPAR measurements, but 
these are not yet qualified as RMs and often do not include understory 
values (Putzenlechner et al., 2019, 2020; Sanchez-Azofeifa et al., 2022). 
New automated imaging sensors may improve this situation (Brown 
et al., 2020b). At the same time, our RMs had limitations that impact the 
representativeness of our results and, to a lesser extent, their statistical 
confidence. The most significant limitation is that we did not sample 
sloped terrain or pixels with significant land cover mixtures that prod
ucts will generally also map, and that users may require information 
about. Both limitations can be partially addressed from the user 
perspective by flagging such areas in product metadata using ancillary 
information. The additional uncertainty due to mixed pixels can also be 
addressed using high spatial resolution reference maps as performed in 
Fernandes et al. (2024b) using the original SL2P algorithm. However, 
validation over sloped terrain requires new RMs that should be a priority 
for future networks.

We also identified two other limitations with the RMs. The first was 
the lack of representative woody-to-total area ratio estimates for 
forested sites not used in our previous work (Fernandes et al., 2023; 
Fernandes et al., 2024a). Visual assessment of DHPs for four forest sites 
with canopies > 19 m tall indicated tall and wide trunks with high 
relative crown base height (Appendix C). These were reprocessed using 
CANEYE twice to first estimate PAI and then LAI. Since this procedure 
required manual delineation of green vegetation cover, it was time 
consuming, requiring over an hour per plot, compared to the automated 
HemiPy PAI estimation. We used a woody-to-total area ratio uncertainty 
based on a single study that used HemiPy with green vegetation auto
matically identified from DHPs with both visible and near-infrared im
agery (Brown et al., 2024). This uncertainty of 0.19 is ~twice that of 
0.11 from destructive sampling but at the same time is likely less biased 
than the latter. More work is required to quantify the uncertainty of 

woody-to-total area ratio using our CANEYE approach specifically and 
for all approaches in general.

The second limitation was the constant bias observed for retrievals 
over sites with substantial moss cover. For fCOVER and fAPAR, this bias 
was due to the RMs not including moss cover. This is a limitation of 
HemiPy that could be addressed by CANEYE reprocessing. However, in 
the absence of a good practice for dealing with LAI validation over 
mosses, we adopted a pragmatic approach of removing the empirical 
bias by assuming the RM had a constant incorrect offset. This approach 
underestimates the potential bias and uncertainty of all products at these 
sites but does not detract from the goal of our study to quantify the 
consistency and stability of both LS and S2 products since the bias 
correction is constant. Moreover, this correction did not have a signifi
cant impact on either population, or conditional statistics given the fact 
it was limited to four sites.

Our study used land cover specific algorithms including a Python 
implementation (Djamai, 2024) of the Simplified Level 2 Prototype 
Processor (Weiss and Baret, 2020) for S2 and LS over the OTHER class. 
The SNAP implementation of SL2P was not used as we have identified 
discrepancies with our implementation that we previously attributed to 
bugs in the original MATLAB code used to calibrate the SNAP neural 
networks (Fernandes et al., 2024a). We continue to see studies and ap
plications using the SNAP solution and are concerned that this will both 
hamper community validation and result in potential errors in down
stream use of products derived from SNAP. This can be addressed by 
open-source publication of the algorithms as is the case for SL2P-CCRS.

The sampling distributions of S2 and LS matchups were imbalanced 
between land cover classes but were similar between sensors within 
classes (Fig. 2 versus Fig. 3). This allows for comparison of conditional 
statistics between sensors without concern for sample dependent dif
ferences in metrics. fCOVER and fAPAR from LS and S2 are found un
biased and with virtually identical A ~ 0.03, U ~ 0.13, and UAR ~ 0.60, 
while LAI was underestimated, with better estimates obtained with S2 
(A ~ − 0.33, U ~ 0.98, UAR ~ 0.65) compared to LS (A ~ − 0.43, U ~ 
1.13, and UAR ~ 0.51). For all variables, S2 and LS provided generally 
similar A, P, and U conditional on RMs although S2 LAI and fCOVER A 
error is ~ 10 % lower than LS for LAI > 3 and fCOVER > 0.5 (Figs. 6 and 
7). Similarity in S2 and LS A and U metrics is also observed on a land 
cover specific basis, again with S2 showing slightly better A and U for 
forests (Fig. 4) which could be explained by their predominance for 
dense canopy samples (Figs. 2 and 3).

Conditional S2 A, P, U curves were virtually identical to those re
ported in Fernandes et al. (2023) and Fernandes et al. (2024a) using 
subsets of the RMs with the same algorithms. This suggests that the RMs 
sample is sufficiently large and diverse so that further sampling has 
minimal impact conditional metrics. This is important both because it 
indicates our earlier and current samples are indeed representative of 
sampled biomes and terrain conditions and that we have achieved a 
Stage 4 validation that is only limited by the need for continued RMs. 
For all variables, validation metrics showed far greater sensitivity to 
land cover than sensor (Fig. 4). Essentially, metrics differed systemati
cally between forested and non-forested classes. For LAI, the non- 
forested classes were almost unbiased while the forested classes had a 
negative bias between − 0.05 and − 2 as also observed in Fernandes et al. 
(2024). Some of this difference may be due to the limited number of high 
LAI values for non-forested samples, but the conditional A and U for 
forest classes were also ~0.5 worse than the non-forest estimate for LAI 
> 5. Moreover, the systematic difference in biases persisted for fAPAR 
and fCOVER, although now they were approximately equal in magni
tude but opposite in sign. These differences suggest that, unlike LAI, the 
fAPAR and fCOVER bias is not necessarily due to canopy heterogeneity 
as hypothesized in Fernandes et al. (2024a) since otherwise we would 
expect unbiased estimates for non-forests. It may be that RMs are sys
tematically biased since the same pattern was observed for fCOVER and 
fAPAR. One possibility is that the RMs protocol requires DHP positioned 
away from canopy elements by at least 2–3 times their width. For forests, 
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this requires DHP points located away from trunks and hence within 
gaps. The fAPAR and fCOVER biases were small ~0.1 but important 
since they exceed the current GCOS requirement for U.

Intercomparisons results (Fig. 7) were consistent with the corre
sponding validation results in terms of similarity for fCOVER and fAPAR 
retrievals between sensors, and LS showing a greater LAI underestima
tion than S2. These findings are also consistent with validation results 
with LS and S2 retrievals agreeing generally within the validation pre
cision, except for LAI over MF, DF, and WW (Fig. 7). For these classes, S2 
LAI was substantially higher than LS LAI for LAI > 3 (slope ~0.6). The 
absence of a similar bias for EF may be due to the relatively low fre
quency of high LAI values for EF intercomparisons, but a lower under
estimation is also obtained for EF LAI validation compared to WW, DF, 
and MF (Fig. 4). Further, the larger sample size with inter-comparisons 
confirms that the validation result was not a sampling artifact. It is also 
unlikely the bias was due to the difference in spatial resolution of the 30 
m LS and 20 m S2 input measurements since the bias was largest over 
dense closed forests where DHP images indicate gaps were generally 
within crowns rather than large open areas between crowns. Consid
ering the algorithms and matchup methods, the forest bias between S2 
and LS supports the hypothesis that it is due to differences in spectral 
sampling. Indeed, the bias is not likely due to the input SDR processing 
chain since then it would have been seen with non-forested classes and 
less dense forests. It has long been noted that signal saturation of visible 
bands can result in low signal to noise ratios that in turn limit the range 
of retrieved high LAI values from inversion of RTMs (Myneni et al., 
1997). While LS has SWIR bands that may alleviate this problem 
(Fernandes et al. 2023), SL2P-CCRS assumes identical multiplicative 
input noise and as such is likely still placing undue weight on the visible 
bands, specifically the red band of LS. S2, with red-edge bands, may not 
depend on the low signal to noise ratio for red band as noted by Dong 
et al. (2023). Indeed, Fernandes et al. (2024b) found the same saturation 
when using a retrieval algorithm based only on S2 10 m bands that did 
not include red-edge or SWIR sampling. The systematic bias between S2 
and LS could be corrected a posterior using matchups and could be 
applied to harmonized SDRs.

LS stability fell within GCOS requirements. This was not expected 
considering the precision error of all products. Indeed, the fCOVER 
stability of less than 0.02 yr-1 indicates one could detect changes of 0.2 
fCOVER per decade, well within the requirement of many systems for 
tracking reclamation, revegetation, and gradual vegetation cover loss. 
Granted the stability is based on annual average bias but this is neces
sary to remove the impact of seasonality or differences in the dates of 
intra-annual matchups. Comparisons to automated sensor networks can 
assess seasonal stability but would require a sufficient temporal baseline 
not widely available currently. S2 stability was similar to LS on average 
although the range observed was larger due to the shorter S2 period 
examined. The confidence interval of S2 stability results could be 
improved by using new Collection 1 data that extends back to 2016.

5. Conclusions

This study evaluated the consistency and stability of SL2P-CCRS es
timates of fAPAR, fCOVER and LAI from LS and S2 data over North 
American forested and non-forested sites. RMs from NEON and regional 
CCRS sites are used.

Based on 4932 S2-RM comparisons and 6569 LS-RM comparisons, A 
and U of SL2P-CCRS estimates of fCOVER (A ~ 0.03, U ~ 0.13) and 
fAPAR (− A ~ 0.03, U ~ 0.13) from LS and S2 are similar. However, LAI 

estimates from S2 (A ~ − 0.33, U ~ 0.98) are slightly better than esti
mates from LS (A ~ − 0.43, U ~ 1.13); with the largest difference 
observed for LAI > 3 over woody wetlands, deciduous forest, and mixed 
forest. These results are confirmed by LS against S2 intercomparison 
showing that SL2P-CCRS estimates from LS and S2 agreed within 0.15 at 
50 %ile for fCOVER and fAPAR and within 0.5 at 50 %ile for LAI, except 
for woody wetland, deciduous forest, and mixed forest, for which sub
stantially lower estimates are generally obtained using LS compared to 
S2.

The stability of SL2P-CCRS estimates from LS and S2 fell within 
GCOS requirements with a mean (standard deviation) value over sites of 
− 0.01 yr− 1 (0.06 yr− 1) for LS LAI, 0.02 yr− 1 (0.09 yr− 1) for S2 LAI, and 
0 yr− 1 (0.01 yr− 1) for fCOVER and fAPAR from both LS and S2. How
ever, the confidence intervals of S2 stability estimates often exceeded 
GCOS requirements due to the limited inter-annual overlap with RMs. 
Nevertheless, the LS stability estimates could be employed to assess 
observed trends in vegetation both the NEON sites and similar sites in 
general as envisioned by the Global Climate Observing System concept 
of essential climate variables of the biosphere.

Our findings support the hypothesis that SL2P-CCRS LAI, fAPAR, and 
fCOVER products from LS and S2 can be combined to enhance temporal 
sampling, although sensor specific bias correction should be applied to 
LAI as recommended in Fernandes et al. 2023. Future studies should 
exploit these times series to monitor the status and trends of vegetation 
and to support models of crop productivity, land surface fluxes, and 
habitat.
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Appendix A 

Table A1 
Number of Elementary Sampling Units (ESUs), sampling period, number of acquired samples, and National Land Cover Database (NLCD) classes for CCRS and NEON 
sites.

Site Network Start Date End Date #ESUs NLCD (#samples)

Peace River CCRS 2019-08-12 2019-08-12 3 DF (3)
YellowKnife CCRS 2019-08-11 2019-08-12 3 EF (3)
Mer Bleue CCRS 2019-09-18 2019-09-18 3 EF (2), DF (1)
Hay River CCRS 2019-09-05 2019-09-07 28 EF (27), MF (1)
Geraldton CCRS 2020-07-21 2020-07-21 3 EF (2), DF (1)
Nova Scotia CCRS 2021-08-26 2021-08-27 3 EF (2), DF (1)
Turkey Point CCRS 2019-06-27 2019-06-27 3 EF (2), DF (1)
Vancouver Island CCRS 2019-08-09 2019-08-10 3 EF (3)
Mt. Polley CCRS 2019-08-14 2019-08-15 3 MF (2), EF (1)
Labrador CCRS 2019-07-24 2019-07-31 12 MF (6), EF (6)
STER NEON 2014-04-01 2022-09-08 19 CC (357)
KONA NEON 2017-06-22 2022-10-27 24 CC (221)
TREE NEON 2015-07-08 2022-06-21 23 DF (145), MF (79), WW (11), EF (3)
UKFS NEON 2016-04-06 2022-10-25 24 DF (268), EF (55), GH (3)
BART NEON 2016-04-14 2022-11-17 27 DF (234), MF (128), EF (11)
SERC NEON 2017-06-16 2022-09-12 25 DF (356), CC (6)
SCBI NEON 2015-04-29 2022-09-26 27 DF (402), PH (8)
STEI NEON 2014-05-08 2022-10-18 23 DF (259), MF (3), WW (3)
BLAN NEON 2015-09-12 2022-06-21 22 DF (126), SS (118), CC (115), PH (10)
CLBJ NEON 2016-03-23 2022-11-01 25 DF (328), GH (20)
ORNL NEON 2016-03-09 2022-11-27 31 DF (416), EF (12), PH (9)
LENO NEON 2014-06-06 2022-09-26 23 DF (193), WW (114)
GRSM NEON 2017-08-14 2022-10-04 23 DF (319), EF (4)
MLBS NEON 2016-06-08 2022-12-03 23 DF (214)
BONA NEON 2014-06-04 2022-10-25 25 DF (93), EF (77), SS (6), MF (3), WW (2)
DELA NEON 2015-04-19 2022-10-03 26 DF (294), WW (34), EF (4)
HEAL NEON 2017-07-17 2022-08-22 23 DS (160), SS (15), EF (1)
BARR NEON 2018-04-26 2022-08-23 23 EHW (64), SH (15)
TEAK NEON 2013-04-17 2022-08-10 20 EF (91), SS (1)
JERC NEON 2015-07-28 2022-12-29 26 EF (364), DF (7), MF (4), CC (3)
SOAP NEON 2018-07-30 2021-09-22 23 EF (150), SS (2)
ABBY NEON 2016-11-01 2022-11-24 18 EF (139), GH (68), SS (3), MF (1)
YELL NEON 2018-06-12 2022-11-01 17 EF (72), SS (10), GH (1)
GUAN NEON 2019-06-13 2022-09-27 24 EF (518)
SJER NEON 2014-05-16 2022-10-12 23 EF (207), DF (101), GH (30), SS (4)
RMNP NEON 2016-07-06 2022-09-12 25 EF (82), DF (58), MF (57)
PUUM NEON 2013-06-11 2022-08-04 23 EF (320)
OSBS NEON 2017-08-04 2022-10-25 34 EF (435), WW (22), DF (7), MF (6), EHW (4)
WREF NEON 2018-04-10 2022-11-01 27 EF (176)
DEJU NEON 2016-08-25 2022-07-05 23 EF (160), SS (8), WW (2)
TALL NEON 2016-03-16 2022-10-27 23 EF (390), DF (12), MF (9)
KONZ NEON 2016-05-10 2022-10-17 24 GH (348), DF (4)
NOGP NEON 2015-07-14 2022-09-19 23 GH (274)
NIWO NEON 2017-06-19 2022-10-19 24 GH (188), EF (13)
DCFS NEON 2014-03-26 2022-10-26 23 GH (247)
CPER NEON 2014-05-08 2022-10-19 23 GH (451)
WOOD NEON 2014-05-01 2022-10-24 27 GH (361), EHW (11)
HARV NEON 2014-05-20 2022-07-12 21 MF (244), EF (126), DF (6), WW (2)
UNDE NEON 2016-04-15 2022-12-29 27 MF (105), WW (100), DF (81)
LAJA NEON 2013-02-11 2022-09-21 4 PH (455), EF (1)
DSNY NEON 2017-07-10 2022-08-15 24 PH (452), WW (36)
TOOL NEON 2021-07-15 2021-07-22 22 SH (111), DS (20), SS (2)
SRER NEON 2016-04-27 2022-10-24 23 SS (339)
JORN NEON 2015-06-10 2022-11-01 23 SS (335)
OAES NEON 2016-03-21 2022-11-15 20 SS (213), GH (110)
ONAQ NEON 2014-05-22 2022-09-13 23 SS (337), EF (13)
MOAB NEON 2015-05-13 2022-11-01 23 SS (311), EF (3)
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Appendix B

Fig. B1. Example of outliers detected on RMs time series acquired on NEON ESU GUAN_054.

Table B1 
Number of samples (N) and number and percentage of outliers detected for each variable and NLCD class for NEON sites.

NLCD LAI fCOVER fAPAR

N #Outliers % Outliers N #Outliers % N #Outliers % Outliers

EF 3427 3 0.09 3427 30 0.88 3427 16 0.47
GH 2101 1 0.05 2101 4 0.19 2101 3 0.14
SS 1704 0 0 1704 1 0.06 1704 1 0.06
MF 639 1 0.16 639 1 0.16 639 1 0.16
SH 126 0 0 126 0 0 126 0 0
EHW 79 0 0 79 0 0 79 0 0
DF 3923 19 0.48 3923 28 0.71 3923 31 0.79
PH 934 16 1.71 934 55 5.89 934 48 5.14
CC 702 2 0.28 702 16 2.28 702 16 2.28
WW 326 2 0.61 326 2 0.61 326 2 0.61
Total 13,961 44 0.31 13,961 137 0.97 13,961 118 0.83
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Appendix C

Fig. C1. Scatter plots of SL2P-CCRS estimates of LAI, fCOVER and fAPAR obtained from S2 data versus matching RMs for (a) BARR, (b) TOOL and (c) DEJU sedge 
sites, together with population validation metrics. Dashed lines bound target user requirement around solid 1:1 line.

Table C1 
Woody-to-total area ratios and their uncertainties, in parentheses, applied to RMs. Site corresponds to NEON site ID (Appendix A) or all sites 
with corresponding SL2P-CCRS land cover classification and overstory canopy height < 19 m.

NLCD (site) Overstory 
Woody-to-total area ratio

Understory 
Woody-to-total area ratios

Source

DF (<19 m) 0.24 (0.11) 0.05 Brown et al., 2021
MF (<19 m) 0.18 (0.11) 0.05 Brown et al., 2021
OTHER (<19 m) 0.10 (0.11) 0.05 Brown et al., 2021
EF (others) 0.16 (0.10) 0.05 Brown et al., 2021
EF (ABBY) 0.70 (0.19) 0.05 This study
EF (WREF) 0.75 (0.19) 0.05 This study
EF (PUUM) 0.65 (0.19) 0.05 This study
EF (TEAK) 0.60 (0.19) 0.05 This study
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Appendix D 

Table D1 
Coefficient of determination (R2), accuracy (A), precision (P) and uncertainty (U) for SL2P-CCRS estimates of LAI, fCOVER and fAPAR from LS data versus matching 
RMs, as well as the samples size (N) and the variation range (min max) of RMs.

NLCD LAI fCOVER fAPAR

N R2 A U min max N R2 A U min max N R2 A U min max

EHW 35 0.57 0.12 0.31 0.58 2.07 35 0.65 0.04 0.09 0.12 0.61 35 0.83 0.03 0.07 0.14 0.59
SH 69 0.40 0.01 0.22 0.71 1.88 69 0.56 0.02 0.07 0.24 0.61 69 0.51 0.02 0.07 0.22 0.59
CC 234 0.79 0.30 0.50 0.08 3.95 234 0.82 0.11 0.15 0.00 0.84 234 0.86 0.07 0.11 0.03 0.83
PH 383 0.68 0.39 0.59 0.57 3.81 383 0.69 0.11 0.17 0.04 0.85 383 0.68 0.06 0.13 0.03 0.83
SS 614 0.92 0.26 0.67 0.19 5.88 614 0.90 0.06 0.10 0.00 0.96 614 0.89 0.05 0.10 0.00 0.93
GH 1136 0.72 0.38 0.57 0.10 5.64 1136 0.76 0.11 0.15 0.00 0.93 1136 0.78 0.08 0.13 0.01 0.91
WW 138 0.72 − 1.50 1.87 0.58 5.40 138 0.61 − 0.09 0.16 0.19 0.89 138 0.46 − 0.17 0.22 0.18 0.86
MF 319 0.75 − 1.30 1.51 0.52 4.72 319 0.85 − 0.05 0.09 0.16 0.89 319 0.73 − 0.11 0.15 0.18 0.86
DF 1816 0.74 − 1.27 1.68 0.03 5.53 1816 0.76 − 0.04 0.12 0.03 0.94 1816 0.73 − 0.09 0.15 0.03 0.91
EF 1825 0.67 − 0.38 0.82 0.02 4.28 1825 0.71 − 0.01 0.12 0.01 0.87 1825 0.67 − 0.08 0.14 0.02 0.85
All 6569 0.82 − 0.43 1.13 0.02 5.88 6569 0.83 0.02 0.13 0.00 0.96 6569 0.80 − 0.03 0.14 0.00 0.93

Table D1 
Coefficient of determination (R2), accuracy (A), precision (P) and uncertainty (U) statistics for SL2P-CCRS estimates of LAI, fCOVER and fAPAR from S2 data versus 
matching RMs, as well as the samples size (N) and the variation range (min max) of RMs.

NLCD LAI fCOVER fAPAR

N R2 A U min max N R2 A U min max N R2 A U min max

EHW 40 0.49 0.26 0.35 0.12 1.70 40 0.54 0.02 0.06 0.03 0.41 40 0.51 0.02 0.06 0.04 0.41
SH 79 0.24 0.11 0.32 0.59 2.37 79 0.58 0.01 0.07 0.21 0.64 79 0.54 0.01 0.07 0.21 0.62
CC 163 0.77 0.36 0.57 0.01 4.03 163 0.79 0.10 0.15 0.00 0.90 163 0.82 0.07 0.12 0.01 0.88
PH 319 0.63 0.45 0.66 0.15 4.85 319 0.64 0.11 0.17 0.06 0.88 319 0.69 0.06 0.13 0.07 0.86
SS 420 0.86 0.17 0.66 0.00 5.89 420 0.88 0.07 0.11 0.00 0.92 420 0.88 0.05 0.10 0.00 0.90
GH 747 0.75 0.27 0.60 0.00 4.95 747 0.81 0.10 0.14 0.00 0.90 747 0.83 0.05 0.11 0.00 0.85
WW 83 0.63 − 1.73 1.99 0.63 5.38 83 0.52 − 0.11 0.17 0.20 0.91 83 0.46 − 0.17 0.21 0.18 0.89
MF 195 0.84 − 1.01 1.21 0.29 5.22 195 0.86 − 0.01 0.09 0.03 0.92 195 0.80 − 0.09 0.13 0.01 0.89
DF 1330 0.73 − 0.87 1.36 0.10 6.87 1330 0.74 − 0.02 0.13 0.01 0.99 1330 0.73 − 0.08 0.15 0.04 0.95
EF 1556 0.66 − 0.39 0.81 0.16 5.00 1556 0.69 0.01 0.12 0.01 0.87 1556 0.67 − 0.06 0.13 0.06 0.84
All 4932 0.80 − 0.33 0.98 0.00 6.87 4932 0.81 0.03 0.13 0.00 0.99 4932 0.79 − 0.03 0.13 0.00 0.95

Appendix E

Fig. E1. NEON UNDE site SL2P-CCRS LAI number of annual matchups (N), annual bias time series, ordinary linear regression fits for S2 (blue bars, dots, and dashed 
line, respectively) and LS (orange bars, dots, and solid line, respectively). The expected value and 95 % confidence interval of S, corresponding to the fitted line slope, 
are indicated for S2 (blue text) and LS (orange text).
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Table E1 
Class specific Coefficient of determination (R2), accuracy (A), and uncertainty (U) statistics between SL2P-CCRS estimates from LS data versus the corresponding 
estimates from S2 data (reference), conjointly with the samples size and the variation range of estimates from S2. N: number samples; min: minimum estimate; max: 
maximum estimate.

NLCD LAI fCOVER fAPAR

N R2 A U min max N R2 A U min max N R2 A U min max

EHW 784 0.76 0.03 0.3 0.01 3.9 785 0.74 0.02 0.08 0 0.8 786 0.71 0.02 0.08 0.01 0.78
SH 464 0.8 0.01 0.17 0.17 2.65 464 0.85 0.04 0.06 0.1 0.68 464 0.83 0.04 0.06 0.12 0.66
CC 1169 0.91 0.07 0.38 0 6.92 1078 0.94 0.02 0.07 0 0.98 1312 0.95 0.03 0.07 0 0.95
PH 873 0.89 − 0.01 0.37 0.02 6.64 874 0.89 0.01 0.07 0 0.95 876 0.89 0.01 0.07 0.01 0.93
SS 8240 0.92 0.15 0.27 0 7.4 7601 0.95 − 0.01 0.04 0 0.98 7649 0.93 0 0.05 0 0.97
GH 8117 0.9 0.14 0.29 0 5.6 8147 0.93 0.02 0.06 0 0.94 8907 0.93 0.03 0.06 0 0.91
WW 3245 0.82 − 0.22 0.61 0.02 6.39 3246 0.88 − 0.02 0.07 0.03 0.96 3246 0.88 − 0.02 0.08 0.02 0.93
MF 2053 0.81 − 0.13 0.56 0.17 6.09 2053 0.86 − 0.03 0.08 0.1 0.96 2053 0.84 − 0.04 0.09 0.1 0.93
DF 10,043 0.87 − 0.34 0.8 0.02 7.59 10,050 0.92 − 0.03 0.08 0.01 1.01 10,051 0.92 − 0.03 0.08 0 0.98
EF 11,805 0.83 − 0.1 0.38 0 5.37 11,801 0.86 − 0.04 0.08 0 0.93 11,807 0.85 − 0.04 0.08 0.01 0.9
All 46,793 0.89 − 0.07 0.5 0.02 6.39 46,099 0.93 − 0.01 0.07 0.03 0.96 47,151 0.92 − 0.01 0.07 0.02 0.93

Appendix F 

Table F1 
The correlation coefficient R (and the corresponding coefficient interval, CI) between stability (S) for SL2P-CCRS estimates of LAI, fCOVER and fAPAR from LS 
data and the mean annual bias (mean RMs).

Variable S vs. Annual bias mean S vs. RMs mean

R CI (low) CI (high) R CI (low) CI (high)

LAI 0.43 0.15 0.64 − 0.41 − 0.63 − 0.13
fCOVER 0.10 − 0.20 0.38 − 0.02 − 0.30 0.28
fAPAR 0.06 − 0.24 0.34 − 0.03 − 0.32 0.26

Table F2 
The correlation coefficient R (and the corresponding coefficient interval, CI) stability (S) for SL2P-CCRS estimates of LAI, fCOVER and fAPAR from S2 data and the 
mean annual (mean RMs).

Variable S vs. Annual bias mean S vs. RMs mean

R CI (low) CI (high) R CI (low) CI (high)

LAI − 0.13 − 0.47 0.24 0.22 − 0.15 0.54
fCOVER − 0.06 − 0.42 0.31 0.00 − 0.37 0.36
fAPAR 0.18 − 0.18 0.50 − 0.16 − 0.48 0.20
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