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A B S T R A C T   

Canopy biophysical variables such as the fraction of canopy cover (fCOVER), fraction of absorbed photosyn
thetically active radiation (fAPAR), and leaf area index (LAI) are widely used for ecosystem modelling and 
monitoring. The Sentinel-2 mission was designed for systematic global mapping of these variables at 20 m 
resolution using imagery from the MultiSpectral Instrument. The Simplified Level 2 Prototype Processor (SL2P) is 
available as a baseline mapping solution. Previous validation over limited sites indicates that SL2P generally 
satisfies user requirements for all three variables over crops, but underestimates LAI over forests. In this study, 
Sentinel-2 fAPAR, fCOVER, and LAI products, from SL2P, were validated over 281 sites representative of most 
North American forest ecozones and also compared to Moderate Resolution Imaging Spectrometer (MODIS) and 
Copernicus Global Land Service (CGLS) products. In addition to meeting the Committee on Earth Observation 
Satellites Stage 3 validation requirements for these areas, our study also explores the relationship between bias in 
SL2P products and canopy clumping and provides empirical bias correction functions for each variable. 

SL2P was implemented within the Landscape Evolution and Forecasting Toolbox in Google Earth Engine both 
for efficiency and due to bugs in the Sentinel Application Platform implementation. SL2P was found to under
estimate LAI by 20% to 50% over forests with LAI > 2; in agreement with other studies and with comparisons to 
MODIS and CGLS products. SL2P bias for fCOVER and fAPAR transitions from ~0.1 at low values to ~ − 0.1 at 
high values. Precision error, at one standard deviation, was ~0.5 for LAI and slightly less than ~0.1 for fCOVER 
and fAPAR. Total uncertainty was dominated by bias for LAI and was slightly greater than precision error for 
fCOVER and fAPAR. Target user requirements were satisfied for 51% of LAI, 37% of fCOVER and 31% of fAPAR 
comparisons to in-situ measurements. For all variables, accuracy exhibited weak to moderate linear relationships 
to clumping (r2 ≤0.52), but scatter plots indicated larger negative LAI biases over northern latitude sites where 
canopies exhibited greater clumping. With the exception of evergreen broadleaf forests, empirical bias correction 
using in-situ data reduced accuracy error by 40% for fCOVER, 57% for fAPAR and, 92% for LAI and increased the 
agreement rate with uncertainty requirements by up to 8%. Users of SL2P LAI over forests are recommended to 
apply bias correction or consider recalibrating SL2P with spatially heterogenous radiative transfer model 
simulations.  

Abbreviations: LAI, Leaf Area Index; fAPAR, fraction of Absorbed Photosynthetically Active Radiation; SL2P, Simplified Level 2 Prototype Processor; MODIS, 
Moderate Resolution Imaging Spectrometer. 
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1. Introduction 

A primary goal of the Sentinel-2 (S2) mission is the systematic global 
mapping of canopy variables, including the fraction of canopy cover 
(fCOVER), fractional of absorbed photosynthetically active radiation 
(fAPAR), and leaf area index (LAI), using measurements from the Mul
tiSpectral Instrument (MSI) on a constellation of polar orbiting satellites 
(ESA Sentinel-2 Team, 2007). The European Space Agency (ESA) 
sponsored the development of the Simplified Level 2 Prototype Proces
sor (SL2P) for mapping these variables using Level 2A bottom of at
mosphere reflectance (L2A) products derived from MSI data (Weiss and 
Baret, 2016). SL2P versions are implemented in ESA’s Sentinel Appli
cation Platform (SNAP) 9.0.0 (http://step.esa.int), used by the European 
Union SEN4CAP agricultural sustainability project ((http://esa-sen4cap 
.org/) and the open source LEAF-Toolbox (Fernandes et al., 2021) 
implemented in Google Earth Engine (GEE), and used by the Govern
ment of Canada Earth Observation for Cumulative Effects Monitoring 
Programme (Janzen et al., 2020). 

S2 mission requirements correspond to Global Climate Observing 
System requirements (GCOS, 2022; “Goal” in Table 1). The Copernicus 
Global Land Service (CGLS) has also identified less stringent re
quirements considered acceptable by downstream services such as crop 
monitoring, hydrological and ecosystem models, and habitat mapping 
(Sanchez-Sapero and Martinez-Sanchez, 2022; “Target” in Table 1). 
Good practice for validation requires quantification of uncertainty (U), 
accuracy (A), precision (P) and uncertainty agreement ratio (UAR), 
defined in Table 2, as a function of the reference product value (Fer
nandes et al., 2014). The Committee on Earth Observation Satellites 
(CEOS, https://lpvs.gsfc.nasa.gov/) describes four validation levels 
corresponding to increasing spatial and temporal representativeness of 
validation statistics: Level 1, validation over <30 sites and time periods; 
Level 2, validation of >30 sites and time periods together with in
tercomparisons with similar products; Level 3, validation over >30 sites 
with validation statistics quantified as a function of reference conditions 
and with globally representative intercomparison; and Level 4 corre
sponding to ongoing Level 3 validation with fiducial reference networks. 

Level 2 and Level 3 validation has been performed for low resolution 
(>250 m) LAI, fAPAR, and fCOVER products (Weiss et al., 2007; Gar
rigues et al., 2008; Weiss et al., 2014; Camacho et al., 2013; Yan et al., 
2016; Brown et al., 2020; Fuster et al., 2020). Some of these studies 
predate community good practices for quantifying errors as a function of 
retrieved or reference value (Fernandes et al., 2014) and none of these 
studies quantify the uncertainty of validation metrics due to limited 
reference measurements. There are few SL2P Level 2 studies validating 
medium resolution products (see Supplementary Material Table S1) due 
to the limited number of systematic products, the difficulty of product 
generation for large areas, and the complexity of matching reference and 
higher spatial resolution product values. Nevertheless, SL2P validation 
indicates it generally satisfies target requirements for crops (Djamai 
et al., 2019; Hu et al., 2020; Brown et al., 2021a) but underestimates LAI 
and fAPAR over dense forests (Putzenlechner et al., 2019; Brown et al., 
2021a). Brown et al. (2021a) hypothesized the LAI underestimation was 

due to spatial clumping of foliage not accounted for within SL2P but did 
not test this with data or using product intercomparison. This also raises 
the concern that error of SL2P fAPAR and fCOVER estimates will also 
increase as spatial clumping increases. However, SL2P has not been 
simultaneously validated for LAI, fAPAR and fCOVER over high latitude 
forests even though these exhibit substantial clumping (He et al., 2012). 

A Level 3 validation of SL2P estimates of LAI, fCOVER and fAPAR 
over a broad geographical range of forests would allow product users to 
integrate validation statistics in down stream applications, improve our 
understanding of how SL2P retrievals compare to available global 
products, and serve to prioritise improvements to SL2P or similar al
gorithms for mapping vegetation parameters using the S2 MSI. Addi
tionally, Level 3 validation may facilitate bias correction using empirical 
statistical models between the SL2P response and in-situ reference 
measurements. For example, Brown et al. (2020) demonstrated that 
linear regression models between SL2P and reference measurements can 
produce unbiased estimates of LAI and fAPAR with a UAR exceeding 
74%. The extent to which this strategy can be applied at continental 
scale has yet to be determined. 

Here, SL2P is validated using in-situ reference measurements (RM) 
for 14 of 17 forest ecological zones of North America (Commission for 
Environmental Cooperation, 2022; Fig. 1), not including tropical rain
forests, temperate steppe and subtropical dry forests, and compared to 
previously validated coarse resolution Moderate Resolution Imaging 
Spectrometer (MODIS) and CGLS products. A new Canadian field 
campaign was conducted to address the issue of limited in-situ sampling. 
To facilitate product intercomparison, SL2P was implemented in GEE to 
produce products over a replicate sample of 100 km × 100 km regions of 
all North America forest ecological zones. Even so, this study does not 
evaluate the temporal stability of SL2P products as, prior to 2019, im
agery over North America was not systematically processed to Level 2A 
surface reflectance products by ESA. 

The goals of this study are to:  

I) validate SL2P LAI, fAPAR and fCOVER estimates over typical 
North American Forests by quantifying their accuracy, precision, 
uncertainty and uncertainty agreement ratio,  

II) determine if indeed SL2P accuracy for each variable is related to 
canopy clumping,  

III) assess the applicability of empirical bias correction to reduce 
retrieval error, and  

IV) provide good practices for achieving a CEOS Stage 3 validation of 
medium resolution vegetation biophysical variable products. 

2. Data sets 

2.1. Geospatial datasets 

Geospatial datasets described in the following subsections were used 
for SL2P product generation, stratification of intercomparison, and 
product intercomparison (Table 3). 

Table 1 
Product definitions (Sanchez-Sapero and Martinez-Sanchez, 2022; GCOS, 2022) 
and user requirements for target (CGLS) and goal (GCOS) thematic uncertainty 
levels.  

Variable Definition Goal Target 

fAPAR Fraction of absorbed 
photosynthetically active radiation by 
green vegetation for a given solar 
illumination condition. 

max 
(10%,0.05) 

max 
(10%,0.05) 

fCOVER Fraction of ground covered by green 
vegetation. 

5% max 
(10%,0.05) 

LAI Half the total foliage area per unit 
horizontal ground area. 

15% max 
(15%,0.5)  

Table 2 
Thematic error metrics used for product validation.  

Metric Acronym Definition 

Uncertainty U Square root of the expected value of the squared 
difference of estimated and product values. 

Accuracy A Expected value of the estimated value minus the 
product value. 

Precision P Square root of the expected value of the square 
of the total of the estimated value minus both 
the product value and the accuracy metric. 

Uncertainty 
agreement ratio 

UAR The fraction of validated samples that meet a 
given uncertainty requirement, in this case, 
GCOS.  
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2.1.1. MERIT-DEM 
MERIT-DEM is a 3 arc sec resolution digital elevation model (DEM) 

produced by combining a number of available DEMs. The vertical un
certainty is <±9 m over forested areas with slope < 10% (Yamazaki 
et al., 2017). 

2.1.2. CEC Forest Ecozones 
CEC Forest Ecozones is a polygon coverage of forest ecological zones 

for North America produced jointly by the Governments of Canada, 
United States of America and Mexico and published by the Commission 
for Environmental Cooperation (2022) (Fig. 1). The map indicates 17 
different primary forest ecological zones based on a combination of 
climate and potential vegetation classifications. The thematic error of 
this map is not given as it is a potential rather than actual geophysical 
dataset. 

2.1.3. NALC2015 
NALC2015 is a 30 m resolution land cover map for North America 

circa 2015 with an 18-class legend (Table 4) (Commission for Environ
mental Cooperation, 2020). The land cover is based on peak growing 
season satellite imagery from Landsat 5 and 8, as well as RapidEye over 
the U.S.A., from 2015; with missing pixels replaced using the peak 
season estimate in the most recent valid year. The thematic error of 
products using the same monitoring system has been assessed over 
Canada with 79.9% correct labelling for all 18 classes and 83% correct 
labelling of forest classes (Latifovic et al., 2012). The spatial uncertainty 
of NALC2015 is <5 m, 67.5% circular error probable. The NALC2015 

legend was translated to International Geosphere Biosphere Programme 
(IGBP) classes (Lambin and Geist, 2006) used to label the RM sites. 

2.1.4. MCD15 
MCD15 corresponds to global 4-day composites of fAPAR and LAI 

gridded at 500 m resolution. Retrievals are produced using the MODIS 
Version 6.1 fAPAR and LAI algorithm (Myneni et al., 2015) applied to 
MODIS imagery from Terra and Aqua satellites. Here, only primary al
gorithm retrievals corresponding to the maximum fAPAR in the 4-day 
interval are selected. The thematic error of MCD15 over forests is re
ported in several studies (Supplementary Materials, Table S2). Brown 
et al., 2020 report a root mean square difference (RMSD) between 0.48 
and 1.05 for LAI and 0.09 to 0.14 for FAPAR for 547 samples at 18 sites 
across North America. Yan et al. (2016) report a maximum LAI (fAPAR) 
residual of +2/− 1 LAI and ± 0.2 fAPAR for 50 samples with reference 
LAI ranging from 1.2 to 6 and fAPAR from 0.25 to 0.9. MCD15 under
estimated LAI by between − 0.14 (Brown et al., 2020) and − 0.41 (Fuster 
et al., 2020) over ENF and by − 1.47 for MF (Jin et al., 2017). The 
geolocation uncertainty of MCD15 is better than 53 m root mean square 
error (RMSE; Lin et al., 2019) although the projected instantaneous field 
of view (PIFOV) of measurements can vary by a factor of 4.83 
across-track (2.01 along track) for extreme view angles over flat terrain 
due to the MODIS 110◦ field of view (Wolfe et al., 1998). 

2.1.5. CGLSV1 
CGLSV1 corresponds to CGLS Ocean Land Colour Instrument (OLCI) 

Version 1.1 fAPAR, fCOVER and LAI products gridded at 300 m 

Fig. 1. Location of intercomparison regions (blue rectangles) and in-situ reference measurement sites (red and yellow circles) within North American Forest 
Ecological Regions. Global BELMANIP intercomparison sites are indicated as well with black circles. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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resolution for non-overlapping 10-day periods (Verger and Descals, 
2022). CGLSV1 is a Level 4 product as temporal interpolation using both 
current and historical retrievals for a mapped pixel are used to filling in 
empty periods. Only non-interpolated pixels were used in this study. The 
input Level 2 fAPAR and LAI products are derived by separate neural 
networks that relate OLCI surface reflectance to CGLS ProbaV Products 
(PBV 300 m V1 v1.0; Baret et al., 2016). The ProbaV products are in turn 
estimated using a weighting of corresponding MCD15 Version 5 (Yang 
et al., 2006) and CYCLOPES V3.1 (Baret et al., 2007) products; with the 
CYCLOPES V3.1 weighing transitioning from >80% for LAI < 1 to <20% 
for LAI > 2. This weighting reduces the independence of reference 
MCD15 and CGLS products since the latter are essentially scaled ver
sions of the former for LAI > 2. Level 2 fCOVER is derived using a fixed 
logarithmic relationship between fCOVER and LAI. 

CGLS OLCI products have not been extensively validated due to 
geolocation issues as only tie-points rather than image chip control 
points were used when generating CGLS L4 products from Level 2 inputs 
(Prikaziuk et al., 2021) The geolocation error is generally <333 m, and 
its impact on intercomparisons is reduced in our study by using 5 × 5 
pixel CGLS product averages during intercomparison. However, the 
error has inhibited CGLSv1 OLCI product validation against in-situ 
measurements. Nevertheless, CGLS ProbaV products, using a virtually 
identical algorithm adapted for ProbaV spectral bands, has been 
extensively validated (Supplementary Material Table S3). Brown et al. 
(2020) reported ProbaV uncertainty of 0.25 to 0.91 for LAI and 0.05 to 
0.09 for FAPAR for 538 samples at 18 sites across North America. Over 
the same sites, Fuster et al. (2020) reported much larger residuals for 
ProbaV products (often exceeding ±1 LAI and ± 0.1 fAPAR) but did not 
use spatial weighting with ancillary layers when upscaling in-situ RM. 
Information regarding the OLCI PIFOV variation is not available but it is 
likely less than MODIS given the smaller 68.5◦ field of view of OLCI 
(Bourg et al., 2021). 

2.1.6. MSI L2A 
MSI L2A data corresponds to bottom-of-atmosphere reflectance (ρ) 

processed from MSI top-of-atmosphere Level 1B products by ESA from 
the MSI on S2A or S2B satellites, using version 2.10 or higher of the 
Sen2Cor algorithm (Müller-Wilm, 2018). Clear sky pixels over land and 
water are mapped with 98% accuracy and radiometric uncertainty is 
better than 0.005 + 0.05ρ for flat surfaces (Doxani et al., 2018); 
although the latter could increase substantially over terrain with adja
cent slopes exceeding 10◦ (Djamai and Fernandes, 2018). The geo
location uncertainty is <12.5 m 95% circular error probable (Gascon 
et al., 2017). The full width half maximum point spread function ranges 
from 22.0 m for the 10 m Band 4, to 33.4 m and 39.1 m for Band 5 and 
Band 11 respectively (Radoux et al., 2016). PIFOV variation is far less 
than the pixel size as the field of view is only 20.6◦ (Gascon et al., 2017). 

2.2. In-situ reference measurements 

In-situ RM spanning 2019 and 2020 were acquired from the Ground- 

Based Observations for Validation (GBOV) component of the CGLS 
(Brown et al., 2021b) and by the authors at Canada Centre for Remote 
Sensing (CCRS) (Table 5). Elementary Sampling Units (ESUs), corre
sponding to the spatial footprint of a RM, were located within long term 
monitoring sites (GBOV) or regional transects (CCRS). ESUs were cen
tred within patches of ~100 m × 100 m that were qualitatively assessed 
as having similar canopy characteristics based on high resolution im
agery and in-situ survey. 

2.2.1. GBOV 
Fraction of intercepted PAR (fIPAR), fCOVER, and LAI RM were 

derived from Digital Hemispherical Photographs (DHPs) for 142 
Elementary Sampling Units (ESUs) at 14 forest or shrubland sites within 
the National Ecological Observatory Network (Barnett et al., 2019) in 
North America (Table 5, Fig. 1) using the method described in Brown 
et al. (2021a). GBOV fIPAR is defined as the black-sky PAR intercepted 
by overstory and understory vegetation at 10:00 local solar time and LAI 
as the one-sided leaf area per unit ground surface area. In fact, GBOV LAI 
corresponds to half the total plant area per unit horizontal ground area 
(PAI). 

At each site, three 20 m by 20 m square ESUs, located within 1 km of 
NEON tower locations, were sampled bi-weekly from leaf-out to senes
cence. In each ESU, 12 co-located upward and downward looking DHP 

Table 3 
Geospatial data sets.  

Dataset Description Access Reference 

CGLSV1 333 m 10d fAPAR (at 10.15 Local Time), 
fCOVER and LAI 

http://land.copernicus.eu/global/products/ Verger and Descals, 2022. 

MERIT DEM 3 arc sec Multi Error Removed Improved 
DEM 

https://developers.google.com/earth-engine/datasets/ Yamazaki et al., 2017 

MCD15 500 m 4d MODIS Collection 6 Leaf Area 
Index/FPAR 

https://developers.google.com/earth-engine/datasets/catalog/ 
MODIS_006_MCD15A3H 

Myneni et al., 2015 

MSI L2A MSI Level 2A Bottom of Atmosphere 
reflectance 

https://developers.google.com/earth-engine/datasets/catalog/ 
COPERNICUS_S2_SR 

Müller-Wilm, 2018. 

Forest 
Ecozones 

North American Forests Primary 
Ecological Zones 

https://www.cec.org/north-american-environmental-atlas/north- 
american-forests-2022/ 

Commission for Environmental 
Cooperation, 2022 

NALC2015 30 m North American Land Cover 2015 https://www.cec.org/north-american-environmental-atlas/land-cover-30 
m-2015-landsat-and-rapideye/ 

Commission for Environmental 
Cooperation, 2020  

Table 4 
NALC2015 land cover classes, IGBP Class acronym and forest land class desig
nation. IGBP Classes: mixed forest (MF), deciduous broadleaf forest (DBF), 
evergreen needleleaf forest (ENF), grassland (GR), shrub (SH). evergreen 
broadleaf forest (EBF), barren land (BL), cropland (CR), wetland (WL), urban 
(UB), water (WA), snow or ice (SI).  

NALC2015 Class IGBP 
Class 

Forestland 
Class 

Temperate or sub-polar needleleaf forest ENF Yes 
Sub-polar taiga needleleaf forest ENF Yes 
Tropical or sub-tropical broadleaf evergreen 

forest 
EBF Yes 

Tropical or sub-tropical broadleaf deciduous 
forest 

DBF Yes 

Temperate or sub-polar broadleaf deciduous 
forest 

DBF Yes 

Mixed forest MF Yes 
Tropical or sub-tropical shrubland SH Yes 
Temperate of sub-polar shrubland SH Yes 
Tropical or sub-tropical grassland GR No 
Tropical or sub-polar grassland GR No 
Sub-polar or polar shrubland-lichen-moss SH No 
Sub-polar or polar grassland-lichen-moss GR No 
Sub-polar or polar barren-lichen-moss GR No 
Wetland WL Yes 
Cropland CR No 
Barren lands BL No 
Urban and built-up UB No 
Water WA No 
Snow/Ice SI No  
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images were acquired with 4 m spacing in North-South and East-West 
transects through the plot centre (Fig. 2) using 36.3MPixel Nikon 
D810 or D800 cameras (https://en.nikon.ca/nikon-products/product-a 
rchive/dslr-cameras/d810.html) with a Nikon 16 mm Fisheye lens 
(https://en.nikon.ca/nikon-products/product/camera-lenses/af-fish 
eye-nikkor-16mm-f%252f2.8d.html) giving a 180◦ diagonal field of 
view (FOV). The ESU centre location was determined within 1 m, 90% 
circular error probable. Five sites included additional intensive sampling 
dates at up to 20 additional ESUs distributed in the dominant vegetation 
types across each site (land cover types <5% of total site area were not 
sampled). Details regarding the estimation of gap fraction from DHP 
images, and subsequently fIPAR and PAI, are given in Appendix B. of 
Brown et al. (2020). Briefly, upwards and downward images were pro
cessed separately. fIPAR (fCOVER) was estimated as one minus the mean 
gap fraction within ±5◦ of the solar zenith angle at 10:00 local solar 
time (±5◦ of nadir). PAI was estimated as the average of effective PAI 
estimates for 10◦ azimuthal intervals within ±5◦ of 57.5◦ zenith angle to 
minimize sensitivity to leaf angle (Leblanc et al., 2005). The effective 
PAI for each azimuth interval was estimated as twice the negative 

logarithm of the gap fraction multiplied by the cosine of the zenith 
angle. The effective PAI for the entire image was also quantified using 
the mean gap fraction within ±5◦ of 57.5◦ zenith angle. ESU mean PAI 
(PAIe) was determined by the sum of the mean PAI (PAIe) for upward 
and downward DHPs. The 1σ uncertainty of each RM was computed 
following Fiducial Reference Measurements for Vegetation guidelines, 
by propagating the variability in gap fraction at the ESU level through 
each measurement equation as in Brown et al. (2021b), whilst uncer
tainty due to instrument levelling was based on Origo et al. (2017). 

2.2.2. CCRS 
fIPAR, fCOVER and PAI RM were derived from DHPs acquired for 

133 ESUs in 11 Natural Resources Canada’s Cumulative Effects study 
sites across Canada (Table 5, Fig. 1). ESUs were located within the 
dominant land cover types at each site with replication where logistics 
permitted. For each ESU, seven co-located upward and downward DHP 
images were acquired every 5 m along two parallel transects spaced 15 
m apart (Fig. 2) using 45.7Mpixel Nikon D850 cameras (https://en. 
nikon.ca/nikon-products/product/dslr-cameras/d850.html) with a 

Table 5 
In-situ sites. ESU: Elementary Sampling Unit. IGBP Class defined in Table 4.  

Site Ecoregion IGBP 
Class 

Lat. 
◦N 

Long. 
◦E 

Elev. 
(m 
a.s.l.) 

Date 
Start 

Date 
End 

#ESU Network 

Bartlett Exp. 
Forest 

Temperate continental forest MF 44.06 − 71.28 232 2019-05-13 2020-10-12 3 GBOV 

Blandy Exp. 
Farm 

Temperate continental forest DBF 39.08 − 77.95 183 2019-03-26 2020-10-14 22 GBOV 

Dead 
Lake 

Subtropical humid forest DBF 32.53 − 87.8 22 2019-03-13 2020-08-07 22 GBOV 

Disney 
Wilderness 
Preserve 

Tropical moist Forests MF 28.12 − 81.44 15 2019-01-03 2020-12-15 24 GBOV 

Geraldton Boreal coniferous forest ENF 49.85 − 86.88 348 2020-07-15 2020-07-21 56 CCRS 
Guanica 

Forest 
Tropical Dry Forests ENF 17.97 − 66.87 143 2019-01-07 2020-12-16 3 GBOV 

Harvard 
Forest 

Temperate continental forest MF 42.54 − 72.17 351 2019-05-08 2020-10-06 3 GBOV 

Hay River Boreal coniferous forest ENF 60.57 − 116.12 165 2019-09-05 2019-09-07 28 CCRS 
Jones Ecological 

Research 
Temperate continental forest ENF 31.20 − 84.47 44 2019-01-10 2020-12-08 24 GBOV 

Joronarda Subtropical steppe SH 32.59 − 106.84 36 2019-01-10 2020-12-08 3 GBOV 
Labrador Boreal tundra woodland DBF 52.65 − 66.13 12 2019-07-24 2019-07-31 7 CCRS 
Mer Bleue Temperate continental forest ENF 45.40 − 75.57 86 2019-09-18 2019-09-18 3 CCRS 
Moab Temperate desert SH 38.25 − 109.39 1799 2019-01-10 2020-12-08 3 GBOV 
MtPolley Temperate mountain system SH 52.52 − 121.55 917 2019-08-12 2019-08-15 6 CCRS 
Nova 

Scotia 
Temperate oceanic forest SH 45.18 − 63.03 34 2021-06-09 2021-08-27 7 CCRS 

Oak 
Ridge 

Subtropical mountain system SH 35.96 − 84.28 334 2019-04-16 2020-10-24 3 GBOV 

Onaqui 
Ault 

Temperate desert SH 40.18 − 112.45 1685 2019-03-20 2020-08-26 3 GBOV 

Ordway 
Swisher 
Biological Stn. 

Subtropical humid forest EBF 29.70 − 81.99 45 2019-01-28 2020-11-13 3 GBOV 

Peace 
River 

Boreal Mountain System ENF 56.74 − 118.35 330 2019-08-12 2019-08-12 9 CCRS 

Santa 
Rita 

Subtropical desert MF 31.91 − 110.84 983 2019-03-04 2020-10-06 3 GBOV 

Smithsonian 
Conservation 
Biology Inst. 

Subtropical humid forest ENF 38.89 − 76.56 361 2019-05-21 2020-10-15 3 GBOV 

Talladega 
National 
Forest 

Subtropical humid forest ENF 32.95 − 87.39 135 2019-03-19 2020-07-01 3 GBOV 

Turkey 
Point 

Temperate continental forest DBF 42.68 − 80.46 222 2019-06-25 2019-06-27 4 CCRS 

University 
Notre Dame 
Conservation 

Temperate continental forest DBF 46.23 − 89.54 518 2019-05-08 2020-09-30 23 GBOV 

Vancouver 
Island 

Temperate oceanic forest MF 49.84 − 125.54 50 2019-08-09 2019-08-10 7 CCRS 

Yellowknife Boreal Tundra Woodland ENF 62.56 − 113.99 206 2019-08-09 2019-08-12 6 CCRS  
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Nikon 8 mm Fisheye lens (https://en.nikon.ca/nikon-products/produc 
t/camera-lenses/af-s-fisheye-nikkor-8-15mm-f%252f3.5-4.5e-ed.html) 
giving a 180◦ FOV in all directions. The ESU centre was located to within 
5 m, 90% circular error probable. In addition, the IGBP land cover class 
and the approximate surface cover fraction of bryophyte, lichen, mineral 
soil or litter was noted. 

DHPs for each ESU sampling date were visually quality controlled, 
contrast enhanced using ViewNXi software (https://en.nikon.ca/niko 
n-products/product/imaging-software/viewnx-i.html) and masked to 
remove the field operator. CANEYE V6.45 (https://www6.paca.inrae.fr/ 
can-eye/Download/) was used to derive RM estimates as well as PAIe 
and associated 1σ uncertainties for either the upward or downward 
looking DHPs acquired during a ESU visit. CANEYE uses the same 
approach as GBOV to derive the RM but also provides an alternate PAIe 
and PAI estimate that minimises the difference of the observed gap 
fraction for each position in the hemisphere and the modelled gap 
fraction with a penalty function proportional to the deviation from the 
PAIe estimate within ±5◦ of 57.5◦ zenith. Agreement of the GBOV and 
CANEYE algorithms is a necessary condition if indeed the canopy was 
sufficiently sampled and DHPs were adequately processed. As part of the 
CCRS protocol, ESU measurements where these two approaches differed 
more than their average standard error were processed after further 
quality control and enhancement. This approach improved consistency 
between GBOV and CCRS RM. 

The standard error of RM estimates for each DHP sampled during an 
ESU visit was used to quantify RM measurement error using the same 
approach applied with GBOV (Brown et al., 2021b). However, as 
CANEYE does not directly provide the fIPAR for each DHP, the fCOVER 
within plot relative standard error was used to approximate the fAPAR 
standard error, recognizing that this will be pessimistic as the former is 
based on gap fraction within ±10◦ of nadir and the latter at 10:00 local 
solar time. 

3. Methods 

3.1. Reference measurements 

RM were uploaded to GEE as feature collections (Fernandes and 
Canisius, 2023). PAIe, PAI, fIPAR and fCOVER were converted to LAIe, 
LAI, fAPAR and green fCOVER, respectively, by multiplying the 
measured value by woody area to total area ratios given in Brown et al. 
(2021a) for the overstory and 0.05 (±0.025 1σ) for the understory. The 
understory value was selected assuming herbaceous and shrub under
story cover have non-zero woody to total area ratio that is typically less 
than trees due to absence of trunks. Total LAIe, LAI, fAPAR and fCOVER 
were estimated by combining understory and overstory values as in 
Brown et al. (2021a). Clumping was calculated as the ratio of total LAIe 
to total LAI (Chen and Cihlar, 1995). A clumping of one corresponds to a 
canopy with random foliage locations while lower values indicate can
opies with increasing spatial clumping. 

The 1σ uncertainty of overstory or understory components of each 
RM was estimated as the Euclidean sum of the 1σ uncertainties due to 
levelling error, sampling variability, the applied woody to total area 
ratio, and for LAI, a 0.025 1σ uncertainty due to clumping. The clumping 
uncertainty is the Euclidean sum of the half the reported 0.03 root mean 
square error difference between the Lang and Yueqin (1986) and Chen 
and Cihlar (1995) clumping estimates for a range of sites and the ~0.02 
change in estimated clumping when using 10 versus 20 sampling points 
in a plot reported in Ryu et al. (2010). This approach assumes that the 
two methods for estimating clumping are equally uncertain although 
their accuracy varies with canopy type (Leblanc et al., 2005; Woodgate 
et al., 2017). The 1σ uncertainty of the corresponding total RM value 
was estimated as the Euclidean sum of the constituent understory and 
overstory 1σ uncertainties weighted by their proportion of the total RM. 

Fig. 2. Schematic of a. NEON and b. CCRS Elementary Sampling Unit (ESU) 
design. Star: ESU centre; dark green shaded circles: understory DHP 60◦ FOV 
for 50 cm canopy; light green shaded circles: overstory DHP 60◦ FOV for 20 m 
tall canopy; blue open circle: 30 m radius SL2P product sampling buffer. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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3.2. Validation 

SL2P uses separate non-linear regression predictors to estimate the 
expected value (retrieved estimate) and the standard error (theoretical 
precision) of LAI, fAPAR and fCOVER given L2A ρ and associated 
acquisition geometry (Weiss and Baret, 2016). Each non-linear regres
sion is calibrated using a database of 42,378 simulated L2A ρ with 
associated canopy variables, produced by applying the turbid spatially 
homogeneous (i.e. clumping = 1) PROSAILH radiative transfer model 
(RTM) (Verhoef et al., 2007) to a database of canopy parameters 
sampled from globally representative priors. Additionally, retrievals are 
flagged as out of domain (out of range) if the inputs (outputs) fall outside 
of the domain (range) of the calibration database simulations with a 
10% tolerance as described in Djamai et al. (2019). The LEAF-Toolbox 
implementation of SL2P was used to map LAI, fAPAR and fCOVER and 
associated quality control and theoretical precision layers at 20 m res
olution for clear sky land pixels whose centroid fell within a 30 m radius 
of the centre of each ESU and ± 7d interval of each RM. 

The SL2P implementation in SNAP was not used as two bugs were 
identified in the MATLAB libraries provided to SNAP and subsequently 
verified by their author (M. Weiss, personal communication): i) the prior 
probability distributions used to specify parameters for RTM simulations 
used to calibration SL2P regressions were incorrectly truncated when 
parameters fell outside allowed ranges, and ii) a coding error in the al
gorithm used to flag out of domain retrievals that significantly over
estimated the frequency of samples falling outside the domain. To 
demonstrate the impact of these bugs for current users of SNAP, SNAP 
and LEAF-Toolbox products were compared over the validation site used 
in Djamai et al. (2019). 

The ±7d interval for matches ensured at least three MSI acquisitions 
for each sample date given the <5d revisit of Sentinel-2A and 2b MSI 
imagers. Temporal differences in SL2P matches due to phenology, rapid 
disturbance or drought, as well as SL2P measurement error due to 
geolocation or atmospheric correction uncertainty could result in some 
matched dates having much larger residuals than others. In circum
stances where multiple dates were matched to a single RM, these errors 
were reduced by discarding dates where at least half the samples 
exceeded the 50%ile absolute residual of all matched pixels for the 15d 
period at the ESU. 

Ideally, the spatial footprint of matching product pixels should 
correspond to the spatial footprint of in-situ measurements (Fernandes 
et al., 2014). This was not possible to implement here as spatially 
explicit canopy height information was not available for CCRS ESUs. 
Also, product pixel footprints will vary with the L2A pixel PIFOV that in 
turn depends on actual geolocation, view zenith angle and spectral band 
(Gascon et al., 2017). To avoid these complexities, a fixed 30 m radius 
was used, corresponding to the approximate footprint of the ESUs with 
the tallest canopies measured. This choice assumes that, for shorter 
canopies, the ESU RM also applies within the spatial footprint of 
matching product pixels. 

The 1σ uncertainty of the mean SL2P estimate for a given match-up 
was modelled as the Euclidean sum of the mean SL2P theoretical pre
cision and the standard error of the matching SL2P samples. For each 
variable, the A, U, P and uncertainty agreement ratio (UAR) and coef
ficient of determination (r2) were computed using Eqs. 1,2,3 and 4 both 
for the entire RM population and for each IGBP cover class: 

A =
1
N
∑N

i=1
(ŷi − yi) (1)  

U =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1
(ŷi − yi)

2

√

(2)  

P =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1
(ŷi − yi − A)2

√

(3)  

UAR =
1
N

∑N

i=1
I
(⃒
⃒
⃒
⃒
ŷi − yi

yi

⃒
⃒
⃒
⃒ ≤ εrel ∪ |ŷi − yi| ≤ εmax

)

(4)  

where, ŷi, yi are, respectively, the SL2P estimate and RM for the ith of N 
comparisons; εrel, εmax are, respectively, the relative and maximum 
target uncertainty requirement (Table 1) and I is the indicator function. 

Good practice requires reporting thematic error metrics as a function 
of the RM value to allow for comparisons of validation results across 
studies with different sampling distributions (Fernandes et al., 2014; 
Doxani et al., 2018; Brown et al., 2021a). To do so, A, P and U were 
modelled using third order polynomial weighted least squares re
gressions fitted to quantities based on residuals between the mean of 
matching SL2P product pixels and RM values for each sampled ESU. For 
A (U) the residual (absolute residual) between SL2P estimates and RM 
was regressed against the RM. For P, the SL2P estimates were first cor
rected by adding the modelled A followed by regressing the absolute 
residuals between the corrected SL2P estimates and RM against the RM. 
Weighting was inversely proportional to the sum of squares of the 1σ 
uncertainty of the mean SL2P estimate and the 1σ uncertainty of the RM. 
The expected conditional value and ± 95%ile confidence intervals of 
each regression were computed using statsmodel version 01.3 (https: 
//www.statsmodels.org/stable/index.html). 

Brown et al. (2020) demonstrated that accuracy of local SL2P LAI 
and fAPAR maps can be improved by bias correction using empirical 
relationships between SL2P retrievals and local RM. Here, for each 
variable, the bias correction model was estimated by fitting a third order 
polynomial weighted least squares regression to predict the RM given 
the corresponding SL2P estimate using all match-ups. The weights were 
inversely proportional to the Euclidean sum of the 1σ uncertainty of the 
mean SL2P estimate and the 1σ uncertainty of the of the RM. The fitted 
polynomials were also validated by fitting and applying similar bias 
correction models for each site, but with site data held out, and then 
applying the same validation protocol used for uncorrected SL2P esti
mates. The hold out approach was used to ensure statistical indepen
dence between validation RM and the bias correction. 

3.3. Intercomparison 

Product intercomparison should be performed over replicate regions 
sampled within unique land surface conditions (Fernandes et al., 2014). 
The BELMANIP2 sampling design was previously developed to sample 
regions based on strata representative of global biomes, land cover, and 
phenology, together with the constraint that sample regions minimize 
conditions not relevant to the stratum and have relatively flat terrain 
(Weiss et al., 2014). The last condition reflects the fact that complex 
terrain can result in both radiometric and geolocation uncertainty that 
can mask differences between retrieval algorithms. BELMANIP2 was not 
used here for three reasons: i) it misses two North American forest 
ecozones, ii) even within a forest ecozone, BELMANIP2 regions are 
located to match the expected distribution of all land cover rather than 
only forest cover, and iii) BELMANIP2 does not consider the number of 
valid intercomparisons available within forested regions. Instead, since 
our study only considers North American forests, we relied on the North 
American forest ecozone map to stratify by geographic location, forest 
type, and phenology. Sample regions were restricted to 100 km × 100 
km Military Grid Reference System (MGRS) tiles (Defence Mapping 
Agency, 1990) since they offer a global equal area grid and because L2A 
products are formatted using these tiles. 

MGRS tiles were scored using the product of four relative criteria 
scores to select tiles that maximise potential valid intercomparisons 
(Table 6). Each relative criteria score corresponds to a raw criteria score 
divided by the sum of the same raw score of all tiles overlapping the 
ecozone. The product of relative scores ensured that the selected MGRS 
tile would not rank low on any one of the relative scores. For each forest 
ecozone, all MGRS tiles with at least 50% overlap with the ecozone were 
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scored and the two tiles with the highest score selected. 
Match-ups were extracted for each L2A product acquired during 

2019 over the selected MGRS tile using aggregated non-overlapping 3 ×
3 (for MODIS) or 5 × 5 (for CGLS) coarse resolution product pixel to 
reduce uncertainty due to geolocation or spatial footprint variability. 
For each match-up sample, areas labelled as either water in the L2A 
scene classification mask, water or built-up in the NALC2015 land cover, 
or L2A normalised difference vegetation index <0.1, were assigned 
biophysical parameter estimates of zero. SL2P was applied to other areas 
in the footprint, using the corresponding 20 m L2A product, to estimate 
canopy biophysical parameters and associated theoretical precision. 
Intercomparisons were considered valid if at least 90% of the match-up 
footprint area was mapped with valid SL2P retrievals or zero values and 
if there was 100% coverage of valid coarse resolution product retrievals. 
For each match-up, the expected value of the SL2P product estimate was 
estimated using area-weighted binning followed by dividing by the 
mapped match-up footprint area. Additionally, the standard deviation of 

valid retrievals and the proportion of each MCD15 biome type was 
determined for each MODIS or CGLS pixel using SL2P output and 
NALC2015 land cover respectively. 

4. Results 

4.1. Verification 

Comparisons of SNAP and LEAF-Toolbox implementations of SL2P 
indicated differences in both LAI and quality masks (Fig. 3). SNAP 
overestimates LEAF-Toolbox by up to 2 for LAI > 4 and underestimates 
by ~0.5 for LAI < 2 (Fig. 3a. 3c. and 3e.). SNAP also typically designates 
>50% of retrievals as invalid due to being ‘Out of Domain’ of the cali
bration dataset in comparison to only ~10% for LEAF-Toolbox (compare 
Fig. 3c. to Fig. 3d). Furthermore, SNAP maps all L2A reflectance mea
surements including clouds while LEAF-Toolbox only maps clear sky 
land using the L2A cloud mask. 

4.2. Sampled SL2P and RM estimates 

On average, 8.07 (range [6.5,28]) matching SL2P pixels were found 
over each of 1107 RM samples of LAIe, LAI, fCOVER and fAPAR (Sup
plementary Material Table S4). RM values spanned 0.01 to 7.41 for LAI 
and 0.002 to 0.95 for both fAPAR and fCOVER (Fig. 4). The RM mea
surement uncertainty was typically on the order of ±1 unit for LAIe and 
LAI and ± 0.05 units for fAPAR and fCOVER (Supplementary Material 
Fig. S1). 

The modal LAI value for MF and DBF was ~4.5 although the DBF 
sites had second mode of ~1.5 due to the inclusion of early season NEON 
sampling. ENF sites had a lower modal LAI than other forests (~1.5) due 
to the northern latitude CCRS sites. Closed SH (CSH) sites showed a 

Table 6 
Raw criteria scores for selecting MGRS tiles.  

Name Definition Inputs 

Forest Area Average forest area within 3 × 3 
MCD15 pixel footprints. 

NALC2015, MCD15 

Elevation 
Deviation 

1σ of MERIT elevation within 3 ×
3 MCD15 pixel footprints. 

MERIT DEM, MCD15 

Vegetation 
Homogeneity 

Growing season average of 1σ 
SL2P NDVI within a 3 × 3 MCD15 
pixel footprints 

MSI L2A Products 
April–September 2019, 
MCD15 

Clear Sky Count Number of dates with >90% 
coverage of clear sky MSI L2A 
retrievals in each 3 × 3 MCD15 
pixel footprint. 

MSI L2A Products 
April–September 2019, 
MCD15  

Fig. 3. Comparison of SL2P LAI and quality mask implemented in (a. and c.) SNAP and (b. and d) LEAF-Toolbox. as well as a (e.) scatterplot of SNAP versus LEAF- 
Toolbox SL2P LAI for the agricultural region reported in Djamai et al. (2019). 
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relatively uniform distribution of LAI between ~2–3 while open SH 
(OSH) sites had a narrow mode at ~0.5 LAI. 

As expected, fAPAR and fCOVER RM were almost linearly related (r2 

= 0.98) since both are weighted gap fraction estimates from the same 
DHP samples (Fig. 4). Both quantities were logarithmically related to 
LAI (r2 > 0.91) as expected from the relationship between gap fraction 
and LAI (Monteith and Unsworth, 2014). Except for shrublands, where 
clumping was always near 1, there was no clear relationship between 
clumping and land cover; although clumping was generally lower for 
CCRS sites versus NEON sites even though both use the same method to 
estimate clumping (Fig. 4). 

Univariate and bi-variate distributions of SL2P estimates (Fig. 5) 
were similar to their RM counterparts, but with somewhat greater range 
and stronger linear relationships between fAPAR and fCOVER (r2 =

0.99) and logarithmic relationships between these variables and LAI (r2 

> 0.95). The stronger relationships reflect the fact that i) SL2P retrievals 
are based on the same measured ρ while in-situ RM variables are based 
on different DHP spatial footprints as they are based on gap fraction at 

different zenith angles and, ii) SL2P assumes homogenous turbid can
opies while the RM include variations in spatial clumping and crown 
shape that also impact gap fraction (Stenberg et al., 2014). In contrast to 
the RM distributions, there was no visible distinction in bivariate dis
tributions of SL2P products between CCRS and NEON sites since all 
products were derived using the same radiative transfer model and 
therefore have same biases due to clumping and crown shape. 

4.3. Comparisons of RM and SL2P 

4.3.1. Population level statistics 
While not a GCOS requirement, it is useful to compare SL2P LAI to 

both RM LAIe and RM LAI since lower error for LAIe versus LAI would 
supports the hypothesis that SL2P is not properly accounting for 
clumping. Scatter plots of SL2P LAI versus RM LAIe (Fig. 6a) and LAI 
(Fig. 6b) indicate relatively linear relationships (r2 = 0.65 for LAIe and 
r2 = 0.64 for LAI). A U of 0.68 and UAR of 58% was observed for LAIe 
and a U of 0.99 and UAR of 48% for LAI. LAIe was consistently 

Fig. 4. RM scatter plots by measurement network (upper diagonal figures) and IGBP land cover class (lower diagonal figures) together with relative frequency kernel 
density histograms for each variable by land cover (diagonal) 
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overestimated, but with only a modest bias of 0.33. LAI was relatively 
unbiased for LAI < 2 and underestimated for LAI > 2 so the population 
level LAI bias of − 0.38 was not representative of local performance. 
Both fCOVER and fAPAR exhibited relatively linear relationships (r2 ≥

0.7) but fAPAR had lower slightly lower A than fCOVER (− 0.07 versus 
− 0.02) that translated into a lower UAR (31% versus 37%) even though 
U for both was ~0.15. 

Qualitatively, there was no evidence of systematic differences in 
residuals when comparing CCRS and GBOV networks for the same land 
cover and RM value (Fig. 6). Quantitative tests were not performed due 
to the imbalance of sample sizes between networks. In terms of land 
cover classes, for all variables, CSH were typically estimated with low 
uncertainty (e.g. <0.5 LAI, <0.05 fAPAR and fCOVER) while OSH ten
ded to be overestimated by between 0.5 LAI to 1 LAI and between 0.05 
and 0.2 fAPAR and fCOVER (Fig. 6 and Table 7). Error metrics were 
similar across the forest classes, except for EBF where both fAPAR and 
LAI were unbiased (Table 7). 

4.3.2. Accuracy, precision and uncertainty as a function of RM value 
SL2P LAI estimated RM LAIe with bias decreasing from 0.5 at LAI ~ 

0 to − 0.5 at LAI ~ 4 (Fig. 7a). However, when compared to RM LAI, 
SL2P LAI was nearly unbiased for LAI < 2 but increasingly under
estimated larger RM LAI; reaching an underestimate of − 3 at LAI 6 
(Fig. 7b). In contrast the precision of SL2P LAIe and LAI was approxi
mately ~0.5 for all levels of LAI. As a result, uncertainty of SL2P LAI as 
an estimate of RM LAIe was within target requirements, assuming LAI 
could be replaced by LAIe, but SL2P LAI fell outside LAI target re
quirements for LAI > 3. 

SL2P estimated RM fCOVER and fAPAR with a bias of ~0.1 for the 
lowest RM values, to ~0 for mid-range RM values (~0.3 fCOVER and ~ 
0.5 fAPAR) and ~ − 0.15 for high (>0.8) RM values (Fig. 7c. and 
Fig. 7d). SL2P fCOVER and fAPAR precision was relatively constant 
ranging from ~0.05 at extreme RM values to ~0.1 for mid range RM 
values. For both fCOVER and fAPAR, the combination of relatively 
constant precision and changing accuracy resulted in greater uncer
tainty at low and high RM values, although uncertainty was typically 
between 0.08 and 0.15 for all retrievals. 

Fig. 5. Scatter plots of SL2P retrievals by measurement network (upper diagonal figures) and IGBP land cover class (lower diagonal figures) together with relative 
frequency kernel density histograms for each variable by land cover (diagonal). 

R. Fernandes et al.                                                                                                                                                                                                                              



Remote Sensing of Environment 293 (2023) 113600

11

The 95% confidence intervals of the A, P and U model fits were 
narrow for fAPAR and fCOVER (<±0.05) and for LAI < 5 (<0.2) but was 
wider for LAIe>3 and LAI > 5 due to increased non-linearity and 
decreased sample density. However, in these latter cases, the magnitude 
of both A and U also increased so the A, P, and U model confidence 
interval widths were approximately constant relative to corresponding 
regression line magnitudes. 

Bias correction maintained or reduced accuracy error and increased 
UAR for LAI and fAPAR, except for EBF LAI estimates that were unbiased 
prior to correction (Table 7). The MF class showed the largest 
improvement in accuracy and UAR due to bias correction. In contrast, 
bias correction results in little change in error statistics for open shrubs. 
Bias correction equations without hold-out were also produced (Sup
plementary Material Table S5). 

For all variables, the relationship between clumping and A was weak 
and non-monotonic (Fig. 8). The weak relationship spanning our entire 
sample follows since, for all parameters, A was correlated to the RM 
magnitude (Fig. 7) which in turn was not correlated to clumping but 
rather the ground reference network (Fig. 4). However, both P and U 
error decreased as clumping index increased in a relatively linear 
manner, as evidenced by r2 < − 0.4 in all but one case; reflecting the 
increase in scatter of residuals as clumping index decreases. 

4.3.3. Validation of SL2P theoretical precision 
For all variables, SL2P theoretical precision was poorly related to the 

P estimated from observed residuals (Fig. 9). For LAIe and LAI, SL2P 
generally overestimates P with an almost uniform distribution below the 
1:1 line. In contrast, SL2P theoretical precision was almost constant at 
~0.04 for fAPAR and fCOVER over forests and uncorrelated (r2 < 0.1) 
with the modelled precision. It was only for fCOVER over shrublands 
that SL2P theoretical precision was relatively unbiased and within 
±0.05 of P. 

4.4. Intercomparison 

The number of intercomparisons for a given aggregated SL2P prod
uct estimate value ranged from 500 to 10,000 for CGLS versus SL2P and 
from 1000 to 15,000 for MODIS versus SL2P (Supplementary Material 
Fig. S2). The larger number of MODIS comparisons was due to the higher 
temporal revisit frequency of MODIS on Aqua and Terra in comparison 
to the OLCI imagers on Sentinel 3A and 3B. Sub-pixel variability in LAI 
was small for both MODIS and CGLS pixels used for intercomparison; 
with a coefficient of variation <0.2 for LAI > 1 (Fig. 10b. and Fig. 10d.). 
Sub-pixel biome type variation was also low between shrubs and forest, 
with shrub dominated pixels containing at least 80% shrub cover 
(Fig. 10a. and Fig. 10c.). The majority of forested pixels had at least 75% 
cover of either broadleaf or needleleaf forests but there was also a lesser 

Fig. 6. Scatter plots of ESU SL2P estimates versus matching RM for each variable together with population validation metrics. Symbol shape indicates network and 
symbol colour indicates IGBP class. Dashed lines bound target user requirement around solid 1:1 line. 
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number of mixed forest pixels. 
For brevity, we summarise intercomparison results across all eco

zones (Fig. 11) since between ecozone variations were correlated to the 
magnitude of aggregated SL2P estimates (not shown). MODIS and CGLS 
comparisons to SL2P were remarkably similar: SL2P underestimates 
both by ~50% LAI for SL2P LAI between 0.5 and 3.5 and by ~20% for 
SL2P fAPAR between 02 and 0.8. However, MODIS and CGLS LAI and 
fAPAR saturated with respect to SL2P LAI for SL2P LAI > 4. This agrees 
with results indicating MODIS and CGLS products saturate when in-situ 
LAI >4 (Brown et al., 2020). For low (<0.5) LAI and (<0.25) fAPAR, 
both MODIS and CGLS showed good agreement (within ±0.25 LAI) with 
SL2P but were still overestimating SL2P fAPAR by between 0.05 and 0.1 
units. Results for CGLS and SL2P fAPAR comparisons were similar to 
those for fCOVER, as expected given the similarity of SL2P fCOVER and 
fAPAR (Fig. 5) and the fact that CGLS fCOVER is a deterministic function 
of CGLS fAPAR. 

5. Discussion 

This study focussed on SL2P both because it is being used for science 
and applications and because it serves as a free and open baseline for 
benchmarking new approaches. We further considered forests because 
previous studies have shown SL2P typically meets user requirements 
over croplands but not over forests (Supplementary Material Table S1). 
Brown et al. (2021a) showed that SL2P underestimated forest LAI even 
with uniform calibration priors; suggesting a systematic limitation in 
either L2A inputs or PROSAILH. We hypothesized the lack of clumping 
within the PROSAILH was the cause of the bias as empirical algorithms 
using similar input imagery are unbiased for LAI over North American 
forests (Fernandes et al., 2003). We also wanted to determine if the bias 
seen for LAI also occurred for fAPAR and fCOVER, and if the bias could 
be corrected using empirical models of bias as a function of SL2P re
trievals. To address these questions, we expanded the spatially limited 
sample used in Brown et al. (2021a) to include 133 new northern lati
tude forest ESUs and refined the validation approach of Brown et al. 
(2021a) to quantify thematic error as a function of RM and a function of 
clumping. 

This study began with a code verification that included a review of 
the SNAP and LEAF Toolbox implementations of SL2P by a software 
engineering team at CCRS not involved in authoring either imple
mentation. Two bugs were found in the MATLAB code provided to the 
SNAP developers: i. incorrect truncation of priors used to specify radi
ative transfer model simulations and ii. incorrect logic when checking if 
inputs fell within the domain of the calibrated regression predictors and 
associated quality control masks. These bugs result in systematic errors 
in high and low product estimates and reduced the consistency and 
replicability of products and validation studies (Fig. 3). Code verifica
tion is not currently part of CEOS good practices but should be applied 
prior to product validation. 

The RM dataset sampled all North American forest ecozones except 
tropical forest and steppe ecozones (Fig. 1,Table 5). The tropical forest 
ecozones are of global importance and should be incorporated in future 
validation but are of limited extent over North America. The RM samples 
covered the typical range of LAI (0 to 7.5) (Scurlock et al., 2001; Fer
nandes et al., 2003), except for Douglas Fir forests on the Pacific coast 
that approach values of 10. On the other hand, this is the only study that 
validates SL2P over forests using a representative range of fAPAR and 
fCOVER. Simultaneous validation of all three variables is important 
since they are closely related (r2 > 0.9) in-situ (Fig. 4) and for SL2P 
(Fig. 5). Indeed, the close SL2P relationships suggest that there may be a 
benefit to using variables that are estimated with low bias (e.g., fCO
VER) to constrain other variables such as LAI. 

The CCRS network sites provided increased sampling of lower 
clumping index and a broader range of ecozones compared to Brown 
et al. (2021a). This, together with intercomparison, allowed us to ach
ieve a CEOS Stage 3 validation for North American forests. CCRS sites 
provided broad spatial coverage with a single date sampling while the 
subset of NEON sites selected for this study provided the obverse. Cur
rent in-situ survey networks do not provide dense sampling in both 
space and time, and most networks prefer the latter since they are 
typically related to long term measurement sites. However, we suggest 
that a broad spatial sample is desirable, as it will eventually include 
temporal variability if sampling dates are allowed to vary, while a fixed 
network will never improve spatial coverage. 

Table 7 
Thematic error statistics for validation of original and bias corrected SL2P retrievals with in-situ reference 
measurements for all data and by IGBP biome. The grey shading indicates absolute change <10% of mean 
estimate. Green (gold) shading indicates improved (worsened) metric due to bias correction. 

Variable Biome Number of
comparisons

Mean
es�mate

Original Bias Corrected
A P U UAR A P U UAR

LAI

ALL 1107 2.31 -0.38 0.71 0.91 0.51 -0.03 0.74 0.82 0.54
CSH 66 0.08 0.11 0.08 0.14 1.00 0.03 0.04 0.05 1.00
DBF 203 3.05 -0.42 1.07 1.15 0.36 0.16 1.06 1.08 0.40
EBF 104 2.04 0.01 0.39 0.39 0.85 0.42 0.72 0.84 0.46
ENF 297 1.86 -0.20 0.76 0.78 0.63 0.02 0.71 0.71 0.58
MF 297 3.82 -1.12 0.82 1.39 0.20 -0.56 0.84 1.01 0.48
OSH 140 0.27 0.37 0.39 0.54 0.68 0.38 0.49 0.62 0.65

fAPAR

ALL 1107 0.55 -0.07 0.11 0.15 0.31 -0.03 0.11 0.13 0.43
CSH 66 0.04 0.06 0.02 0.06 0.32 0.04 0.02 0.05 0.64
DBF 203 0.67 -0.05 0.14 0.15 0.34 0.00 0.14 0.14 0.49
EBF 104 0.52 0.00 0.07 0.07 0.55 0.08 0.08 0.12 0.31
ENF 297 0.55 -0.12 0.13 0.18 0.21 -0.07 0.13 0.15 0.34
MF 297 0.78 -0.15 0.11 0.18 0.26 -0.10 0.10 0.14 0.47
OSH 140 0.14 0.05 0.09 0.10 0.42 0.06 0.11 0.12 0.44

fCOVER

ALL 1107 0.50 -0.02 0.12 0.13 0.37 -0.03 0.12 0.14 0.42
CSH 66 0.03 0.04 0.03 0.05 0.58 -0.01 0.02 0.02 0.95
DBF 203 0.63 0.00 0.15 0.15 0.39 0.00 0.15 0.15 0.45
EBF 104 0.45 0.07 0.10 0.12 0.38 0.08 0.13 0.15 0.25
ENF 297 0.47 -0.05 0.13 0.14 0.25 -0.07 0.14 0.15 0.26
MF 297 0.73 -0.09 0.12 0.15 0.42 -0.09 0.12 0.15 0.43
OSH 140 0.11 0.07 0.10 0.12 0.41 0.05 0.10 0.12 0.58
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The combination of CCRS and GBOV RM was possible due to their 
similar acquisition and processing protocols and a shared theoretical 
basis for estimating RM from gap fraction. Validation of the RM methods 
is beyond the scope of this study but consistency between networks was 
supported by their similar bi-variate distributions (Fig. 4). Ad hoc in
tercomparisons over 6 plots found random differences <5% for GBOV 
versus CCRS data processing (not shown) suggesting that the uncer
tainty between networks is less than the total uncertainty of each RM (e. 
g., Supplementary Material Fig. S1). 

Both the NEON and CCRS ESUs were situated in the centre of patches 
with homogenous canopy conditions exceeding 100 m × 100 m to 
minimize error in DHPs whose FOV extend past the nominal ESU foot
print (Fig. 2) and to reduce the impact of geolocation errors on match- 
ups. This limited our ability to quantify SL2P error in heterogenous 
landscapes, including disturbed and developed areas where forested 
pixels may be adjacent to non-forested areas. It is likely our error esti
mates are optimistic for these circumstances since SL2P does not 
consider heterogenous mixed pixels (clumping∕=1) as PROSAILH does 
not account for spatial heterogeneity of vegetation. Even pure forested 
pixels may have increased error if they are adjacent to different vege
tation since the input L2A BRF to SL2P does not correct for lateral fluxes 
between pixels below the top of the canopy. Simulations indicates that 

one requires ~100 m pixel resolution to ensure the ratio of lateral 
scattering to BRF is below 0.1 in the worst case where a forest is sur
rounded by absorbing boundaries (Widlowski et al., 2008). In reality, 
forests usually only have one pixel edge adjacent to a low vegetated 
pixel so a ~ 25 m pixel size should correspond to the same error. 
Nevertheless, this error is not accounted for either in the input L2A 
products or the SL2P algorithm. Ideally, new technologies to permit 
automated spatially explicitly RM maps using airborne surveys should 
be developed; especially approaches that can map three dimensional 
canopy structure over heterogenous landscapes such as LIDAR or 
structure from motion (Fang et al., 2019). 

LAI validation indicated similar population level precision and bias 
as reported in Brown et al. (2021a) but here included forests up to LAI 
7.5 (Fig. 5). In contrast to LAI, we noticed an almost sinusoidal pattern to 
LAIe, fAPAR and fCOVER bias that shifted from positive to negative with 
increasing RM value (Fig. 6). This result may explain why previous 
studies found SL2P to be negatively biased for high fAPAR forests 
(Putzenlechner et al., 2019) but relatively unbiased for moderate fAPAR 
over crops (Djamai et al., 2019). Our analysis also indicates that sta
tistics based on the entire population of RM can be misleading for bias 
and uncertainty and should be accompanied with breakdowns into sub- 
populations of land cover and reference value in future validation 

Fig. 7. Residual plots of SL2P estimates versus RM as a function of RM value together with fitted models of Accuracy, Precision and Uncertainty (solid colours) and 
their 95%ile confidence intervals (dashed colours). Symbol shape indicates network and symbol colour indicates IGBP land cover. Dashed grey lines bound target 
user requirement around solid 1:1 line. 
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studies. All variables were estimated with relatively consistent precision 
that, in the absence of bias, would result in uncertainty falling within 
user requirements for most levels of each variable. This is encouraging 
since it indicates that the propagation of measurement error from inputs 
to product is modest. In fact, precision errors may even decrease further 
with temporal or spatial smoothing although this was beyond the scope 
of our study. The main challenge, especially for LAI, remains reducing 
bias. 

Our novel approach of using regression to model the expected value 
of A, P and U as a function of RM (Fig. 6) improves on previous good 
practice of using binned statistics or population statistics for all RM 
(Fernandes et al., 2014). Regression naturally provides an unbiased 
estimator with prediction confidence intervals that can be used to 
identify where further RM sampling is required. However, it is good 
practice to examine patterns in regression residuals due to factors such 
as clumping or biome type. SL2P performance varies with biome and 
was unbiased for EBF (Table 7). EBF correspond to relatively high 
fCOVER that may satisfy the turbid medium assumptions within the 
SL2P radiative transfer model better than other validated biomes. 
Ideally, our experiment should be replicated using large samples over 
each biome to verify the observed structure in residuals. 

Our attempt to test the hypothesis that SL2P LAI bias was due to 
clumping had mixed results. There was weak to moderate quantitative 

evidence (|r2|  < 0.52) that errors in fAPAR, fCOVER, or LAI were related 
to clumping (Fig. 8). The covariation of clumping with land cover and 
LAI (e.g., shrub clumping close to 1 in Fig. 4) meant that we could not 
separate these two effects from clumping. Indeed, it may be impossible 
to control for these effects when using undisturbed sites and may require 
real or numerical canopy manipulation experiments (e.g., Stenberg 
et al., 2014; Widlowski et al., 2015). However, there was qualitative 
evidence that, for forests other than EBF, LAI bias increases as the 
clumping index decreases. For example, for similar RM LAI underesti
mation was worse for the CCRS network versus the GBOV network 
(Fig. 7). Furthermore, the relatively unbiased estimation of LAIe (Fig. 7) 
suggests that SL2P LAI approximates the LAI for a spatially homogenous 
canopy. This may be expected given that SL2P is calibrated with a ho
mogenous radiative transfer model. An alternative test of the hypothesis 
that clumping causes SL2P LAI bias would be to determine if replacing 
PROSAILH in SL2P with an accurate heterogeneous radiative transfer 
model, that consider the realistic three dimensional canopies, reduces 
LAI bias while increasing LAIe bias. 

Bias correction using empirical regression models generally 
improved LAI and fAPAR accuracy and UAR over forests other than EBF 
(Table 7). The observed improvements are conservative since i) we 
completely held out each site when fitting and applying the bias 
correction and, ii) our RM sample were not optimized for bias correction 

Fig. 8. Residual plots of SL2P estimates versus matching RM as a function of clumping together with fitted models of Accuracy, Precision and Uncertainty (solid 
colours) and their 95%ile confidence intervals (dashed colours). Symbol shape indicates network, symbol colour indicates IGBP land cover class. Pearson correlation 
coefficient (significant at p ≤0.002.) between modelled A, P and U and in-situ clumping index indicated in each panel. 
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in that they did uniformly sample the range of possible SL2P retrievals 
for a given variable. One limitation of bias correction is that it only 
applies to the population from which the RM samples were drawn. 
Specifically, we did not sample disturbed landscapes or heavily 
managed forests such as orchards or thinned forests with brush 
remaining in place. Ideally, bias correction should be complemented 
with SL2P calibration using improved radiative transfer algorithms 
whose simulations include effects of disturbance and management. 

Estimates of theoretical precision provided by SL2P are not suffi
ciently accurate for fAPAR and fCOVER or precise for LAIe and LAI to be 
of practical use (Fig. 9). Indeed, it is contradictory to assume that pre
cision could be predicted for each retrieval with low uncertainty since if 
that were the case one could use this prediction to improve retrievals. 
Nevertheless, one could expect an unbiased estimate of precision if cross 
validation was sufficiently robust during SL2P calibration. The current 
cross validation approach is to test retrievals for PROSAILH simulations 
drawn from the same priors used for calibration. At a minimum, preci
sion should be modelled using different priors and ideally using an 
ensemble of model simulations. One alternative may be to use pertur
bations of paired RM and satellite measurements, based on the associ
ated uncertainties, to quantify precision using the validation approach 
presented here. 

Intercomparison of medium and coarse resolution products needs to 
control for differences due to the spatial scale of their respective inputs. 
Coarse resolution reference products will typically have additional 

uncertainty due to sub-pixel variation in land cover or vegetation den
sity (Yan et al., 2016; Dong et al., 2023). Our intercomparison involved 
objective criteria to sample MGRS tiles and to reject samples without 
sufficient forest cover in each coarse resolution product pixel. Both 
criteria resulted in low sub-pixel variability for sampled MCD15 and 
CGLS pixels (Fig. 10). Uncertainty in intercomparisons due to sub-pixel 
variability was further reduced by using of 1500 m × 1500 m averages of 
reference and SL2P products. Hence, the error in the aggregated coarse 
resolution reference products should be approximately their reported 
accuracy error of <0.5 LAI and < 0.1 fAPAR (Supplementary Material 
Tables S2 and S3). This indicates that the SL2P underestimation of both 
MODIS LAI (Fig. 11a) and CGLS LAI (Fig. 11b.) cannot be attributed to 
uncertainty in the reference data. The SL2P LAI underestimation also 
agrees with observations over in-situ sites. SL2P also consistently un
derestimates MODIS fAPAR (Fig. 11c.) and CGLS fAPAR (Fig. 11d.) with 
magnitude similar to underestimates observed when compared to RM 
data (Table 7). 

SL2P fCOVER comparisons to CGLS indicate a similar pattern as seen 
with fAPAR. However, we are hesitant to draw further insights for 
comparisons with for two reasons: i) CGLS retrievals of LAI and fAPAR 
are either heavily weighted to the MCD15 values for LAI > 2 and 
essentially based on the SL2P algorithm for LAI < 1 since SL2P shares a 
similar calibration database and inversion approach as the GEOV1 
products used by CGLS and, ii) CGLS fCOVER is a functional trans
formation of CGLS fAPAR so fCOVER intercomparisons provide no new 

Fig. 9. Scatter plots of SL2P modelled precision based on comparisons to RM versus theoretical precision based on the retrieval algorithm for in-situ sites. 1:1 line 
indicated in black. 
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insights compared to fAPAR intercomparisons. 
The intercomparison was limited to sample regions due to our initial 

concern regarding computation demands of having to generate SL2P 
products over larger areas. Ongoing work with GEE is generating Can
ada wide monthly SL2P products that could be extended globally with 
modest costs. This suggests that future intercomparison could be done 
using exhaustive sampling. Additional sampling may be useful to un
derstand product differences at high LAI where precision is low and for 
specific land cover conditions such as regeneration or disturbance. Areas 
with poor agreement could also be useful to focus new in-situ mea
surements. An objective approach is required to design a sampling 
design for these cases. 

This study built on previous validation studies (Supplementary Ma
terials Tables S1, S2 and S3) by developing new good practices for 
survey, code verification, validation, and intercomparison suited for 
medium resolution products. However, there remain three elephants in 
the room when it comes to the practice of land parameter validation: 

i. Agencies invest significant funding into observing systems, algo
rithm development, and services but limited amounts to the acquisition 
of reference measurements. Even GBOV, the Copernicus validation 
service, does not itself operate systematic survey systems other than for 
benchmarking. Satellite validation has relied primarily on long term 
networks. These may be sufficient for publishing a new algorithm but do 
not have enough spatial coverage to meet CEOS requirements. CEOS and 
designers of new systems and services need to require proof that quality 
can be assured within the design of new satellite observing systems by 
incorporating suitable surveys of reference measurements. 

ii. There is no accepted approach to track the quality assurance of 
algorithms and mapping systems. ISO and IEEE standards are widely 
used for analogous systems across other industries, but we have only 
seen such standards for radiative transfer models in terms of land surface 
mapping with satellite earth observation (Widlowski et al., 2015). The 
lack of standards can influence downstream services. For example, the 

SNAP implementation of SL2P has yet to be updated to address the bugs 
identified in our study. CEOS is able to require algorithm developers to 
adopt standards and to publish the level of standards met by various 
systems. This is especially important as future systems may not be in the 
public domain. 

iii. Both product generation and validation rely on computer code 
that is often not public. This prevents replication of results in an efficient 
and accurate manner and understanding if product differences are due 
to bugs in code. We were fortunate to have access to the original SL2P 
code. The MCD15 product had six revisions that vastly improved effi
ciency and performance. However, the MCD15 algorithm and its asso
ciated RT models are not published in a free and open manner so future 
science may have limited access to the progress of this work. We feel it is 
critical for the scientific community and funding agencies to embrace 
the free and open publication of code (our code is published at Fer
nandes et al., 2021). 

6. Conclusions 

This study validated SL2P for mapping LAI, fAPAR and fCOVER over 
North American forests using Sentinel-2 MSI data. It enhanced previous 
studies by i) increasing the spatial coverage of in-situ reference mea
surements so they represented most forest ecozones, ii) by quantifying 
thematic error metrics for all three variables simultaneously and, iii) by 
conducting product intercomparison. These steps and the publication of 
this work meet necessary conditions for CEOS Stage 3 validation. The 
study had four goals: report on thematic error of SL2P, determine if 
biases are due to clumping, evaluate empirical bias correction, and 
provide new good practices. 

Code verification of SL2P identified bugs in the SNAP implementa
tion that affect both product retrieval and quality control flags. The 
SNAP implementation should not be used until revision. The verified 
SL2P implementation within the LEAF-Toolbox underestimated in-situ 

Fig. 10. Density contour plots of (left column) sub-pixel fraction forest biome type for (a) MODIS, and (c) CGLS product intercomparisons and (right column) sub- 
pixel LAI standard deviation versus LAI for (b) MODIS, and (d) CGLS product intercomparisons together with linear regression fits (black lines). Fraction forest cover 
of 0 corresponds to fraction shrub cover of 1. Contour intervals range from quantiles of 0.1 to 1.0 in 0.1 increments. 
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LAI by between 20% and 50% and MODIS LAI by ~50% for LAI > 2. 
Compared to in-situ measurements, SL2P fAPAR and fCOVER bias 
trended from approximately +0.1 to − 0.1 as both variables increased. 
The fAPAR underestimation was also observed when comparing to 
MODIS for fAPAR>0.5. Precision was relatively constant at <0.1 units 
for fAPAR and fCOVER and < 0.5 units for LAI. SL2P satisfied target 
uncertainty requirements for 48% of LAI, 37% of fCOVER and 31% of 
fAPAR comparisons to in-situ data. The low level of agreement reflects 
both biases in products and stringent requirements for fCOVER and 
fAPAR. Reducing product bias is fundamental to reducing thematic 
error. 

Clumping showed only weak to moderate linear relationships (|r2| <
0.5) to bias for all variables and even these were at times counterintu
itive, with bias increasing as canopies were less clumped. Our sample 
was not able to control for the covariation of clumping and the SL2P 
estimates to quantify the impact of clumping on SL2P bias. Further 
studies are required in disturbed landscapes or with simulations. 
Nevertheless, as in Brown et al. (2021a), the fact that SL2P estimates 
LAIe with little or no bias but underestimates LAI suggests the absence of 
clumping in PROSAILH is to blame for LAI bias. Scatterplots of residuals 

also indicated the CCRS network sites tended to show greater negative 
LAI bias than the less clumped GBOV network sites at comparable LAI. 

Empirical bias correction preserved or improved SL2P validation 
metrics for all land cover classes except evergreen broadleaf forests. 
Ideally, SL2P should be updated to include calibration using simulations 
from heterogenous radiative transfer model simulations when mapping 
forests. Until that time, except for EBF, empirical bias correction may be 
useful for SL2P LAI and fAPAR over forests similar to those in our in-situ 
sample. 

This study promoted new good practices for validation of canopy 
biophysical variables that may benefit future studies. We acquired a 
representative sample or RM from networks that followed consistent 
acquisition and processing standards and that included uncertainty 
propagation. We used regression to model thematic error metrics as a 
function of the mapped value. We applied strict sampling criteria to 
minimize sub-pixel heterogeneity when using coarse resolution prod
ucts. Finally, we provided all code, including SL2P and the validation 
methods and data, in a free and open manner. 

We conclude by noting that the publishing of new algorithms and 
products is becoming both easier and more frequent with on-line 

Fig. 11. Density plots of the conditional probability of CGLS (left column) or MODIS (right column) comparisons given a matching aggregated SL2P estimate for 1.5 
km × 1.5 km grid cells. Colours correspond to conditional probability of reference product variable given the aggregated SL2P match-up value. 
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journals and free and open computing platforms. These algorithms and 
products represent complex hypotheses about the physics and structure 
of our environment. The value of these hypotheses should be measured 
in our ability to test and potentially defeat them. Validation data, 
methods and the publication of validation results is fundamental for 
users to understand the limitations of algorithms and products and for 
developers to make improvements. 
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