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Abstract
Signal processing techniques play a critical role in addressing real-world applications
across domains such as sensor analysis, defence, and clinical and biomedical fields.
Within healthcare, computer-aided diagnostic (CAD) systems have become pivotal in
supportingmedical professionals with the interpretation of data and images, especially
in medical imaging and radiological diagnostics. For diagnosing joint disorders, both
time-domain and frequency-domain analyses are employed to examine complex, non-
stationary, and nonlinear signals. To processVibroarthrographic signals in this context,
an initial step involves applying the Hilbert-Huang Transform, which comprises two
stages: Empirical Mode Decomposition (EMD) for computing intrinsic mode func-
tions (IMFs), followed by the Hilbert transform for further signal analysis. In our
proposed approach, we utilized Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise and Time-Varying Frequency Empirical Mode Decomposition
(TVF-EMD) to compute IMFs, as well as Variation Mode Decomposition to calculate
mode signals. Subsequent feature extraction incorporates both time and frequency
characteristics, focusing on metrics such as pixel intensity, mean, and standard devia-
tion. These features then serve as inputs to machine learning models for classification
tasks, distinguishing between healthy and non-healthy signal samples. In our model,
we employed a Least Squares Support Vector Machine (LS-SVM) and a Support
Vector Machine with Recursive Feature Elimination (SVM-RFE) to enhance clas-
sification accuracy. This sequence of signal processing and machine learning steps
demonstrates a structured and effective approach for CAD-based diagnosis in joint
disorder assessments.
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1 Introduction

One of the critical disorder analyses in the medical field trending nowadays is the
diagnosis of joint disorders, which are very complex due to the structure of the different
human joints, namely, shoulder joints, hip joints, elbow joints, and knee joints. At
present, there are two different methods of diagnosing in practice. One is the invasive
method, and the second one is the non-invasive method. An invasive method is similar
to arthroscopy, as it is not only expensive but not suitable for regular diagnostics [9].
The other disadvantage of this method is that it is entirely prone to infection [1].
An alternative diagnostic method is a non-invasive method; similar methods include
computer tomography (CT), magnetic resonance imaging (MRI), X-rays, etc.

Vibroarthrography (VAG) method is one of the non-invasive methods. This follows
the natural phenomena of performing analysis of high-frequency vibroacoustic radia-
tion, which is obtained from the relativemovement of articular surfaces of the synovial
joint (diarthrosis) [20]. In physical conditions, articulate the outside is covered by hya-
line ossein that is smooth and slimy,which detects optimal arthro-kinematicmovement
quality. Osteoarthritis is again and again observed by using the Patello Femoral Joint
(PFJ) [8]. A portion of the knee joint is complex and can be explained by its specified
biomechanical surroundings and massive involvement in day-to-day activity. VAG
signals onward Computer Aided Diagnostic could contribute those attributes for diag-
nosing knee joint disorders. VAG signals work on the basis of acoustic sounds or the
other vibrations sound emitted from the mid of the patella at the time of active move-
ments at the leg. VAG signals exhibit the ability of non-linearity, multi-component
and are non-stationary in nature [18]. Thus, the analysis of VAG signals would not
be preferred for digital signal processing using conventional methods. The greatest
awareness of the VAG test results from the skin-deep position of the knee. Commonly,
the knee joint is analyzed using VAG Diagnostic [4].

The VAG method could be helpful in differentiating individual disorders of the
Patello Femoral Joint (PFJ) and its stages, in that the unique, disorder-relevant attribute
of the VAG signal pattern. Yet, at the time of the problem, the classification of normal
and abnormal VAG signals has been prepared and extending it to a multiclass classi-
fication remainder essentially unaddressed [12]. Moreover, as previously suggested,
further work is needed to determine in case the sensitivity and particularity of the VAG
method are acceptable for analytic application. As well, there is an insistent need for
an explanation of optimal algorithms for VAG signal multiclass classification accord-
ing to the analytical criteria of PFJ chondral lesions [2]. Optimization of diagnostic
methodsmust include the selection of themost relevant and discriminatingVAG signal
parameter values, further by the selection of an optimal predictive model. This will
allow us to develop an observed independently, sensitive computer-aided diagnostic
method, useful for analysers, mainly for orthopedists and physiotherapists, who are
troubled with an evaluation of the quality of arthrokinematic movement as physical
examination [28].

Thus, the Initial goal of this preparation for to extend the VAG signal arrangement
of various PFJ chondral lesions to a 5-class classification (normally and four classes
of disorders). Our analyses will be operated with respect to the MRI diagnosis as a
reference method of non-invasive estimate of chondral lesions, that have allowed us
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to evaluate the positive rate and true negative rate of the VAG method [5]. For the
optimization problem, two algorithms were used to select the best parameter value:
genetic search and selection based on in-complex regression functions. Then, we com-
pare four classification models representing various approaches to the classification
problem: logistic regression with automatic attribute selection based on multilayer
perceptron, in-complex regression functions, sigmoid stimulating function, sequential
minimal optimization algorithm implementation of support vector machine classifier
and random forest tree.

The VAG method is still in development; it displays high accuracy, sensitivity
and specificity when comparing results achieved from controls and a non-specified
knee-joint disorder group. In applied to the Least Square—Support Vector Machines
(LS-SVM) algorithm established on the time complexity parameters of theVAG signal
and achieved greater than 94%classification accuracy, greater than 98% sensitivity and
86% specificity. The classification of the neural network with frequency parameters
as inputs has allowed for improvement of the accuracy to more than 95%, sensi-
tivity of 92% and specificity of more than 98%. The best results of the normal and
abnormal classification signals are found. A classifier based on a radial-based function
network with statistical parameters in the time domain achieved accuracy, sensitivity,
and specificity of 96%, with the cross-validation of the leave-one-out method [16].

Visualizing the knee joint as X-rays at the different time stamps also used ultra-
sound. Invasive methods are commonly performed via image review, and they could
not provide information about the early bone disorder [28. On the other hand, early
diagnosis of bone joint disorder using non-invasive methods had analysed the bone
joint disorder surface using LabVIEW software with the help of acquired VAG Signal
[17]. The state-of-art models used for comparison are given in the following Table 1.

Thus, through various studies on problem statements and byworking with the exist-
ing methods, we framed the objectives that led to the following major contributions.

Table 1 Comparison of existing models

Study Accuracy (%) Observation

Yang et al. [29] 86 Dynamic Knee motions were recorded using CT
bone models and the results are analyzed using KL
Grades

Satheesh et al. [19] 91 Soft tissue contrast points were analyzed by
reviewing numerous MRI images and the metrics
comparison is done with different SVM models

RM Rangayyan and Y. Wu [18] 82 VAG signals are extracted using interior and exterior
movement and the results are analyzed using
LS-SVM

Wu Yungfeng [28] 89 Signal processing models are suggested for the
extraction of VAG and the comparison of results
are done using Random Forest algorithm

Rajalakshmi et al. [17] 93 The VAG signals acquired on the surface of the
suspicious bone joint are analyzed using LabVIEW
software which yields information regarding the
bone disorders
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• Construction of IntrinsicMode Functions (IMF) from the rawVAG signal to analyse
the time-series of the data.

• Complete Empirical Mode Decomposition and Time-Varying Frequency Empirical
Mode Decomposition for calculating the non-linearity within the VAG signal

• Support Vector Machine integrated Recursive Feature Elimination model to obtain
an optimal feature set.

• Classification of Healthy and Unhealthy signals using the Least Square Support
Vector Machine.

In this paper, Sect. 1 explains the basic introduction to Vibroarthrographic (VAG)
signal and its importance in finding healthy and unhealthy knee joint disorders.
Section 2 briefly explains methodologies, including CEEMDAN, TVF-EMD, and
VMD methods, as well as feature extraction algorithms like SVM, LS-SVM, and
SVM-RFE. Section 3 majorly covers the results and discussion of executed method-
ologies, followed by a conclusion and references.

2 Methodologies

This section covers the major methodologies focussed on the process of analysing
joint disorders using VAG signals. VMD, TVF-EMD and CEEMDAN are the three
different methods of algorithm which are used to get the input from VAG signals like
EEG, ECG, and EMG etc. Further processing on TVF-EMD signal noise-related data
analysis that estimates the means of IMFs from the input data, combined with white
noise, helps to remove noise using IMF’s signals. The VAG signal is re-constructed by
dominant IMF, and TFD (TFD-Time frequency domain) is achieved by using Hilbert
transformation-(HT). Time–frequency distribution- (TFD) contains a time–frequency
image, and statistical features consisting of mean and standard deviation are extracted
from the time–frequency image [6]. This methodology is based on a non-stationary,
nonlinear adaptive signal processing technique.

The VMD signal central frequency uses an estimate of each mode of bandwidth
signal [27]. EMDwas specifically developed for time–frequency analysis of nonlinear
signals [15]. CEEMDAN is a deviation of the EEMD method that provides an exact
reconstruction of the original signal. Then, it has a better spectral partition of the IMFs
[32]. All the above signals are performed as Hilbert Huang Transformation (HHT)
is a process to decompose a signal as intrinsic mode functions (IMFs) and gather
instantaneous frequency data. To construct Intrinsic Mode Functions (IMFs) from
raw vibroarthrographic (VAG) signals, a process like Complete Ensemble Empirical
Mode Decomposition with Adaptive Noise (CEEMDAN) is often used, as it provides
a robust framework to handle the inherent non-linear and non-stationary nature of
VAG signals. The process begins by adding white noise to the raw VAG signal, which
helps prevent mode mixing, a common issue where different frequency components
overlap within the same IMF. The CEEMDAN algorithm iteratively decomposes the
signal by applying an empirical mode decomposition (EMD) to extract each IMF
sequentially. For each iteration, the first IMF is derived by identifying and extracting
the highest frequency oscillatorymode present in the signal, following a sifting process
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Fig. 1 Block diagram for VAG signal processing and feature analysis

that entails identifying local extrema, interpolating them to create an envelope, and then
subtracting the mean of this envelope from the signal. This iterative sifting process
continues until the remaining component no longer has any significant oscillatory
content, effectively isolating one IMF at a time. The next step involves removing
the extracted IMF from the signal, and the decomposition process is repeated on the
residual signal to isolate the next IMF.

This process of sifting, envelope creation, and mean subtraction is repeated until
the signal is completely decomposed into a finite set of IMFs, each representing a
different frequency component of the original VAG signal, from the highest frequency
down to the lowest. The added noise assists in achieving a more accurate decomposi-
tion, and ensemble averaging over several noise realizations is applied to reduce the
residual noise influence in the final IMFs. The result is a series of IMFs that capture the
signal’s distinct oscillatory patterns across different time–frequency scales, which are
particularly useful for analyzing the biomechanics of knee joint health in a data-driven
manner. Figure 1 above explains the overall block diagram of the feature extraction
methods. This is designed toworkwell for data that is non-stationary and nonlinear fre-
quency images that will give input to the time–frequency image. The features extracted
from time–frequency images were classified using SVM, LS-SVM, and SVM-RFE,
which are machine-learning algorithms. Finally, the healthy and unhealthy categories
are identified in Fig. 1.

2.1 Empirical Mode Decomposition (EMD)

EMD is an input data-dependent adaptive time–space analysis technique.it is relevant
to the decomposition of nonlinear and non-stationary signals to symmetric ones; EMD
performs the function of separating a series into modes (intrinsic mode function)
without leaving time series. Amplitude and frequencymodulated factor also it depends
on signal, length and sum of oscillatory as Intrinsic Mode Functions (IMF’s). IMFs
of the signal are considered as the following two conditions are satisfied. One is the
number of maxima or minima (extrema). The number of zero crossings must be equal
or differ by one, and another one is upper and lower envelope (local mean) must be the
mean is zero. EMD decomposes the signal into a number of intrinsic mode functions
(IMFs). However, mode mixing is one of the most difficult aspects of EMD [7]. In
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mode mixing, a single IMF consists of signals having different scales. This may lead
to serious aliasing effects in time–frequency distribution, and the resultant IMFs may
lose their physical significance.

A single time series could be empirical EMD decomposed to a residual [26]. The
main modes are named intrinsic mode functions (IMFs) and are represented as e(t) as
shown in Eq. (1) is a time series, ui (t) is IMFs from 1 to N, and the iteration residual
is r (t). Repetition processes and shifting can derive IMFs.

e(t) �
N∑

i�1

ui (t) + r(t) (1)

One of the properties of EMD is both model oscillations within their intrinsic scale
bandwidth also detail for time-varying filter bank, including these within a single cycle
as intra-wave modulations [23]. Figure 2 represents the Empirical Mode Decomposi-
tion EMD algorithm steps. EMD break a signal into its component IMFs. An IMF is a
function which has only one extreme between zero crossings and amean value of zero.

Fig. 2 Flowchart for empirical mode decomposition (EMD)
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Once the IMFs are derived, the Sifting Process is enabled. The sifting process is what
EMD uses to decompose the signal into IMFs [11]. Let a signal X(t), for m1 is the
mean of its upper and lower envelopes as determined from a cubic spline interpolation
of local maxima and minima. Proto_IMF denotes the mean value extracted from the
combination of upper and lower envelope of the VAG signal.

An arbitrary parameter determines the locality; the computational time and the
effectiveness of the EMD depend greatly on a parameter. The first component h1 is
calculated using Eq. (2).

h1 � X(t) − m1 (2)

In the shifting process of the EmpiricalModeDecomposition (EMD)method, upper
and lower envelopes play a critical role in isolating the intrinsic oscillatory modes, or
Intrinsic Mode Functions (IMFs), from a signal. These envelopes are constructed by
identifying the local maxima and minima points within the signal and interpolating
them, typically using cubic splines to form smooth boundary curves. The upper enve-
lope connects all the local maxima, while the lower envelope connects all the local
minima. The mean of these two envelopes is then calculated to capture the local trend
of the signal at each point in time. In the second sifting process, h1 is treated as the
data, and m1 is the mean of h1 is upper and lower envelopes as of Eq. (3)

h11 � X(t) − m11 (3)

The sifting process is repeated k times until h1k is an IMF, that is:

h1(k − 1) − m1k � h1k (4)

Then, it is designated as C1 � h1k, the first IMF component from the data, which
contains the shortest period component of the signal, then separates it from the rest of
the data: X(t) − C1 � r1. The process is repeated to r1 as follows:

r1 − c2 � r2, r3, . . . ..rn−1 − cn � rn (5)

This results in a set of mode functions; the number of functions in the set depends
on the original signal.

2.2 Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN)

The CEEMDAN has a variation of the EEMD algorithm, and it provides an exact
reconstruction of the original signal and a better spectral partition of IMFs. In CEEM-
DAN, using to decompose the VAG signal into IMFs. In the CEEMDAN model, the
timestamps for segregating the signals were kept constant at 5 Seconds. EEMD suc-
cessfullyminimized themodemixing problem. As a result of dissimilar, residual noise
for the number of modes would be unequal. The CEEMDANmethod reduces the com-
putations of EEMD and ensures the definite recovery of the data. Themodified version
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of Hilbert Huang Transform (HHT), known as CEEMDAN- HHT, and the traditional
HHT combination of Empirical Mode Decomposition and Hilbert transform will be
used [14].

Let Ek be the function to generate the kth mode or IMFs from the EMD method as
represented as E(s) � x − M(s) here s is the input signal and M (.) be a function that
outputs the local mean of the input signal. The 1st mode, or IMF’s E1, is illustrated as
follows

E1(s) � s − M(s) (6)

Thus by considering the various modes of the computed IMFs as an input, the
CEEMDAN algorithm can be computed as shown in algorithm 1.

Algorithm 1 Complete ensemble empirical mode decomposition with adaptive noise
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The value of β has been set so that 0 is a reciprocal of SNR between the input signal
and the added Gaussian white noise and in terms of standard deviation (SD) as given
in Eq. (7).

β0 � ε0 ∗ σ(s)
/

σ (E1
(
Wi

) (7)

There are two approaches for setting the stop-the-shifting criteria. First by a fixed
number of shifting iterations and second based on energy parameters.

2.2.1 Hilbert Transforms

In order to achieve the analytical signal z (t), Hilbert transform is applied to the signals
using the following Eq. (8).

z(t) � s (t) + j ∗ h (t) (8)

Here, s (t) input signal and h (t) Hilbert transform of the input signal, which is
represented as follows

h(t) � 1

π
P

∞∫
−∞

s(τ )

t − τ
dτ (9)

Cauchy principal value with singular integral represented as P.

2.3 Time-Varying Empirical Mode Decomposition (TVF-EMD)

A single time series of nonlinear and linear or non-stationary and stationary compo-
nents could be decomposed by EMD [34]. Using the least square SVM method and
avoiding the complexity ofmasking signals not being adaptively tested, as themasking
signal may not always enable the EMD to generate true single component Intrinsic
Mode Functions (IMFs). Thus, the established assisted signal is adaptive and relevant
for the analysis of frequency-varying components. TVF-EMD will solve the tradi-
tional EMD if the traditional EMD fails to isolate the modes whose frequencies are
time-varying and lie within an octave and fails to remove the time-varying frequency
inmodemixing [3]. The sifting process is completed using the time-varying filter tech-
nique. The local cut-off frequency is flexible and designed to facilitate instantaneous
amplitude and frequency information [19].

Next, non-uniformB-spline estimation is adoptedwith a time-varyingfilter, improv-
ing the performance under low sampling rates and a bandwidth criterion for intrinsic
mode function (IMF) [33]. TVF-EMD is entirely adaptive and suitable for analyz-
ing linear and non-stationary signals. Compared with EMD, the TVF-EMD method
improves frequency separation performance and stability under low sampling rates
[30]. Figure 3 represents the Time Varying Empirical Mode Decomposition (TVF-
EMD) algorithm steps.

Step 1: Let’s consider the X(t) is a continuous input signal.
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Fig. 3 Flowchart for time-varying frequency empirical mode decomposition (TVF-EMD)

Step 2: Calculate the instantaneous amplitude A(t) and instantaneous frequency
ψ(t) of X(t) and locate the minima and maxima of A(t).

Step 3: Compute A1(t) and A2(t) and compute ψ1(t) ψ2(t) as well as calculate the
local cut of frequency ψBis (t).

Step 4:Applying the B-spline approximation filter on x(t), and the result is denoted
by m(t) calculating the stopping criterion θ (t).

Step 5: Check θ ≤ ξ If the condition is no, then perform let X(t) � X(t)-m(t), and
if the condition is true, then it is processing IMF of decomposes the signal repeated
this process when the condition is satisfied.

2.4 Variational Mode Decomposition (VMD)

VMD is an advanced method for disintegrating a multiple component into Band-
Limited Intrinsic Mode Functions (BLIMFs) [31]. It decomposes the input signal into
subsignals, which are represented as uk. VMD illustrates a stiff variational problem.
Wk is the centre of pulsation, and the modes are dense around it. The number of
BLIMFs, which is set to 5 in this case, provides more explanation.
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min{uk}.{wk}

{
k∑

k�1

δt

[
(δ(t) +

j

π t
) ∗ uk (t)]e− jwk t 2

2

}
(10)

Subject to
∑k

k�1 uk� f.
Variational Mode Decomposition is used to overcome empirical mode decomposi-

tion, such as sensitivity to noise samplings. The VMD model is examined as a total
number of modes and their various centre frequencies because the modes reproduce
the input signal while being smoother and then demodulation to the baseband [13]. The
variational model decomposition is accurately optimized using a multiplier approach
with different direction methods. The VMDmethod had good results when compared
with other decomposition methods like the empirical mode decomposition (EMD) in
the decay of actual and artificial data [24]. The VMD has been used in past works to
denoise images.

The computational process of the VMD algorithm is as follows:

Algorithm 2 Variational mode decomposition



Circuits, Systems, and Signal Processing

2.5 Classification Using Different SVM Algorithms

After the Hilbert transformation, the time–frequency image is produced. The features
extracted from the time–frequency image are given input into LS-SVM (a classifier),
and the performance is calculated.

2.5.1 Support Vector Machine (SVM)

Support Vector Machine is effective and mostly used for classification problems such
as binary class classifications; maximal margin using separating hyperplanes between
the positive and negative classes are constructed by SVM. It can handle a quadratic
programming problem containing inequality constraints with a linear cost on the slack
variables [25]. However, the dual space is solved, and it is better feasible. To choose
the convenient kernels for the SVM, as compared the polynomial kernels, Gaussian
kernels, and sigmoid kernels, and found that the polynomial kernels can help the SVM
produce the best classification accuracy and confusion matrix results over the current
dataset [21]. Thus, the SVM with quadratic kernels to process the knee joint VAG
signal classification is expressed as.

1. Choose a kernel function,
2. Choose a value for C that has a regularization parameter,
3. Solve the quadratic problem programming as given in Eq. (11),

n∑

i�1

αj − 1

2

n∑

i�1

n∑

j�1

αiαjyiyjK(xi, xj) (11)

0 ≤ αi ≤ C
n∑

i�1

αiyi � 0

The quadratic programming problem is represented in dual Lagrangian form,
where C is a constant that bounds the misclassification error. Unlabelled instances
are classified using the learned parameters αi and bias b.

4. Construct the discriminant function from the support vectors using the sign of the
decision function as given in the following Eq. (12)

g(x) �
n∑

i∈SV
αiK(Xi, X) + b (12)

2.5.2 Least Square-Support Vector Machine (LS-SVM)

One of the supervised learning methods for LS-SVM is used for data analysis and
pattern classification. LS-SVM is an upgraded version of a support vector machine.
In LS-SVM, the result is achieved by solving linear equations instead of complex
quadratic programming. The pixel intensity is used to calculate the feature measures
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[22]. Each pixel corresponds to the distinct time and frequency that defines the power
of the signal at any precedent of the frequency.

We are extracting statistical features such as mean, standard deviation, and inequal-
ity from all the pixel intensities corresponding to each time–frequency image. Thus,
from these statistical values, we can obtain the analysis of the main information as
attributes of the signal. The advantage of using the LS-SVM algorithm over the stan-
dard SVM is the learning efficiency of similar linear equations. The SVM algorithm
for pattern recognition minimizes the quadratic problem and slack variable as well.
The quadratic programming problem reduces a set of matrix inversion functions in the
dual space, which takes less time compared to solving the SVM quadratic problem.
The standard LS-SVM is the training of N pairs of data points {xk,yk}k � 1N , where
xk ∈ , Rn,yk ∈ , {− 1,1} solve the LS-SVM is equivalent to determine the linear
equations.

Algorithm 3 Least square support vector machine

2.5.3 SVM—Recursive Feature Elimination (SVM-RFE)

The SVM-RFE algorithm is an envelope feature selection method that generates the
ranking of features using backward feature elimination. It was originally proposed to
performgene selection for knee joint classification. It’s based on eliminating redundant
genes and returning better andmore compact gene subsets. The features are eliminated
given to a criterion related to their support of the discrimination function, and the SVM
is retrained at each step [10]. RFE-SVM is a weight-based algorithm at every step;
the coefficients of the weight vector of a linear SVM are used as the feature ranking
criterion. The RFE-SVM algorithm steps are shown in algorithm 4.
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Algorithm 4 SVM—recursive feature elimination algorithm

Feature Sorted List Newrank. In each loop, the feature with minimum (w2) will be
removed. The SVM then retrains the remaining features to achieve the new feature
sorting. SVM-RFE repeated the process until achieving a feature-sorted list. Through
training SVM using the feature subsets of the sorted list and evaluating the subsets
using the SVM prediction accuracy, we then achieve the optimum feature subsets.

3 Results and Discussion

3.1 Results for Variational Mode Decomposition (VMD)

The VAG signals are given an input to the VMD algorithm. The VAG signals have
composite input values, and the input values are passed into the different frequency
levels that are represented in Fig. 4.

The VAG signals are decomposed into the IMF’s signal. The VMD signals to
performmode signal operation. The VMDmethod is used to examine the total number
ofmodes and their centre frequencies, and themode reproduces the input signals while
being smooth and demodulating the baseband of spectral decomposition shown in
Fig. 5.

Spectrum-based decomposition of the VAG signal into any band with a number of
modes. The modes are extracted concurrently using a non-recursive variation mode
decomposition model. The model is shown for an ensemble of modes, then their
corresponding centre frequencies, such as the modes collected and reproduces the
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Fig. 4 Composite input signal for VMD method

Fig. 5 Spectral decomposition for the VMD method

input signal of each being smooth after demodulation into baseband, as shown in
Fig. 6.

3.2 Result for Time-Varying Frequency Empirical Mode Decomposition (TVF-EMD)

The sampling rate and rad frequency are used to analyze the signal and add the
noise signal to linear and non-stationary VAG signals. Time-varying filtering-based
EMD results in the intrinsic mode function using Hilbert transformation to extract the
instance of amplitude and instance of frequency. Compute the basic cut-off frequency
to deal with the mode mixing problem to locate the maxima of the input signal after
Preprocessing found all the intermittences. When two or more successive points have
the same value, we consider only one extremum in the middle of the constant area,
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Fig. 6 Reconstructed mode of input signal for the VMD method

Fig. 7 Multi-component VAG signal was decomposition using TVF-EMD

and it is extracted using Gabriel Rilling. Multi-component VAG signal decomposition
using TVF-EMD was shown in Fig. 7.

3.3 Result for Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise (CEEMDAN)

Consequent signals interfere with the mode mixing problem that occurs in EMD
processing and generate exact aliasing in IMFs, and they may conceal the physical
characteristics of each IMF in the time–frequency domain. IMF’s� EMD(x) where X
is a real vector that computes the Empirical mode decomposition, resulting in a matrix
IMF containing 1 IMF per row, the last one being the residue. If the X is a complex
vector, it computes the Bivariate Empirical mode decomposition of x, resulting in a
matrix IMF containing 1 IMF per row, the last one being the residue. The default
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stopping criterion is the proposed one. It calculates the sampling time and maximum
number of shifting iterations for the computation of each mode and also extracts the
maximum number of IMFs. If it displays is equal to 2 shifting process steps without
pause, then when the input is complex, the display is disabled. Masking signal used to
improve the decomposition. When comparing Complete Ensemble Empirical Mode
Decompositionwith Adaptive Noise (CEEMDAN) andVariationalModeDecomposi-
tion (VMD) in result analysis, key differences emerge in terms of their decomposition
approach, robustness to noise, and computational efficiency. CEEMDAN is a noise-
assisted, adaptive method that iteratively decomposes a signal into Intrinsic Mode
Functions (IMFs) by adding white noise to prevent mode mixing and improve the sep-
aration of frequency components. This noise-assisted approach yields highly adaptive
decompositions, making CEEMDAN well-suited for non-linear, non-stationary sig-
nals like biomedical data, where it can accurately isolate intrinsic oscillatory modes.
However, CEEMDAN can be computationally intensive, as it requires multiple noise
realizations and iterative sifting to achieve stable IMFs, which may introduce compu-
tational delays in real-time applications. The decomposition phases using CEEMDAN
is shown in Fig. 8.

The CEEMDAN results displayed in the image showcase a series of Intrinsic Mode
Functions (IMFs) decomposed from an original input signal, which appears to be
a non-linear and non-stationary biomedical signal, possibly an ECG or vibroarthro-
graphic (VAG) signal based on the typical frequency patterns visible in the top panel.
Each row in the plot represents an IMF, which has been iteratively extracted from the
original signal through the CEEMDAN process. The top IMFs capture high-frequency
oscillatory components, which are likely to correspond to fast-varying details or noise

Fig. 8 Signal decomposition using the CEEMDAN model
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Fig. 9 Shifting iteration of each mode for each realization of normal and abnormal health

inherent in the input signal, while lower rows display IMFs that progressively represent
slower, low-frequency components. The high-frequency IMFs show rapid oscillations
with minimal amplitude, indicative of finer details in the signal, while the IMFs in the
middle and lower parts exhibit smoother, more pronounced oscillations, representing
the fundamental modes and the underlying trends in the data. As we move further
down the rows, the IMFs tend to capture broader, slower-varying components that
may represent baseline or trend-like patterns within the signal. The bottom-most com-
ponent could potentially capture the residual or trend component, which represents
the overall low-frequency baseline of the original signal. This decomposition allows
for a detailed time–frequency analysis of the signal, separating noise, fine details,
and underlying trends into distinct modes. This separation can aid in feature extrac-
tion and further analysis, such as identifying patterns associated with healthy versus
unhealthy knee joints in VAG signals or detecting anomalies in ECG signals. Overall,
the CEEMDAN results in this image provide a comprehensive decomposition that
enables focused analysis of different frequency bands, enhancing interpretability and
diagnostic accuracy. The scale partition capabilities of EEMD eliminate the problem
of mode mixing. The CEEMDAN method improves the process of complete shifting
in multiple-mode operation, as shown in Fig. 9.

3.4 Time–Frequency Image of Input Signal

In VAG signals of the waveform after decomposition, different frequencies of input
signals of VMD, TVF-EMD, andCEEMDANmethods are given input to the time–fre-
quency image which was shown in Fig. 10.
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Fig. 10 Input signal of time–frequency image

3.5 Feature Extraction of SpectrogramOutput

Time–frequency image is used for the feature detection method of scale invariant
feature transformation for computer vision. The pixel intensity was used to measure
and calculate the feature. Each and every pixel corresponds to a certain time and
frequency that represents the power of the signal at any instance of frequency.Machine
learning, using pattern recognition, measure the mean, standard deviation, skewness
and kurtosis of all pixel intensity related to each time–frequency. It will detect the
local features in the image as an oriented gradient, as shown in Fig. 11. Initially, we
computed 18 features that have categories, including statistical, problem-related, time-
domain, and frequency-domain features. After implementing the SVM-RFE model,
the feature set was reduced to 11 features which have 4 statistical, 4 problem-related, 2
time-domain, and 1 frequency domain features with it. After feature detection, features
are classified as the pattern of healthy and unhealthy signals using SVM and LS-SVM
algorithms. To analyse and extract the healthy and unhealthy knee joint disorders, we
have computed the sample folds, which are shown in Fig. 12.

Fig. 11 Feature extraction of spectrogram output using LS-SVM
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Fig. 12 Healthy and unhealthy samples fold using LS-SVM

4 Conclusion

The proposed system demonstrates a significant contribution toward low-power
computing, particularly in biomedical signal analysis and real-time diagnostics. By
leveraging techniques like TVF-EMD, VMD, and CEEMDAN to decompose VAG
signals into intrinsic mode functions (IMFs) and perform Hilbert transformations,
the system captures critical time–frequency features without extensive computational
overhead. This is vital for low-power devices, as the adaptive nature of these decom-
positions inherently limits the need for high-frequency processing, reducing power
consumption. The method also optimizes the shifting process to reconstruct input sig-
nals with noise resilience, a crucial feature for minimizing errors in noisy, real-world
clinical environments.Using time–frequency images forLS-SVMandSVM-RFEclas-
sification offers a further power-efficient approach, as these algorithms, particularly
SVM-RFE, maximize feature relevance while minimizing computation by selectively
focusing on the most critical patterns. This enables the system to accurately classify
healthy and unhealthy knee joints with minimal redundancy, crucial for embedded or
portable healthcare devices that need efficient processing for continuous monitoring
applications. Thus, the system’s design addresses the dual challenges of accurate sig-
nal decomposition and power-efficient feature extraction, advancing the potential for
scalable, low-power diagnostic tools in remote healthcare and wearable technology
for joint disorder diagnosis.
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