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Abstract

As is usually the case in many scientific disciplines, prediction and analysis techniques

are firstly developed within laboratory conditions and subsequently extended to indus-

trial settings through further studies. Within vibro-acoustics, we usually begin testing a

method in a controlled environment via Experimental Modal Analysis (EMA). One ex-

ample of an EMA-based method called the Round-trip (RT) method has gained traction

within industry recently, a highly convenient and accurate driving-point mobility predic-

tion technique which may be used in influence structural design. Often within various

industry, the driving-point mobility may be needed at locations such as mounting points

between two sub-structures coupled to one another. It is common that these areas are

access limited, meaning conducting a measurement using a modal hammer can be

impractical. The RT provides a solution to this by allowing the user to measure three

transfer mobilities which uses force inputs on areas of the coupled structure that are

much easier to apply.

However, a limitation facing EMA-based methods is that it requires any sources within

the coupled system to be shut down. Additionally, if the force and measured response

locations are far away from each other, this will yield data with poor signal-to-noise

(SNR). This often limits the RT to smaller scale structures which can be tested in

laboratory conditions. There has been a lack of investigation into incorporating an

Operational Modal Analysis (OMA) approach into the RT method to circumvent these

limitations. OMA similarly allows the extraction of modal properties, but does so by

using ambient, unmeasured, and stochastic excitations (such as wind) and output-only
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responses.

In this thesis, we show that output-only/operational transmissibilities can be used to

represent two of the three transfer mobilities in the point RT identity, allowing its ex-

tension to much larger structures and uncontrolled active environments. This novel

approach to the RT, termed the Operational Round-trip (ORT) method, is analysed

and compared to the original technique across three experimental examples. It is

shown that it too can accurately predict driving-point mobilities while adding further

convenience. Additionally, this thesis has investigated an OMA-based approach for

analysing transmission paths using output-only transmissibilities. It is known that by

using the ‘bottleneck’ effect and applying the SVD to a transfer mobility of a coupled

system, the singular values can be analysed to detect unaccounted flanking and the

number of transmission paths. Similarly to the RT method, this EMA-based method

may present challenges on larger scale structures, and/or if an active component (such

as a compressor) cannot be shutdown. Instead, it is shown that by identically analysing

the singular values of output-only transmissibilities instead, this method can be ex-

tended to industrial applications.

The findings in this thesis show that using output-only transmissibilities provides a

more convenient means of using the vibro-acoustic prediction and analysis methods

presented, while also allowing them to be used in a wider range of systems within

industry. Finally, an output-only extension to these methods allows the potential to be

developed into real-time monitoring tools.

ii



Contents

1 Introduction 5

1.0.1 Motivation & Research Context . . . . . . . . . . . . . . . . . . . 5

1.0.2 Thesis Topics, Aims and Objectives . . . . . . . . . . . . . . . . 6

1.0.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Literature review & Background theory 12

2.1 Frequency response functions . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Reciprocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Mobility and impedance concepts . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Modal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Experimental modal analysis . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Operational modal analysis . . . . . . . . . . . . . . . . . . . . . 25

2.5 FRF prediction methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 Modal shape extraction synthesis . . . . . . . . . . . . . . . . . . 28

2.5.2 System equivalent model mixing . . . . . . . . . . . . . . . . . . 29

2.5.3 Round-trip identity reconstruction . . . . . . . . . . . . . . . . . . 32

2.6 Transmissibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.1 Single-degree-of-freedom transmissibility . . . . . . . . . . . . . 34

2.6.2 Generalised Transmissibility . . . . . . . . . . . . . . . . . . . . . 37

2.7 Sub-structural invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

iii



CONTENTS

2.7.1 Blocked force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7.2 Transmissibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.7.3 Damage indicator . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.8 Interface representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.8.1 Virtual Point Transformation . . . . . . . . . . . . . . . . . . . . . 48

2.8.2 Finite Difference Method . . . . . . . . . . . . . . . . . . . . . . . 48

2.8.3 Interface completeness criterion . . . . . . . . . . . . . . . . . . 51

2.9 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . 53

3 Sensitivity analysis on the round-trip method 56

3.1 Point mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1.1 FE-model example . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1.2 Experimental model example . . . . . . . . . . . . . . . . . . . . 72

3.2 Transfer mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.1 FE-model example . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3.1 Point mobility Round-trip . . . . . . . . . . . . . . . . . . . . . . . 91

3.3.2 Transfer mobility Round-trip . . . . . . . . . . . . . . . . . . . . . 93

4 Investigation into the invariance of transmissibilities 95

4.1 Invariant transmissibility theory . . . . . . . . . . . . . . . . . . . . . . . 98

4.1.1 Response transmissibility . . . . . . . . . . . . . . . . . . . . . . 100

4.1.2 Force transmissibility . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.1.3 Force and response transmissibility relation . . . . . . . . . . . . 104

4.1.4 Operational transmissibility . . . . . . . . . . . . . . . . . . . . . 105

4.2 Beam-isolator-plate experimental example . . . . . . . . . . . . . . . . . 107

4.2.1 Interchanging coupled component . . . . . . . . . . . . . . . . . 109

4.2.2 Transmissibility excitation positioning . . . . . . . . . . . . . . . . 111

4.3 Plate-isolator-plate experimental example . . . . . . . . . . . . . . . . . 112

4.3.1 Interchanging coupled component . . . . . . . . . . . . . . . . . 114

iv



4.3.2 Transmissibility excitation positioning . . . . . . . . . . . . . . . . 117

4.3.3 Excitations and responses used in transmissibility calculation . . 119

4.3.4 Force and response transmissibility relation . . . . . . . . . . . . 127

4.4 Beam-plate experimental example . . . . . . . . . . . . . . . . . . . . . 130

4.4.1 Interchanging coupled component . . . . . . . . . . . . . . . . . 133

4.4.2 Transmissibility excitation positioning . . . . . . . . . . . . . . . . 137

4.4.3 Altering which interface DoFs are included in the transmissibility

calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.4.4 Force and response transmissibility relation . . . . . . . . . . . . 143

4.5 Transmissibility-based Interface Completeness Criterion . . . . . . . . . 146

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5 Operational round-trip method 159

5.1 Operational Round-trip theory . . . . . . . . . . . . . . . . . . . . . . . . 164

5.2 Analysis of output-only transmissibilities using alternative time block pro-

cessing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.3 Output-only vs. FRF measurement of transmissibilities used in the ORT

identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.4 ORT prediction vs. direct measurement . . . . . . . . . . . . . . . . . . 185

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6 Identification of transmission paths & unknown bridges 194

6.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.2 Mass-spring model example . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.3 Experimental model example . . . . . . . . . . . . . . . . . . . . . . . . 212

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7 Conclusions 222

References 229

v



List of Figures

2.1 Schematic of a calculated FRF for a single input-output system. . . . . . 16

2.2 SDoF mass-spring system . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 FRF of undamped SDoF mass-spring system . . . . . . . . . . . . . . . 18

2.4 FRF of undamped SDoF mass-spring system . . . . . . . . . . . . . . . 19

2.5 Processing of models used in SEMM, resulting in a hybrid model. . . . . 30

2.6 SDoF mass-spring-damper system under different excitation scenarios. 34

2.7 Force and velocity transmissibilities of SDoF system for when different

amounts of damping is applied. . . . . . . . . . . . . . . . . . . . . . . . 36

2.8 Arbitrary LTI MDoF system with response DoF subsets u and w, and

force DoF subset f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.9 Arbitrary LTI MDoF system with force DoF subsets u and w. . . . . . . . 40

2.10 Diagram showing the blocked force of a source sub-structure, due to a

rigid constraint at the interface c DoFs. . . . . . . . . . . . . . . . . . . . 43

2.11 Model of an arbitrary structure divided by a user defined interface, c,

making two sub-structures A and B. . . . . . . . . . . . . . . . . . . . . 44

2.12 Finite Difference approximation taken from two transnational compo-

nents spaced by δ from the centre line. The resultant point where trans-

lational and rotational DoFs are calculated for are at centre, 0 . . . . . . 49

3.1 Diagram specifying the measured mobilities needed when using the

round-trip method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vi



LIST OF FIGURES

3.2 FE diagram of steel plate, divided into substructures A and B, divided

by an interface c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Round-trip prediction of the interface point mobility when c DoFs are

changed in different scenarios. From top to bottom, these cases corre-

spond to the number of a and b DoFs shown in Fig.3.2a, 3.2b, and 3.2c

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Round-trip prediction of the interface point mobility when the number of

remote DoFs (a and b) have changed. . . . . . . . . . . . . . . . . . . . 65

3.5 log10(Error) plot for FE plate due to the number of a vs b DoFs accounted

for in calculating the interface point mobility. Error calculated up to 1kHz. 67

3.6 Error of the reconstructed interface point mobility, with a comparison to

the direct measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 FE diagram of 3:1 aspect ratio steel plate, divided into sub-domains A

and B which are discretised into a regular grid. Sub-domains A and B

are divided by the interface c. . . . . . . . . . . . . . . . . . . . . . . . . 69

3.8 Error of the reconstructed interface point mobility for 3:1 ratio plate, with

a comparison to the direct measurement. . . . . . . . . . . . . . . . . . 70

3.9 Diagram of original 4:3 aspect ratio plate with randomly selected remote

positions. Diagram represents one iteration of one hundred. . . . . . . . 71

3.10 Top sub-figure shows every interface point mobility with each iteration,

bottom sub-figure shows the direct point mobility plotted against the up-

per and lower bounds of the prediction. . . . . . . . . . . . . . . . . . . 71

3.11 Top-view 2D diagram of experimental plate, accelerometers discretised

in a regular grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.12 Error of the reconstructed interface point mobility for an experimental

plate. A comparison to the direct measurement is made for two cases

of the round-trip prediction. . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.13 Diagrams of the indices used on the FE steel plate for calculating the

reconstructed transfer mobility. . . . . . . . . . . . . . . . . . . . . . . . 75

vii



LIST OF FIGURES

3.14 RT vs. direct YCa1,b1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.15 RT vs. direct YCa22,b67
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.16 RT vs. direct YCa49,b41
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.17 RT vs. direct YCa28,b56
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.18 Error at 320Hz, B excitation DoF vs A response DoF. . . . . . . . . . . 78

3.19 Amplitude of plate at mode corresponding to 320Hz vs. error, due to

excitation at b1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.20 RT vs. direct YCa50,b1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.21 Error at 135Hz, B excitation DoF vs A response DoF. . . . . . . . . . . 81

3.22 RT vs direct YCa40b40
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.23 Amplitude of plate for mode corresponding to 135Hz vs. error, due to

excitation at b40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.24 Random distribution of interface c DoFs for one iteration of the YCa1,b1

prediction Monte-Carlo loop. . . . . . . . . . . . . . . . . . . . . . . . . 83

3.25 Top sub-figure: every iteration of YCa1,b1
prediction when distribution of

c DoFs is randomised (red), vs. prediction with regular c DoF spacing

and a direct measurement. Bottom sub-figure: Coefficient of variation

for YCa1,b1
prediction when c DoF positions are randomised. . . . . . . . 84

3.26 Performance of the transfer mobility prediction in the presence of 1 in-

terface DoF vs. all interface DoFs vs. direct transfer mobility for YCa1,b1
. 86

3.27 Performance of the transfer mobility prediction in the presence of 1 in-

terface DoF vs. all interface DoFs vs. direct transfer mobility for YCa22,b67
. 86

3.28 Performance of the transfer mobility prediction in the presence of 1 in-

terface DoF vs. all interface DoFs vs. direct transfer mobility for YCa49,b41
. 87

3.29 Performance of the transfer mobility prediction in the presence of 1 in-

terface DoF vs. all interface DoFs vs. direct transfer mobility for YCa28,b56
. 88

3.30 RT YCa1,b1
vs. RT YCa1,b1

with 45dB SNR vs. direct YCa1,b1
. . . . . . . . 89

3.31 RT YCa1,b1
vs. RT YCa1,b1

with 40dB SNR vs. direct YCa1,b1
. . . . . . . . 89

3.32 RT YCa1,b1
vs. RT YCa1,b1

with 35dB SNR vs. direct YCa1,b1
. . . . . . . . 90

viii



LIST OF FIGURES

3.33 RT YCa1,b1
vs. RT YCa1,b1

with 30dB SNR vs. direct YCa1,b1
. . . . . . . . 90

4.1 Diagram of a coupled assembly C, consisting of sub-structure A which

has a subset of DoFs within it denoted a, and sub-structure B with sub-

set b. At the connection point lies another subset of DoFs denoted c. . . 98

4.2 Visualisation of an invariant transmissibility for sub-structure A, Tr,b
ac , re-

lating responses at c and a, due an applied force at b. . . . . . . . . . . 101

4.3 Visualisation of an invariant transmissibility for sub-structure B, Tr,b
cb , re-

lating responses at b and c, due an applied force at b. . . . . . . . . . . . 101

4.4 2D diagram of Beam-isolator-plate experiment. Above is side-on, below

is top-down view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5 A components beams 1 and 2, coupled to plate B, via a single resilient

mount. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.6 Tf,b
cb due to A component Beam 1 or 2, and no beam. In reference to

test rig Fig.4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.7 Tr,c
bc due to A component Beam 1 or 2, and no beam. In reference to

test rig Fig.4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.8 Tr,c
b1c vs. Tr,a

b1c. In reference to single-interface test rig, Fig.4.4 . . . . . . . 111

4.9 HCb1a
vs. HCb1c

. In reference to single-interface test rig, Fig.4.4 . . . . . 112

4.10 2D diagram of coupled assembly consisting of a resilient 3 point inter-

face connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.11 A component plates 1 and 2 coupled to B plate via three resilient mounts.113

4.12 Mobility-based Tf,b
cb with either plate 1 or 2 coupled to the assembly. . . 114

4.13 Mobility-based Tr,c
bc with either plate 1 or 2 coupled to the assembly. . . 115

4.14 Operational Tr,c
bc and Tf,b

cb , compared against validation FRF measurement.116

4.15 Mobility-based Tr,c
bc vs. Tr,a

bc . Each sub-figure shows the transmissibility

between each interface point and one b response. In reference to three-

interface test rig, Fig.4.10. . . . . . . . . . . . . . . . . . . . . . . . . . . 118

ix



LIST OF FIGURES

4.16 Operational Tr,c
bc vs. Tr,a

bc . Each sub-figure shows the transmissibility

between each interface point and one b response. In reference to three-

interface test rig, Fig.4.10. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.17 Mobility-based Tf,b
cb . From top to bottom the force transmissibility is ob-

served for one c excitation discarded, one b excitation discarded, and

one excitation discarded from both c and b. This is compared to the

validation plot where all excitations have been included. . . . . . . . . . 120

4.18 Mobility-based Tr,c
bc . Response transmissibility is observed for 2 c exci-

tations and 1 excitation. This is compared to the validation plot where

all 3 excitations have been included. . . . . . . . . . . . . . . . . . . . . 122

4.19 Mobility-based Tr,c
bc , plotted when one or two b responses are used in

calculation. Compared to the validation plot where all three b responses

are included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.20 Mobility-based Tf,b
cb , plotted when one or two b responses are used in

calculation. Compared to the validation plot where all three b responses

are included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.21 Operational Tr,c
bc for when one or two b responses are used in calculation.

Compared to Tr,c
bc where all three b responses are included. . . . . . . . 125

4.22 Changing operational states in output-only Tr,c
bc . Compared to Tr,c

bc where

all available operational states are included. . . . . . . . . . . . . . . . . 126

4.23 Mobility-based Tf,b
cb and Tr,c

bc for either A plate coupled to the assembly. . 127

4.24 Operational Tf,b
cb and Tr,c

bc for either A plate coupled to the assembly. . . 128

4.25 Comparison between Tf,b
cb and Tr,c

bc when calculated operationally or by

FRFs. Additionally, different A components are coupled for each trans-

missibility calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.26 2D diagram of rigid point connection case between beam A and plate B. 130

4.27 Diagram of fully characterised point interface used in the rigid connec-

tion beam-plate experimental example. . . . . . . . . . . . . . . . . . . 131

4.28 Mobility-based Tr,c
bc with either beam 1 or 2 coupled to the assembly. . . 134

x



LIST OF FIGURES

4.29 Mobility-based Tf,b
cb with either beam 1 or 2 coupled to the assembly. . . 135

4.30 Tr,c
bc and Tf,b

cb determined via operational velocities, compared against

validation FRF measurement. . . . . . . . . . . . . . . . . . . . . . . . . 136

4.31 Mobility-based Tr,a
bc vs. Tr,c

bc . Each sub-figure shows the transmissibility

between the z DoF of interface c and each b response. In reference to

rigid-interface test rig, Fig.4.26 . . . . . . . . . . . . . . . . . . . . . . . 137

4.32 Operational Tr,a
bc vs. Tr,c

bc . Each sub-figure shows the transmissibility

between the z DoF of interface c and each b response. In reference to

rigid-interface test rig, Fig.4.26 . . . . . . . . . . . . . . . . . . . . . . . 138

4.33 Mobility-based Tf,b
c(z)b1

, determined using all six DoFs at c, translation z

with α and β rotational DoFs, and z only. Top sub-figure shows plots of

Tf,b
c(z)b1

when beam 1 is coupled, while the bottom sub-figure is for beam 2.139

4.34 Mobility-based Tr,c
b1c(z)

determined using all six DoFs, translation z with α

and β rotational DoFs, and z only. Top sub-figure shows these plots of

Tr,c
b1c(z)

when beam 1 is coupled, while the bottom sub-figure is for beam 2.140

4.35 Operational Tf,b
c(z)b1

, determined using all six DoFs at c, translation z with

α and β rotational DoFs, and z only. Top sub-figure shows plots of Tf,b
c(z)b1

when beam 1 is coupled, while the bottom sub-figure is for beam 2. . . . 141

4.36 Operational Tr,c
b1c(z)

determined using all six DoFs, translation z with α

and β rotational DoFs, and z only. Top sub-figure shows these plots of

Tr,c
b1c(z)

when beam 1 is coupled, while the bottom sub-figure is for beam 2.142

4.37 Mobility-based Tf,b
cb and Tr,c

bc for either A beam coupled to the assembly. 143

4.38 Operational Tf,b
cb and Tr,c

bc for either A beam coupled to the assembly. . . 144

4.39 Comparison between Tf,b
cb and Tr,c

bc when calculated operationally or by

FRFs. Additionally, different A components are coupled for either FRF

or operational transmissibilities. . . . . . . . . . . . . . . . . . . . . . . . 145

4.40 Diagram demonstrating the mobility measurements needed for the mobility-

based TICC. In this example the force transmissibilities Tf,a
ba and Tf,a

da are

used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

xi



LIST OF FIGURES

4.41 Illustration of mass spring model used to test TICC theory. . . . . . . . . 149

4.42 Mobility-based Tf,a
ba vs. Tf,a

da calculated with complete and incomplete

interface c descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.43 Operational Tf,a
ba vs. Tf,a

da calculated with a complete and incomplete

interface c descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.44 TICC difference metric for mobility-based force transmissibility. . . . . . 152

4.45 TICC difference metric for operational force transmissibility. . . . . . . . 153

5.1 Time block processing methods for an operational measurement. . . . . 169

5.2 Operational Tf,a
ca and Tr,a

bc calculated using 1 time block or all time blocks

with no averaging. In reference to single-interface test rig, Fig.4.4. . . . 172

5.3 Operational Tf,a
ca and Tr,a

bc calculated using 1 time block or all time blocks

with no averaging. In reference to three-interface test rig, Fig.4.10. . . . 173

5.4 Operational Tr,a
bc calculated using 1 time block or all time blocks with no

averaging. In reference to rigid-interface test rig, Fig.4.26. . . . . . . . . 175

5.5 FRF vs operational Tf,a
ca and Tr,a

bc . In reference to single-interface test

rig, Fig.4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.6 FRF vs operational Tf,a
ca and Tr,a

bc . In reference to three-interface test rig,

Fig.4.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.7 FRF vs operational Tr,a
bc . In reference to rigid-interface test rig, Fig.4.26. 179

5.8 Operational transmissibilities Tf,a
ca and Tr,a

bc . Number of operational states

changed incrementally, and compared against FRF-measurement. In

reference to single-interface test rig, Fig.4.4. . . . . . . . . . . . . . . . . 181

5.9 Operational transmissibilities Tf,a
ca and Tr,a

bc . Number of operational states

changed incrementally, and compared against FRF-measurement. In

reference to three-interface test rig, Fig.4.10. . . . . . . . . . . . . . . . 182

5.10 Operational Tr,a
bc . Number of operational states used changed incremen-

tally and compared against FRF-measurement. In reference to rigid-

interface test rig, Fig.4.26. . . . . . . . . . . . . . . . . . . . . . . . . . . 184

xii



LIST OF FIGURES

5.11 RT & ORT predictions vs. direct YCcc for single resilient-interface test

rig, Fig.4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.12 RT & ORT predictions vs. direct YCcc for three resilient-interface test rig,

Fig.4.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.13 RT & ORT predictions vs. direct YCcc for rigid-interface test rig, Fig.4.26. 190

6.1 Illustration of experimental setup to detect transmission paths and bridges.196

6.2 Single DoF interface mass-spring system. . . . . . . . . . . . . . . . . . 200

6.3 Singular values of YCba
for a single c DoF interface mass-spring system. 201

6.4 Singular values of the mobility YCda
for a single DoF interface mass-

spring system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.5 Singular values of the mobility YCbc
for a single DoF interface mass-

spring system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.6 Two DoF interface mass-spring system . . . . . . . . . . . . . . . . . . . 203

6.7 Singular values of the mobility YCbc
for a double DoF interface mass-

spring system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.8 SVs of mobility-based Tr,a
bc , for a double c DoF mass-spring system. . . 204

6.9 SVs of output-only Tr,a
bc , for a double c DoF mass-spring system. . . . . 205

6.10 SVs of YCba
, for a double c DoF mass-spring system. . . . . . . . . . . . 206

6.11 SVs of mobility-based Tr,a
ba , for a double c DoF mass-spring system. . . 206

6.12 SVs of output-only Tr,a
ba , for a double c DoF mass-spring system. . . . . 206

6.13 SVs of YCda
, for a double c DoF mass-spring system. . . . . . . . . . . 207

6.14 SVs of mobility-based Tr,a
da , for a double c DoF mass-spring system. . . 207

6.15 SVs of output-only Tr,a
da , for a double c DoF mass-spring system. . . . . 208

6.16 Triple DoF interface mass-spring system . . . . . . . . . . . . . . . . . . 209

6.17 SVs of mobility-based Tr,a
ba , for a triple c DoF mass-spring system. . . . 210

6.18 SVs of output-only Tr,a
ba , for a triple c DoF mass-spring system. . . . . . 210

6.19 SVs of mobility-based Tr,a
da , for a triple c DoF mass-spring system. . . . 211

6.20 SVs of output-only Tr,a
da , for a triple c DoF mass-spring system. . . . . . 211

xiii



6.21 Top-down diagram of experimental example setup. Vertical bar A is the

source component, rigidly connected at a point to the horizontal bar B

which is the receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

6.22 SV magnitudes of YCba
, for an experimental assembly. . . . . . . . . . . 213

6.23 Normalised SV magnitudes of YCba
, for an experimental assembly. . . . 214

6.24 Number of significant SVs for YCba
at all frequencies between 10Hz -

5kHz, as shown by the blue plot. Red plot is the line of best fit, repre-

senting the overall trend of significant SVs across the frequency range.

In reference to the experimental model in Fig. 6.21. . . . . . . . . . . . . 214

6.25 Number of significant SVs for YCda
, on an experimental assembly. . . . 215

6.26 Number of significant SVs for YCbc
, on an experimental assembly. . . . 216

6.27 Number of significant SVs for output-only Tr,a
bc , on an experimental as-

sembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

6.28 Number of significant SVs for output-only Tr,a
ba , on an experimental as-

sembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

6.29 Number of significant SVs for output-only Tr,a
da , on an experimental as-

sembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

xiv



List of Tables

1 Main Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Subscripts / co-ordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Comparison of EMA and OMA techniques. . . . . . . . . . . . . . . . . 27

6.1 Single DoF interface Mass-spring system values. Damping ratio ζ = 0.05.200

6.2 Two DoF interface Mass-spring system values. Damping ratio ζ = 0.05 . 203

6.3 Three DoF interface Mass-spring system values. Damping ratio ζ = 0.05. 209

xv



List of Acronyms

DoF Degree of Freedom

EMA Experimental Modal Analysis

FEA Finite Element Analysis

FFT Fast-Fourier Transform

FRF Frequency Response Function

ICC Interface Completeness Criterion

LTI Linear & Time Invariant

ORT Operational Round Trip

OMA Operational Modal Analysis

RT Round Trip

SEMM System Equivalent Model Mixing

SHM Structural Health Monitoring

SNR Signal to Noise Ratio

SV Singular Value

SVD Singular Value Decomposition

TICC Transmissibility-based Interface Completeness Criterion

TPA Transfer Path Analysis

VPT Virtual Point Transformation

1



List of Symbols

Throughout this thesis, symbols given are most of the time in the frequency domain

unless stated otherwise. Matrices and vectors are denoted uppercase and lowercase

respectively, as well as being bold. A single element matrix or vector is indicated by

italics, with their subscripts in the form ij denoting DoF output and input locations

respectively.

Symbol Meaning Unit
B Boolean matrix N/A
δ Finite-difference spacing m
f Force N
f̄ Blocked force N
F Fourier transform N/A
j Imaginary unit N/A
k Dynamic stiffness N/m
H Frequency response function m/N or ms−1/N or ms−2/N
L Laplace transform N/A
m Mass kg
ω Angular frequency Radians−1

∠ Phase angle N/A
R Finite-difference transformation N/A
S Power spectral density W/Hz
σ Individual singular value N/A
Σ Matrix of singular values N/A
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Table 1: Main Symbols

2



Symbol Meaning
a DoF subset belonging to sub-structure A
b DoF subset belonging to sub-structure B
c Interface DoF subset at the connection point of a coupled system C
d Combined DoF subsets b and c
f Global DoF subset / Denoting a force transformation for matrix R
u Global DoF subset
v Denoting a velocity transformation for matrix R
w Global DoF subset
x,y,z Cartesian co-ordinates
α,β,γ Rotational Cartesian co-ordinates

Table 2: Subscripts / co-ordinates
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Chapter 1

Introduction

This chapter begins by outlining the context behind the research conducted. Following

on from this is a discussion on the topics and objectives of studies undertaken. Finally,

the structure of the thesis is presented.

Contents

1.0.1 Motivation & Research Context . . . . . . . . . . . . . . . . . . 5

1.0.2 Thesis Topics, Aims and Objectives . . . . . . . . . . . . . . . 6

1.0.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.0.1 Motivation & Research Context

Analysis and prediction methods for structure-borne sound often face challenges for

out of laboratory applications. This is can be due to a few reasons. Firstly, the scale of

the test structure may be too large to allow the same controlled measurement method,

Experimental Modal Analysis (EMA), to be used. This is suitable on smaller assem-

blies and in controlled conditions where the background noise level is minimal. How-

ever on an industrial size test-rig, such as a bridge or a building, it is mostly likely

the data obtained via EMA will have a poor signal-to-noise ratio (SNR). Secondly, in

some instances the test structure cannot be shut down operationally. A requirement

for using EMA is that there are no sources of excitation other than the controlled ones
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CHAPTER 1. INTRODUCTION

via roving hammer or shaker. For example, this may apply to a generator which is

needed to generate electricity constantly. Additionally, there may be an inability to

apply controlled excitations via EMA to the degrees-of-freedom (DoFs) installed on

a structure - usually due to a lack of space. In all of these scenarios, the use of

uncontrolled and ambient excitation is preferred. As the source will be unmeasured

unlike in EMA, quantities measured in prediction and analysis methods must be gen-

erated only by the responses measured at the DoFs on the structure. This is called an

output-only technique, known specifically as Operational Modal Analysis (OMA). This

technique has become increasingly popular over the past 20 years, with applications

seen particularly in civil engineering, as well as automotive and aerospace industries.

Another beneficial attribute of the measurement process is to have the test structure

coupled, or in-situ. In the past, methods for source characterisation such as Classi-

cal Transfer Path Analysis (TPA), required the decoupling the source from the receiver

sub-structure. Of course this is impractical if the source is large and cumbersome. A

method that is a common theme throughout this thesis, called the ‘blocked force/in-

situ’ method, created a means of source characterisation in-situ by mathematically

constraining the velocity of the interface DoFs between source and receiver to zero.

This allows a blocking/reactionary force to be measured, which then may be used in

predicting responses in a receiver sub-structure. This convenient method has allowed

the progression of prediction and analysis methods within vibro-acoustics, which will

be outlined later on this thesis. However, limited research exists in combining the con-

veniences of blocked force methods and OMA together. In this thesis, prediction and

analysis methods which have the potential to utilise both of these areas is studied, in

order to make the measurement easier and more accessible to industrial applications.

1.0.2 Thesis Topics, Aims and Objectives

A prediction method known as the Round-trip (RT) is a central topic demonstrating

the combinations of the blocked force method and OMA. Specifically, the RT identity

(developed by Moorhouse and Elliott [2013]) allows point or transfer mobilities to be

6



CHAPTER 1. INTRODUCTION

predicted on an coupled assembly by indirectly applying excitations at two different

subsets of DoFs away from the target subset of DoFs. The concept of a mobility is

useful in various contexts and will be outlined early on in this thesis, but in essence

it describes a structure’s motion as a result of a force. Other techniques of predicting

mobilities also exist, which will be explored in the literature review, but none have quite

matched the convenience and ease given by the RT method. For the last decade it

has become increasingly popular with interesting new applications, such as determin-

ing the dynamic stiffness of a resilient element by employing a dual interface round

trip identity shown in Meggitt et al. [2015], and applying that so one may form a vir-

tual acoustic prototype (VAP) Meggitt and Moorhouse [2018]. The original authors of

the RT method alluded to the possibility of incorporating an OMA approach, specif-

ically, the use of output-only transmissibilities. Transmissibilities also form a central

topic within this body of work. They have seen a number of applications, such as

within civil engineering damage detection, as they can be calculated by operational

responses alone. This concept will also be explained in greater detail, but essentially

they describe a ratio between two like quantities, the most convenient of which being

output-only velocities. The RT identity is made up of three mobility terms, which are

measured via EMA. As it will be shown later on, transmissibilities are related to mobil-

ities, which allows two of the the three mobilities to be replaced with a transmissibility

- most conveniently a transmissibility calculated by operational responses, creating

a mostly-operational approach to the RT method. This evolution of the RT forms a

chapter within this thesis, and is known as the Operational Round-trip (ORT) method.

Specifically within this part of the thesis, the main focus is to predict driving-point mo-

bilities via the ORT and compare and analyse its performance against the original RT

and a directly measured point mobility.

Before delving into the ORT, it is important to note that there is limited research look-

ing into the sensitivities of the original RT method. In one chapter, its sensitivities are

explored to inform the correct use of the novel ORT method later on. The accuracy

of the RT is examined by its sensitivity due to the number of DoFs in certain subsets,
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the positioning of those DoF subsets, the geometry of the coupled test structure, and

the SNR level. This sensitivity analysis also allows an unfamiliar reader to understand

the nature of the RT more generally, as it becomes a focal point again later on. Addi-

tionally, transmissibilities calculated for a sub-structure within a coupled assembly (in

conjunction with the blocked force method) is also an area to investigate before delving

into the ORT method. For the ORT to work correctly within a coupled assembly, the

transmissibility term (which is determined by operational responses) must be ‘invari-

ant’. In the background and literature review the concept of an invariant transmissibil-

ity is presented and outlined generally, but essentially it is a transmissibility attributed

solely to a particular sub-structure within a coupled assembly. This is possible due to a

zero velocity constraint applied at the coupling interface DoFs between sub-structures.

As long as the interface DoFs are sufficiently characterised, the transmissibility of the

target sub-structure will remain the same irrespective of the dynamic influences of an

adjacent sub-structure, or if a different sub-structure is coupled at the interface instead.

An investigation into the invariance of transmissibilities forms another chapter preced-

ing the presentation of the ORT. This is conducted in a number of ways, one of which

is interchanging an adjacent sub-structure while calculating a transmissibility for a sub-

structure of interest. Other methods for observing invariance include the locations and

amount of excitations, and the responses used. In some practical industrial scenarios

(for reasons that will be explained in detail later on), calculating an invariant transmis-

sibility may not be easiest task. It requires that the interface DoFs at the connection

point of the coupled assembly be “complete”, which essentially means its ability to

account for the full dynamic behaviour at that location. Part of this study is to inform

the limits of where invariance can be observed for the case where full completeness

cannot be achieved.

In the final topic of this thesis, a novel method for using output-only transmissibil-

ities to detect transmission paths and unknown bridges within a coupled assembly

is presented. When the radiated sound into a receiver sub-structure is greater than

expected, this may be due to a bridge between source and receiver that has gone
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undetected. In this analysis method, a bottleneck is created by the interface DoFs

between the source and receiver sub-structures. A small number of DoFs at the bot-

tleneck exists to limit the multiple excitation mechanisms of the source component

to a known and reduced set of DoFs at the interface. The number of DoFs at the

bottleneck DoFs are also the amount of transmission paths passing through it to the

receiver component. In this chapter, the singular value decomposition (SVD) is applied

to output-only transmissibilities, and it is shown that by examining its singular values

(SVs), the known transmission paths through the bottleneck can be observed, as well

as any mechanical bridges circumventing it. It will be shown that the SVD may also be

applied to mobilities and transmissibilities calculated by EMA to do this, but its main

objective is to show this is also possible using output-only transmissibilities. The aim

of using the output-only versions is to allow detection in industrial applications.

With the aims and objectives outlined for the areas of research briefly outlined, the

structure of the thesis is described in the next section.

1.0.3 Thesis Outline

Chapter 2 introduces a literature review for various topics related to the research un-

dertaken, alongside background theory of foundational concepts. The chapter begins

with the definition of the frequency response function (FRF) in Section 2.1, a key quan-

tity used throughout the research. This is followed by a review of the literature on a

critical assumption in FRF usage, reciprocity. This is discussed in Section 2.2. Section

2.3 introduces the theory behind a specific form of FRF employed in this study, called

mobility, along with its inverse counterpart, impedance. As mentioned earlier in this in-

troductory chapter, two main approaches to modal analysis exist: Experimental Modal

Analysis (EMA) and Operational Modal Analysis (OMA). The literature and theory sup-

porting both techniques are explored in Section 2.4. Additionally, the RT method for

predicting mobilities, a key focus of this thesis, is discussed in Section 2.5, where the

most common mobility prediction methods are also reviewed. Section 2.6 introduces
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the concept of transmissibility, starting with its fundamental form in Single-degree-

of-freedom (SDoF) systems and extending it to multi-degree-of-freedom (MDoF) sys-

tems. Following this, the topic of sub-structural invariant quantities is examined, focus-

ing on three invariants: the blocked force in 2.7.1, transmissibilities in 2.7.2, and an

example of an invariant used in practice called a damage indicator in 2.7.3. In Sec-

tion 2.8 a review is conducted on two main methods for characterising interface DoFs

called the Finite Difference approximation and the Virtual Point Transformation (VPT).

Additionally within this section, a method for assessing the capability of the interface

DoFs to mathematically apply a zero velocity constraint (completeness) is outlined -

called the interface completeness criterion (ICC). In the final section of this chapter,

foundational theory of the SVD is outlined in Section 2.9.

Chapter 3 explores the sensitivities of the RT method on an FE model and experi-

mental example. Observing the potential sources of error for the RT method allows

suggestions for the most optimal prediction, informing the presentation of the ORT

method later on. Chapter 4 delves into detailed analysis on the nature of invariant

transmissibilities. This is shown for transmissibilities determined via FRFs as well as

output-only responses, and conducted across three experimental examples: a sim-

ple beam-isolator-plate model with a single resilient interface contact point in 4.2, a

plate-isolator-plate model including three resilient points for the interface in 4.3, and

finally in 4.4 a beam-plate model mirroring the first example except the point resilient

connection is rigid. Each step demonstrates a progression in complexity. This also in-

forms Chapter 5, which presents a mostly-operational approach to the RT method by

the use of output-only transmissibilities, called the ORT method. It begins by deriving

the theory of the ORT identities, followed by Section 5.2 which investigates different

time block processing methods Oshana [2006] for the operational measurement of

transmissibilities. In Section 5.3 the output-only transmissibility terms used in the ORT

identities are compared against FRF-based ones to determine their accuracy. Sec-

tion 5.4 displays the performance of the ORT driving-point mobility prediction against

the original RT method and a directly measured point mobility. This is applied across
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the same three experimental examples described for Chapter 4. In the final study,

the method for detecting transmission paths and unknown bridges using the SVD on

output-only transmissibilities is presented in Chapter 6. It begins with theory of the

analysis method in Section 6.1, followed by applications of the theory on mass-spring

and experimental models in Section 6.2 and 6.3 respectively.

In Chapter 7, the concluding remarks of the findings in this thesis are drawn, as well

as any areas for future work.
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Chapter 2

Literature review & Background

theory

One of the main objectives of this chapter is to introduce the theory of dynamic quanti-

ties that are calculated on coupled assemblies. Furthermore, a review of the literature

behind prediction and analysis techniques that use these quantities is outlined. The

majority of the literature review will inform the history and current state of these meth-

ods, providing an understanding of methodologies used in the research presented.

Contents

2.1 Frequency response functions . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Reciprocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Mobility and impedance concepts . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Modal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Experimental modal analysis . . . . . . . . . . . . . . . . . . . 23

2.4.2 Operational modal analysis . . . . . . . . . . . . . . . . . . . . 25

2.5 FRF prediction methods . . . . . . . . . . . . . . . . . . . . . . . . . . 28
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2.5.1 Modal shape extraction synthesis . . . . . . . . . . . . . . . . . 28

2.5.2 System equivalent model mixing . . . . . . . . . . . . . . . . . 29

2.5.3 Round-trip identity reconstruction . . . . . . . . . . . . . . . . . 32

2.6 Transmissibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.1 Single-degree-of-freedom transmissibility . . . . . . . . . . . . 34

2.6.2 Generalised Transmissibility . . . . . . . . . . . . . . . . . . . . 37

2.7 Sub-structural invariants . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7.1 Blocked force . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7.2 Transmissibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.7.3 Damage indicator . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.8 Interface representation . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.8.1 Virtual Point Transformation . . . . . . . . . . . . . . . . . . . . 48

2.8.2 Finite Difference Method . . . . . . . . . . . . . . . . . . . . . . 48

2.8.3 Interface completeness criterion . . . . . . . . . . . . . . . . . 51

2.9 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . 53

In this chapter, the underlying theory and literature used for the research presented in

this thesis is introduced. We begin by introducing the theory of frequency response

functions (FRFs) in Section 2.1, a concept which some of the quantities used in this

research are derived from. This is outlined on a single-degree-of-freedom (SDoF)

mass-spring model, its most fundamental form. Some theory of quantities that are

based on FRFs is presented in Section 2.3, mobilities and impedances. The former

concept will be used throughout this document. Following on from this is a widely used

assumption in many areas of physics, the idea of reciprocity. The literature behind reci-

procity is explored in Section 2.2; important for the use of mobilities. In Section 2.4

we introduce the theory of modal analysis for Multi-Degree of Freedom (MDoF) sys-

tems. This analytical method is essential for identifying dynamic characteristics of a

mechanical system and can be split up into two approaches. We begin with the lit-

erature behind Experimental Modal Analysis (EMA), a method of calculating FRFs,
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followed by Operational Modal Analysis (OMA) which calculates the dynamics of a

structure using output-only methods. In Section 2.5 the literature and theory behind a

number of methods used for prediction of FRFs is presented. One of which called the

Round-trip (RT) method, is central to a couple of chapters in this thesis. Another im-

portant concept used in much of the research presented is a transmissibility. We begin

introducing the theory of transmissibilities in its most basic form via an SDoF mass-

spring system in Section 2.6.1. This is followed by a generalised form of the theory that

extends it to MDoF systems, shown in Section 2.6. Much of the work presented in this

thesis builds upon on research based on the in-situ/blocked force method, a fundamen-

tal technique to many of the dynamic quantities determined for coupled assemblies.

These quantities are known as sub-structural ‘invariants’. Examples of these are in-

troduced in Section 2.7, such as transmissibilities, damage indicators, and of course

blocked forces. An essential consideration when calculating sub-structural invariants is

the blocking constraints at the interface between sub-structures. Theory of two of the

most commonly used interface characterisation methods are outlined in Section 2.8,

the Finite Difference Method and the Virtual Point Transformation. In Section 2.8.3, the

theory of a technique used to determine how complete the characterisation of inter-

faces is outlined, called the Interface Completeness Criterion. Finally in Section 2.9,

we cover uses of the Singular Value Decomposition (SVD) by reviewing the literature

on the mathematical technique within the field of vibro-acoustics, followed by its theory

which will be important later on for the final study of this thesis.

2.1 Frequency response functions

Frequency response functions (FRFs) relate an input force to an output response in

the frequency domain. Its main use is to determine the mode shapes, resonances

and damping of a mechanical linear and time invariant (LTI) systems. You may come

across a very similar definition called a transfer function (Tse et al. [1978]). In many

academic works the two terms are used interchangeably, but their definitions do differ
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slightly. The theory of these concepts can be found in many textbooks such as Mac-

duff and Curreri [1958], Dimentberg et al., and Jr. [2016]. Essentially, they both are

mathematical expressions of a system’s input-output relationship. A transfer function

is defined as the Laplace transform (s-domain) of input and out time-domain functions

f(t) and x(t) respectively,

L{x(t)} = X(s) =

∫ ∞

−∞
x(t)e−st dt (2.1)

L{f(t)} = F (s) =

∫ ∞

−∞
f(t)e−st dt (2.2)

The output and input time-domain functions have turned into complex frequency do-

main functions, X(s) and Y (s) respectively. On the other hand, a FRF is defined as

taking the Fourier transform of output and input time domain signals x(t) and f(t). It

should be noted that when taking the Fourier transform, the real part of the s-domain

is zero and is evaluated along the imaginary axis, meaning s = jω. Thus, the functions

for the input and output are defined as,

F{x(t)} = X(ω) =

∫ ∞

−∞
x(t)e−jωt dt (2.3)

F{f(t)} = F (ω) =

∫ ∞

−∞
f(t)e−jωt dt (2.4)

Note that the response X(ω) represents the displacement output. You may also refer

to the response in terms of velocity Ẋ(ω) or acceleration Ẍ(ω), but in this example we

will use displacement.
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Figure 2.1: Schematic of a calculated FRF for a single input-output system.

The diagram above is usually seen in most vibro-acoustics textbooks to illustrate the

relationship between the complex spectra quantities in Eq.2.5 and 2.6.

X(ω) = H(ω) · F (ω) (2.5)

H(ω) =
X(ω)

F (ω)
(2.6)

In the context of single input-output systems, in this example the FRF H(ω) is defined

as the ratio between the complex response spectra X(ω) and the complex excitation

spectra F (ω). As we the output is a displacement, H(ω) is a known as a compliance

or receptance. If a velocity Ẋ(ω) or acceleration Ẍ(ω) is used instead, this results in

a different form of FRF known as mobility and accelerance respectively. Accelerance

is perhaps considered the default measurement of FRFs in much of the literature and

within industry, because acceleration is usually the quantity directly measured exper-

imentally. However in this thesis, we will keep in line with the ISO standard definition

(ISO 7626-1:2011), which uses mobility.

For the remainder of this section, an FRF will be derived on a SDoF mass-spring

system (its most fundamental form) using equations of motion. An influential academic

work by Ewins [2000] forms the basis of the theory that will be covered in this section.
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Figure 2.2: SDoF mass-spring system

In Fig.2.2 a SDoF structure with mass m is supported by viscous damping c and spring

with stiffness k. In the first example for this system we will take the undamped free

vibration scenario, meaning there will be no viscous damping c, yielding the equation

of motion as:

mẍ+ kx = 0 (2.7)

Therefore the solutions for the external force and response are as follows respectively,

f(t) = Fejwt (2.8)

x(t) = Xejwt (2.9)

To satisfy the displacement solution the following definition must be made in order to

obtain a single mode of vibration with natural frequency ω̄0,

(k − ω2m) = 0 (2.10)

The reasoning for this definition is made clearer after taking the second derivative of
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Eq.2.9 and substituting in the equation of motion, which yields,

(k − ω2m)x = 0 (2.11)

While the mass is oscillating with displacement x, the bracketed term must equal zero

so that the definition is true as being equal to zero. We now are able to define our

equation of motion as,

(k − ω2m)Xejwt = Fejwt (2.12)

By rearranging for the division of complex displacement and force scalars, we may

obtain the frequency response function H(ω),

H(ω) =
X

F
=

1

k − ω2m
(2.13)

Let’ set the mass m to 0.05 kg, and stiffness k to 10000 N/m.

Figure 2.3: FRF of undamped SDoF mass-spring system

Fig.2.3 represents the magnitude of this system’s FRF against frequency for an un-

damped SDoF mass-spring system.
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In the case where viscous damping is considered, the equation of motion is defined

as,

mẍ+ cẋ+ kx = 0 (2.14)

When taking the force response and displacement solutions as shown in Eq.2.8 and

Eq.2.9, the equation of motion is defined as,

(−mω2 + jcω + k)Xejωt = Fejωt (2.15)

Therefore the receptance FRF H(ω) is defined as,

H(ω) =
X

F
=

1

−mω2 + jcω + k
(2.16)

Figure 2.4: FRF of undamped SDoF mass-spring system

In the above figure, the magnitude of the receptance FRF on a damped SDoF mass-

spring system is presented. Mass m and stiffness k have been kept the same from

the undamped example, only now a damping coefficient c of 10 Ns/m is included in the

definition made in Eq.2.16.
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2.2 Reciprocity

Reciprocity is a principle that is relevant to central to the analysis of LTI systems.

Originally, the concept was applied to the field of optics by Helmholtz [1867], but its

expression has been extended into other areas of physics, such as acoustic and elec-

tromagnetic branches (Rayleigh [1878]). Rayleigh is quoted as stating:

“If in a space filled with air, which is partly bounded by finitely extended fixed bodies

and is partly unbounded, sound waves be excited at any point a, the resulting velocity

potential at a second point b is the same both in magnitude and phase, as it would

have been at a, had b been the source of sound.”

The first person that is often credited with its relation to the field of vibro-acoustics is

Betti in 1872, known as the Maxwell-Betti Reciprocal Work Theorem Maxwell [1864].

Betti’s principle is based on an earlier form of the reciprocal theorem by Maxwell. It

states for a linearly elastic structure that:

“The linear displacement at point a due to a unit load applied at point b is equal in

magnitude to the linear displacement at point b due to a unit load applied a point a.”

This key assumption will be used throughout in the majority of the research presented

in this thesis.

2.3 Mobility and impedance concepts

Mobilities and impedances are essentially a form of FRF. The theory behind these

concepts can be found in most vibro-acoustic textbooks. Some popular examples

include O’Hara [1967], Ewins [2000], Vigran [2008], Fahy and Gardonio [2007]. They

are central quantities in much of the research presented in this thesis, therefore it

is essential to provide their definitions. When either is determined for a component

within in a coupled assembly, they must be calculated in a way that ensures their

independence. The method of how this is carried out for each quantity will be covered
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in the following subsections.

2.3.1 Mobility

Mobility is defined as the ratio between a force and velocity response,

v = Yf , Yij =
vi
fj

∣∣∣∣∣
fi ̸=j=0

(2.17)

where Yij is the ijth entry of the mobility matrix Y, fj is the jth term of the applied

force vector f , and vi is the ith term of the velocity vector v.

Note that terms denoted as uppercase represent a matrix, while lowercase indicates

a vector. If the quantity is in bold, this states there are multiple elements. Terms in

italic represent just one element. Finally, within the subscript the first letter denotes

the subset of a response, while the second indicates the subset of a force.

For every excitation and response DoF juxtaposed, i = j, meaning Y = YT, which

satisfies the concept of reciprocity. It is important that each applied force at DoFs of

interest are conducted one at a time. Additionally, the structure should be permitted to

respond without restrictions by applying a zero force constraint to all other points of in-

terest. It is apparent that Eq.2.17 is very similar to the definition of the admittance FRF

in Eq.2.5. To translate the definition from the SDoF to a MDoF system, the admittance

FRF will defined using displacement s. Often the terms admittance, mobility, and ac-

celerance are used interchangeably due to the measured displacement, velocity and

acceleration being analogous.

2.3.2 Impedance

In most cases, a mobility will be measured instead of impedance (Snoeys et al. [1987]).

As we cover the theory in this subsection, it will be made clear as to why this is the

case. Put simply, impedance is the inverse of mobility and describes a system’s resis-

tance to motion. It is defined as as,
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Zv = f , Zij =
fi
vj

∣∣∣∣∣
vi ̸=j=0

(2.18)

where Zij is the ijth entry of the impedance matrix Z, fi is the ith term of the force vec-

tor f , and vj is the jth term of the velocity vector v. For every excitation and response

juxtaposed, i = j, meaning Z = ZT, which satisfies the concept of reciprocity. When

carrying out an impedance measurement, the velocity at all other DoFs should be con-

strained to zero while a velocity is applied to each point. In practice this is extremely

difficult, and in the vast majority of cases impossible. This is why the mobility is the

preferred quantity to measure directly. The impedance can be determined indirectly

by inverting a measured mobility. If displacement or acceleration is used instead of

velocity, then we call this the dynamic stiffness or effective mass, respectively.

2.4 Modal analysis

Modal analysis is a technique utilised for the identification of modal parameters on me-

chanical systems. These dynamic characteristics include natural frequencies, modes

shapes, and damping ratios; usually with the main objectives of prediction or mitiga-

tion of resonances, improving experimental structural design by verifying analytical

results of a Finite-Element (FE) model, and structural health monitoring (SHM). It may

be applied to structures exhibiting linear (Veletsos and Ventura [1986]) or non-linear

behaviour (Kerschen et al. [2013]). However, the main focus in this literature review

will be on the former, as the coupled assemblies used in the research presented later

on are assumed as LTI. Many industrial applications exist for modal analysis, such

as in automotive (Panza [2015]), civil engineering (Roesset et al. [1973], Cunha and

Caetano [2006]), and aerospace (Aykan and Çelik [2009]).

In general, modal analysis can be broken down into three steps:
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• Excitation - where the structure is under load to induce vibrations. This can

either be controlled by impact hammer/ shaker, or by ambient forces such as an

operational source/wind.

• Measurement - where the vibrational response is obtained by using accelerom-

eters or strain gauges.

• Data analysis - the processing of measured data to determine the dynamic char-

acteristics, either by analysing FRFs or operational responses with signal pro-

cessing.

The different methods of carrying out the above three steps can be split up into meth-

ods of modal analysis; Experimental Modal Analysis (EMA) and Operational Modal

Analysis (OMA). These two techniques will be covered in the following subsections.

2.4.1 Experimental modal analysis

EMA is often uses controlled laboratory conditions to extract modal parameters. In

this scenario, the support condition of the test structure can be free, unrestrained,

grounded, or in-situ. Experimental and FE models examples used for the research in

this thesis will focus mainly on the in-situ condition. Some reports in the past have sug-

gested EMA as being the most reliable technique (Magalhães et al. [2010]), despite

EMA and OMA being theoretically as reliable as each other. In one experimental study

on a laboratory test plate (Orlowitz and Brandt [2017]), it was concluded there was little

difference in the modal parameters obtained by either route. What actually effects the

reliability is usually down to the proportions of the structure and its setting. In EMA, a

controlled measured force input via roving hammer or shaker is applied, resulting in a

response measured on the structure. This force input is only insufficient when the test

structure is large, such as a bridge or a building. In laboratory conditions, this is not

an issue due to the test structure being smaller, meaning the excitation and response

positions are localised. The vibratory energy due to the excitation can be picked up

by the sensors sufficiently above the noise floor before dissipating. Additionally, the
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noise floor in laboratory conditions is usually much lower than in real world cases due

to the ideal conditions set. For a large structure, the distance for the input force signal

to be picked up by a response is too large, and would require an extremely large force

input to yield an FRF with an acceptable signal-to-noise-ratio (SNR). This is why in civil

engineering applications, EMA is usually avoided. Despite this, EMA has seen a lot of

use in other industries where the scale of the test structure is much smaller, such as

in automotive. As pointed out earlier in this section, the final stage of modal analysis

is the processing of measured data. This is known as data acquisition, and in EMA

the analogue data for the input (force) and output (response) time domain signals is

collected using a Data Acquisition System (DAS). The acquired signals are digitised

and then subject to signal conditioning - the process of removing noise and artifacts

using filters to improve the SNR, and amplification of signals with a low response am-

plitude. Time synchronisation of excitation and response signals is applied to ensure

correlation between them, as well as windowing so that spectral leakage is avoided.

In the final stage of EMA data analysis, the Fourier transform is applied to the time

domain signals to calculate FRFs. In the remainder of this section, the theory of how

these FRFs are determined via EMA will be presented; with works by Ewins [2000],

Rao [2004], Maia and Silva [2003], and Brandt [2011] forming the basis.

Let’s recall the Fourier transform definitions made earlier on the input force and output

response time domain signals in Section 2.1, Eq.2.4 and 2.3 respectively. We have

already established the Fourier transform of these two signals forms the definition of

an FRF, shown in Eq.2.6. However, this equation is often prone to noise, which can be

circumvented by the use of spectral densities. Specifically, the auto-spectral density

and the cross-spectral density are taken. Beginning with the cross-spectral density

Sxf (ω), it is defined as,

Sxf (ω) =
1

N

N∑
i=1

X∗
i (ω)Fi(ω) (2.19)

A ∗ in the superscript denotes the complex conjugate. Sxf (ω) calculates the correlation
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between the input f(t) and output x(t), essentially capturing the system dynamics.

Note that an average is taken, where N represents the number of measurements.

Additionally, the auto-spectral density of the input Sff (ω) and output Sxx(ω) signals are

defined respectively as,

Sff (ω) =
1

N

N∑
i=1

F ∗
i (ω)Fi(ω) (2.20)

Sxx(ω) =
1

N

N∑
i=1

X∗
i (ω)Xi(ω) (2.21)

Sff (ω) is basically a normalisation by the input force power, while Sxx(ω) informs the

power of the output signal. With these definitions the FRF may now be derived, begin-

ning with the FRF H1(ω), which is defined as,

H1(ω) =
Sxf (ω)

Sff (ω)
(2.22)

H1(ω) is often used when the input is applied by roving hammer. It also ensures the

minimisation of noise on the output. Additionally, another FRF H2(ω) can be defined,

H2(ω) =
Sxx(ω)

S∗
xf (ω)

(2.23)

H2(ω) is often used when the input is applied by a broadband and continuous force

such as shaker. This definition makes sure noise on the input is minimised.

2.4.2 Operational modal analysis

OMA is an alternative approach to EMA, which is often utilised in the field of civil en-

gineering. As mentioned previously, applying a known force input via EMA on say, a

wind turbine, is impractical due to the size and testing conditions. OMA provides a

much more suitable means for identification of modal parameters for structures such
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as this as no explicit knowledge of input forces are required, and the modal parameters

are determined solely by measured operational responses. This has been particularly

advantageous in the field of SHM where it is perhaps used the most. Examples where

structural integrity is assessed using OMA, sometimes continuously by constant mea-

surement of responses, include wind turbines (Devriendt et al. [2014]), concrete dams

(Li et al. [2022]), and historical masonry-type buildings (Ramos et al. [2010]). Assump-

tions made in OMA can be split into three areas:

• Input forces are unknown, stochastic in nature, and broadband (Guassian white

noise).

• The system analysed is LTI, meaning the magnitude of the measured response

is proportional to the input forces, and the dynamic characteristics do not change

with time.

• Observability has been achieved, which essentially means how well the sensor

layout is across the structure to capture modes correctly and to avoid nodes.

For many years OMA was considered as a technique with potential but unreliable. It

was only up until the late 1990s and early 2000s when influential methods such as the

Stochastic Subspace Identification (SSI) Peeters and Roeck [1999] and Frequency

Domain Decomposition (FDD) Brincker et al. [2001] were introduced, that OMA saw

much broader use. Both differ in that the former uses time domain data directly, while

the latter is based on the SVD of a Fourier transform spectral density matrix. Oper-

ational measurements in this thesis will be mostly based off the frequency Domain

Decomposition.

For the remainder of this section, we will derive the theory of OMA using works by

Rainieri and Fabbrocino [2014] as the foundational understanding. Let’s recall the

definition for the auto-spectra density Sxx(ω) in Eq.2.21. In this case, N represents the

number of time-blocks, which will ensures the spectral density is robust to noise. By

substituting the definition of an FRF made in Eq.2.5 into the definition for Sxx(ω), the

following definition is obtained,
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Sxx(ω) =
1

N

N∑
i=1

(
H(ω)Fi(ω)

)∗(
H(ω)Fi(ω)

)
(2.24)

which expands to,

Sxx(ω) = H(ω)H∗(ω) · 1

N

N∑
i=1

F ∗
i (ω)Fi(ω) (2.25)

and it has already been established that 1
N

∑N
i=1 F

∗
i (ω)Fi(ω) is the input auto-spectral

density Sff (ω). As a result, the fundamental definition of OMA is made,

Sxx(ω) = H(ω)H∗(ω)Sff (ω) (2.26)

Assuming the input is constant, I.e. Guassian white noise, Sxx(ω) is directly propor-

tional to the squared magnitude of the FRF matrix,

Sxx(ω) ∝ |H(ω)|2 (2.27)

To summarise this section, the differences between OMA and EMA are provided in the

table below.

Properties EMA OMA
Input force F (t) Measured, Controlled Not measured, Stochas-

tic, Broadband
Spectral functions Sff (ω), Sfx(ω), Sxx(ω) Sxx(ω)
FRF Obtained by measured in-

put and output
Estimation solely by oper-
ational response

Modal parameter extrac-
tion

Modal decomposition,
FRF-based curve fitting

FDD, SSI

Table 2.1: Comparison of EMA and OMA techniques.
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2.5 FRF prediction methods

In this section, a literature review of the different methods for estimating FRFs is pre-

sented. As already pointed in the previous section, one form of EMA requires applying

a controlled and collocated roving hammer excitation to DoFs installed on the test

structure. Within industry, obtain a M ×M FRF matrix directly (across all sensors/D-

oFs installed on the structure) can be impractical. As a result a number of methods

have been proposed for prediction. Some use spectral estimation algorithms (Alle-

mang et al. [2022]), but in this section the focus will be on FRF reconstruction at DoFs

of interest using measured data. Examples of these techniques include modal shape

extraction, System Equivalent Model Mixing (SEMM), the round-trip method; and will

be reviewed in the following subsections. Reasons for predicting FRFs experimentally

can be due to:

• Inaccessibility of DoFs, meaning a roving hammer excitation is not possible.

• Many DoFs installed on the structure, making the direct measurement process

time consuming.

• Combining limited experimental data to update or validate numerical models.

We will begin introducing one of the earliest methods of FRF reconstruction using

measured data, synthesis by modal shape extraction.

2.5.1 Modal shape extraction synthesis

Often within industry, it can be difficult to obtain accurate driving-point FRFs on partic-

ular areas of a system that are inaccessible to excite via roving hammer. This problem

has lead to research into reconstructing an M × M FRF matrix without needing to

apply excitations at all M response positions. In response, modal shape extraction

techniques that enable the synthesis of a full FRF matrix by using only a single exci-

tation one M DoF position have arisen. Works by Maia et al. [1997], Ashory [1998],

Ashory [1999], and Silva et al. [2000] demonstrated this is certainly possible. Essen-
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tially, these methods use the mass loading of sensors to their advantage to generate a

series of equations with repeated tests to generate FRFs at the unmeasurable DoFs.

As reported by Moorhouse and Elliott [2013], this approach is sensitive to measure-

ment error. For example, if there is a significant amount of loading from the sensor,

the magnitude of resonant frequencies will be lower than it should be. Before these

methods had arisen, in the 1980s Ewins [1980] had shown that FRF reconstruction us-

ing a force at only a single DoF was achievable without repeated tests. Reasons why

the mass-loading methods had arisen was because Ewin’s method required modal

decomposition (extracting resonances and mode shapes) across all DoFs, which is

impractical on structures such as beams which have theoretically an infinite number of

modes. went onto show that reconstruction was possible without repeated tests, but

was proven to be impractical for systems with multiple modes.

2.5.2 System equivalent model mixing

SEMM was first introduced by Klaassen et al. [2018], and is a relatively recent method

that combines frequency-based experimental and numerical models to build a hybrid

model. Examples of where it has been applied include the identifying the dynamic pa-

rameters of vehicle components (Pasma et al. [2018]), and joint identification between

a blade and disk (Saeed et al. [2020]). Another implementation is to predict quantities

such as FRFs at points on a structure where DoFs do not exist in the experimental

model. This is achieved by combining the measured FRF from the limited DoF-space

of an experimental model, and using that data to extrapolate FRFs to the expanded

DoF-space of an equivalent numerical model. Alternatively, it has been used to esti-

mate mobilities by mixing two experimental models instead (Ocepek et al. [2021]).
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Figure 2.5: Processing of models used in SEMM, resulting in a hybrid model.

There are 3 models used in determining the final and 4th hybrid model. As demon-

strated by Fig.2.5, they are the parent, overlay, and removed models. The parent

model provides the full DoF structure (usually by an FE-model), while the overlay

model (which has a smaller DoF space and usually experimental) will provide the FRFs

in relation to those DoFs. The mobility FRFs of the overlay model YO are enforced by

removing the parent model mobilities YP at the subset of DoFs that correspond to the

overlay model. This results in another mobility matrix YR of the removed model. Es-

sentially this method uses a primal dynamic sub-structuring approach. For the remain-

der of this section, a brief outline of how SEMM works mathematically is presented,

with Klaassen and der Seijs [2018] providing the basis of this understanding. Let’s

recall the definition of the mobility FRF in Eq.2.17. Our new definition becomes,

v = Y(f − g) (2.28)

where the matrix of mobilities Y is defined as,


YP 0 0

0 −YR 0

0 0 YO

 (2.29)

and the vectors of velocities v, external forces f , and connecting forces g are defined

as,
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v =


vP

vR

vO

 , f =


fP

fR

fO

 ,g =


gP

gR

gO

 (2.30)

where the superscripts denote the model at which the velocity or force vector is at-

tributed to, I.e. in the same fashion as the mobility terms covered.

Note that the equation of motion (Eq.2.28), has a minus sign between the external

force and connecting force vectors. This is showing YR being removed.

The parent model informs internal and boundary DoFs, i and b respectively. To achieve

coupling, b DoFs are used to coincide with the overlay model. On the other hand, the

i DoFs of the parent model will be unique. As a result the definitions of the mobility

matrices of the models are given,

YP =

Yii Yib

Ybi Ybb

 , YO = YO
bb , YR = YP

bb (2.31)

Compatibility of velocities yields the following definition,

vP
b = vR = vO (2.32)

meaning,

vP
b − vR = 0 (2.33)

vR − vO = 0 (2.34)

using a Boolean matrix B, this condition can be applied as,

Bv = 0 , B

I −I 0

0 I −I

 (2.35)

where I represents an identity matrix. To apply the equilibrium of forces, the connecting
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forces must be equal and opposite,

gP
b = gR = gO (2.36)

which similarly when using a Boolean matrix B, and the connecting forces are denoted

as Lagrange multipliers vector λ yields,

g = −BTλ (2.37)

In the original text, Klassen solves what is called the Lagrange Multiplier Frequency

Based Sub-structuring problem, which yields the mobility matrix of the hybrid model

YSEMM ,

YSEMM = Ygg −YP
gb

(
YR

bb

)−1(
YR

bb −YO
bb

)(
YR

bb

)−1
YP

bg (2.38)

where g denotes the combination of i and b DoFs, i.e. describing a global DoF.

2.5.3 Round-trip identity reconstruction

Moorhouse et al. [2011] showed that the indirect measurement of point mobilities at the

interface DoFs (installed at the connection point between sub-structures) is possible by

applying excitations at two subsets of ‘remote’ DoFs, within each sub-structure. This

is to measure three mobility terms, which when combined can be used to predict the

interface point mobility. Specifically, the authors validated the method experimentally

for point mobilities, but alluded to the fact a transfer mobility may also be predicted by

rearranging the RT identity and using the same subsets of DoFs. The RT method was

later generalised by Wienen et al. [2021].

This section is designed to be brief and give a general overview of what the RT method,

as a full comprehensive explanation will be presented in the Chapter 3. The reason for

why it is called the round-trip will be made clearer win that chapter, but essentially to
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reconstruct the interface point mobility you must measure transfer mobilities for each

sub-structure as well as the transfer mobility across the coupled assembly. It is also the

first method to reconstruct driving-point mobilities without directly exciting the DoFs of

interest. This is a very beneficial attribute for various applications where a lack of room

limits modal testing. Often for industrial test rigs, the area around the connection point

between sub-structures (perhaps isolator mounts) is an area where sensors can be

placed but cannot be excited by say a modal hammer. The round-trip method makes

use of indirect excitations at ’remote’ sets of DoFs to reproduce driving point FRFs at

those locations. It should be noted that traditional methods require free-suspension of

the system, so the in-situ nature of the round-trip method is also hugely beneficial for

time and cost.

2.6 Transmissibility

Transmissibilities are quantities that provide an understanding of how energy is trans-

ferred through a system. It is defined as a ratio between two measurements of the

same quantity that are measured at different locations on a mechanical system, and

may be calculated in terms of velocity, acceleration, displacement or force. It is par-

ticularly useful when measuring the first three quantities, as it allows a transmissibility

calculation just by measuring the output/response on a structure. There are different

names across various academic works for this type of transmissibility. Usually it is

named after the quantity used, i.e. displacement transmissibility when using displace-

ments, but in this thesis it will be termed as a response transmissibility. If forces are

used instead, this is simply termed as the force transmissibility. The concept has been

known for many years, and was mostly limited to SDoF systems. It was only until the

beginning of the 2000s that its generalisation to MDoF systems was introduced by

Ribeiro et al. [2000]. In this section, the most fundamental definition of a transmissi-

bility will be derived through a SDoF mass-spring model. This will be followed by a

derivation of the generalised transmissibility (MDoF systems).
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2.6.1 Single-degree-of-freedom transmissibility

The transmissibility concept can be found in most vibro-acoustic textbooks. Texts by

Preumont [2018] and Vigran [2008] will be used as references for its derivation on a

SDoF system.

(a) Mass excitation causing a force fm (b) Base excitation causing a velocity ẋb

Figure 2.6: SDoF mass-spring-damper system under different excitation scenarios.

Fig.2.6 introduces a diagram of a SDoF mass-spring-damper system under two exci-

tation scenarios. In Fig.2.6a a force fm is generated by the mass m and propagated

to the base via the supporting structure (k and c). This causes a reaction force f̄b but

can also be interpreted as a blocking force, hence the bar. For example this scenario

may correspond to an engine, creating oscillations that are transmitted through a sup-

porting structure such as a resilient mount. Fig. 2.6b represents a base excitation

scenario, causing a velocity ẋb. The kinetic energy caused by the base is transferred

to the supporting structure, which in turn causes the mass to oscillate with velocity ẋm.

The mass can be interpreted as piece of sensitive equipment such as a telescope,

isolated by a resilient mount.

Firstly lets describe the above system in terms of equations of motion. Note this defi-

nition is applied to both scenarios despite the excitation location.

fm

fb

 =

m 0

0 0


ẍm

ẍb

+

 c −c

−c c


ẋm

ẋb

+

 k −k

−k k


xm

xb

 (2.39)
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ẍ, ẋ, x are defined as acceleration, velocity, and displacement respectively. Force,

damping and stiffness are represented by f , c, and k respectively. Subscripts de-

note a location either at the mass m or base b. This definition mirrors Eq. 2.18, and

made clearer when Eq.2.39 is rewritten in terms of complex impedance terms and

rearranged,

fm

fb

 =

jω

m 0

0 0

+

 c −c

−c c

+ 1
jω

 k −k

−k k



ẋm

ẋb

 (2.40)

The second round bracketed term on the RHS of Eq. 2.40 represents an impedance

matrix of the system.

fm

fb

 =

jwm+ c+ k −c− k

−c− k c+ k


ẋm

ẋb

 =

Zmm Zmb

Zbm Zbb


ẋm

ẋb

 (2.41)

Firstly lets examine the force transmissiblity T f
mb for Fig. 2.6a. A blocking force f̄b is

considered due to a mass excitation fm. The blocking constraint at the base defines

the velocity as ẋb = 0, thus defining Eq. 2.41 as,

fm

f̄b

 =

Zmm Zmb

Zbm Zbb


ẋm

0

 (2.42)

Taking both rows of Eq.2.42, equating and substituting for ẋm,

Zbmfm = −Zmmf̄b −→ − f̄b
fm

=
Zbm

Zmm

= T f
bm (2.43)

Similarly we can define the response transmissibility T r
mb. Let’s consider a base exci-

tation scenario, as shown in Fig.2.6b. The force at the mass must therefore be defined

as fm = 0. This turns Eq. 2.41 into,
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 0

fb

 =

Zmm Zmb

Zbm Zbb


ẋm

ẋb

 (2.44)

Taking both rows of Eq. 2.44 we arrive at the following equation,

Zmmẋm = −Zmbẋb −→
ẋm

ẋb

= − Zmb

Zmm

= T r
mb (2.45)

Using the definitions made in Eq. 2.43 and Eq. 2.45, we are now able to calculate the

force and response transmissibilities respectively.

(a) T f
bm due to mass excitation. (b) T r

mb due to base excitation.

Figure 2.7: Force and velocity transmissibilities of SDoF system for when different
amounts of damping is applied.

It’s important to understand what the value of a transmissibility actually represents in

order to tell what kind of dynamic behaviour the system is under. A value below 1 indi-

cates the mass response is less than the response measured at the base. Conversely,

a value above 1 tells us the response of the mass is greater than the base response.

A transmissibility that tends to 1 specifies the mass of the system is oscillating with an

equal amplitude and phase, i.e. direct transmission.

In Fig.2.7 we can see that the force and response transmissibilities are very simi-

lar in their characteristics. They have also been calculated with various amounts of

36



CHAPTER 2. LITERATURE REVIEW & BACKGROUND THEORY

damping c to demonstrate the difference in magnitude at the critical frequency fc.

Both response and force transmissibilities begin with a direct transmission between

the base and mass. The difference between forces or velocities increases at varying

rates approaching the critical frequency. At fc we see the greatest difference between

quantities, indicating a maximum amplification of the transmissibility.

2.6.2 Generalised Transmissibility

While the transmissibility concept for SDoF systems was established for many decades,

it was only until the 1980s when Magrans [1981] laid the theoretical ground work for

its extension to MDoF systems, providing a demonstration via an experimental electri-

cal system. One of the first to present the concept on an MDoF mass-spring system

was by Liu and Ewins [1998]. This was followed by a definitive exposition for the

generalisation of the transmissibility concept to MDoF systems in 2000 (Ribeiro et al.

[2000]). Technically its generalisation was presented by the author at the NATO-ASI

Modal Analysis and Testing conference in 1998, but a formal publication to the jour-

nal Mechanical Systems and Signal Processing was made 2 years later and often the

most cited text. In this section, the theory behind the generalised transmissibility will

be derived in the context of a global structure (its original form for MDoF systems).

Further theory for its application to coupled assemblies will be covered later in Section

2.6.2. Following the derivations in this section, a review on the properties and uses of

generalised transmissibilities is provided.
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Figure 2.8: Arbitrary LTI MDoF system with response DoF subsets u and w, and force
DoF subset f .

Similarly to the SDoF transmissibilities, generalised transmissibilities can represent a

relationship between two responses due to some load, or between applied forces and

reaction forces. In this section, the theory for both of these generalised transmissibil-

ities (response and force respectively) will be derived. Ribeiro et al. [2000] and Maia

et al. [2001] defined the fundamental formulation via mobilities as well as measured

responses (output-only) for a response transmissibility. In Fig.2.8 we there are 3 sub-

sets of DoFs. f represents the location of applied forces, while u and w are two DoF

subsets of responses. As shown earlier in Section 2.17, we may define the relationship

between the velocity responses at u and w due to an applied force at f ,

vu = Yuf ff (2.46)

vw = Ywf ff (2.47)

yielding the mobility FRFs Yuf and Ywf . One can clearly see Eq.2.46 and 2.47 can

be combined,

vu = YufY
−1
wfvw (2.48)

Note that for this example Ywf can be inverted as it is a square matrix. In this case
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as we are assuming the number of applied force DoFs in f is equal to the number of

response DoFs in w. It is required that wn ≥ fn, where n indicates the number of DoFs

within the subset. In most practical cases Ywf is rectangular, and a pseudo-inverse

Penrose [1955] + will be taken. By having more applied forces than responses there

we create a least-mean-square problem that minimises error. This known as over-

determination. In this thesis, examples will be shown where inverting a square matrix

increases noise and error within measurements.

Eq. 2.48 relates velocities at u and w, which means the two mobility terms equate to a

transmissibility,

Tr,f
uw = YufY

−1
wf (2.49)

Note that in the superscript of Tr,f
uw the first term indicates the type of transmissibility,

followed by location of the applied force. The subscripts of the response transmissi-

bility, denote the locations of velocities measured. Likewise if a force transmissibility

is used, the subscripts denote the locations of forces. This is differs to the mobility

notation; where the subscripts denote locations of response and force. For transmis-

sibilities the locations are of the same quantity. Technically, Tr,f
uw can be thought as a

form of FRF, because it relates responses at u and w. Eq.2.48 can be rewritten as,

vu = Tr,f
uwvw (2.50)

A final note is that response transmissibility does not require the location of forces to

coincide with a subset of response DoFs. While the location of the applied force must

be known, the magnitude of it is not needed. As we can see from the above derivation,

this is because the force vector ff has cancelled out. As pointed out in Section 2.3,

mobility and impedance are related by inverse, meaning an alternative definition of the

response transmissibility by impedances can be made (Ribeiro et al. [2005]).

As already mentioned earlier in the context of SDoF systems, a force transmissibility
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can also be defined. It’s generalisation to MDoF systems was presented by Maia

et al. [2006], and shows how the inverse problem can be used to estimate blocking (or

reaction) forces from applied forces.

Figure 2.9: Arbitrary LTI MDoF system with force DoF subsets u and w.

In reference to the above figure, w represents a DoF subset of applied forces while u

denotes a DoF subset of blocking forces. A reaction force at u means the velocity at at

subset must 0, vu = 0. Firstly, the equations of motion for this system are defined as,

vu = −Yuuf̄u (2.51)

vu = Yuwfw (2.52)

where f̄u represents the blocking force at the blocking DoFs u, and fw indicating an

applied force at DoF w. Combining these two equations yields,

−f̄u = Y−1
uuYuwfw (2.53)

therefore the force transmissibility must be,

Tf,w
uw = Y−1

uuYuw (2.54)

and Eq.2.53 may be rewritten as,
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−f̄u = Tf,w
uw fw (2.55)

Similarly to the response transmissibility, the force transmissibility may be calculated by

mobilities, which also means Tf,w
uw can also be determined using impedances. With the

generalised response and force transmissibilities now derived, the rest of this section

will review the literature behind the concept, outlining its applications and properties.

Generalised transmissibilities have been used in various fields, some of which are not

necessarily related to the research conducted in this body work. However, it is impor-

tant to show the versatility of using the concept, as it will be applied in two different

ways for the research presented in this thesis. Applications include: damage detection

in SHM (Sampaio et al. [1999], Chesné and Deraemaeker [2013], Maia et al. [2011a]),

estimating responses (Law et al. [2011]), finite element model updating (Steenackers

et al. [2007]), predicting FRFs (Urgueira et al. [2008], Almeida et al. [2010], Urgueira

et al. [2011]), and in-situ transfer path analysis (TPA) (Meggitt et al. [2021]). As we’ve

already seen from the derivation, the generalised response transmissibility does not

depend on the magnitude of applied forces, and can be determined either by output-

only or mobility approaches. The output-only property is a particularly useful one,

and is central later on for the research presented in Chapter 5. It was shown first

by Ribeiro et al. [2002] that generalised transmissibilities (in this particular case a re-

sponse transmissibility) can also be determined using stochastic forces, I.e. ambient

excitations. This is beneficial for systems that can only be analysed by OMA, such as

those that cannot be shut down operationally, or that using an applied force via EMA is

impractical. The force transmissibility may also be calculated via OMA, but indirectly.

In the theory derived later in Chapter 4, it will be made clear how this is possible. For a

general overview of generalised transmissibilities, Maia et al. [2011b] provides a very

useful guide for those who are perhaps unfamiliar with the concept.
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2.7 Sub-structural invariants

A sub-structural invariant quantity in the context of coupled assemblies, is defined as

a measured property that is intrinsic to a sub-structure found in-situ. Invariants may

also be determined by uncoupling the sub-structure of interest and measuring with

free-interface conditions. This can be conducted by suspending the component using

soft connections. However, in some situations this is impractical. For example, let’s

consider an automotive application. Components such as a compressor or engine are

usually mounted on compact isolator mounts, which will have some amount of pre-

load. By having a free-interface condition, the pre-load will not be replicated and the

measured invariant will not be the true value than if it were measured in-situ. Another

reason is that some components within industry may be so large and cumbersome

that decoupling it is impractical or impossible. This begs the question: ”How do you

determine a property that is unique to a particular sub-structure in-situ?”. The answer

to this is a mathematical one; by applying a 0 velocity constraint to a discrete subset

of DoFs installed at a coupling connection, creating a ‘theoretical’ blocked force. In the

past, a highly rigid blocking mass would be attached to a decoupled sub-structure to

achieve a zero velocity constraint. Along with the limit to a narrow frequency range,

it was rather unpractical to carry out such measurements. Bobrovnitskii [2001] was

the first to contribute to the more viable use of blocked forces. However, advances by

Moorhouse et al. [2009] which independently derived Bobrovnitskii’s equivalent field

theorem, established that the blocked force could be found experimentally through an

in-situ FRF-based inversion. This was shown in the context of a source characterisa-

tion, that a blocked force (one example of an invariant) can be obtained while coupled

to a receiver sub-structure. This finding has led to advances in applications such as

TPA (Elliott et al. [2013], van der Seijs et al. [2016]), component modification (Elliott

et al. [2019], Meggitt et al. [2020], Meggitt et al. [2021]), condition monitoring (Moor-

house [2012]), prediction of FRFs (Moorhouse and Elliott [2013]), and virtual acoustic

prototyping (VAP) (Moorhouse et al. [2022]). This research has had a impacted indus-

trial applications, that an ISO standard has been made for it (ISO 20270:2019). In this
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section, different examples of invariants will be introduced, beginning with the most

obvious one - the blocked force.

2.7.1 Blocked force

In the context of a global structure it was shown in Section 2.6.2 that a blocked force

(or reaction force) is the force required rigidly constrain a discrete subset of DoFs

so that their velocity is 0. On the other for a coupled assembly, we may define the

blocked force as the reaction force exerted by a coupled (and theoretically infinitely

rigid) adjacent sub-structure.

Figure 2.10: Diagram showing the blocked force of a source sub-structure, due to a
rigid constraint at the interface c DoFs.

Let’s consider a coupled assembly where a source sub-structure A has some operating

mechanisms located at o. The blocked force f̄Ac is defined as the contact force fc

needed to fix the velocity at the interface DoF subset c to zero, vc = 0.

f̄Ac = fc

∣∣∣
vc=0

(2.56)

In methods such as Classical TPA (Verheij [1982]) the source is operational and cou-

pled to determine interface forces, but to predict a response in the adjacent sub-
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structure it requires decoupling the receiver to determine the mobility between the

interface and receiver DoF subset via EMA. This can be especially challenging if the

receiver is cumbersome. Using the blocked force TPA method provided a means of

describing independent source activity, in other words without the an adjacent receiver

component influencing it, while also being able to measure the mobility between the

interface and receiver DoFs in-situ. This is why it is also referred to as the in-situ

method. An important assumption when using the blocked force in a mechanical cou-

pled assembly, is that the blocked force and operational forces reproduce the same

response field in the receiver (Moorhouse and Seiffert [2006]). The way this assump-

tion is used for the measurement of a response in a receiver by using the blocked force

will be demonstrated.

Figure 2.11: Model of an arbitrary structure divided by a user defined interface, c,
making two sub-structures A and B.

A key equation shown by Moorhouse et al. [2009] which uses the mentioned assump-

tion states that,

vCb
= YCbc

f̄Ac (2.57)

Eq.2.57 relates the blocked force of the source to a velocity measured at the receiver

DoF subset b for the coupled assembly C, denoted vCb
. YCbc

is the transfer mobility
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between the interface DoFs c and the receiver DoFs b. These two quantities are readily

measurable, but the blocked force f̄Ac is unknown. To calculate it the inverse problem

must be solved, which is performed by pre-multiplying both sides of the equation by

YCbc
, yielding,

f̄Ac = Y−1
Cbc

vCb
(2.58)

This key equation allows the use of a theoretically infinitely rigid test-bench to be

avoided. To conduct this measurement, vCb
is calculated while the source is oper-

ational. Following this, YCbc
is measured in-situ while the source is shut down. It was

established earlier in Section 2.2 that the principle of reciprocity can be use, meaning

that if the mobility cannot be measured by applying an applied force and the interface

(such as via roving hammer), then it can transposed so the force is applied at b and

the response is measured at c, i.e. YT
Cbc

.

2.7.2 Transmissibility

In this section, response and force transmissibilities will be derived to show how they

too are invariant.

The force transmissibility T f
ij is defined as the relationship between an applied force fj

at the DoF j, and the blocking force −f̄i at the DoF i, whilst all DoFs except for i and j

are subject to a zero force constraint fk ̸=i,j = 0.


−f̄1

...

−f̄N

 =


T f
11 . . . T f

1M

... . . . ...

T f
N1 . . . T f

NM




f1
...

fM

 , T f
ij =

−f̄i
fj

∣∣∣∣∣
fk ̸=j=0

· (2.59)

For Eq.2.59, the excitation and blocking force DoFs belong to different groups of DoFs.

If more than one blocking DoF is used then a constraint of vi∈N = 0 is applied to those

DoFs. The generalised response transmissibility T r
ij, it is defined as,
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
v̄1
...

v̄M

 =


T r
11 . . . T r

1N

... . . . ...

T r
M1 . . . T r

MN




v1
...

vN

 , T r
ij =

v̄i
vj

∣∣∣∣∣
vk ̸=j=0

· (2.60)

In terms of individual elements, the response transmissibility T r
ij is defined as the ratio

between an applied velocity vj of DoF j, and response velocity v̄i of DoF i. Note that

in the same way as the force transmissibility, the two velocity DoFs belong to differ-

ent sets, where j belongs to the set N , and i is part of the set M . Additionally, all

DoFs except the one corresponding to j are rigidly constrained. In some works, the

transmissibilities defined in Eq.2.59 and 2.60 are termed blocked or direct transmissi-

bilities Guasch et al. [2013] Jové and Guasch [2017]. This is in opposition to global

transmissibilities, which do not have blocking constraints.

Now the response and force transmissibilities are defined, one may notice the similar-

ities between them. Both require rigidly constraining the blocking DoFs to zero when

measuring at or between distinct DoFs. This is an important requirement, as the au-

thor explains in detail in Meggitt and Moorhouse [2020a], if the blocking DoFs which

separate the coupled system into two distinct sub-structures, the obtained transmissi-

bility will be an ‘invariant’ property of the sub-structure across which it was measured.

Essentially this means the blocking constraints have removed the effect of an adja-

cent sub-structure, making the transmissibility calculated on the target sub-structure

solely a property of that sub-domain. Additionally, it has already been established in

Section 2.6.2 may be calculated by the product of two FRFs, which means they too

are invariant for a transmissibility calculated on a sub-structure (Meggitt and Moor-

house [2020b]). The invariance property can be useful in the contexts of updating

particular areas of a numerical models using measured in-situ data Meggitt and Moor-

house [2020b], or localising damage in within a coupled assembly (Meggitt and McGee

[2024]). Perhaps unsurprisingly, given their similar blocking constraints, the two trans-

missibilities are related through simple matrix operations Lage et al. [2014]. The theory

of this relation will covered in the theory section of Chapter 4.

46



CHAPTER 2. LITERATURE REVIEW & BACKGROUND THEORY

2.7.3 Damage indicator

Within the field of SHM, a sub-structural invariant quantity called a damage indicator

can be used to determine the integrity of a structure or its coupled components. While

this is not related exactly to the work of this thesis, the purpose of this sub-section is

demonstrate the breadth of what can be defined as a sub-structural invariant. An FRF

or transmissibility measured on a structure that is damaged, will differ to when that

quantity was measured without damage. A damage indicator is a value that compares

the baseline and damaged FRFs/transmissibilities; which if invariant, means the dam-

age indicator is also an invariant. Furthermore, this is a way of localising damage as

the damage indicator will an inherent property of a sub-structure (Meggitt and McGee

[2024]). While observing the difference between FRFs or transmissibilities visually via

a plot is possible, it is more practical to quantify the magnitude of a structural fault by

using a damage indicator. When a structural fault occurs there is a change in stiffness

or damping. This effect shifts resonances of the system. Quantifying the difference

between baseline and damaged FRFs/transmissibilities can be done in different ways,

such as by: difference (Schulz et al. [1997], Sampaio et al. [2016]), correlation (Maia

et al. [2011a]), and coherence methods (Haeussler et al. [2020]).

2.8 Interface representation

There are three common ways in which an interface is represented: the Finite Differ-

ence Approximation, Single Point Connection (SPC), and Virtual Transformation Point

(VPT). An interface tends to resemble a surface or line in practice. In theory repre-

senting an interface like this would require an infinite amount of DoFs and is obviously

impractical. In Finite Element Modelling (FEM) the interface is characterised by nodes,

and for practical tests the interface is usually defined discretely. This allows for direct

comparison and validation.

SPC does not represent an interface sufficiently as it doesn’t include rotational DoFs.

Elliott and Moorhouse [2008] showed how including the rotational DoFs is important
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for coupled sub-structures. As for VPT exact knowledge of sensor placement and

orientation due to the virtual point is needed, which can be time consuming but does

allow one to characterise an interface sufficiently. Both the finite difference and VPT

methods are explained so that one may understand the process of fully defining an

interface for rigidly coupled systems.

2.8.1 Virtual Point Transformation

The Virtual Point Transformation (VPT) method (der Seijs et al. [2014]) relates local

translational response sensors and excitation forces to a virtual point (VP) or node,

i.e. a conceptual point, on a structure. Like all other interface presentation methods,

the VPT assumes rigid connections between sensors and the virtual point. This is

essential in estimating translational and rotational DoFs at the VP based on sensor

measurements.

By taking a virtual point on a rigid interface, the dynamics of it are simplified to a set

of coordinates that are related to the rigid interface deformation modes, resulting in a

node with 6 DoFs. Essentially, VPT relates the dynamics of a local group of DoFs to a

virtual point. These DoFs are usually 3 tri-axial accelerometers accounting for 9 DoFs.

When performing an interface characterisation measurement one will obtain a 9×9

mobility matrix. This becomes a 6×6 mobility matrix after Interface Deformation Mode

(IDM) filtering, consisted of all translations x, y, z and rotations α, β, γ. The advantage

of using a virtual point is the ability to compare the virtual point interface to a node

in an identical FE model. However the VPT’s downfall is that precise knowledge of

sensor placement and orientation due to the virtual point is needed. This can be time

consuming as it can require some planning ahead of measurement.

2.8.2 Finite Difference Method

This method originally published by Sattinger [1980] requires a set of two translational

placed apart from each other at a known distance δ to the centre. By taking the two
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translational excitations and responses at these two points, an approximation of the

rotational excitations and responses (moment and angular velocity) is acquired. Later

on Elliott et al. [2008] went onto develop the method, providing a rapid means of ob-

taining said rotational quantities. A demonstration of the measurement is shown by

Fig.2.12. When conducting the in-situ blocked force method it is essential to include

all DoFs for full characterisation of an interface, so that the dynamic properties of each

coupled sub-structure can be accurately distinguished. This section will outline how to

perform the finite difference method but for a simple 2D beam.

Figure 2.12: Finite Difference approximation taken from two transnational components
spaced by δ from the centre line. The resultant point where translational and rotational
DoFs are calculated for are at centre, 0

For the following derivation, a simple structure shown in Fig.2.12 will be denoted as C,

YC00 =

YCv0f0
YCv0α0

YCΓ0f0
YCΓ0α0

 (2.61)

Eq.2.61 is defined as the point mobility matrix. It is made up of mobilities that are

related to the translational and rotational force and response components. Each of

these elements are defined as,

Ŷv0f0 ≈
Yv1f1 + Yv2f1 + Yv1f2 + Yv2f2

4
(2.62)

Ŷα0f0 ≈
−Yv1f1 + Yv2f2

4δ
(2.63)
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Ŷv0Γ0 ≈
−Yv1f1 + Yv2f2

4δ
(2.64)

Ŷα0Γ0 ≈
Yv1f1 − Yv2f1 − Yv1f2 + Yv2f2

4δ2
(2.65)

v and f are the translational velocity and force components, while α and Γ are the

angular velocity and moment force. Ŷ represents the mobility approximation via the

finite difference method.

A convenient way in which Eq.2.61 can be represented is in the form,

Ŷ ≈ RYRT (2.66)

R represents the finite difference transformation matrix, and is pre-multiplied with mo-

bility matrix Y. This row operation will determine the translational and angular veloc-

ities. Next is the post-multiplication of RT, which conducts a column operation. This

determines the translational and moment forces. Eq.2.66 in shown in terms of individ-

ual elements is shown as,

YCv0f0
YCv0α0

YCΓ0f0
YCΓ0α0

 ≈

 1
2

1
2

−1
2δ

1
2δ


Yv1f1 Yv1f2

Yv2f1 Yv2f0


1

2
−1
2δ

1
2

1
2δ

 (2.67)

Before using the finite difference mobility approximation in calculating the blocked

force, the finite difference method must be applied to the velocity response matrix

as well,

v̂ ≈ Tv (2.68)

v is the translational velocity response, while v̂ is the finite difference approximation

velocities. Therefore the blocked force approximation f̂ is as follows,
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f̂ = Ŷ−1v̂ (2.69)

An experimental validation, error analysis, and full derivation of the finite difference

equations are shown by Elliott et al. [2012]. It is worth noting that in their error analysis

findings, for an analytical beam such as that in Fig.2.12 the overall error is inversely

proportional to the magnitude of the mobility. Furthermore, it was found that the error

is also proportional to frequency and the separation distance δ. These two factors

limit measurements to a certain bandwidth so that one may yield reliable results. For

frequencies above the bandwidth δ is similar to the bending wavelength, resulting in

large errors due to decreased rigidity. Below the bandwidth there will be accurate

mobility results, but due to finite difference noise will be introduced.

2.8.3 Interface completeness criterion

If an interface isn’t characterised correctly, i.e. the blocking constraints are insufficient,

then the dynamic quantities determined for a sub-structure such as transmissibility,

blocked forces, mobility etc. are not invariant. Instead they are related to the coupled

structure as a whole, rather than the sub-structure of interest. For invariance to exist,

the coupling interface must take into account the relevant DoFs, depending on the na-

ture of the interface. For example if the interface is a resilient mount, then 1 DoF facing

the direction of attenuation by the resilient mount will usually suffice. If the interface is

a rigid point connection, the interface must be characterised by 3 translational DoFs x,

y, z and as well as rotational DoFs α, β, γ. This is much more involved and time con-

suming than the resilient interface. It is certainly possible in this case that one may be

unsure the characterisation of c is sufficient. This is where the Interface Completeness

Criterion (ICC) is supposed to help identify at what frequencies invariance may break

down. The term ‘completeness’ is used in assessing the capability of the blocking

DoFs c at applying a zero velocity constraint. A tool such as the ICC may be helpful

in determining the reliability of dynamic quantities determined for a sub-structure in an
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industrial setting. For example, an engineer may conduct a measurement for a trans-

missibility across a sub-structure. Often in industry heavy and/or large structures such

as machinery may be inaccessible in areas such as the mounts. Often the mounting

points are where the blocking constraints will be applied. This means that defining an

interface completely by the relevant number of DoFs can be impractical.

In this section, the theory behind two versions of the ICC will be outlined. Firtstly the

correlation-based ICC by Meggitt and Moorhouse [2020a] is defined as,

ICCab =

∣∣∣∣∣Y−→Cab

(
Ŷ−→Cab

)H∣∣∣∣∣
2

Y−→Cab

(
Y−→Cab

)H

Ŷ−→Cab

(
Ŷ−→Cab

)H
(2.70)

H in the superscipt refers to a conjugate transpose, while the under arrow −→ indicates

a column-wise vectorisation. Another formulation of the ICC, most commonly referred

to as the coherence-based ICC by Haeussler et al. [2020], is defined as,

ICCab =

(
ŶCab

+YCab

)(
Y∗

Cab
+ Ŷ∗

Cab

)

2

(
ŶCab

Ŷ∗
Cab

+YCab
Y∗

Cab

) (2.71)

Terms in Eq.2.71 with a ∗ in the superscript denotes complex conjugate. Additionally,

both mobility terms must be averaged over the indices in the subscripts.

In the above equations, the measure of completeness is judged between the direct

transfer mobility YCab
, and reconstructed transfer mobility via the round-trip method

ŶCab
. The round-trip identity will be covered in the next chapter in further detail, but

essentially to reconstruct the transfer mobility, YCac, YCcc, and YCcb
must be measured.

If the interface description is complete, then YCab
= ŶCab

, and therefore ICCab = 1.

For an incomplete characterisation of the interface, ICCab < 1. In reality, Eq.2.70 is

not sensitive to changes in amplitude. Instead, Eq.2.71 is used for a more accurate
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representation of interface completeness,

2.9 Singular Value Decomposition

The singular value decomposition (SVD) is a mathematical technique used in various

fields of science such as image compression, and model reduction in control theory.

Within vibro-acoustics it is used widely as a method of regularisation for ill-conditioned

matrices due to the inverse problem Janssens et al. [1999] . Later in this thesis (Chap-

ter 6), a different application of the SVD is presented; detecting transmission paths

and mechanical bridges between source and receiver sub-structures within a coupled

assembly. For its most common application (regularisation) the SVD takes a high di-

mensional signal that has a high degree of variability and reduces it to a lower dimen-

sional signal where the structure is ordered from the highest variation to the lowest.

A form of the SVD called the truncated SVD (TSVD) is particularly advantageous for

noise reduction, as it ignores variation at a particular threshold, resulting in a reduced

data set.

Mathematically speaking, the SVD uses a linear algebra theorem that states any

square or rectangular matrix A can be split up into the product of three matrices U, Σ,

VH (where H represents the Hermitian, or conjugate transpose).

A = UΣVH (2.72)

U is an orthogonal matrix where U = [u1, u2, ..., um] is an m×m matrix that is unitary,

i.e. UHU = 1 and contains the left singular vectors. It captures how the rows of

the original matrix are related to each other and shows the underlying structure and

relationships in the data. Σ is a m × n if A is rectangular or m × m if square, and is

a diagonal matrix where Σ = diag(σ1, σ2, ...σn) and its entries contain non-negative

real numbers along the diagonal and are known as the singular values (SVs) of A.

Σ describes the importance of each SV from most important being σ1 descending to
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least important σn. Finally, VH is a n × n orthogonal matrix, or m ×m if A is square.

It has the form VH = [v1, v2, ..., vn], is unitary, and described as the complex conjugate

transpose of the right singular vectors. It reveals how the columns of the original matrix

are related to each other.

The rank r of matrix A describes the number of rows or columns that are linearly

independent, i.e are unique and are not made of other rows or columns. r is dependent

on the number of non-zero singular values in the matrix Σ, and if it is less than the

smallest dimension of Σ it is rank deficient and does not satisfy Jacques Hadamard’s

condition of uniqueness for a ‘well-posed’ problem. In some instances A can appear

full rank due to linear dependencies when it is actually rank deficient, resulting in a

large condition number and therefore an ill-conditioned matrix. The condition number

can checked by applying the following equation:

c(A) =
σmax

σmin

(2.73)

Let’s assume that matrix A is a matrix of FRFs or transfer functions. Commonly used

analysis methods within vibro-acoustics such a transmission path analysis (TPA) re-

quire to invert this, also known as an inverse problem. Let us assume A is rectangular,

a generalisation of the matrix inverse operation by means of least squares is applied,

called the Penrose [1955] pseudo-inverse. Consequently notated A+, Eq.2.72 can be

written as:

A+ = VΣ+UH (2.74)

It is likely in an experimental setting that Σ+ will have some singular values that are

small and mostly composed of measurement error and noise. Including these singular

values can lead to incorrect solutions. To combat this issue the truncated singular

value decomposition technique is used. This introduces a threshold to each singular

value, which we will call t. This will keep t amount of the largest singular values and
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thus t number of columns and rows of U and VH respectively. Eq.2.74 can now be

rewritten as:

Ã+ = VtΣ
+
tU

H
t (2.75)

The caveat to using the TSVD is that the threshold must be determined appropriately

for the data set at hand, so to preserve all of the main relationships within A.
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Chapter 3

Sensitivity analysis on the round-trip

method

In this Chapter the sensitivities of both point and transfer mobility predictions via the

round-trip method are explored with respect to the number of remote DoFs and their

positioning, the number of interface DoFs and their positions, the geometry of the

structure, and noise. This is demonstrated mainly on a numerical model, followed by

some analysis on an experimental example. This research is to inform those that use

the round-trip of what conditions lead to an optimum prediction.
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Round-trip method theory

In the beginning of this chapter, we explore the concept of the RT method in greater

detail. In addition, mathematical derivations on the RT identity are provided to inform

the reader of areas for analysis on its sensitivities. The RT theory was first proposed by

Moorhouse et al. [2011] through simulations, and soon after validated experimentally

in Moorhouse and Elliott [2013]. The round-trip method constructs an M × M FRF

matrix at a coupling interface Ycc without needing to excite the DoFs along it directly.

Rather, the RT method reconstructs the point FRF by using two subsets of remote

DoFs on either side of the coupling interface that are more accessible to excite. Modal

synthesis techniques have also proved to have some success, by reconstructing the

interface matrix with measured responses at all c positions while applying only a single

excitation to one DoF within the c subset. Early examples include Ashory [1998],

Ashory [1999], and Silva et al. [2000], which used repeated tests with varying mass

loading. However this approach appeared to be prone to error if there is only a small

change in mass loading. One of the earliest bodies of work to show theoretically

reconstruction was possible without repeated tests was by Ewins [1980]. It was Maia

et al. [1997] that built on Ewin’s work, presenting a similar method that cancelled the

effect of transducer masses. The RT method is different as it does not follow the

trend of reconstruction by modal synthesis, but instead by a new means based off a

generalisation of the ‘cavity equation’ by Draeger and Fink [1999].
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Figure 3.1: Diagram specifying the measured mobilities needed when using the round-
trip method.

Consider an arbitrary coupled structure such as Fig.3.1. It consists of two sub-domains

A and B, which have multiple DoF subsets installed on each, a and b respectively. In

addition, DoFs are also located at the interface between the sub-structures denoted c.

Moorhouse and Elliott [2013] states na ≥ nb ≥ nc must be satisfied for a unique solu-

tion, where na, nb, and nc are the number of DoFs for subsets a, b, and c respectively.

Firstly let’s apply excitations at subset b, called fb. As a result the velocities at subset a

and c are defined as,

va = YCab
fb (3.1)

vc = YCcb
fb (3.2)

As we are applying the blocked force at c, defining the velocity at the interface requires

taking the reaction force measured at c. I.e. The negative blocked force at the interface

−f̄ c, is equal to the applied force at b, fb. This implies −f̄ c and fb form the same velocity

field in sub-structure A. Thus, the velocity at c may also be defined as,
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vc = −YCcc f̄c (3.3)

In this example there is an applied force in B, and therefore the velocity in the receiver

sub-structure A with our blocked force definition may now be defined,

va = −YCac f̄c (3.4)

If we take Eq. 3.1 and 3.2, rearrange them for fb so the applied force terms cancel we

arrive at,

vc = YCcb
Y−1

Cab
va (3.5)

A requirement of the round-trip is that the number of DoFs in the subset of the receiver

sub-structure should be more than or equal to the number of DoFs in the source sub-

set. In this case where n represents the number of DoFs, na ≥ nb. Taking our defini-

tions due to a blocked force made in Eq. 3.3 and 4.20 and substituting them into Eq.

4.13, we have the following definition,

YCcc f̄c = YCcb
Y−1

Cab
YCac f̄c (3.6)

Then by post multiplying by the inverse of f̄c we get rid of the blocked force terms and

we obtain the point mobility round-trip identity,

YCcc = YCcb
Y−1

Cab
YCac (3.7)

Equally by reciprocity,

YCcc = YT
Ccc

= YCcaY
−1
Cba

YT
Ccb

(3.8)
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YCcc is an M ×M matrix of the reconstructed point mobility at DoF subset c. It may be

calculated using Eq.3.7, but its most convenient form by the Maxwell-Betti reciprocal

theorem is with Eq. 3.8, as it does not require a controlled excitation at c. The mobility

terms in the latter equation are the ones represented by the arrows in Fig.3.1, which

should now make it a bit clearer as to why this method is termed ’round-trip’. Note that

the mobility YCcc is to be determined for linear systems (as well as time invariant ones),

and that the inverted terms within the above two equations should be represented by a

pseudo-inverse instead if na ≥ nb. Eq.3.8 represents the same equation that satisfies

Maxwell-Betti reciprocal theorem. YCab
is defined as a mobility relating a response in

a due to excitations in b and is referred to as the reconstructed transfer mobility. The

reconstructed transfer mobility equation as presented by Moorhouse and Elliott [2013]

is a rearrangement of the indirect measurement of mobility at the interface as proposed

by Moorhouse et al. [2011]. The round-trip method may be used to reconstruct this

transfer mobility, however this out of the scope of this thesis and will be analysed in

future studies. To determine the transfer mobility simply apply a rearrangement for

YCab
or YCba

,

YCab
= YCacY

−1
Ccc

Ycb (3.9)

or by reciprocity,

YCba
= YCbc

Y−1
Ccc

Yca (3.10)

In this chapter, a series of analyses is conducted investigating the sensitivities of the

round-trip identities of point mobility YCcc and transfer mobility YCba
via Eq.3.7 and

Eq.3.9 respectively. Two plate models are used to carry this out: FE and experimental

for YCcc, and only FE for YCba
. The FE model (3D elastic) represents a steel plate,

while the experimental example is made up of aluminium. A part of the investigation is

to validate whether some sensitivities that exist on the FE plate are seen in a practical
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case for the point mobility prediction. Firstly, the point mobility is analysed in Sec-

tion3.1, with the series of analyses comprising of: changing the number of remote and

interface DoFs, the aspect ratio of the plate model, the positioning of the remote DoFs,

and the sensitivity to noise. In the final part of the point mobility prediction analysis, the

experimental model in Section.3.1.2 will present the error of the round-trip prediction

against the direct measurement with respect to the number of remote DoFs used.

The second half of the chapter will similarly analyse the round-trip prediction of the

transfer mobility YCba
. The prediction is tested by looking at its accuracy with re-

spect to the location of remote DoFs included in the calculation. This is firstly done

by using the Monte-Carlo method, which randomly chooses the positions of A and

B DoFs within each sub-structure 50 times. From this a standard error across the

frequency range is observed. In addition to this, the positioning of remote points is

tested by picking 4 different scenarios of A and B locations. Each of these cases

will show the round-trip transfer mobility vs. the direct measurement, and from these

plots any resonances which are not in line with the direct measurement are looked

into further. In order to understand what is occurring structurally on the model at

these resonances, a plot of amplitude across the plate for that given frequency is

compared against error contours which are overlayed. Following on from this, the

performance of the RT is tested when the number of interface DoFs included in calcu-

lating the prediction is changed and compared against a direct mobility. Furthermore,

the FRF data obtained from the model is ‘spoiled’ with varying amounts of noise. Us-

ing the MATLAB function “Specspoil.m” the SNR is chosen at 4 different intervals,

and compared against the direct mobility for each. The function has the structure:

FRFnoise = Specspoil(Input, L,N, Type). Input represents the FRF that is to be con-

taminated with noise, L is the signal-to-noise ratio level, N is the number of averages,

and finally Type is the nature of random noise being applied which can be either linear

or quadratic. Finally, the initial remote positioning analysis where the error was ob-

served against the amplitude across the FE plate is applied to the experimental plate.

The way FE and experimental models are set up is explained in further detail within
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Section3.1 and Section3.1.2, but in essence they are both split along the width side

by a line of discretised responses known as the interface c subset of DoF/accelerom-

eters. A zero velocity constraint is imposed along this interface, and either side of it

exists a sub-structure A and B which both have ‘remote’ subsets of DoFs denoted

a and b respectively. All subsets of DoFs are uniaxial and face towards the vertical

z-axis (perpendicular from the face of the plate). This does not lead to a complete

interface description, but there are a couple of reasons for this decision. Firstly, this is

to mirror a practical test where uniaxial accelerometers are likely to be used as they

are cheaper than triaxial, while also only a limited amount of sensors will be used to

define the line interface. This does not allow rotations to be determined, but because

both model examples will have forces acting in z-axis the most dominant component at

the responses will be in the same plane. Therefore this makes the x and y-axes contri-

butions to the responses small in comparison. Sensitivity analysis on the RT method

is conducted on a regularly spaced grid of points for FE and experimental models. Ad-

ditionally, analysis is conducted on the random positioning of remote or interface DoFs

for the FE model.

3.1 Point mobility

A finite-element model representing a steel plate is constructed in which the structural

responses are calculated via modal summation. Firstly, a regular grid of discretised

points are formed on the surface. Similarly to Fig.2.11, Fig.3.2a shows how the FE

model’s grid is divided into two remote sub-domains A and B, due to an interface c.
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(a) All discretised points of a regular
grid.

(b) Randomly selected single remote
points from regular grid.

(c) 20 a and 40 b points on the reg-
ular grid for remote positions.

Figure 3.2: FE diagram of steel plate, divided into substructures A and B, divided by
an interface c.

3.1.1 FE-model example

Accuracy due to the number of DoFs included

Fig.3.3a, Fig.3.3b, and Fig.3.3c correspond to the sub-figures in Fig.2 respectively. All

results within Fig.3 show the reconstructed point mobility is not sensitive to the number

of interface positions used. Only one result is visible because all prediction scenarios

where the interface DoFs are changed are stacked on one another. In Fig.3.3a all re-

mote positions are included in calculating the reconstructed point mobility and appears

identical (up to 1kHz) to the direct interface point mobility. For Fig.3.3b a random DoF

within A and B was selected, and indicates a rather inaccurate result over all of the fre-

quency range. However it should be noted that numerous resonances are accounted

for in this prediction. Lastly Fig.3.3c shows a prediction where 20 DoFs within A and

40 within B are selected. For the vast majority of the frequency range the prediction

shows good agreement to the direct measurement, and in some respects performs

better than the case where all remote DoFs are accounted for in Fig.3.3a over the full

frequency range. Fig.3.3c shows a more accurate prediction after 1kHz while Fig.3.3a

performs better between 1Hz-1kHz, an identical result to the direct measurement. It

is clear from all sub-figures in Fig.3.3 the reconstructed interface point mobility is un-

affected by the number of interface DoFs, but sensitive to the number of remote DoFs

accounted for.
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(a) Changing number of interface c DoFs, while including all a and b positions.

(b) Changing number of interface c DoFs, while including only one a and b position.

(c) Changing number of interface c DoFs, while including 20 a and 40 b positions.

Figure 3.3: Round-trip prediction of the interface point mobility when c DoFs are
changed in different scenarios. From top to bottom, these cases correspond to the
number of a and b DoFs shown in Fig.3.2a, 3.2b, and 3.2c respectively.
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(a) Changing number of a and b DoFs, while including all interface c DoFs.

(b) Changing b DoFs, while including all a and c points.

(c) Changing a DoFs, while including all b and c points.

Figure 3.4: Round-trip prediction of the interface point mobility when the number of
remote DoFs (a and b) have changed.
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In the next set of sub-figures within Fig.3.4 the prediction is observed for when both

sets of remote DoFs and one set of remote DoFs are changed. Fig.3.4a presents

a case where both remote sides in A and B are altered together. The prediction

where one selected a and b position shows the least accurate result, is consistent

with the previous result in Fig.3.3b. While being inaccurate at the anti-resonances

and for its overall magnitude, almost all resonances correspond to the direct point

mobility with similar magnitude. The result where 30 a and b DoFs are accounted

for shows a significant boost in accuracy from 1-700Hz. Fig.3.4a shows that if fewer

remote positions are accounted for in the reconstructed point mobility, the greater the

inaccuracy to the direct point mobility.

The next test of accuracy due to the number of remote positions used is conducted by

changing just one set of remote DoFs while including all interface DoFs and the other

set of remote positions. The results for this test are displayed in Fig.3.4b and Fig.3.4c.

All cases except for where only one remote point is used shows good agreement to

the directly measured point mobility up 1kHz. After this only the cases which include

all DoFs, and thirty points perform well and stay close to the direct measurement.

From these figures it is not made clear as to why the case that uses all remote DoFs

is less accurate after 1kHz. However, this will be made clearer in Fig.3.5. Before

moving forward onto that, a comment must be made about the sub-figures Fig.3.4c and

Fig.3.4b. In the scenarios where one remote position is used, there are differences

in accuracy at distinct frequencies. This is because the one remote DoF scenarios

are present at different locations on the plate and thus will have dissimilar structural

responses.
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Figure 3.5: log10(Error) plot for FE plate due to the number of a vs b DoFs accounted
for in calculating the interface point mobility. Error calculated up to 1kHz.

Fig.3.5 shows the ’why’ for the scenarios where both sets of remote DoF are the same.

By calculating the difference between the prediction and direct measurement of the

interface point mobility the error is obtained. In order to plot to plot this error between

remote points all point mobilities along the interface had to be averaged. It is more

significant when less remote positions are used, which corresponds to the inaccurate

reconstruction shown in Fig.3.4a where the remote DoFs are equal. The source of the

diagonal spike in error is not yet fully understood. In Section 3.3 possible causes of

this a = b error is discussed. It can be inferred from Fig.3.5 that an optimal prediction

would lie either side of this diagonal spike. The figure also explains why the case

that uses all remote DoFs does not agree with the direct measurement above 1kHz,

despite having an almost perfect result below 1kHz.
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(a) log10(Error) plot for FE plate. Varied number of a DoFs vs. fixed 30 b DoFs.

(b) Direct vs. predicted interface point mobilities. The round-trip mobilities are calculated using 30 a
and b points, and 15 a and 30 b points.

Figure 3.6: Error of the reconstructed interface point mobility, with a comparison to the
direct measurement.

Fig.3.6a represents the log10(Error) against frequency and the number of a DoFs being

used in the RT prediction. In order to plot this figure, a fixed number of b DoFs had to

be chosen. For this case, 30 b DoFs were selected. In a similar fashion to Fig.3.5, a

spike in error occurs when there are the exact same number of remote DoFs (a’s and
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b’s) being used in the RT prediction. Fig.3.6a shows a blue line representing the error

of the reconstructed point mobility when 30 b DoFs and 30 a DoFs are used in the

RT identity. Upon further inspection of Fig.3.6a, one will notice a considerable decline

in error after 10 a DoFs between 10-40Hz. Furthermore, Fig.3.6b shows a difference

emerging between the direct and RT point mobility predictions as frequency increases.

In particular, the RT point mobility using the same number of a’s and b’s is the worst

case out of the two predictions. This is reflected in the spikes that can be seen for the

blue line in Fig.3.6a.

Accuracy due to plate geometry

The next point of the investigation is to test whether the aspect ratio of the plate has

an effect on the error of the round-trip method. Fig.3.7 shows a 3:1 aspect ratio plate.

It is the original plate taken from Fig.3.2 (4:3 ratio) but the length has been extended

to achieve this aspect ratio.

Figure 3.7: FE diagram of 3:1 aspect ratio steel plate, divided into sub-domains A and
B which are discretised into a regular grid. Sub-domains A and B are divided by the
interface c.

The grid is discretised the exact same to the previous plate, however it has been shifted

so that the interface is off centre from the middle of the plate. Fig.3.2’s interface cuts

across exactly in the middle of the plate. The grid is implemented in this way to observe

whether a reduction in error occurs due to symmetry by the interface.
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(a) log10(Error) plot for 3:1 ratio FE plate.Varied number of a DoFs vs. fixed 20 b DoFs.

(b) Direct vs. two round-trip derived interface point mobilities. The round-trip mobilities are calcu-
lated using 20 a and b points, and 12 a and 20 b. points.

Figure 3.8: Error of the reconstructed interface point mobility for 3:1 ratio plate, with a
comparison to the direct measurement.

Fig.3.8a shows a similar overall trend to Fig.3.6a where a spike in error occurs when

a = b. This figure also suggests that symmetry has no noticeable effect.

70



CHAPTER 3. SENSITIVITY ANALYSIS ON THE ROUND-TRIP METHOD

Accuracy due to remote DoF positioning

To investigate the accuracy of the round-trip method due to the positioning of remote

sensors, the Monte-Carlo method is applied. The round-trip prediction is calculated for

50 iterations of the randomly positioned DoFs within A and B. One of the randomly

selected DoF iterations is shown in Fig.3.9.

Figure 3.9: Diagram of original 4:3 aspect ratio plate with randomly selected remote
positions. Diagram represents one iteration of one hundred.

The number of DoFs of interest was kept consistent with the same number used in the

regular grid in Fig.3.2a. 77 points each on the remote sides, and the 11 interface points

in the same location. Fig.3.10 shows the top subplot of every round-trip interface point

mobility conducted in the Monte-Carlo loop, and a below sub-figure showing the direct

point mobility against the upper and lower bounds of the operation.

Figure 3.10: Top sub-figure shows every interface point mobility with each iteration,
bottom sub-figure shows the direct point mobility plotted against the upper and lower
bounds of the prediction.
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When viewing the error bounds one can see occasional spikes in low frequencies from

the direct interface point mobility shown in black. If compared to the top sub-figure it is

obvious that these spikes are due to two anomalous iterations.

3.1.2 Experimental model example

The following diagram in Fig.3.11 shows a 2D top-down view of the experimental plate

used for analysing the RT point mobility prediction. The results that follow are due to

the defined remote and interface structures in the diagram. The remote accelerometer

positions in A and B are marked in green, while the interface accelerometers are in

red. The plate is made of aluminium, with 3 vinyl strips stuck to the accelerometer

side for damping (marked light blue). The experiment was set up to simulate free-free

conditions by supporting the plate on foam pads. This means the plate is analysed in

an unconstrained state (identically to the FE model), allowing it to move freely in all six

DoFs (three translational and three rotational). The dimensions are 0.7m × 0.9m ×

0.0025m.

Figure 3.11: Top-view 2D diagram of experimental plate, accelerometers discretised
in a regular grid.

An analysis of the interface point mobility prediction is made by observing the log10(Error),

plotted against A DoFs and frequency with a fixed number of 5 randomly selected B
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DoFs. Two predictions are calculated for comparison against the directly measured

interface point mobility shown in Fig.3.12b. One prediction utilises 5 a and b DoFs

marked in blue, and the other 3 a and 5 b DoFs marked in red.

(a) log10(Error) plot for experimental plate. Varied number of a DoFs vs. fixed 5 b DoFs

(b) Direct vs. Round-trip derived interface point mobilities. The mobilities are calculated using 5 a and
b points, and 3 a and 5 b points.

Figure 3.12: Error of the reconstructed interface point mobility for an experimental
plate. A comparison to the direct measurement is made for two cases of the round-trip
prediction.

Between 20Hz - 2kHz the experimental case conveys a reasonable prediction in both
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cases (5 a’s & b’s, and 3 a’s & 5 b’s) when compared against the direct measurement,

as shown in the above figure. The overall error across the frequency range is clearly

higher than the FE model case, with the smallest error being log10(−0.93) at 30Hz.

As frequency increases, it is clear that both predictions begin to stray away from the

direct measurement (from around 1kHz and upwards), which is likely attributed to the

rotational components at the interface DoFs c not being accounted for (as shown by

Meggitt and McGee [2024]). In summary, it is clear that the spike in error that occurs

when a = b is also apparent in the experimental case study.

3.2 Transfer mobility

The same FRF matrix obtained from the FE model for the reconstructed point mobility

is used in analysing the reconstructed transfer mobility. In this section the accuracy of

the RT transfer mobility is analysed due the location of a and b subsets in the regular

grid as shown by Fig.3.2a, as well as the application of noise and the geometry of the

plate.

3.2.1 FE-model example

Accuracy due to the location of remote DoFs

In this section the reconstructed transfer mobility YCab
is calculated via Eq.3.9 and

compared against the directly measured transfer mobility. In fact, four different transfer

mobilities are calculated via the round-trip equation that have different combinations of

remote points being observed which are shown in Fig.3.13. The goal of this part of the

study is to observe if there is a change in accuracy depending on which remote points

are used in the reconstructed transfer mobility. It is expected there are worse case

than others, but by picking four distinctly different mobilities it is possible to achieve a

general overview of its performance against their directly measured counterparts.

74



CHAPTER 3. SENSITIVITY ANALYSIS ON THE ROUND-TRIP METHOD

(a) YCa1,b1
(b) YCa22,b67

(c) YCa49,b41
(d) YCa28,b56

Figure 3.13: Diagrams of the indices used on the FE steel plate for calculating the
reconstructed transfer mobility.

Fig.3.13a was chosen to observe a transfer mobility that is between two points that are

on the same side as each other. Furthermore, Fig.3.13b is selected to observe what

the round-trip yields for two points almost opposite from each other, Fig.3.13c are for

two points that are more central, and finally Fig.3.13d where one point is central and

the other is near an edge.

Figure 3.14: RT vs. direct YCa1,b1
.

Fig.3.14 shows the reconstructed transfer mobility between the first a and first b DoF

against a direct measurement. It is clear that the round-trip approximation is accurate

for the vast majority of the frequency range, with some exceptions between 1-2kHz

and at some distinct resonances such as 132Hz, 320Hz, and 560Hz. In addition there

is an anti-resonance at 22Hz which is not true to the direct mobility.
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Figure 3.15: RT vs. direct YCa22,b67
.

A similar trend can be seen in Fig.3.15 where the round-trip prediction is quite accurate

for most of the frequency range. The areas where the prediction loses precision to

the measured result differ from Fig.3.14, which is expected as the DoFs used in A

and B are quite different in location. This is due to certain resonances not being

accurately captured if the excitation is not applied at the critical locations associated

with their modes. There are two frequencies where YCa22,b67
shows a resonance that

is not present in the direct measurement at 28Hz and 49Hz. Furthermore there are

resonances where the reconstructed transfer mobility loses accuracy such as 615Hz,

780Hz, and 1.4kHz.

Figure 3.16: RT vs. direct YCa49,b41
.

The reconstructed result in Fig.3.16 shows itself to be the least accurate prediction

thus far. There are parts of the frequency range which have good accuracy such as

between 40-105Hz and 780Hz-1.3kHz. In addition there are resonances that agree

well such as at 250Hz, 280Hz, 505Hz, 1.6kHz, and 2kHz. The inaccuracies present
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can be observed in a few areas: between 10-17Hz there is a large difference while

also the resonance at 18Hz in the direct measurement being shifted slightly and in-

creased in magnitude, there are resonances present in the prediction but are not in

the direct measurement at 28Hz, 50Hz, 210Hz, and 2.7kHz. In addition, There are

resonances where the magnitude is poorly predicted at 130Hz, between 290-350Hz,

405Hz, 560Hz, 650Hz, 1kHz, and 1.3kHz. This particular case of where the excitation

and response DoFs are more centred on the plate has so far yielded the least accurate

round-trip prediction.

Figure 3.17: RT vs. direct YCa28,b56

In the final result where the mobility is due to an excitation near the edge of the plate

and a response more central in Fig.3.17 yields a slightly more accurate prediction

than Fig.3.16 at resonances, but similar in the amount of inaccuracies present. The

resonances which are represented accurately in the prediction can be seen at 40Hz,

70Hz, 82Hz, 105Hz, 193Hz, 280Hz, 780Hz, 900Hz, 1.2kHz, and 2.5kHz. The reso-

nances which are poorly predicted exist at 18Hz, 135Hz, 320Hz, 650Hz, 1kHz, 1.4kHz,

1.5kHz, 1.7kHz, and 2.16kHz. In addition there are resonances present in the pre-

diction that are not seen in the direct measurement at 28Hz, 49Hz, 210Hz, 1.76kHz,

1.9kHz, and 2.7kHz. The similarity between this plot and Fig.3.16 is the inaccurate pre-

diction of resonances that present in both direct measurements at 650Hz and 1kHz.

So far these plots have shown that the least accurate transfer mobility predictions have

occurred when the response DoF has been more central.

Taking only 4 cases of the round-trip prediction can give a rough overview of the per-
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formance of the transfer mobility round-trip prediction but is not enough to conclude

its accuracy in detail. Thus for the remainder of this section an error analysis on the

DoF positioning is conducted. Firstly let’s analyse a particular resonant frequency that

isn’t accurately represented by the round-trip prediction. For example this is the case

at 320Hz for Fig.3.14 and Fig.3.16.

Figure 3.18: Error at 320Hz, B excitation DoF vs A response DoF.

The plot in Fig.3.18 represents the error of the round-trip prediction, with the response

DoF index in A on the y-axis vs the excitation DoF index in B on the x-axis. Take

the round-trip prediction in Fig.3.14 where the first A and B DoFs are used, one can

see an increased error when compared to the darker blue error values surrounding it,

which is at a value of around 1 × 10−3. While not the largest error that exists on the

plot it is about middle of the park, and suggests there is an increased error using the

response of the 1st A DoF which is in the corner of the plate. In order to achieve a
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Figure 3.19: Amplitude of plate at mode corresponding to 320Hz vs. error, due to
excitation at b1

greater understanding of the dynamics of the plate and its relation to error, Fig.3.19 is

made to observe any correlations with the maxima/minima of the mode in relation to

320Hz.

This figure is made up of two sub-figures where the larger one of the left represents a

top down view of the plate. Along the x-axis the column number of DoFs are related to

each sub-structure, i.e. the first 1-7 columns represent the first 7 columns in A, then

followed by the interface column c, which is then followed by the next 7 columns of

DoFs in B. Along the y-axis denotes which row of DoFs in the grid, labelled 1-11. At

each intersection of a row and column lies a DoF. In between each DoF a rectangle

is formed with a colour which denotes the amplitude of that part of the plate for a

given mode. The contour lines on the left hand sub figure show the error of across

A, but sadly the figure editing did not allow for the colour map to be imposed on this

sub figure, so it is repeated in the right hand sub figure to show the error. The circle

marker in red on the left hand sub figure shows the location of the excitation DoF. As
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Figure 3.20: RT vs. direct YCa50,b1
.

we are looking at the mobility YCa1,b1
, one can see on Fig.3.19 that the red circle is on

the first DoF in B. This mobility’s response DoF location is the first in A, where one

can tell that the amplitude is relatively high. When comparing this to the right hand sub

figure, the colour map of the contour lines show an increased error of around 1× 10−3,

which is the same as shown previously by Fig.3.18. So far these results show there

is a correlation between the increased amplitude of a mode corresponding to 320Hz

occurring at response DoF a1. Then this DoF is used in determining the mobility YCa1,b1

its error is increased.

On the 6th row and 5th column (DoF no. 50 in A) one can also see an area of increased

amplitude on the left hand sub figure, while also on the right hand sub figure the

contour lines show an increased error. To check that this correlation is still true, a

comparison of the direct and round-trip prediction is conducted as shown in Fig.3.20.

While this round-trip prediction stays true to the direct measurement rather well, it can

be seen at 320Hz there is a large difference between the two. In addition, a look back

at Fig.3.18 also shows that at the 1st B DoF and the 50th A DoF there is a relatively

increased error.
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Figure 3.21: Error at 135Hz, B excitation DoF vs A response DoF.

One more resonant frequency is chosen to check this is true at other resonant fre-

quencies apart from 320Hz. For example, let’s take a look at Fig.3.17 where there

are differences at resonances approximately 135Hz and 2.2kHz. Taking a plot of A

vs B DoFs in Fig.3.21 one can see at 135Hz there is a relatively increased error for

the round-trip mobility between the 28th A and 56th B, with a value of approximately

2× 10−3. Inspecting this plot further shows there are areas of the plate with increased

error, such as at A DoF 40 and B DoF 40 marked in yellow with an approximate value

of 4× 10−3.

81



CHAPTER 3. SENSITIVITY ANALYSIS ON THE ROUND-TRIP METHOD

Figure 3.22: RT vs direct YCa40b40

Fig.3.22 shows that at 135Hz the difference between the prediction and direct mea-

surement is rather large. By taking a plot of error against the amplitude of the plate,

we may now check if this correlates to a larger amplitude at the mode corresponding

to the 135Hz resonance.

Figure 3.23: Amplitude of plate for mode corresponding to 135Hz vs. error, due to
excitation at b40

There is a maximum value in amplitude at a40 in Fig.3.23 of around 4 × 10−3, corre-

sponding to a maximum error value of about 15× 10−4. Therefore it can be said when

82



CHAPTER 3. SENSITIVITY ANALYSIS ON THE ROUND-TRIP METHOD

predicting YCa40,b40
, an increased maximum amplitude correlates with maximum error

to a resonance or mode at 135Hz.

Accuracy due to the location of interface DoFs

In this section, the reconstructed transfer mobility is analysed when the interface DoFs

c is randomly distributed along the centre line. Using the Monte-Carlo method, the

reconstructed transfer mobility is calculated 50 times, where each iteration has differ-

ent randomised locations of c. Remote subsets a and b have been kept in the regular

grid form. The goal of this is to examine the accuracy of the RT prediction when the

interface DoFs are not evenly distributed.

Figure 3.24: Random distribution of interface c DoFs for one iteration of the YCa1,b1

prediction Monte-Carlo loop.

In the above figure is an example of how the c DoFs are randomly distributed in one of

the fifty iterations within the Monte-Carlo loop to calculate YCa1,b1
.
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Figure 3.25: Top sub-figure: every iteration of YCa1,b1
prediction when distribution of

c DoFs is randomised (red), vs. prediction with regular c DoF spacing and a direct
measurement. Bottom sub-figure: Coefficient of variation for YCa1,b1

prediction when c
DoF positions are randomised.

In Fig.3.25 all 50 iterations of the Monte-Carlo loop are plotted in the top sub-figure,

alongside direct and round-trip YCa1,b1
when the c DoFs are regularly spaced. In the

bottom sub-figure the coefficient of variation is calculated for all 50 iterations of the

RT prediction when c is randomly spaced. When c is randomly distributed, some dif-

ferences to the direct and the regularly spaced RT prediction are apparent between

50-130Hz. This is understandable as the low frequency performance is affected most

when there is insufficient blocking. As you can see in Fig.3.24, there can be large gaps

between c DoFs which means there is not sufficient blocking for parts along the centre

line. Furthermore, the coefficient of variation is almost zero for most of the low frequen-

cies. This suggests that despite not being accurate in this region, there is a consistent

lack of blocking in parts along the centre line. From 130-510Hz the 50 iterations follow

the direct and RT prediction with regular c spacing quite closely. In this region the co-

efficient of variation is most of the time below 1, with a couple exceptions at 130Hz and
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156Hz rising to 3.2 and 0.85 respectively. Above this range the coefficient increases

slowly until a sharp spike at 780Hz with a value of 21.65. When comparing to the

top sub-figure, this spike occurs at an anti-resonance. Above 780Hz, the coefficient is

between 0.85 and 2.50. This suggests there is variation between each YCa1,b1
iteration

in the high frequencies, which is corroborated with the top sub-figure when comparing

to the direct measurement.

Accuracy due to the number of the interface points included

In this section, the accuracy of YCab
is observed as the amount of interface DoFs

changes. In theory, less DoFs should make the prediction less accurate as the block-

ing constraints at the interface will be incomplete. This study takes the same mobility

predictions shown in Fig.3.14, 3.15, 3.16, 3.17, but compares them against the same

prediction where only 1 interface point is used in the round-trip equation (Eq.3.9). The

reason for this is to observe how well the prediction is implemented in a ’worst case’

scenario. As stated by Moorhouse et al. [2011], a difficulty in the round-trip prediction

is ”the need to account for all degrees of freedom at a rigid interface”, and attributes

this in particular to studies that tested coupled beams where in-plane shear forces

and moments were neglected due to their difficulty in measurement, but were found

to contribute significantly to the dynamics of the structure. In this FE-model example

however, the applied forces are all perpendicular to the surface with the responses

acting in the same z-axis. While moments will be present, they will be a much smaller

contributor to the overall dynamics of the plate compared to the z-axis applied forces,

thus they are neglected in this study. However if forces were applied in x-axis and

y-axis planes, then there would be a need to characterise the interface in terms of mo-

ments. Choosing to neglect these moments will cause a small error in the prediction,

while also in theory altering the Y−1
Ccc

term in Eq.3.9 should yield the largest source of

error in the equation due to its inversion.
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Figure 3.26: Performance of the transfer mobility prediction in the presence of 1 inter-
face DoF vs. all interface DoFs vs. direct transfer mobility for YCa1,b1

.

It is clear that Fig.3.26 shows the performance of the RT prediction is best when all

interface DoFs are included. While it is true the all interface DoFs case lacks precision

at certain points; for example between 1-2kHz and at some distinct resonances such

as 132Hz, 320Hz, and 560Hz; the 1 interface DoF prediction is shown to have a lower

accuracy throughout the majority of the frequency range. There are some exceptions

where it performs well such as at the resonance at 42Hz and between 190-560Hz.

While the all interface case starts to reduce in accuracy at points past 1kHz, the 1

interface DoF prediction starts to break down earlier around 560Hz and onwards.

Figure 3.27: Performance of the transfer mobility prediction in the presence of 1 inter-
face DoF vs. all interface DoFs vs. direct transfer mobility for YCa22,b67

.

For the prediction displayed in Fig.3.27, where only one c DoF is used, a worse re-

sult is visible overall. For example at resonances 18Hz, 80Hz, and 350Hz there is
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a significant difference between prediction and direct measurement. Furthermore a

large error can be seen at 280-350Hz where a large anti-resonance is present in the

prediction but not in the direct measurement. Between approximately 580-810Hz both

predictions have low accuracy, but the 1 c DoF case falls short even more so. Lastly

for this result, between 810Hz-1.35kHz the All c DoF prediction performs reasonably

well while the 1 c DoF case does not. However, the trend of a worse performance in

the 1 c DoF prediction is not shown to be the same for the next mobility in Fig.3.28.

Figure 3.28: Performance of the transfer mobility prediction in the presence of 1 inter-
face DoF vs. all interface DoFs vs. direct transfer mobility for YCa49,b41

.

In this result both predictions are quite similar to one another, and have errors in similar

areas of the frequency range. For example, between 10-110Hz both predictions are

nearly as accurate as each other. From 110-800Hz both lose accuracy, with the 1

c DoF case being slightly worse between 280-340Hz but on the other hand the all c

DoF case is worse at 515-650Hz. Lastly, between 765Hz-2.3kHz both predictions are

reasonably true to the direct measurement. Thus from this particular case where the

prediction wasn’t the best case scenario, both 1 c DoF and all c DoF cases performed

similar to each other.
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Figure 3.29: Performance of the transfer mobility prediction in the presence of 1 inter-
face DoF vs. all interface DoFs vs. direct transfer mobility for YCa28,b56

.

For Fig.3.29 the predictions are similar to each other in certain parts of the frequency

range, but there are parts where the one c DoF case performs worse. Overall the all c

DoF prediction is closer to the direct measurement.

Accuracy due to noise

In this study varying amounts of noise is added to the FRF matrix obtained from the FE-

model shown in Fig.3.2a. The MATLAB function Specspoil is used to contaminate data

with random noise for varying signal-to-noise-ratio (SNR). Earlier in this chapter the

function was described in terms of its inputs. We will now explain in greater detail how

the function operates using those inputs. This study adds noise using the linear Type

and therefore the explanation for the quadratic method is omitted. Firstly, we take the

sum of the absolute values in the Input FRF matrix to obtain its total magnitude, and

then scale it by the user’s desired SNR level L. We then generate an array matching

the size of Input, which has random amplitudes between 0-1 and phase between 0-

2π. The noise matrix is normalised to match the power of the total magnitude of

Input to ensure the desired SNR level is met, and then added to the original FRF and

averaged over N. The purpose of this study is to simulate measurement noise that is

regularly seen in an experimental test, and observing the performance of the round-

trip prediction with varying noise in order to inform what may be seen in the FRF data

in an experimental setting. A SNR of 45dB is chosen to the begin with (a good case
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scenario) and reduced gradually by 5dB till an SNR of 30dB, which is near the limit of

an acceptable amount of noise in an experimental setting.

Figure 3.30: RT YCa1,b1
vs. RT YCa1,b1

with 45dB SNR vs. direct YCa1,b1
.

A 45dB SNR applied to the FRF data shows the round-trip prediction performing very

well for the frequency range observed as seen in Fig.3.30. It shows for YCa1,b1
that this

level of SNR certainly yields an acceptable prediction.

Figure 3.31: RT YCa1,b1
vs. RT YCa1,b1

with 40dB SNR vs. direct YCa1,b1
.

Fig.3.31 shows the prediction’s accuracy is similar to Fig.3.30 but starts to show an

increased amount of noise after 1kHz. The overall shape of the mobility past this point

does follow the trend of the direct measurement the caveat is that more artefacts are

present. Much like the previous case the low frequency part of the range (roughly

10-550Hz) shows little or next to no noise. It is only approaching 1kHz that the noise

starts to dominate and then gradually gets worse as the frequency increases past the
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1kHz. If the SNR is reduced to 35dB the prediction proves to be even worse after 1kHz

a shown in Fig.3.32.

Figure 3.32: RT YCa1,b1
vs. RT YCa1,b1

with 35dB SNR vs. direct YCa1,b1
.

Similarly to Fig.3.31, a 35dB SNR has shown to have a small amount of noise in lower

frequencies but starts to become more prominent from 400Hz onwards. Essentially

the point at which the noise becomes a dominating factor of the prediction has started

earlier by around 150Hz. After the resonance at approximately 460Hz onwards the

noise starts to make the prediction unintelligible. While it is present within the range of

the direct measurement, it has become extremely difficult to discern any resonances

or anti-resonances, making the prediction unusable in the higher end of the frequency

range. This is also true for a SNR of 30dB as shown in Fig.3.33.

Figure 3.33: RT YCa1,b1
vs. RT YCa1,b1

with 30dB SNR vs. direct YCa1,b1
.

In fact the prediction above the resonance at 460Hz performs much worse, and is not

within the bounds of the direct measurement at all. The noise is extremely dominant,
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to the point where it has caused the level of the mobility to be greatly increased by

roughly one factor. On the other hand the prediction shows to be following the trend

of the direct measurement quite well with an exception at the anti-resonance present

at approximately 160Hz. It is only now that the noise is more visible in the very low

frequencies (roughly 100Hz and below), which was not so in the previous cases.

3.3 Discussion

3.3.1 Point mobility Round-trip

Fig.3.5, 3.6a, 3.8a, and 3.12a show clear optimal conditions concerning the number

of measurement DoFs. Fig.3.5 distinctly indicates a large spike in error for when a =

b. Avoiding this situation achieves an accurate prediction. An optimal result is more

obvious in Fig.3.6a, and Fig.3.8a. This plot shows that for the FE model example

when using 30 b DoFs, the best result occurs when a was at it’s maximum 77 DoFs

as shown by the error decreasing at very low frequencies. However using this many

DoFs is likely impractical for experiments and only achieves a small increase in the

accuracy of the prediction. As shown by the red lines in figures 3.6a, 3.8a and 3.12a,

the most practical round-trip prediction lies below the large error spike. In other words

having less DoFs in one of the remote sub-domains. The most optimal prediction in

these examples occurred when a = b/2 or b = a/2.

The source of error for when a = b is likely due to two reasons. A common theme

that will occur through this body of work is when a square matrix is inverted, the error

increases on the output. This occurs when the matrix being inverted is ill-conditioned,

or in other words it is close to being singular (non-invertible). When a matrix like this

is inverted, small errors on the input are amplified significantly. Another possible ex-

planation could be down to ‘controllability’ and ‘observability’ of the round-trip method

as described by Wienen et al. [2021]. Controllability essentially describes whether

enough excitations have been applied to replicate excitations elsewhere in the system
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while observability describes whether enough sensors and enough positions are suffi-

cient for explaining excitations. In the paper it is said in order to gain full controllability

and observability the round-trip must satisfy the condition of na ≥ nb ≥ nc for Eq.3.7.

For the case of the transposed equation Eq.3.8 it must satisfy nb ≥ na ≥ nc.

In the FE model investigation it was found that altering the aspect ratio of the plate

had no noticeable effect on the results. The surf error plots for both plate geometries

conveyed a similar trend in error.

It was found that the error plot of the experimental case had no decrease in the low

frequency region when the number of a DoFs was increased, as seen in the FE model

example. The reasoning for this is likely due to the resolution of DoFs in A on the

experimental example. The FE model has many more remote positions spread across

the plate, and therefore able to account for more modes on the structure more accu-

rately.

Both finite-element and experimental examples show good agreement with each other

when observing the error plots in Fig. 3.6a, 3.8a, and 3.12a. The same large spike

in error occurs in all of these cases for when a = b. When observing their counter-

part mobility plots in Fig.3.6b and 3.8b their optimal results shown in red agree with

each other for when the remote side has around half as many DoFs as the other. In

Fig.3.12a the red line shows a better result than the blue line where the spike occurs,

but when observing Fig.3.12b there does not seem to be as significant difference to

the worst case scenario marked in blue when compared to the FE model examples

Fig.3.6b and 3.8b. Further investigation is needed experimentally by using more re-

mote DoFs, as this could be the large error observed for low amounts of remote DoFs

as seen in Fig.3.5.

In summary:

• The FE examples show that if more remote (a and b) points are included the more

accurate the prediction of the interface point mobility. However it is only valid if

an unequal number of remote points are used, otherwise a large error will occur
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in the prediction.

• The interface point mobility prediction was thought by Moorhouse and Elliott

[2013] to be sensitive to the number of interface DoFs included, however this

study suggests otherwise as demonstrated by Fig.3.3a, 3.3b,3.3c.

• The experimental example shows agreement with the FE model. A spike in error

is observed experimentally for when a = b. However, a further experimental test

is needed with more remote DoFs to improve the resolution. The large spacing

between DoFs on the experimental model means certain modes are not picked

up, and the modes that are picked up may be at a node.

3.3.2 Transfer mobility Round-trip

The reconstructed transfer mobility was firstly predicted by choosing 4 distinct pairs

of remote DoF locations, as shown by Fig.3.13. These pair of DoFs were chosen

in the following scenarios: central in one sub-structure and near to the interface in

the other, far from the interface and towards the edge of the plate, or a mix of both

of these cases. Analysis was conducted by observing the plots of these predictions

and investigating resonances which did not match the directly measurement transfer

mobility. For example Fig.3.14 and 3.16 show a common loss in accuracy occurs at a

resonance of 320Hz. To gain a better understanding as to why this occurs, Fig.3.19

was constructed to observe how the error at 320Hz corresponds to the dynamics of

the FE-plate. The response DoF for the mobility YCa1,b1
is the first DoF in A and shows

there is an increased amplitude there. Furthermore the error contour line shows the

error has increased at this same location. Furthermore, inspecting the rest of A shows

it is not only at response DoF 1 where an increase in error occurs. Observing the rest

of A shows the error increases in other parts of the sub-structure that have increased

amplitude. To check this was correct the mobility YCa50,b1
was chosen for prediction

via the round-trip and plotted in Fig.3.20, where the 50th response DoF in A showed

increased amplitude and error at 320Hz. As predicted it displayed at 320Hz a large
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discrepancy.

Further understanding was required see what the most optimum prediction was at

particular problematic resonances. Fig.3.18 and 3.21 were constructed to show the

error at those resonances depending on which A and B DoFs were chosen. Fig.3.20

showed that a difference also occurs between round-trip prediction and direct transfer

mobility at 135Hz. Observing Fig.3.21 shows for the mobility YCa50,b1
an error of 2 ×

10−3, and is on the less extreme side of other pairs that could be chosen. For example

it shows using DoFs a40 and b40 to predict YCa40,b40
has an error twice that of YCa50,b1

.

On the other hand the DoFs chosen showing minimum error are any mix of a20 or a14

with any b DoF, as well as b58 or b64 with any a DoF.
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Chapter 4

Investigation into the invariance of

transmissibilities

In this chapter, the property known as sub-structural ‘invariance’ is analysed for gener-

alised transmissibilities. Outlined in Chapter 2, an invariant dynamic quantity is solely

attributed to a sub-structure within a coupled assembly, and unaffected by adjacent

sub-structures due to the blocking constraint at their connecting interface. The in-

variance of a transmissibility for a component is analysed in a number of ways. One

example is by interchanging an adjacent coupled sub-structure and observing whether

the transmissibility of the target component has stayed the same. Another way is by

changing the positioning of excitation when determining the transmissibility of the tar-

get sub-structure and observing whether it remains the same. Additional analysis

methods are explored and explained in more detail further on. While many quantities

can be invariant, the main focus in this chapter is on transmissibilities. The reason for

this is to inform the next chapter which introduces the Operational Round-trip (ORT)

method. It uses operational invariant transmissibilities to predict driving-point FRFs

within a coupled assembly. This information should not only inform the correct applica-

bility of the ORT method, but also any vibro-acoustic analysis and prediction methods

95



CHAPTER 4. INVESTIGATION INTO THE INVARIANCE OF TRANSMISSIBILITIES

that use transmissibilities within coupled assemblies.
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In Chapter 2, generalised force and response transmissibilities (Eq.2.59 and Eq.2.60

respectively), were defined as sub-structural invariant quantities due to the blocking

constraints in their definitions. Specifically in the context of coupled assemblies, trans-

missibilities are invariant when sufficient blocking constraints are applied to the subset
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of DoFs installed at the connection point between sub-structures, c. This is convenient

as a transmissibility for a sub-structure can be determined without decoupling. If no

sufficient blocking is applied here, the transmissibility calculated will be a property of

the coupled system instead. Also in the case there is an active sub-structure coupled

to a target passive sub-structure, the dynamic behaviour of the active component will

be blocked at the interface, and thus unable to influence transmissibilities measured

for the passive conponent. An example for this application can be in automotive test

rigs where the force generating mechanisms by the engine or compressor, can be

blocked at the mounting points when calculating a transmissibility of a passive compo-

nent within the vehicle.

While Meggitt and Moorhouse [2020b] demonstrate transmissibilities are invariant in

the context of FE-model updating, this chapter seeks to build on that work experimen-

tally and to analyse the sensitivities of invariant transmissibilities. This investigation is

broken down into three experiments, where each adds a layer of complexity. In Sec-

tion 4.2, we have a preliminary experiment which consists of a beam which is resiliently

mounted at one point to a large plate. Here it is observed for the simplest case whether

the transmissibility of the plate remains unchanged when the beam is changed or re-

moved completely. Additionally, a comparison is made between two transmissibilities

which have different excitation positions. Following this in Section 4.3, the second

experimental example has a plate which is coupled at three points by three resilient

mounts to the same large plate. The same analyses from the preliminary experimental

example is also applied here. Sensitivity analysis on their invariance is also conducted

by changing the amount of excitations and responses used in calculation. Lastly for

this three-mount example, invariance is analysed by using the transposition relation

between force and response transmissibilities and observing whether they remain the

same irrespective of being determined operationally or via FRFs. In the final part of

this chapter analysis is conducted on a more complex version of the preliminary ex-

periment in Section 4.4. The single resilient mount has been replaced with a rigid

connection instead. The same analyses from the previous section is applied to this
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case study. However due to the rigid connection, the interface must be characterised

by additional DoFs to ensure an invariant transmissibility. Analysis is conducted on

the sensitivity of transmissibilities as the DoFs at the rigid connection are altered. For

the preliminary experiment only FRF-based transmissibilities are analysed, but as we

progress to the three-resilient mount and rigid connection experimental studies, anal-

ysis is conducted on FRF-based and operational transmissibilities.

4.1 Invariant transmissibility theory

Following on from Section 2.7.2, we delve into the theory on invariant transmissibilities

more comprehensively.

Figure 4.1: Diagram of a coupled assembly C, consisting of sub-structure A which
has a subset of DoFs within it denoted a, and sub-structure B with subset b. At the
connection point lies another subset of DoFs denoted c.

For example, let us consider a coupled assembly as shown in Fig.4.1. The equations

of motion for subsets b and c, defined in terms of impedance are,

fb

fc

 =

ZBbb
ZBbc

ZBcb
ZBcc + ZAcc


vb

vc

 (4.1)
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Within the above coupled mechanical impedance matrix ZC , is the interface impedance

matrix ZCcc, defined by the ZBcc +ZAcc element. It is clear that the other elements ZBbb

and ZBbc
= ZT

Bcb
are an invariant property of B. As detailed in earlier in Section 2.3.2,

direct measurement of these quantities are problematic experimentally as it requires

a zero velocity constraint to all DoFs on the system, except for the DoF where the

excitation is applied. Thus, the alternative approach of measuring them indirectly by

the inverse of YC is taken to acquire these invariants,

ZBbb
ZBbc

ZBcb
ZBcc + ZAcc

 =

YCbb
YCbc

YCcb
YCcc


−1

(4.2)

Inverting YC has the effect of a zero force constraint to all DoFs other than the one with

the applied excitation. However this is only the case if the interface c has a complete

interface characterisation and that all DoFs applicable to YC are included. The impli-

cation of this matrix inversion is well known Hansen [1998], if YC is ill-conditioned (its

condition number is very large), it is close to being singular (non-invertible). In other

words, any small errors on the inputs are amplified significantly when inverted.

To take a blocking force at the interface c for Eq.4.1, a zero velocity constraint is ap-

plied, which removes the influence of A. Thus our definitions become,

 fb

−f̄Bc

 =

ZBbb
ZBbc

ZBcb
ZBcc + ZAcc


vb

0

 (4.3)

By substituting the first row into the second, we can see a force transmissibility defined

via mechanical impedances emerge,

−f̄Bc = ZBbc
Z−1

Bbb
fb (4.4)

It is clear that the impedance terms represent a transmissibility between applied force

fb and the negative blocking force −f̄Bc,
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Tf,b
cb = ZBcb

Z−1
Bbb

(4.5)

As it was stated earlier, the terms ZBcb
and ZBbb

clearly invariant quantities as denoted

in the uppercase subscript. As the transmissibility Tf,b
cb is the product of two invariant

impedances, it is also an invariant of B.

4.1.1 Response transmissibility

Having introduced the general definitions of invariant force and response transmissi-

bilities in Section 2.7.2, the mobility relations for the specific sets of DoFs (a, b and c)

illustrated in Fig. 4.1 will now be derived.

Consider an external force applied within B, at DoFs b. The responses at each subset

of DoFs due to this applied force are defined as,

va = YCab
fb, vc = YCcb

fb, vb = YCbb
fb (4.6)

Equating the forces fb between va and vc, we obtain,

va = YCab
Y−1

Ccb
vc = Tr,b

acvc (4.7)

To help visualise what these transmissibilities “look” like, a diagram of Tr,b
ac is provided

below.
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Figure 4.2: Visualisation of an invariant transmissibility for sub-structure A, Tr,b
ac , relat-

ing responses at c and a, due an applied force at b.

Tr,b
ac is an invariant response transmissibility between c and a, or in other words of

sub-structure A. Note that the direction of the transmissibility goes from c and a

(shown by the red arrow). The number of force DoFs should be equal to the num-

ber of interface DoFs c such that YCcb
is invertible. Additional forces can be included

(over-determination), in which case a pseudo-inverse + replaces the inverse operation.

Combining the definitions in Eq.4.6 of vc and vb, we similarly obtain,

vc = YCcb
Y−1

Cbb
vb = Tr,b

cb vb. (4.8)

Figure 4.3: Visualisation of an invariant transmissibility for sub-structure B, Tr,b
cb , relat-

ing responses at b and c, due an applied force at b.
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Considering an external force applied to the interface DoFs c instead, we can compute

the velocity at a, c or b.

va = YCacfc, vc = YCccfc, vb = YCbc
fc (4.9)

Using the above we obtain the following transmissibility relations,

va = YCacY
−1
Ccc

vc = Tr,c
acvc (4.10)

vb = YCbc
Y−1

Ccc
vc = Tr,c

bc vc (4.11)

If one instead considers an external force within A at DoFs a, we compute the velocities

at a, c or b as,

va = YCaafa, vc = YCcafa, vb = YCba
fa (4.12)

and the following transmissibility relations are obtained,

vc = YCcaY
−1
Caa

va = Tr,a
ca va (4.13)

vb = YCba
Y−1

Cca
vc = Tr,a

bc vc (4.14)

4.1.2 Force transmissibility

It can be shown that the response field within a domain (say B) can be reproduced

identically by applying the so-called (negative) blocked force along its connecting inter-

face, in place of the original excitation Bobrovnitskii [2001]. That is, given an external

force applied within A, fa, we can express the velocity at b in the following form,
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vb = −YCbc
f̄c (4.15)

In the case of an external force applied within B, the velocity at a is therefore,

va = −YCac f̄c (4.16)

In both external force cases, the velocity at the interface DoFs c is defined as,

vc = −YCcc f̄c (4.17)

where f̄c is the force required to restrain the interface motion generated by the external

force fa. Equating Eq.4.15 and 4.12c we obtain,

vb = −YCbc
f̄c = YCba

fa (4.18)

which rearranges to,

−f̄c = Y−1
Cbc

YCba
fa = Tf,a

ca fa (4.19)

where Tf,a
ca is the force transmissibility between a and c. Similarly, equating equation

4.17 and 4.12b we obtain,

vc = −YCcc f̄c = YCcafa (4.20)

which rearranges to,

−f̄c = Y−1
Ccc

YCcafa = Tf,a
ca fa (4.21)

Considering an external force applied within B at the DoFs b, a similar pair of trans-

missibility relations can be obtained,

−f̄c = Y−1
Cac

YCab
fb = Tf,b

cb fb (4.22)
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−f̄c = Y−1
Ccc

YCcb
fb = Tf,b

cb fb (4.23)

4.1.3 Force and response transmissibility relation

Inspecting the transmissibilities derived above, it can be seen that the force and re-

sponse transmissibilities are directly related. For example, let us take the definitions of

Eq.4.14 and 4.22 respectively. They are related through a matrix transpose operation,

Tr,a
bc = YCba

Y−1
Cca

, Tf,b
cb = Y−1

Cac
YCab

Tf,b
cb = (Tr,a

bc )
T (4.24)

Similarly, by taking the definitions of Eq.4.11 and 4.23,

Tr,c
bc = YCbc

Y−1
Ccc

, Tf,b
cb = Y−1

Ccc
YCcb

Tf,b
cb = (Tr,c

bc )
T (4.25)

Also if we take Eq.4.7 and 4.19,

Tr,b
ac = YCab

Y−1
Ccb

, Tf,a
ca = Y−1

Cbc
YCba

Tf,a
ca =

(
Tr,b

ac

)T (4.26)

Finally for Eq.4.10 and 4.21,
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Tr,c
ac = YCacY

−1
Ccc

, Tf,a
ca = Y−1

Ccc
YCca

Tf,a
ca = (Tr,c

ac )
T (4.27)

The force transmissibility from DoFs i to j due to an external force at DoF a, Tf,a
ji , is

equal to the transpose (i.e. reverse) of the response transmissibility from DoFs j to i

with external force at b, Tr,b
ij . Given that the location of the a and b DoFs is arbitrary,

either can be collocated with the interface DoFs c and the same transmissibility ob-

tained, for example Tr,b
ij = Tr,c

ij . This is validated experimentally later on in Section

4.2.2.

This relation between the force and response transmissibility is well known, with its

exact form depending on the precise definition of the transmissibility. For example

Lage et al. [2014] includes a negative sign. Here, this negative sign is attached to the

blocked force vector, and so does not appear in the transmissibility relation explicitly.

Furthermore, they provide the necessary relation as an inverse transpose. This was

based on the definition of the force and response transmissibilities in the same direc-

tion, i.e. Tf,c
ca and Tr,c

ca . Here we have derived the transmissibilities in the direction away

from the external excitation, i.e. from c to a if excitation is in b, or c to b if excitation

is in a. Inversion of a transmissibility matrix has the effect of reversing its direction,

(Tr,c
ca )

−1 = Tr,c
ac . The important fact is that the force transmissibility can be obtained

directly from the response transmissibility which, as will be shown in Section 4.1.4,

can be obtained using output-only measurements.

4.1.4 Operational transmissibility

Consider component A or B as active, containing some internal force-generating mech-

anisms, e.g. gear meshing or bearing forces within a gearbox. In this case, it is possi-

ble to estimate the response transmissibility from output-only measurements. To do so
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we consider N linearly independent operational states of the active component. For

each state, we obtain a force vector fN which can be arranged to form a force matrix

F.

F =

[
f1, f2, . . . fN

]
(4.28)

Consequently, all response vectors become response matrices V, where each column

represents the complex Fourier spectra of the operational response; corresponding to

the same force vector column in F. As a result, the velocity and force vectors for our

transmissibility definitions, v and f respectively, are now replaced by V and F. Take

for example N internal forces within A. Our definitions become,

Va = YCaaFa, Vc = YCcaFa, Vb = YCba
Fa (4.29)

Equating Eq.4.29b and Eq.4.29c we obtain,

Vb = YCba
Y−1

Cca
Vc = Tr,a

bc Vc (4.30)

thus yielding the operational transmissibility definition,

Tr,a
bc = VbV

−1
c (4.31)

It is important that the first column of Vb is measured at the same time as the first col-

umn of Vc to ensure the velocity measurements at both DoF subsets are time aligned.

Similarly take the definitions from Eq4.6 for an excitation applied at subset b,

Va = YCab
Fb, Vc = YCcb

Fb, Vb = YCbb
Fb (4.32)

Equating Eq.4.32a and Eq.4.32b we obtain,
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Va = YCab
Y−1

Ccb
Vc = Tr,b

acVc (4.33)

thus yielding,

Tr,b
ac = VaV

−1
c (4.34)

It must be noted the inverted velocity matrices in the definitions above have been de-

noted as such assuming they are square. Over-determination may be carried out by

including additional operational states such that the inverted matrices become rect-

angular, thus replacing the matrix inverse with a pseudo-inverse. If possible, over-

determination is encouraged as it reduces sensitivity to noise. Note that to calculate

the response transmissibilities shown in Eq.4.34 and 4.31, inversion of a velocity ma-

trix is required. To guarantee the invertibility of these matrices, it is necessary to apply

adequate forces that are also linearly independent; otherwise, the velocity matrix will

be rank-deficient and singular.

4.2 Beam-isolator-plate experimental example

In order to demonstrate the invariance of transmissibilities, a simple experiment was

conducted where a beam component A was interchanged with another beam of differ-

ent dimensions. If the interface DoFs c is completely characterised, the transmissibility

of sub-structure B (resiliently coupled in this case) is invariant and should remain the

same. The first experimental example to demonstrate this is a simple beam-isolator-

plate case, illustrated by Fig.4.4. All of the system’s sensors are uni-axial, and ori-

entated in the vertical plane (z-axis). As we are conducting EMA via roving hammer,

the excitations applied at DoFs a are also in z-axis. As the isolator is dominated by

motion mostly in the z plane, in most cases it is likely that a single c DoF facing the

z-axis is sufficient for a complete interface description Meggitt and McGee [2024]. All

other translations and rotations contribute very little to the overall dynamics and are

thus deemed negligible for this assembly.
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Figure 4.4: 2D diagram of Beam-isolator-plate experiment. Above is side-on, below is
top-down view.

(a) Photograph of Beam 1 coupled in whole system.(b) Photograph of Beam 2 coupled in whole
system.

Figure 4.5: A components beams 1 and 2, coupled to plate B, via a single resilient
mount.
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4.2.1 Interchanging coupled component

Force and response transmissibilities, Tf,b
cb and Tr,c

bc , are determined for B (via Eq.

4.23 and 4.11 respectively) while A is interchanged with beams shown in Fig.4.5. In

addition, the transmissibilities are also calculated for when no beam is coupled to the

system I.e. no A. In theory if the blocking DoF c is sufficiently characterised, the

transmissibility calculated when A is not coupled to the assembly will be identical to

the transmissibilities where it is coupled. Both beams used in the experiment are

made of steel but differ in length. The dimensions of Beam 1 and 2 are 56x4x1cm and

44x4x1cm respectively.

Figure 4.6: Tf,b
cb due to A component Beam 1 or 2, and no beam. In reference to test

rig Fig.4.4

Firstly, let’s observe the invariance of Tf,b
cb in Fig.4.6. The three sub-figures plot the

force transmissibility between the single interface DoF c and to each of the response

DoFs in subset b. I.e. the top sub-figure corresponds to Tf,b
cb1

, the middle Tf,b
cb2

, and the
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bottom Tf,b
cb3

. Within each sub-figure, there are two plots where either beam 1 or 2 is

coupled, as well as no A component. All show good agreement to one another for the

majority of the frequency range. Some discrepancies are observed in the 10-150Hz

range for the no beam case. This is likely due to the lack of mass loading onto the

system, which is why it causes the lower frequencies to be affected the most.

Now let us observe Tr,c
bc for invariance.

Figure 4.7: Tr,c
bc due to A component Beam 1 or 2, and no beam. In reference to test

rig Fig.4.4

Similarly to Tf,b
cb , Fig.4.7 shows that the response transmissibility shows invariance.

The same discrepancies in the low frequency range for the ‘No Beam’ case are also

present. Furthermore, all transmissibilities appear to be very similar to each across

the rest of the frequency range. For this experimental example, the single z-axis DoF

c has sufficiently blocked the dynamic behaviour of either A component, and displays

transmissibilities that are invariant.
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4.2.2 Transmissibility excitation positioning

For this analysis, let us consider A as an active component and B as a passive one.

The transmissibility of the passive sub-structure (between interface c and remote sub-

set b), due to an external force applied within the active sub-structure at DoF subet

a, should in theory, be identical to the transmissibility obtained when external forces

are applied at the interface c instead. Both of these external forces are applied within

A, but differ in location. As an example, the two response transmissibilities of B, Tr,c
bc

and Tr,a
bc , should be the same. Using Eq.4.11 and Eq.4.14 we calculate these two

transmissibilities respectively.

Figure 4.8: Tr,c
b1c vs. Tr,a

b1c. In reference to single-interface test rig, Fig.4.4

Shown in Fig.4.8 are the transmissibilities Tr,a
bc and Tr,c

bc obtained using their FRF formu-

lations. We obtain good agreement across the majority of the frequency range, though

between 3-5kHz some discrepancies begin to emerge. We suspect the disagreement

at high frequencies is due to attenuation induced noise through the resilient connec-

tions. This only occurs when excitations are made above the mount, i.e. at a. For

Tr,c
bc excitations are applied below the mount, and so no attenuation is introduced. Of

course, some of this error could also be attributed to the lack of rotational DoFs, which

for resilient connections have been shown to become important at high frequencies

(Meggitt and McGee [2024]). In addition to the broadband error above 3kHz, some

localised errors are seen around 400Hz and 1050Hz. These errors are likely a result

of inconsistencies in the measured FRF matrix, which have been shown to introduce
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spurious errors in other analysis methods (Rixen [2008]). The large scale of such er-

rors may be attributed to the matrix inversion taking place; it is well known that matrix

inversion operations have an amplifying effect on noise and other measurement errors.

Figure 4.9: HCb1a
vs. HCb1c

. In reference to single-interface test rig, Fig.4.4

To illustrate the point further that transmissibilities are similar irrespective of the exter-

nal force location in the active component, a comparison of FRFs is shown in Fig. 4.9.

HCba
and HCbc

both relate the same b response but use external forces applied at a

and c respectively. It is clear that these FRFs are different from one another, especially

from 300Hz-5kHz.

4.3 Plate-isolator-plate experimental example

Having demonstrated experimentally that transmissibilities are an invariant property of

a passive sub-structure in a coupled system, this section will test the limits of invari-

ance by altering certain parameters. This is demonstrated on a more complex case

compared to the preliminary experiment. Instead of a single resilient point interface,

there are three in this case.
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Figure 4.10: 2D diagram of coupled assembly consisting of a resilient 3 point interface
connection.

(a) Photograph of Plate 1 coupled. (b) Photograph of Plate 2 coupled.

Figure 4.11: A component plates 1 and 2 coupled to B plate via three resilient mounts.
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4.3.1 Interchanging coupled component

Firstly it is demonstrated for Fig.4.10 that Tf,b
cb and Tr,c

bc were invariant as they showed

to be very similar when A had been interchanged. A was changed by its dimensions,

as well as by its mass (No beam attached) which presented a challenge at very low

frequencies. For this particular test rig, we interchange A plates of different materials.

Pictured in Fig.4.11, Plate 1 is made of steel while Plate 2 is made of acrylic perspex.

These were chosen as the damping they provide is very different, presenting a different

challenge. Firstly let us observe transmissibilities calculated via mobilities via Eq.4.23

and 4.11.

Figure 4.12: Mobility-based Tf,b
cb with either plate 1 or 2 coupled to the assembly.
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Figure 4.13: Mobility-based Tr,c
bc with either plate 1 or 2 coupled to the assembly.

In Fig.4.12 and 4.13 Tf,b
cb and Tr,c

bc are plotted respectively due to the different A plates

coupled to the assembly. For Tf,b
cb all three excitation DoFs were used at subset b,

while Tr,c
bc is calculated using the single DoF in subset c. The top sub-figures show the

transmissibilities between c1 and b1, the middle c1 and b2, and the bottom c1 and b3.

Overall there is good agreement between Plate 1 and 2 cases for both transmissibil-

ities. A difference is visible consistently below 100Hz for both transmissibility figures,

however above this frequency the transmissibilities are shown to be almost identical.

As we had already established in the previous study, changing the mass of A affected

the low frequencies. In this study it appears changing the damping of A also presents

a challenge at low frequencies.

Analysis is also conducted on these transmissibilities when calculated by operational

velocities. Examples of transmissibilities were derived in the beginning of this chapter.

For the response transmissibility Tr,c
bc this is calculated via Eq. 4.11 and turning the
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velocity vectors into matrices due to N amount of operational states. Thus we yield,

Vb = YbcY
−1
cc Vc (4.35)

As we already know that the product of YbcY
−1
cc equals Tr,c

bc , the following operational

definition of this response transmissibility is,

Tr,c
bc = VbV

−1
c (4.36)

As Tr,c
bc and Tf,b

cb are related by transposition, we also yield the following operational

definition for the force transmissibility,

Tf,b
cb = (VbV

−1
c )T (4.37)

Figure 4.14: Operational Tr,c
bc and Tf,b

cb , compared against validation FRF measure-
ment.
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In Fig.4.14 the operational response and force transmissibilities are compared against

the FRF measurement when plate 1 was coupled to the assembly, and serves to vali-

date the operational test. Indicated previously in Fig.4.29 and 4.13, FRF-based trans-

missibilities of B when either plate or 2 are coupled to the system, have shown to be

almost identical (when ignoring very low frequencies). Thus for clarity reasons when

displaying the figure, our benchmark to compare is only the FRF-based transmissibil-

ities when plate 1 was coupled. It should be noted, the output-only transmissibilities

are determined by taking the averaged cross-spectrum across 20 time windows, each

1 second long. Analyses on different processing of time windows will be explored in

Chapter 5. The above figure shows good agreement between the output-only trans-

missibilities and the validation plot. In addition, the operational transmissibilities are

almost identical (except between 10-20Hz), irrespective of which A plate is coupled to

the assembly. Thus it is strongly indicated the operational transmissibilities are indeed

invariant.

4.3.2 Transmissibility excitation positioning

Similarly to the previous experimental case study in Section 4.2.2, let us assume A is

active and B is passive. One may argue at first glance for the single interface experi-

mental example (Fig.4.4), that because B is exposed to a single DoF excitation through

one interface point, the transmissibility between c and b will always be the same. By

introducing more than one interface point, the transmissibility can be observed from

each c point to a single response position in subset b.
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Figure 4.15: Mobility-based Tr,c
bc vs. Tr,a

bc . Each sub-figure shows the transmissibility
between each interface point and one b response. In reference to three-interface test
rig, Fig.4.10.

Fig.4.15 presents three sub-figures, where the transmissibilities were determined be-

tween each interface DoF and b1. The top sub-figure represents Tr
b1c1

, the middle Tr
b1c2

,

and the bottom Tr
b1c3

. Each sub-figure plots Tr,a
bc and Tr,c

bc . Similarly to Fig.4.8, this re-

sult indicates despite where the excitation is located within the active component, the

transmissibility remains the same (within error). Like the single DoF interface exam-

ple, there is an increase in noise from around 3kHz upwards. Being another resilient

connection, this error can be attributed to attenuation-induced noise floor. Below 3kHz

the transmissibilities appear to be similar.

Let us observe these transmissibilities when calculated via operational responses. It

was shown in the previous subsection that Tr,c
bc is determined via Eq.4.36, and in Sec-

tion 4.1.4 Tr,a
bc was calculated using Eq.4.31.
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Figure 4.16: Operational Tr,c
bc vs. Tr,a

bc . Each sub-figure shows the transmissibility
between each interface point and one b response. In reference to three-interface test
rig, Fig.4.10.

For each sub-figure in Fig.4.16, there is good agreement overall between the two trans-

missibilities. It is only in the higher frequencies where differences begin to emerge.

Tr,c
b1c2

and Tr,a
b1c2

show the difference earliest in the frequency range (from 900Hz), and

Tr,c
b1c1

and Tr,a
b1c1

from 1.1kHz. Tr,c
b1c3

and Tr,a
b1c3

is the best case, with differences emerg-

ing the latest at around 1.9kHz. The attenuation-induced noise effect also appears for

Tr,a
bc from 3kHz.

4.3.3 Excitations and responses used in transmissibility calcula-

tion

The significance of how many excitations and responses are used in preserving invari-

ant transmissibilities is analysed. A requirement which is pointed out by Maia et al.

[2011b], is that the number of remote DoFs (in a or b) must be greater than or equal to

the number of interface DoFs c. If not carried out as such, the accuracy of the transmis-
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sibilities decreases. In this section, analysis is conducted to see whether invariance

can still exist to an acceptable level below the number of DoFs set by this requirement.

For example, while conducting the modal hammer test to measure mobilities, the num-

ber of external forces applied to each DoF in subsets a, b, and c (three). Tf,b
cb and Tr,a

bc

are calculated from this modal test, while discarding a certain number of excitations

and responses. Tf,b
cb , defined by Eq. 4.23, has excitations applied at two subsets, c

and b. This force transmissibility is analysed when both of the force DoFs have been

reduced. On the other hand, Tr,a
bc , defined by Eq. 4.11, excitations are applied only

at c, therefore invariance is analysed for when applied forces are reduced only at that

subset. Note in this section the transmissibilities have been determined while only

plate 1 is coupled to the assembly. No interchanging of component A is carried out.

Figure 4.17: Mobility-based Tf,b
cb . From top to bottom the force transmissibility is ob-

served for one c excitation discarded, one b excitation discarded, and one excitation
discarded from both c and b. This is compared to the validation plot where all excita-
tions have been included.

In Fig.4.17, Tf,b
cb is calculated when two out of the three excitations are used. In the top
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sub-figure the force transmissibility is calculated with two c excitation while all three

are used in subset b. In the middle sub-figure, we have all three c excitations but

two from b. Finally in the bottom sub-figure both c and b have two out of the three

excitations used in testing. By reducing the number of c excitations by 1 in the top

sub-figure, it shows invariance breaking down. We know this because the validation

plot in this figure (where all three excitations are used in c and b) is the Plate 1 plot

in Fig.4.12 which is almost identical to the plot for when Plate 2 was used. Thus it is

indicated that the validation plot is invariant, and that deviations from this plot show

invariance breaking down. Meanwhile the middle sub-figure, which discards one b

excitation while keeping all three at c, shows little to no deviation from the validation

plot. For the bottom sub-figure where one excitation was removed for both c and b,

the transmissibility appears deviate from the validation plot almost identically to the

top sub-figure. This indicates that altering the number of b excitations does not have a

significant effect on calculating this force transmissibility, and that altering the number

of excitations at c causes an error. The reason for this is because invariance comes

from the blocking constraint applied at the interface DoFs c and not b. Additionally,

changing the dimensions of the inverted Ycc term in Eq. 4.23 causes additional errors.

In other words, Ycc is ill-conditioned, meaning it is very sensitive to input changes.
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Figure 4.18: Mobility-based Tr,c
bc . Response transmissibility is observed for 2 c excita-

tions and 1 excitation. This is compared to the validation plot where all 3 excitations
have been included.

Fig.4.18 shows the response transmissibility, calculated via Eq.4.11, when only one or

two c excitations are used out of the three measured. It shows both scenarios deviating

significantly from the validation plot between 10-275Hz, with the one c excitation case

performing the worst in this region. However above 275Hz, both of these transmis-

sibilities perform well and show reasonable precision to the validation transmissibility.

There are only two particular frequencies in this 275Hz-5kHz region that show the

largest error (resonances at 950Hz and 1.55kHz). Otherwise both plots show invari-

ance in this frequency range.
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Figure 4.19: Mobility-based Tr,c
bc , plotted when one or two b responses are used in

calculation. Compared to the validation plot where all three b responses are included.

As explained earlier in this section, transmissibilities appear to be affected most when

the inputs of the inverted mobility terms are altered, or if the blocking constraints at

interface DoFs c have been altered by changing the number of DoFs within the subset.

To highlight this further, Fig.4.19 presents Tr,c
bc when only one or two b responses out

of the three are used. In Eq.4.11 the inverted term Y−1
cc affected the accuracy of the

response transmissibility when the c excitations were reduced, as demonstrated in

Fig.4.18. Fig.4.19 shows the transmissibility is identical to the validation plot when the

b responses have been reduced in calculation. This is because the mobility term Ybc

is not inverted, therefore matrix inversion error does not exist in this scenario, as well

as there being no blocking constraint applied to subset b.
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Figure 4.20: Mobility-based Tf,b
cb , plotted when one or two b responses are used in

calculation. Compared to the validation plot where all three b responses are included.

For example in Eq.4.22, another definition for Tf,b
cb exists that uses different mobili-

ties. If one were to use this definition, which has the inverted term Y−1
ac instead of

Y−1
cc in Eq.4.23, the force transmissibility will become less accurate by altering the c

excitations as well as the a responses. This is demonstrated in the top and middle

sub-figures within Fig.4.20 respectively. Both show deviation from the validation plot

where all three a and c DoFs are used. Meanwhile in the bottom sub-figure the force

transmissibility is calculated using only one b excitation being used. This affects the

mobility term Yab in Eq.4.22 which is not inverted and has no blocking constraints

within its definition, therefore appearing identical to the validation transmissibility.

Analysis is also conducted for the operational variant of Tr,c
bc . Firstly, we observe the

affect on the transmissibility when the number of b responses used in Eq.4.36 is al-

tered.
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Figure 4.21: Operational Tr,c
bc for when one or two b responses are used in calculation.

Compared to Tr,c
bc where all three b responses are included.

In the top and bottom sub-figures of Fig.4.21, Tr,c
bc is calculated using one or two b

responses respectively and compared against the same transmissibility where all three

have been used. It is clear that changing the dimensions of the term Vb in Eq.4.36

does not have any discernable effect on the transmissibility, similarly to Fig.4.19. If

the number of responses is altered for the interface DoFs c, it is likely there would

be a change to the transmissibility. This is because the term Vc has the blocking

constraints applied and inverted, meaning small changes in the input will most likely

have a large effect on the output. This was also shown previously for the mobility-

based transmissibilities in Fig.4.18 and 4.20, where altering the number of DoFs in the

inverted terms changed the transmissibilities.
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Figure 4.22: Changing operational states in output-only Tr,c
bc . Compared to Tr,c

bc where
all available operational states are included.

Tr,c
bc is analysed for when the number of operational states has been reduced. It is

required that the number of operational states is equal to or more than the number of

responses for both DoF subsets being used in calculation. Fig.4.22 shows when this

is not followed, with the top and bottom sub-figures displaying Tr,c
bc for when one or two

operational states are used respectively, and compared against the same transmis-

sibility when all three operational states included. The three operational state trans-

missibility is used as a validation plot, as we know from Fig.4.14 it is very much in

line with the FRF-based transmissibility, which is probably the most accurate means of

measuring Tr,c
bc . For the case using one operational state, there is good agreement for

the majority of the frequency range. However it is in the lower frequencies (10-250Hz)

where it does not follow all operational states Tr,c
bc well. The transmissibility with two

operational states shows a much better performance overall, especially in the lower

frequency range. As Vc has the blocking constraints applied to the c DoFs, and affect-

ing the operational state input changes as it is inverted, has as expected changed the
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transmissibility.

4.3.4 Force and response transmissibility relation

Lage et al. [2014] demonstrate force and response transmissibilities are related via

an inverse transpose operation. This is because of the way their transmissibility nota-

tion is defined. In this case the inverse matrix operation changes the direction of the

transmissibility. However in the alternative definitions made in Section 2.7.2 where the

direction is included in the notation, only a transpose operation is needed. With this

in mind, this section will show that it should be possible to observe invariance when

applying the transpose of a transmissibility, I.e. the transposed transmissibility will be

similar to that of the original transmissibility which has already been deemed invariant.

One may recognise from the previous figures that Tf,b
cb and Tr,c

bc plots look similar to

one another. This is because they are related by a transpose operation, which was

derived earlier in Eq.4.25.

Figure 4.23: Mobility-based Tf,b
cb and Tr,c

bc for either A plate coupled to the assembly.

Fig.4.23 shows overall that Tf,b
cb and Tr,c

bc are similar for both A plates coupled to the

assembly. Between 10-100Hz it is clear that the response and force transmissibilities

for a particular plate scenario align with each other, but do not correspond to the trans-
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missibilities determined for the other plate. I.e. Within this frequency range Tf,b
cb and

Tr,c
bc for plate 1 are similar, but do not match with Tf,b

cb and Tr,c
bc determined for plate 2.

This is likely due to differing amounts of loading provided by plate 1 and 2. Plate 1

is made of steel which is much heavier than plate 2 which is perspex. Furthermore,

there are particular resonances where the transmissibility of one plate aligns with the

same transmissibility from the other, I.e. Tf,b
cb for plate 1 and 2, as well as Tr,c

bc for plate

1 and 2 being similar. This is observed at 2.4kHz and 3.5kHz.

Figure 4.24: Operational Tf,b
cb and Tr,c

bc for either A plate coupled to the assembly.

Analysis is also conducted on the relation between operational Tf,b
cb and Tr,c

bc . Fig.4.24

shows the transpose relation between Tf,b
cb and Tr,c

bc for a particular plate coupled is

identical, i.e for plate 1 Tf,b
cb and Tr,c

bc are the same, as well as for plate 2. While

the transmissibilities were very similar to each for the mobility-based transmissibilities,

they weren’t as closely related like the operational ones. Overall, all transmissibility

plots are very closely aligned to one another, with some slight differences between

plate cases between 10-200Hz. From 200Hz and above all plots follow each other

very closely.
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Figure 4.25: Comparison between Tf,b
cb and Tr,c

bc when calculated operationally or by
FRFs. Additionally, different A components are coupled for each transmissibility cal-
culation.

In Fig.4.25 a comparison is made between force and response transmissibilities by

the way they were calculated (Output-only or FRF), as well as by which A plate is

coupled to the assembly. For example in the top-figure, Tr,c
bc is determined operationally

using plate 2, and compared against Tf,b
cb which is calculated using mobilities and with

plate 1 coupled to the assembly. In the bottom sub-figure, a similar comparison is

made where Tf,b
cb is determined operationally with plate 2 coupled, versus Tr,c

bc which

is calculated using mobilities and plate 1. Both sub-figures show the transposition

relation between these transmissibilities irrespective of which A component is coupled,

or if they are determined operationally or by mobilities. Thus it is indicated invariance

can be observed when comparing two related transmissibilities, whether they have

been calculated using operational responses or FRFs.
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4.4 Beam-plate experimental example

Invariance of transmissibilities is analysed on another experimental setup similar to

that shown in Fig.4.4. The interchanged beam components represented by A, and

plate B are kept the same. DoF subsets b and c are also the same locations, but

there are no a sensors installed. For the FRF measurement, 20 excitations are applied

within A in all translational planes (10 in z, 8 in y, and 2 in x), in addition to the ones

applied to each sensor in subsets b and c. The single resilient mount at c has been

interchanged with a rigid connection.

Figure 4.26: 2D diagram of rigid point connection case between beam A and plate B.

This adds a layer of complexity. In the previous experimental examples, the interface

motion was dominated mostly in the z-axis. Other translational and rotational DoFs

are dampened significantly and deemed negligible. This is why only a single response

at c facing the z-axis is used at the resilient connections. However, evidence shown

by Meggitt and McGee [2024] suggests an increase in error can occur at higher fre-

quencies, which is attributed to the lack of rotational DoFs. This is perhaps a reason

for the divergence between plots in the higher frequencies for Fig. 4.15 and 4.16. For

an experimental case with a rigid mount as shown in Fig.4.26, multiple DoFs must be
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factored in when characterising the interface c. Experimentally and data processing-

wise, it is more involved to determine all six degrees of motion: translational x, y, z and

rotational α, β, and γ. Analyses on the invariance of transmissibilities is similar to the

previous experimental examples, with the addition of observing the extent invariance

exists while translational and rotational DoFs are discarded at the interface c. It must

be noted that the most significant DoFs at c are not universally applicable, and most

likely will differ for experimental setups of a different nature. The purpose of this part

of the study is to examine the extent invariance can be observed, while interface DoFs

are incrementally discarded.

Figure 4.27: Diagram of fully characterised point interface used in the rigid connection
beam-plate experimental example.

The finite-difference method was used to characterise the rigid interface mount c for

Fig.4.26. The derivation made in Section 2.8.2 was in reference to a 2 dimensional

beam, but for this experimental example we must derive the approximation in 3 dimen-

sions. A diagram of how this was conducted experimentally on the rigid interface test

rig is illustrated in Fig.4.27. Red squares represent uni-axial sensor positions. Black

arrows and numbers show the order and direction of responses, while the ones in

green show the order and direction of excitations. The finite-difference approximation

of the interface point mobility, Ŷcc, is calculated via,

Ŷcc ≈ RvYccR
T
f (4.38)

In matrix form, the finite difference approximation of the interface point mobility is given,
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Ŷcc =



Ŷxx Ŷxy Ŷxz Ŷxα Ŷxβ Ŷxγ

Ŷyx Ŷyy Ŷyz Ŷyα Ŷyβ Ŷyγ

Ŷzx Ŷzy Ŷzz Ŷzα Ŷzβ Ŷzγ

Ŷαx Ŷαy Ŷαz Ŷαα Ŷαβ Ŷαγ

Ŷβx Ŷβy Ŷβz Ŷβα Ŷββ Ŷβγ

Ŷγx Ŷγy Ŷγz Ŷγα Ŷγβ Ŷγγ


(4.39)

The measured point mobility is given by,

Ycc =



Yv1f1 Yv1f2 Yv1f3 Yv1f4 Yv1f5 Yv1f6 Yv1f7 Yv1f8

Yv2f1 Yv2f2 Yv2f3 Yv2f4 Yv2f5 Yv2f6 Yv2f7 Yv2f8

Yv3f1 Yv3f2 Yv3f3 Yv3f4 Yv3f5 Yv3f6 Yv3f7 Yv3f8

Yv4f1 Yv4f2 Yv4f3 Yv4f4 Yv4f5 Yv4f6 Yv4f7 Yv4f8

Yv5f1 Yv5f2 Yv5f3 Yv5f4 Yv5f5 Yv5f6 Yv5f7 Yv5f8

Yv6f1 Yv6f2 Yv6f3 Yv6f4 Yv6f5 Yv6f6 Yv6f7 Yv6f8

Yv7f1 Yv7f2 Yv7f3 Yv7f4 Yv7f5 Yv7f6 Yv7f7 Yv7f8



(4.40)

Response and applied force transformation matrices, Rv and Rf respectively, are in

the form,

Rv =



0 0 0 0 1
2

1
2

0

0 0 0 0 0 0 1

1
4

1
4

1
4

1
4

0 0 0

1
δ

0 −1
δ

0 0 0 0

0 1
δ

0 −1
δ

0 0 0

0 0 0 0 1
δ

−1
δ

0


(4.41)
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Rf =



0 0 0 0 −1
2

−1
2

0 0

0 0 0 0 0 0 1
2

1
2

1
4

1
4

1
4

1
4

0 0 0 0

1
δ

0 −1
δ

0 0 0 0 0
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
(4.42)

Columns in Rv and Rf indicate the response or excitation DoFs indices respectively.

Rows correspond to translational and rotational DoFs. The order from row 1 to 6 goes

x, y, z, α, β, γ. The first three rows: x, y, z, are translational DoFs. Rows four to 6: α,

β, γ are rotational DoFs. Due to the 7 responses at this mounting point, Rv is a 6 × 7

matrix, while Rf is a 6 × 8 matrix due to 8 applied excitations.

4.4.1 Interchanging coupled component

In this section Tr,c
bc and Tf,b

cb are calculated when either beam 1 or 2 is used as com-

ponent A. Beams 1 and 2 differ in dimensions, and are the exact ones used in the

preliminary experimental example shown in Fig.4.5. In theory, by characterising the

interface c by all translational and rotational DoFs, the transmissibilities of component

B will be identical for either A beam coupled to the assembly.
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Figure 4.28: Mobility-based Tr,c
bc with either beam 1 or 2 coupled to the assembly.

In the above figure Tr,c
bc is calculated via mobilities, and determined between each

DoF in subset b and the z translation DoF at the interface c. In Fig.4.28, overall all

response transmissibilities between each b response and the z-translation at c show

good agreement for when either A beam is coupled. In each sub-figure slight differ-

ences are visible at very low frequencies (around 10-30Hz), but above this range the

response transmissibilities are almost identical for either beam coupled.
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Figure 4.29: Mobility-based Tf,b
cb with either beam 1 or 2 coupled to the assembly.

Similarly for the mobility-based Tf,b
cb in Fig.4.29, there are six sub-figures plotting the

transmissibilities between each DoF in b and the z translation at the interface c. Slight

differences are also observed between A beam cases in the 10-30Hz region. In addi-

tion, there are some small differences higher up in the frequency range. For example,

beam 1 and 2 test scenarios for the sub-figure containing Tf,b
c(z)b2

show differences at

resonances at 1.2kHz and 1.4kHz. Furthermore, a slight disparity can be observed

between 720Hz-1.25kHz for Tf,b
c(z)b4

. Despite the small errors between either A beam

cases, the force transmissibilities are similar to one another for the vast majority of the

frequency range. Thus overall it is suggested invariance is also visible when observ-

ing the force transmissibility. However when compared to the response transmissibility,

Fig.4.28 does shows slightly better agreement between beam cases at higher frequen-

cies. In the next part of this subsection, the force and response transmissibilities are

analysed for invariance when certain DoFs at c are not included in their calculation.
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The invariance of output-only Tf,b
cb and Tr,c

bc is also analysed. In Section 4.3.1 the

operational definition of these transmissibilities were derived, with definitions given by

Eq.4.36 and 4.37.

Figure 4.30: Tr,c
bc and Tf,b

cb determined via operational velocities, compared against
validation FRF measurement.

Similarly to the previous experimental example in Fig.4.14, the operational transmis-

sibilities are calculated when either beam 1 or 2 is coupled to the assembly. As the

mobility-based transmissibilities were nearly identical when either A component was

coupled, for clarity reasons only one of these is used in the above figure to com-

pare the operational transmissibilities to (beam 1). Fig.4.30 shows that the operational

transmissibilities have increased noise over their FRF-based counterparts in Fig. 4.29

and 4.28. The above figure also displays the operational versions of Tr,c
bc and Tf,b

cb as

being very similar when either A beam is coupled to the assembly. Furthermore, they

also agree well with the FRF-based transmissibility (black dashed line), suggesting the

transmissibility of B appears invariant despite which method is used to calculate them.

Thus, it is indicated by this figure that the operational transmissibilities are invariant for
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this experimental example.

4.4.2 Transmissibility excitation positioning

As was assumed in the previous experimental case studies for this analysis, let’s as-

sume A is an active component and B is passive one within the coupled assembly. A

comparison is made between the transmissibilities Tr,a
bc and Tr,c

bc for this assembly, to

deduce whether excitation positioning within the active component A has an effect on

the transmissibility of the passive component B.

Figure 4.31: Mobility-based Tr,a
bc vs. Tr,c

bc . Each sub-figure shows the transmissibility
between the z DoF of interface c and each b response. In reference to rigid-interface
test rig, Fig.4.26

In Fig.4.31 there are six sub-figures, each plotting FRF-based transmissibilities Tr,a
bc

and Tr,c
bc determined between every b DoF and the z DoF of the interface c. Similarly to

the previous experimental examples, the result for this test rig suggests wherever the

excitation location is within the active component (A), the transmissibility of B remains
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the same (within experimental error) as Tr,a
bc and Tr,c

bc appear almost identical to each

other. Furthermore, increased noise is apparent from roughly 3kHz and above for

Tr,a
bc in the previous test examples. It was suggested that this likely due to attenuation

induced noise from the isolators, because this transmissibility’s excitation is at a and

traverses the mount. The above figure does not show increased noise in Tr,a
bc for the

rigid-interface experiment, indicating that the presence of isolators had an effect on

the accuracy of this particular transmissibility. Some small differences are observed in

low frequencies between Tr,a
bc and Tr,c

bc (10-30Hz), but above this range they are almost

identical.

In the next part of this sub-section, these transmissibilities are analysed when calcu-

lated via operational responses (Eq.4.36 and 4.31).

Figure 4.32: Operational Tr,a
bc vs. Tr,c

bc . Each sub-figure shows the transmissibility
between the z DoF of interface c and each b response. In reference to rigid-interface
test rig, Fig.4.26

In a similar fashion, Fig.4.32 shows Tr,a
bc and Tr,c

bc are also almost identical when cal-
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culated operationally. However some differences are apparent between the two ways

of calculating these transmissibilities. Both operational transmissibilities show a small

increase in noise, and a large spike at 29Hz can be seen consistently across all sub-

figures for Tr,c
bc which is likely due to experimental error.

4.4.3 Altering which interface DoFs are included in the transmis-

sibility calculation

In this section, the purpose is to analyse whether transmissibilities are still invariant

when DoFs at the interface c are discarded. In a standard calculation of Tf,b
cb and Tr,c

bc

via Eq.4.23 and 4.11 respectively, all c DoFs (x,y,z,α,β,γ) are included in the mobility

terms. Instead the transmissibilities will be calculated when only some of these c DoFs

are included in the mobility terms.

Figure 4.33: Mobility-based Tf,b
c(z)b1

, determined using all six DoFs at c, translation z

with α and β rotational DoFs, and z only. Top sub-figure shows plots of Tf,b
c(z)b1

when
beam 1 is coupled, while the bottom sub-figure is for beam 2.
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Figure 4.34: Mobility-based Tr,c
b1c(z)

determined using all six DoFs, translation z with α

and β rotational DoFs, and z only. Top sub-figure shows these plots of Tr,c
b1c(z)

when
beam 1 is coupled, while the bottom sub-figure is for beam 2.

Fig.4.33 and 4.34 plot Tf,b
cb and Tr,c

bc respectively, by either using all DoFs, or z, α and

β DoFs, or only the z DoF, from the interface c. Each figure contains two sub-figures,

the top one plots transmissibilities that were calculated with beam 1 coupled to the as-

sembly, and the bottom one was with beam 2. Both figures indicate that when x, y and

γ DoFs have been discarded from calculating the transmissibility (red plot), it is quite

similar to the standard case where ’All DoFs’ are accounted for from c (dashed black

line). For the z only version of Tf,b
cb and Tr,c

bc , similarities to the ‘All DoFs’ transmissi-

bilities are also visible, but to a lesser degree than the z, α, β transmissibilities. For

example, take the bottom subplot of Fig.4.33 where beam 2 is coupled to the system.

The z only Tf,b
c(z)b1

shows the largest difference to the ’All DoFs’ transmissibility between

82-230Hz. With the exception of errors occurring at low frequencies (10-35Hz), and for

a few amplified anti-resonance magnitudes (285Hz, 480Hz, 1kHz, 2.05kHz, 2.2kHz),

the overall trend of the z only transmissibility follows the ‘All DoFs’ plot to a satisfactory

level. This can also be said for the beam 1 test scenario in the top sub-figure. The z
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only transmissibility also shows the largest difference in a similar frequency range of

about 100-230Hz, and a few spikes in magnitude at some anti-resonance. The only

noticeable difference is the low frequency performance, which appears close to the

‘All DoFs’ transmissibility. Similar observations of the z only force transmissibility per-

formance can be seen for the same beam scenario of the response transmissibility in

Fig.4.34. Overall, the above figures suggest that the z translation DoF is the biggest

contributor at c for determining the transmissibilities. This is understandable due to

Tf,b
c(z)b1

being defined between the z DoF of c and a sensor at b which is orientated to

the z-axis.

In the next part of the sub-section, operational versions of response and force trans-

missibilities are analysed as particular interface DoFs are discarded.

Figure 4.35: Operational Tf,b
c(z)b1

, determined using all six DoFs at c, translation z with
α and β rotational DoFs, and z only. Top sub-figure shows plots of Tf,b

c(z)b1
when beam

1 is coupled, while the bottom sub-figure is for beam 2.
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Figure 4.36: Operational Tr,c
b1c(z)

determined using all six DoFs, translation z with α and
β rotational DoFs, and z only. Top sub-figure shows these plots of Tr,c

b1c(z)
when beam

1 is coupled, while the bottom sub-figure is for beam 2.

Firstly, the above figures show that all versions of Tf,b
c(z)b1

and Tr,c
b1c(z)

to have a small in-

crease in noise over the mobility-based ones, which is seen consistently for output-only

data in this experimental example. Trends present in Fig.4.33 and 4.34 appear com-

parable to those in Fig.4.35 and 4.36. The transmissibilities that only have z, α and β

DoFs included appear to be the most accurate and are almost identical to the ‘All DoFs’

transmissibilities. The plots where only z was used in calculating the transmissibilities

all show a satisfactory accuracy, with only a few small instances where it deviates from

the ‘All DoF’ transmissibilities. For example, the same range of 100-230Hz appears to

display the areas of largest difference to the ‘All DoFs’ transmissibilities. In addition,

a few spikes in the magnitude of anti-resonances are also present from the mobility-

based transmissibilities. For example when examining the bottom sub-figure where

beam 2 is coupled to the assembly, Tf,b
c(z)b1

has increased anti-resonance magnitudes

at 285Hz, 480Hz, and 2.2kHz. These are seen also in the bottom sub-figure of the

mobility-based force transmissibility in Fig.4.33. In the higher frequencies (2.5-5kHz)
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all versions of the operational force and response transmissibilities show increased

noise and larger variance than the mobility-based ones. In this area it is more difficult

to discern the affect of particular interface DoFs on the operational transmissibilities.

In the low frequencies (10-35Hz), some differences are visible especially between the

z only and ‘All DoFs’ transmissibilities.

4.4.4 Force and response transmissibility relation

The transposition relation between Tf,b
cb and Tr,c

bc , defined earlier by Eq.4.25, is anal-

ysed for this rigid interface experimental example. In theory invariance between these

two transmissibilities will be visible, as was shown previously in the three-resilient in-

terface experimental example.

Figure 4.37: Mobility-based Tf,b
cb and Tr,c

bc for either A beam coupled to the assembly.

Overall, when Tf,b
cb and Tr,c

bc are calculated when for A component scenario, Fig.4.37

shows there are a lot of similarities across the full frequency range. Some bands

such as the 10-37Hz range, display a high variability between all transmissibility plots.

Further differences between all four transmissibilities can be spotted at 80-90Hz and

130-150Hz. Between 1-5kHz some large spikes at resonances and anti-resonances

begin to emerge for certain transmissibilities, such as at 1.15kHz for Beam 1 Tf,b
c(z)b1

,
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and at 1.65kHz and 2.14kHz for Beam 2 Tf,b
c(z)b1

. Noise also starts to increase at higher

frequencies, particularly around 3kHz and near 5kHz. However, despite some of these

small errors at higher frequencies, both force and response transmissibilities for either

A case follow very similar trends.

Figure 4.38: Operational Tf,b
cb and Tr,c

bc for either A beam coupled to the assembly.

The relation by transposition is also examined between operational Tf,b
cb and Tr,c

bc . In

Fig.4.38 the operational transmissibilities all appear more closely aligned to each other

than the mobility-based route in Fig.4.37. At some frequency ranges, the related force

and response transmissibilities determined for a particular A beam case appear to fol-

low each other, i.e for beam 1 Tf,b
cb and Tr,c

bc follow the same trends between 10-40Hz

and 80-90Hz. This is understandable as the operatioanl force transmissibility can only

be calculated by taking the transpose of velocities measured for the response trans-

missibility. This is not like the mobility-based transmissibilities, as the force transmissi-

bility does not require the transpose of the mobility-based response transmissibility. As

shown by Eq.4.23, Tf,b
cb has the term YCcb

which uses excitations made at b. In Eq.4.11

Tr,c
bc has that mobility term transposed, yielding YCbc

which uses excitations made c in-

stead. Because of the different force locations, there will be slight variations in the

mobility-based transmissibilities. This is why they aren’t as closely related as the op-

erational ones. A small increase in noise is visible for the operational transmissibilities
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between 280-390Hz, and increasing further along with some artefacts from 2.5kHz up-

wards. Despite this, over the whole frequency range Fig.4.38 suggests the output-only

transmissibilities of B show invariance even when using their related counterpart.

Figure 4.39: Comparison between Tf,b
cb and Tr,c

bc when calculated operationally or by
FRFs. Additionally, different A components are coupled for either FRF or operational
transmissibilities.

Above in Fig.4.39, force and response transmissibilities are calculated in opposite

ways and using different A components. For example in the top-figure, Tr,c
bc is cal-

culated operationally and with beam 2 coupled to the system, and compared against

Tf,b
cb which is determined using mobilities and with beam 1. Similarly in the bottom

sub-figure, Tf,b
cb is operational with beam 1 coupled, versus the mobility-based Tr,c

bc with

beam 2. Both sub-figures show the transposition relation between these transmissi-

bilities irrespective of which A component is coupled, or if they are determined oper-

ationally or by mobilities. While the output-only transmissibilities have slightly more

noise, such as between 150-350Hz in the top sub-figure and 80-350Hz in the bot-

tom sub-figure, they appear very much inline with the mobility-based transmissibilities
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despite using a different A component. Thus it is indicated in the above figure, that

invariance can be observed when comparing two related transmissibilities, irrespective

of whether they were determined using operational responses or FRFs.

4.5 Transmissibility-based Interface Completeness Cri-

terion

Throughout the analyses made in this chapter it has been demonstrated that a com-

plete interface description is important to ensure a transmissibility for a given sub-

substructure is invariant. In some practical scenarios, it may not be possible to have

a complete interface description. Earlier in Section 2.8.3, it was shown that the vibro-

acoustic tool called the Interface Completeness Criterion (ICC) can be used to de-

scribe the completeness of the interface. It requires measuring the transfer mobility

YCba
directly and by the round-trip identity via Eq.3.9, and then conducting a compari-

son using amplitude or coherence based methods. An issue that can arise practically

with this method is determining the round-trip prediction of the transfer mobility. This

is because the identity uses measurements of mobilities YCcc and YCac., In a practi-

cal case it may not be possible to obtain these mobilities due to limited room around

the interface c. For example in an automotive application, it is possible that interface

sensors can be installed at the connection points between the subframe and engine.

However, due to the limited space in this area it is not always possible to directly excite

the sensors using a roving hammer. This is why in Section 4.3.3, transmissibilities of B

were analysed for invariance where sensors were placed at all three connection points,

but only two excitations made at two of the interface DoFs were used. It is certainly

possible one can measure the mentioned mobilities in laboratory conditions, but in the

case where this is not possible, it is explored whether an output-only transmissibility

approach to the ICC is viable, termed the ‘Transmissibility ICC’ (TICC). The original

ICC measures the effect of the interface description by comparing a direct measure-

ment of the transfer mobility (which does not use any c DoFs in its calculation), to the
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round-trip transfer mobility which does use of the c DoF subset. The TICC method is

described in greater detail below, but it uses the same fundamental idea of the ICC

by comparing a transmissibility across the coupled assembly without the interface c

included, to a similar transmissibility which does use c. Firstly, a diagram showing how

this is conducted is presented below.

(a) Tf,a
ba calculation. (b) Tf,a

da calculation.

Figure 4.40: Diagram demonstrating the mobility measurements needed for the
mobility-based TICC. In this example the force transmissibilities Tf,a

ba and Tf,a
da are used.

The diagram in Fig.4.40 illustrates which mobility measurements are required for the

force transmissibility TICC. Specifically in this scenario, the two transmissibilities are

Tf,a
ba and Tf,a

da . Tf,a
ba is simply a force transmissibility between DoFs a and b, i.e. when

there is no interface. For Tf,a
da in Fig.4.40b, the transmissibility is between DoFs d and a.

d is defined as the combination of DoF subsets b and c. Due to the blocking constraint

at c, in theory Tf,a
da will have a magnitude of 0 (or close to it) if the interface description

is complete. On the other hand, Tf,a
ba will appear normal and have a magnitude greater

than 0. If Tf,a
da has an incomplete interface description, in theory the magnitude will

have some resemblance to Tf,a
ba .

Firstly we must demonstrate how the force transmissibilities in Fig.4.40 are defined.

By equating Eq. 4.6c and 4.12c we obtain,

fb = Y−1
Cbb

YCba
fa (4.43)
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The product of the two mobility terms in the above equation yields the following trans-

missibility,

Tf,a
ba = Y−1

Cbb
YCba

(4.44)

The definition above for Tf,a
ba may now be altered. By including c DoFs with b, we simply

change the subscripts to d,

Tf,a
da = Y−1

Cdd
YCda

(4.45)

As we’ve discussed in previous chapters, the output-only definition of the force trans-

missibility can only be obtained by applying a transpose to its related response trans-

missibility. By equating Eq.4.6a and 4.6c the following is obtained,

va = YCab
Y−1

Cbb
vb (4.46)

The product of mobility terms in the above equation is defined as the following re-

sponse transmissibility,

Tr,b
ab = YCab

Y−1
Cbb

(4.47)

As we can see this is related to Tf,a
ba by transpose. It was pointed out earlier in Sec-

tion 4.1.4 that during an operational measurement, we must take N amount of linearly

independent operational states. As a result, the velocity vectors in Eq.4.46 are now

matrices, yielding the following output-only definition of the related response transmis-

sibility,

Tr,b
ab = VaV

−1
b (4.48)
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Tr,d
ad = VaV

−1
d (4.49)

Therefore by transpose of the above equations, the force transmissibilities used in the

TICC are defined as,

Tf,a
ba = (VaV

−1
b )T (4.50)

Tf,a
da = (VaV

−1
d )T (4.51)

Now the relevant force transmissibilities are defined, we may begin applying the TICC

theory to a mass spring model.

Figure 4.41: Illustration of mass spring model used to test TICC theory.

The MDoF mass spring system shown by Fig.4.41 is divided into sub-structure A and

B. It consists of three a DoFs, three interface c DoFs, and three b DoFs. Firstly,

the mobility-based force transmissibilities used in Fig.4.40 will be examined, followed
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by the output-only versions. The output-only measurement is ‘simulated’ by applying

forces only to DoFs subset a. The force matrix F has N amount of operational states

equal the total amount of DoFs in the system (9). This means the problem has been

over-determined, and the size of F is 9 × 9. To ensure linear independence, random

force values between 0-1 were applied to the a DoFs.

Figure 4.42: Mobility-based Tf,a
ba vs. Tf,a

da calculated with complete and incomplete
interface c descriptions.

Fig.4.42 indicates to confirm the theory discussed earlier in this section. When the

interface c is completely characterised, the magnitude of Tf,a
da shows an extremely low

value, between 10−14 − 10−21 and represents machine error. It also shows that in the

presence of an incomplete interface, Tf,a
da has a much larger magnitude than if it had a

complete interface, and its magnitude is close to Tf,a
ba . The above transmissibilities will

now be examined when determined via operational responses.
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Figure 4.43: Operational Tf,a
ba vs. Tf,a

da calculated with a complete and incomplete
interface c descriptions.

For the operational versions, Tf,a
ba has an extremely large magnitude when compared

to the mobility case. It is not quite understood why this is the case. Anyhow, the above

figure does show some similarities to the mobility-based ones in Fig.4.42. As expected

Tf,a
ba has the largest magnitude, followed by the complete interface Tf,a

da , and then the

incomplete interface Tf,a
da being the lowest. Firstly, when there is a complete interface

the magnitude of Tf,a
da stays below 1 nearly across the full frequency range. When it

has an incomplete interface description the magnitude is much larger and reaches a

value of 100 for large portions of the frequency range.

While Fig.4.42, and 4.43 are helpful in confirming the theory of how these transmissi-

bilities will appear, they do not quantify completeness like the amplitude and coherence

based ICCs. To identify the extent of completeness, a metric is proposed for the TICC.

TICC =

∣∣∣∣∣Tf,a
ba −Tf,a

da

Tf,a
ba

∣∣∣∣∣ (4.52)

151



CHAPTER 4. INVESTIGATION INTO THE INVARIANCE OF TRANSMISSIBILITIES

Figure 4.44: TICC difference metric for mobility-based force transmissibility.

The metric proposed for this short study is difference-based, as shown by Eq.4.52.

In future studies, different metrics will be explored such as correlation or coherence

based methods. In Fig.4.44 the TICC metric for the mobility-based force transmissibili-

ties are shown. Similarly to the amplitude and coherence ICC, a value of 1 is observed

across the full frequency range for when Tf,a
da has a complete interface description.

Likewise, a value of zero indicates incompleteness. For the incomplete interface case

of Tf,a
da , the TICC remains between 0-1 for most of the frequency range. At around

150Hz, 250Hz, and 750Hz the incomplete transmissibility briefly goes over 1. At these

distinct frequencies, the incomplete interface case of Tf,a
da and Tr,d

ad has a larger mag-

nitude than Tf,a
ba and Tr,b

ab , and suggests an amplification.
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Figure 4.45: TICC difference metric for operational force transmissibility.

In the above figure the difference-based TICC metric is applied to the operational force

transmissibilities. The complete interface version of Tf,a
da has a value of 1 across the

full frequency range. However when there is an incomplete interface description, the

metric goes above and below 1 quite frequently, and does not show any familiarity

to the mobility-based version. As the magnitude of Tf,a
ba is extremely high (between

1015 − 1020, the magnitude of the incomplete Tf,a
da is still really far away from it, thus the

difference between that and the complete Tf,a
da is very small.

4.6 Discussion

Invariance was firstly demonstrated by calculating a transmissibility of B while the

component A was interchanged. For the single resilient-interface experiment, mobility-

based transmissibilities of B were calculated when two A beams were interchanged

differing in length were coupled to system. Additionally, transmissibilities were calcu-

lated when no beam was coupled. All three A beam test scenarios yielded transmis-

sibilities of B similar to each other across the frequency range, therefore indicating

invariance. Notably, this exercise indicated the interface DoF subset c was sufficiently

characterised by a single DoF oriented in the z-axis. For the ’No beam’ case force
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and response transmissibilities of B were unchanged except between 10-80Hz, which

is due to the lack of mass loading. The three resilient-interface experimental example

consisted of two plates differing in material properties as sub-structure A. For the sin-

gle resilient example, mobility-based force and response transmissibilities of B were

similar across the full frequency range when either plate was coupled. Some differ-

ences were visible at low frequencies in this example too because of the difference

in weight and damping between the two, as plate 1 is made out of steel while plate 2

consisted of perspex. The same analysis was conducted on force and response trans-

missibilities using operational responses, also showing a difference at low frequencies.

A check was made to ensure operational transmissibilities didn’t deviate from the FRF-

based ones, which could be argued as being slightly more reliable. It was found the

same trends existed as the FRF-based transmissibilities. In the final experimental ex-

ample with a rigid interface connection, the same components were used from the

single resilient example, except of course the resilient isolator was replaced with a

rigid mount. As a consequence the transmission of other translational and moment

forces would be more significant, thus characterisation of the interface c by a single

DoF facing the z-axis was not sufficient enough to apply the blocking constraints fully.

Instead, the c DoF subset was characterised by all three translational DoFs x, y, z, and

the rotational DoFs along each plane α, β, γ. In this case, both mobility-based and

operational response and force transmissibilities showed close alignment when either

A beam was coupled. To summarise, all experimental examples demonstrated the

transmissibility of a downstream component (in this case B) is indeed invariant when

an upstream sub-structure (A) has been interchanged, on the condition the interface c

is sufficiently characterised to provide the necessary blocking constraints.

For the three resilient interface experimental example, the boundaries of where in-

variance could be observed was tested by changing the number of responses and

excitations when calculating transmissibilities. Usually, it is required the number of re-

mote DoFs (a or b) is equal to or greater than the amount of c DoFs. In the case of the

mobility-based transmissibilities on the three resilient-interface example, reducing the
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number of c DoFs caused invariance to breakdown as the blocking constraints were not

applied to all connection points. Additionally in some cases, such as in Fig.4.17, 4.18,

reducing the excitations at c DoFs of the inverted term YCcc showed invariance was

not present at low frequencies, but only visible from around 400Hz and above. Fur-

thermore, when the force transmissibility Tf,b
cb was calculated using a different equation

(Eq.4.22 - which has the inverted term YCac instead), it was found in Fig.4.20, that re-

ducing the a responses affected invariance, as the requirement of having remote DoFs

equal to the number of interface DoFs was not fulfilled. In a similar fashion, this def-

inition of Tf,b
cb showed invariance was not visible at lower frequencies, while it was at

higher frequencies.

In all three experimental examples, another test for invariance was conducted by ob-

serving whether transmissibilities of B were the same as the location of the external

force changed within A. Specifically, the response transmissibilities Tr,c
bc and Tr,a

bc were

compared, which in theory are identical. This is due to an assumption when using

blocked forces, where the response field in B is identical despite the location of excita-

tions within A (as long as the characterisation of c DoFs is complete). As the interface

c is also part of A, it is tested to see whether the external force at c yields the same

transmissibility of B when it has been moved to a. All experimental examples showed

that, within error, that the two transmissibilities are almost identical. In the single re-

silient interface and three resilient interface tests, Tr,a
bc appeared to show an increase in

noise from roughly 3kHz and above, while Tr,c
bc did not. As the external force is applied

at a for Tr,a
bc , its transmission path traverses the isolator(s) to reach B. This means it is

subjected to isolator attenuation, and at higher frequencies the magnitude of the exter-

nal force has been decreased close to the level of the noise floor. On the other hand,

Tr,c
bc has the external force applied at the accelerometer at c, which is located below

the resilient mount. This means the transmission path of the external force does not

traverse the isolator to determine the transmissibility of B. For the single rigid interface

experimental example, both response transmissibilities also appeared almost identical

and had the better agreement at higher frequencies than the previous experiments as
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Tr,a
bc was not contaminated with noise. This makes sense as there is no resilient mount

causing the attenuation error.

Additionally on the rigid interface experiment, transmissibilities of sub-structure B were

observed when particular DoFs at the interface were left out of its calculation. The goal

of this analysis is to observe whether the transmissibilities show invariance even when

the interface description is not complete. Three scenarios were tested when calculat-

ing the transmissibilities: accounting for all six interface DoFs (which was confirmed

as invariant, and serves to validate the other cases), only z translation and rotations

α and β, and finally only z. In particular the transmissibilities examined are Tr,c
b1c(z)

and Tf,b
c(z)b1

, which is between the z DoF of c and the first DoF in subset b (also facing

the z-axis). Because this transmissibility is between two DoFs facing the z-axis, un-

derstandably both mobility-based and operational transmissibilities showed that when

only the z translation component was used in their calculation, they appeared to be

similar to the case where all c DoFs are accounted for, apart from a few small bands

within the full frequency range. The scenario where Tr,c
b1c(z)

and Tf,b
c(z)b1

were calculated

using only z, α and β was even closer to invariant ’All DoFs’ transmissibilities for both

mobility and operational routes. This indicates that the discarded DoFs x, y, γ had

very little effect on Tr,c
b1c(z)

and Tf,b
c(z)b1

. In summary, these particular transmissibilities

appear to convey invariance at reasonable level of accuracy by just taking account the

dominant z translation at c. If possible it is recommended to account for some rotations

as well, as it appears to yield transmissibilities almost identical to the case where all

six c DoFs are used.

It is well known that force and response transmissibilities are related by a transposition

operation. Therefore in theory, if a particular transmissibility has been deemed invari-

ant, then its related transmissibility will also display invariance. This was tested for the

three resilient interface and rigid interface experimental examples. In the case of the

mobility-based transmissibilities, the three resilient interface experiment showed some

variation at low frequencies (10-100Hz), but overall appear very much in line with one

another. At lower frequencies the force and response transmissibilities calculated for
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a particular plate case appear to align with each other, but not with the transmissibil-

ities determined for the other plate coupled. This is likely due to the different mass

loading provided by the plates as the steel one was much heavier than the perspex

plate. For the rigid interface experiment some differences were also visible at low fre-

quencies (10-37Hz). The force and response transmissibilities for a particular A beam

scenario did not appear to align with each other like the previous experimental exam-

ple. It is not yet fully understood why the variance exists here. However above 37Hz all

transmissibilities calculated for either A beam showed good agreement, all displaying

invariance. It was found in both experimental examples that the operational force and

response transmissibilities were almost identical, appearing closer to each other than

the mobility-based ones. This is expected, as the operational force transmissibility

cannot be directly measured and can only be calculated when taking the transpose

of the operational response transmissibility. The mobility-based force transmissibility

has slightly more variation to the response transmissibility because you do not need

to determine it from the transpose of the mobility-based response transmissibility. You

can measure the transposed mobility terms, by applying the external force at the op-

posite DoF. For example in Eq.4.23, one of the two mobility terms to determine Tf,b
cb

is YCcb
, which uses an external force applied at b. Meanwhile for its related response

transmissibility Tr,c
bc , the mobility term YCbc

must be measured; using an external force

applied at the interface c instead. Another test on invariance was also made in both

experiments by comparing force and response transmissibilities that are calculated

in opposite ways. One example being Tr,c
bc , determined using operational responses

and with beam 2 as component A, and plotted against Tf,b
cb that was calculated using

mobilities and beam 1 as A. It was observed in both experimental examples that the

two transmissibilities are very similar to another. Therefore it is strongly indicated that

yielding a transmissibility by opposite means of measurement to its related transposed

counterpart will show invariance.

Observation of the force transmissibilities illustrated in Fig.4.40 confirmed that when a

transmissibility is calculated across the A and B without including any c DoFs, it will
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have some magnitude ( Tf,a
ba ). It was observed for the mobility-based transmissibilities

of Tf,a
da , that if the c DoFs are included with the b DoFs, then the magnitude will be near

0 as long as the interface c is completely characterised. Additionally, if the interface

description is incomplete, then the magnitude will be higher and for the mobility defini-

tion quite close to Tf,a
ba . For the operational versions of Tf,a

da , the incomplete interface

version did have a value much larger than complete case. However when calculating

the difference-based TICC metric, there was little difference to distinguish the two in-

terface scenarios because the magnitude of Tf,a
ba was so large, that their differences to

it were quite similar. For the mobility-based transmissibilities there were some similar-

ities to the original ICC outlined in Section 2.8.3. A value of 1 was seen consistently

for the complete interface transmissibilities, while the incomplete version dipped below

1 for the vast majority of the frequency range. A difference to the ICC is that at some

frequencies the incomplete interface transmissibilities rise above 1. At these points

the incomplete transmissibility magnitude is greater than the transmissibility with no

interface included, and suggests some amplification. In a future study, correlation and

coherence based metrics will be explored.

158



Chapter 5

Operational round-trip method

In this chapter the ‘Operational round-trip’ (ORT) method is introduced, which builds

upon the already established Round-trip (RT) method. The ORT enables a mostly-

operational approach for predicting a point or transfer mobility, with the main focus of

this thesis on the former. The goal of developing the RT method for an output-only

scenario is for its applicability to industrial cases. The original round-trip is a highly

accurate vibro-acoustic prediction method, but the mobilities within the identity require

three FRF measurements, which may limit it to test structures in laboratory conditions.

Within industry the use of ambient excitation is usually preferred, for reasons that are

explained in detail within this chapter. As pointed out previously in Chapter 4, the com-

bination of two mobilities equates to some generalised transmissibility, which also has

an output-only definition by the product of operational responses at two DoF subsets.

It is shown that an alternative formulation of the point mobility RT identity can be ac-

quired by replacing two of the three mobility terms with an operational transmissibility.

Analyses conducted on the ORT identity’s prediction is shown for two experimental ex-

amples. These consist of examining the accuracy of the transmissibility term by com-

paring the FRF-based and operational routes, as well as exploring which conditions

yield the most accurate output-only transmissibility, such as the number of operational

states and the processing of time-blocks for during an operational measurement. Fol-

lowing on from this is a demonstration of the ORT point mobility prediction, which is
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compared to original round-trip and a direct measurement.
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It was previously demonstrated in Chapter 3 the round-trip identity allows a predic-

tion of a point or transfer mobility indirectly. In this chapter, an alternative method of

estimating a point mobility indirectly, termed the Operational Round-trip (ORT), is pre-

sented by including output-only transmissibilities into the RT point identity. Similarly to

previous studies shown in this thesis, the main focus is the prediction of an M × M

driving-point FRF matrix at DoF subset c, which is located at the interface between two

sub-structures A and B. The RT method can be used in situations where the driving-

point FRFs at a connecting interface cannot be measured directly, usually due to a lack

of space meaning apply a roving hammer excitation is impractical. To conduct this indi-

rect measurement, one must apply the controlled and collocated roving hammer exci-

tation to two DoF subsets a and b that are located in adjacent sub-structures, which is

either side of the interface DoF subset c. However some issues can also arise with this

method. It may be impractical to use due to: the structure being so large that applying

a big enough hammer force to yield data with good SNR is difficult, the inability to shut

down the structure operationally, and a large number of responses installed on the

structure; making the excitation process time consuming. In these situations, meth-

ods that simplify the FRF measurement process are usually sought after, especially

if they utilise ambient forces (Farrar and III [1997] Orlowitz and Brandt [2017]) over

roving hammer excitations. Methods proposed before the RT method synthesised the
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M ×M interface matrix from only a single column (modal shape extraction technique

using a controlled excitation at a single response within c instead of all DoFs within

the subset) as demonstrated by Ashory [1998] Ashory [1999] Silva et al. [2000] Ewins

[1980] Maia et al. [1997]. These modal extraction methods are possible if applying an

excitation to one DoF within the subset is possible, but usually this is not the case for

mounting points of equipment within industry. Another method is System Equivalent

Model Mixing (SEMM) that was outlined previously in Section 2.5.2. By mixing mea-

sured FRFs of a limited DoF-space from an experimental model, and the increased

DoF-space of an equivalent numerical model, a resultant hybrid model is formed which

allows the prediction of FRFs at the additional DoFs that are not available in the exper-

imental model. This method is promising but does require the numerical model being

a highly accurate representation of the experimental model. While the original RT

method does have some problems with its applicability to large industrial structures, it

is highly accurate in its in-situ prediction of the point mobility YCcc, and it is strongly

believed that the problems surrounding it applicability to large industrial structures can

be easily addressed by the inclusion of output-only transmissibilities into the RT point

mobility identity. The reformulation of the RT point identity is derived in detail firstly

within Section 5.1. In essence, the alternative definition is possible by replacing two of

the three mobility terms in the RT identity with an inverted transmissibility. Alluded to

by Moorhouse and Elliott [2013] as well as demonstrated in Chapter 4, the product of

two mobilities equates to some transmissibility, which may also be determined by op-

erational velocities and no force reference. An important feature of transmissibilities is

that they are ‘invariant’ (Meggitt and Moorhouse [2020b]), a property that was investi-

gated in the previous chapter and informs how the transmissibilities in the ORT identity

should be applied correctly. It is essential that the transmissibility term within the ORT

point identity is unaffected by an adjacent active sub-structure. This is only possible

when the coupling interface DoFs c applies sufficient blocking, which is achieved only

by a ‘complete’ interface representation (Meggitt and McGee [2024]). It is important

because the operational transmissibility needs to be the sole property of the passive
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component, rather than being attributed to the coupled assembly as a whole. Another

important point to note from the previous chapter in Sections 4.2.2, 4.2.2, and 4.4.2

is the transmissibility of a passive component remains the same regardless of where

the external force is applied within an adjacent active sub-structure. This invariance to

excitation position is crucial to the ORT method, especially if ambient forces of which

no control is possible, are to be used.

To begin, two versions of the ORT identity are dervied in Section 5.1. Each uses ei-

ther a force or response transmissibility that replaces different mobility terms within

the original RT point identity. All experimental examples from Chapter 4, illustrated in

Fig.4.4, 4.10, 4.26, are also used in this study for demonstrating the ORT point mobility

prediction at interface DoF subset c. The experiment models are relatively small and

also set in laboratory conditions, meaning good coherence between DoFs is achieved.

In an industrial setting with large structures, it is likely only partial-coherence will exist.

Thus in Section 5.2, theory on the processing of time data for partial-coherence is pre-

sented. One practical example where the ORT method can be used for fully coherent

responses is within the automotive industry. Measuring YCcc at the mounting points

between a vehicle’s engine and sub-frame can be useful in determining the dynamic

behaviour at certain frequencies. When plotting the point mobility, resonances and

damping characteristics can be identified, which can inform the design of the engine

mounts. Usually installing a sensor close to the mounts is possible, but performing a

roving hammer excitation at the same location is not. In this scenario, the driving-point

FRFs can be predicted indirectly either by the RT method where controlled excitations

are applied at two remote DoF subsets (a and b) on either side of the interface c which

are easily accessible, or alternatively by using operational forces from the engine to

measure the velocities at the interface and remote DoFs using the ORT method. In

Section 5.3 the operational transmissibilities used in the ORT identities are compared

to equivalent mobility-based measurement. It is essential that the output-only trans-

missibilities are similar to the mobility-based formulation to obtain the most accurate

ORT prediction. Additionally, the accuracy of operational transmissibilities is exam-
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ined by exploring different techniques of processing time series data in Section 5.2.

In Section 5.4, predictions via the RT and ORT methods are compared to the direct

measurement YCcc.

The setup of experimental assemblies used in this chapter has not changed from

Chapter 4. They all consist of an active component A that is resiliently coupled to

a passive sub-structure B, a large perspex plate. For the beam-isolator-plate experi-

ment in Fig.4.4, A is a steel beam (pictured in Fig.4.5a) which is coupled to B by one

isolator, while the plate-isolator-plate experiment in Fig.4.10 has A as a steel plate

(pictured in Fig.4.11a) that is coupled to B by three isolators. As previously stated in

the previous chapter, the rigid single interface example from Fig. 4.26 is similar to the

single interface experiment, but the resilient mount has been replaced with a rigid one.

Additionally, there are no responses installed on the active component A, and three

more uni-axial responses have been added to subset b, all facing the vertical z-axis.

At the interface c, sensors are orientated in the three translation planes, illustrated in

Fig.4.27, where the finite-difference method will be used for complete characterisation

of c. For the single-resilient interface and three-resilient interface experiments all of the

accelerometers are uni-axial and orientated in the vertical z-axis for all DoF subets.

The single-resilient interface only has one sensor at c, while there are three c DoFs for

the plate-isolator-plate experiment. During the FRF measurements, excitations were

applied at every sensor position, yielding a 7 × 7 FRF matrix for Fig.4.4, and a 9 × 9

FRF matrix for Fig.4.10. For Fig.4.26, 20 controlled excitations were applied within A,

with the first 9 facing the z axis, 10-18 in the y axis, and 19-20 in x. In addition, 8

excitations were applied at the interface c and 1 each in b (6). After the finite difference

approximation, the FRF matrix of the rigid interface experiment is 12× 32. The opera-

tional tests were also performed using the roving hammer as the source of excitation.

These excitations were applied at the same locations as the FRF test, meaning the

velocity matrices are the same size as the FRF matrices in each experiment. However

instead of a controlled single excitation, impacts were randomised both spatially and

temporally for a 20-second period without any force reference. This method of exci-
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tation, though somewhat artificial, was chosen to ensure that sufficiently independent

states could be generated. The challenges related to realistic operational conditions

are of course crucial to the success of the ORT method and will be considered in future

studies. In this case, the hammer applies a broadband force to the structure, which is

the same as ramping up the frequency of a motor. Furthermore, a motor which is fixed

in location cannot create independent operational states, unlike the hammer method

where forces are randomised in time and space.

5.1 Operational Round-trip theory

Having introduced the round trip theory in Section 3 and generalised transmissibility

concept in Section 2.6.2 and 2.7.2, we are now able to combine both parts and present

the ORT identities. As previously shown, the RT identity is defined by Eq.3.7 and

similarly by transposition it can also be stated as Eq.3.8. Let us consider A as the

active component, and apply a matrix inversion operation to Eq.4.14,

(Tr,a
bc )

−1 = YCcaY
−1
Cba

. (5.1)

Substituting the response transmissibility from Eq.5.1 into the round-trip identity in

Eq.3.8 we have the response-based ORT identity,

YCcc = (Tr,a
bc )

−1YT
Ccb

. (5.2)

Whilst A is in operation, responses are measured at DoFs b and c when calculating

Tr,a
bc (Eq.4.31), thus yielding the following definition,

YCcc = (VbV
−1
c )−1YT

Ccb
. (5.3)

Similarly, for relating the force transmissibility to the RT identity, let us apply an inverse
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operation to Eq.4.19,

(
Tf,a

ca

)−1
= Y−1

Cba
YT

Ccb
. (5.4)

Substituting the force transmissibility from Eq.5.4 into the round-trip identity in Eq.3.8

we have the force-based ORT identity,

YCcc = YCca

(
Tf,a

ca

)−1 (5.5)

Whilst A is in operation, let us recall the transpose relation to a response transmis-

sibility made in Eq.4.26, and the operational transmissibility made in Eq.4.34. Our

force-based ORT identity becomes,

YCcc = YCca(VaV
−1
c )−T. (5.6)

Excitations made at a allow the operational transmissibility Tr,a
bc to be determined,

which is included in the ORT identity shown in Eq.5.2. Meanwhile external forces

at subset b allow Tf,a
ca to be measured in the ORT identity in Eq.5.5. The reason for

this, despite Tf,a
ca indicating a force applied at a, is because Tf,a

ca cannot be measured

directly during an operational measurement. Thus, we calculate the related response

transmissibility Tr,b
ac as shown in Eq.4.26, and then apply a transpose operation to Tr,b

ac ’s

definition in Eq.4.34.

The ORT identities in Eq.5.2 and Eq.5.5 show both response and force transmissibili-

ties applied to the RT identity respectively. In both formulas of the ORT method, only

one FRF-based measurement is required to predict the interface mobility YCcc. This

is very beneficial in an engineering context. Measuring all three mobility terms in the

original RT identity can be costly and time consuming if the test were performed on a

large test rig. The ORT identity allows one to measure the single mobility term once at

a time of convenience, which can then be used in conjunction with measured velocities
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to constantly measure YCcc in real-time.

While the transfer mobility prediction of the RT method is not the main focus of this

study, it is important to note that operational transmissibilities may also be used in its

identity also. To show how this is possible, a derivation of the ORT transfer mobility is

provided below.

Let us recall the RT identity in Eq.3.9. By substituting the response transmissibility Tr,c
ac

in Eq.4.10 into the identity, we yield the following definition,

YCab
= Tr,c

acYCcb
(5.7)

The output-only definition of the transmissibility term is,

Tr,c
ac = VaV

−1
c (5.8)

therefore the ORT definition of YCab
is defined as,

YCab
= VaV

−1
c YCcb

(5.9)

Similarly, we may define the transposed version of the transfer mobility (Eq.3.10) with

an operational transmissibility. Recalling the definitions in Eq.4.16 and 4.17, the com-

binations of these two equations yields a force transmissibility,

Tf,a
ca = Y−1

Ccc
YCca (5.10)

Substituting the above definition for Tf,a
ca into the YCba

RT transfer mobility identity,

YCba
= YT

Ccb
Tf,a

ca (5.11)

This force transmissibility is also used in a form of the point mobility ORT identity in
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Eq.5.6. The ORT form of the transfer mobility prediction is therefore defined as,

YCba
= YT

Ccb
(VaV

−1
c )T (5.12)

5.2 Analysis of output-only transmissibilities using al-

ternative time block processing methods

In this section, the operational transmissibility terms used in the ORT identities are

analysed by altering the time block processing. In the experimental examples pre-

sented in this chapter, responses are coherent and the source of excitation is station-

ary. In this scenario, the method of processing differs to when there is only partial

coherence. Theory of processing time data in this case is covered first, followed by

three methods of time-block processing for coherent and stationary sources.

For example, let us recall the operational definition of Tr,a
bc in Eq.4.31 and reorder it so

Vb is the subject,

Vb = Tr,a
bc Vc (5.13)

By post-multiplying both sides of the above equation by VH
c , the following definition is

obtained,

VbV
H
c = Tr,a

bc VcV
H
c (5.14)

On both sides of this equation an average is taken over N amount of operational states,

but as they cancel out it has been omitted for clarity reasons. The product of velocities

between b and c on the LHS equates to a matrix of averaged cross-spectral densities

⟨Sbc⟩, while on the RHS the velocity matrix at c multiplied by its transposition yields a

matrix of averaged auto-spectral densities ⟨Scc⟩,
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⟨Sbc⟩ = Tr,a
bc ⟨Scc⟩ (5.15)

and therefore,

Tr,a
bc = ⟨Sbc⟩⟨Scc⟩−1 (5.16)

This is one method of calculating operational transmissibilities when only partial co-

herence is achieved between responses. Another method of calculating operational

transmissibilities when only partial coherence is achieved, is to take the velocities for

individual operational states and apply a least squares solution. Thus for a given op-

erational state i, the definition in Eq.5.14 may be rewritten as,

vi
b(v

i
c)

H = Tr,a
bc v

i
c(v

i
c)

H (5.17)

which can also be written as,

Si
bc = Tr,a

bc S
i
cc (5.18)

Thus for this example of processing for partial coherence, the response transmissibility

is defined as,

Tr,a
bc =

(
S1
bc, S2

bc, · · ·
)(

S1
cc, S2

cc, · · ·
)+

(5.19)

In the above equation the multiplication between the cross-spectral density vector and

the pseudo-inverse (denoted + in the superscript) of the auto-spectral vector, means

there is a multiplication of the individual elements for each ith operational state and

added all together. A comprehensive outline of the pseudo-inverse matrix operation

may be found earlier in Section 2.9, and shown mathematically by Eq.2.74. In the

remaining part of this section, the theory behind the time block processing when full

168



CHAPTER 5. OPERATIONAL ROUND-TRIP METHOD

coherence and steady-state source behaviour is achieved will be covered.

(a) Averaging all time blocks

(b) Using every time block

(c) Using a single time block

Figure 5.1: Time block processing methods for an operational measurement.

As detailed earlier in this chapter, the operational forces used in the experimental ex-

amples are simulated by randomly applied excitations (both in time and location). A

roving hammer (which in this case has no force reference) applied an excitation at a

number of randomly chosen points in the active component for a duration of 20 sec-

onds. In conjunction with a Hanning window (66.7% overlap), each time block recorded

is 1 second long, generating 20 time blocks for a given operational excitation. Fig. 5.1

illustrates three different methods of processing the blocks to generate an operational

transmissibility. These are, for each operational state measurement: averaging over

all time blocks, using all time blocks with no averaging, and only using one time block.
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The first method is the most common and generally considered the most accurate.

However, the other methods may also be of interested in the context of computational

limitations, especially in real-time.

Fig.5.1a displays a classical method of processing time domain date in vibro-acoustics

(Janssens et al. [1999]), and presented in the equation below,



⟨v1⟩

⟨v2⟩
...

⟨vk⟩


=



√
⟨S11⟩√
⟨S22⟩
...√
⟨Skk⟩


⊙



e−j0

e−j∠⟨S12⟩

...

e−j∠⟨S1k⟩


(5.20)

For the averaged case, the operational velocity vector is calculated by auto and cross-

spectral densities. Specifically, the cross-spectrum angle for each of the response sig-

nals (k) is allocated to the phase of a corresponding auto-spectrum by an element wise

product ⊙. Additionally, the auto and cross-spectral densities over all time blocks are

averaged. This operational will simply be referred to from onwards as ‘time-averaged’.

This formulation assumes that all elements the velocity vector are coherent with one

another, such that a single column of the cross-spectrum contains sufficient phase

information. It is important to have reliable phase referencing, as it is essential when

dealing with matrix inversions involving complex spectra (Meggitt [2017]). For exam-

ple, for a transmissibility using b and c DoF subsets (say Tr,a
bc ), across N amount of

operational states, the velocity matrices take the form,

Vc = [⟨v1c ⟩|⟨v2c ⟩| · · · |⟨vNc ⟩|] (5.21)

Vb = [⟨v1b ⟩|⟨v2b ⟩| · · · |⟨vNb ⟩|] (5.22)

where the superscript denotes the column vector of velocities measured for a given

operational state. In the second method shown by Fig.5.1b, when no time-averaging

is applied the velocity matrices take the form,
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Vc = [|v1,1c , v1,2c ...v1,20c |v2,1c , v2,2c ...v2,20c | · · · |vN,1
c , vN,2

c ...vN,20
c |] (5.23)

Vb = [|v1,1b , v1,2b ...v1,20b |v2,1b , v2,2b ...v2,20b | · · · |vN,1
b , vN,2

b ...vN,20
b |] (5.24)

where the superscript denotes the particular operational state and time block. In the

final alternative method as shown by Fig.5.1c, only 1 block out of the 20 is chosen for

FFT. In this example we take the 5th block, therefore yielding the following definitions,

Vc = [v1,5c , v2,5c · · · vN,5
c ] (5.25)

Vb = [v1,5b , v2,5b · · · vN,5
b ] (5.26)

In this section, operational transmissibilities used in the ORT identities (Tf,a
ca , Tr,a

bc )

are calculated using the alternative 1 block or all blocks no averaging methods, and

compared against FRF-based transmissibilities as validation. In the case of the Fourier

spectrum being taken for 1 time block (Fig.5.1c), the velocity matrix of the system is

7 × 7 for Fig.4.4 case study, 9 × 9 for Fig.4.10, and 12 × 32 for Fig.4.26. On the other

hand when the Fourier spectrum is taken for all time blocks with no time-averaging

applied (illustrated in Fig.5.1b), the system velocity matrix is 7×160 for Fig.4.4, 7×180

for Fig.4.10, and 12 × 640 for Fig.4.26. This is due to 20 time blocks taken for each

excitation position.
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(a) Tf,a
ca

(b) Tr,a
bc

Figure 5.2: Operational Tf,a
ca and Tr,a

bc calculated using 1 time block or all time blocks
with no averaging. In reference to single-interface test rig, Fig.4.4.
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(a) Tf,a
ca

(b) Tr,a
bc

Figure 5.3: Operational Tf,a
ca and Tr,a

bc calculated using 1 time block or all time blocks
with no averaging. In reference to three-interface test rig, Fig.4.10.

Firstly, let us consider the processing methods for the resilient single-interface experi-

mental example (Fig.4.4), as shown by Fig.5.2. Force and response transmissibilities

are calculated using either the FFT of one block, or all blocks with no time-averaging.

Overall, both transmissibilities show there is good agreement between the alternative

processing methods and the FRF-based route. In Fig.5.2a, both methods perform

well overall, with the 1 block processing showing a few small artefacts below 2kHz.
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However from 3kHz and above this processing method yields a force transmissibility

which increases significantly in noise. While all plots shown an increase in this re-

gion, this processing certainly has the largest increase. In the case of the response

transmissibility in Fig.5.2b, the no average and 1 block cases both appear to show

similar accuracy throughout the whole frequency range. In the region of 3-5kHz, both

methods appear to have comparable amounts of noise. It should be noted however

that the FRF-based transmissibility also shows increased noise in this region as well,

suggesting an inherent error for the measurement of this particular transmissibility on

this experimental example - most likely attenuation based error as shown by analyses

made in the previous chapter.

Let us also consider the resilient three-interface experimental example from Fig.4.10.

For the force transmissibility in Fig.5.3a, the 1 block FFT case shows good agreement

against the FRF measurement up to around 2kHz. Above this there is a large amount

of noise, similar to the previous experimental example in Fig.5.2a. The all blocks no

time-average processing also agrees with the FRF-based one, and shows much less

noise from 2kHz and above. The response transmissibility in Fig.5.3b also shows a

similar trend for both processing methods to the single-interface example. In general

there is good agreement with the FRF-based transmissibility for the majority of the

frequency range, other than an increase in noise for all plots from around 2.5kHz and

above. This further suggests this transmissibility is subject to attenuation based error

for the resilient three-interface experiment as well.
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(a) Using all 20 operational states.

(b) Equating the number of operational states to DoFs in subset c, 6.

Figure 5.4: Operational Tr,a
bc calculated using 1 time block or all time blocks with no

averaging. In reference to rigid-interface test rig, Fig.4.26.

In the above figure, analysis is conducted on the alternative processing methods for

a rigid-interface experimental example (Fig.4.26). The techniques were tested when

over-determined (more operational states than the number of DoFs in subset c), and

when the number of operational states equates the amount of c DoFs. Fig.5.4a indi-

cates both methods are highly accurate when over determined, appearing very much

in line with the FRF measurement. On the other hand, Fig.5.4b suggests when the
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number of operational states is equal to amount of c Dofs, the 1 block technique in

particular is very sensitive to noise across the majority of the frequency range. How-

ever when all blocks with no time-averaging is used, noise is also present but far less

than the 1 block processing. This makes sense, as shown in the previous chapter, that

matrix inversion error occurs when the inverted term is ill-conditioned. Despite their

errors, both processing methods do follow the trend of the FRF-measurement gener-

ally. It should be noted that although the inverse approach is prone to ill-conditioning,

regularisation techniques are usually employed to combat it as demonstrated by Thite

and Thompson [2003a] Thite and Thompson [2003b]. Truncated singular value de-

composition and Tikhonov regularisation techniques were tested during this study, but

did not make an improvement to warrant their inclusion.

5.3 Output-only vs. FRF measurement of transmissi-

bilities used in the ORT identities

In this section, conventional FRF-based transmissibilities are compared with output-

only ones determined using the most commonly used technique previously shown in

Eq.5.20 (multiple block averaging). Importantly, the output-only transmissibilities are

calculated without any force reference, and done so using complex response (velocity)

spectra. To assess the accuracy of the operational transmissibilities in the ORT identity

using the standard time-averaged approach, while also without introducing additional

error/variability due to changing excitation positions, the ‘ambient’ forces were applied

to the same sets of DoFs used in the FRF test. Rather than applying a single excitation,

as done for the FRF test, a series of random excitations (both in time and location

around the the DoF) were applied for a period of 20 seconds using a roving hammer.

176



CHAPTER 5. OPERATIONAL ROUND-TRIP METHOD

(a) Tf,a
ca

(b) Tr,a
bc

Figure 5.5: FRF vs operational Tf,a
ca and Tr,a

bc . In reference to single-interface test rig,
Fig.4.4.
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(a) Tf,a
ca

(b) Tr,a
bc

Figure 5.6: FRF vs operational Tf,a
ca and Tr,a

bc . In reference to three-interface test rig,
Fig.4.10.

In reference to the resilient single-interface assembly, Fig.5.5 shows the operational

transmissibilities agree well with the FRF-based ones, and overall show less noise

and artefacts to the alternative processing methods in Fig.5.2. Both operational and

FRF-based measurements of Tf,a
ca show a small increase in noise between 3-5kHz. In

comparison, Fig.5.5b shows operational and FRF-based Tr,a
bc have a greater amount

of noise in the 3-5kHz region. To calculate this transmissibility (see Eq.4.14), we use
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YCca which traverses the isolator, and so at higher frequencies it is subject to noise.

The inversion of YCca has the effect of amplifying this noise. On the other hand, Tf,a
ca

requires the inversion of YCbc
(see Eq.4.19), which is not affected by the isolators

attenuation.

Let us also consider the three-interface test rig from Fig.4.10. Similarly to the single-

interface experimental example, Fig.5.6 shows good agreement between the output-

only transmissibilities and the FRF-based ones. For the operational transmissibility

in Fig.5.6a, noise begins to emerge from around 2kHz and above. In the next set of

figures, this will be made clear that this is largely attributed to the amount of operational

states used (in this case 3). The FRF-based Tf,a
ca also shows noise in this region but

to a lesser than the output-only one. Meanwhile in Fig.5.6b, the FRF plot shows even

more noise than the force transmissibility from 2kHz and above. As detailed before,

this is due to the amplification of noise when inverting YCca, which traverses the isolator

and is affected by its attenuation. Overall, the operational Tr,a
bc agrees well with the

FRF-based one up to around 2.5kHz.

Figure 5.7: FRF vs operational Tr,a
bc . In reference to rigid-interface test rig, Fig.4.26.

For the rigid-interface experimental example in Fig.4.26, no responses are installed

within A, meaning the measurement of Tf,a
ca is not possible. Thus, all analysis on the
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rigid connection experiment is conducted only on the response transmissibility Tr,a
bc .

Fig.5.7 displays the best agreement between response transmissibilities. While all ex-

perimental examples indicate the operational Tr,a
bc is similar to the FRF measurement,

the increased noise in 3-5kHz region present in the other experimental examples is

not observed for this case. This is because there no isolator is used at the connection

point between A and B, meaning no attenuation based error exists.
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(a) Tf,a
ca

(b) Tr,a
bc

Figure 5.8: Operational transmissibilities Tf,a
ca and Tr,a

bc . Number of operational states
changed incrementally, and compared against FRF-measurement. In reference to
single-interface test rig, Fig.4.4.

181



CHAPTER 5. OPERATIONAL ROUND-TRIP METHOD

(a) Tf,a
ca

(b) Tr,a
bc

Figure 5.9: Operational transmissibilities Tf,a
ca and Tr,a

bc . Number of operational states
changed incrementally, and compared against FRF-measurement. In reference to
three-interface test rig, Fig.4.10.
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Shown in Fig.5.8 are the FRF and operational transmissibilities obtained using an in-

creasing number of operational states (1 from the top sub-figure, 2 in the middle, and 3

in the bottom one). For the single DoF interface experiment considered here, a single

operational state within a should be sufficient to obtain the transmissibility as it equates

to the amount of interface c DoFs (1). However, additional DoFs can be included to

over-determine the problem. For Tf,a
ca shown in Fig.5.8a, using 3 operational states

shows the smoothest plot and most precise transmissibility. When compared to the 1

operational state plot in the top sub-figure, using 3 shows less artefacts in the range

of 1.2-5kHz, as well as better representation of resonances at 3.75kHz and 4.5kHz,

and anti-resonances at 2.95kHz and 3.1kHz. Meanwhile for the operational response

transmissibility used in Eq.5.1, Fig.5.8b shows increasing the number of excitations at

a similarly smooths the plot (to a slightly lesser degree than Fig.5.8a), while also mak-

ing the resonances at 350Hz, 560Hz, and 1.7kHz more intelligible. A key difference to

Tf,a
ca , is that Tr,a

bc shows a much greater amount of noise from around 2.5-5kHz, which

is exacerbated as the number of operational states increases. As the noise floor is

already reached with 1 operational state, additional states will only add more noise.

In the previous chapter, the accuracy of operational transmissibilities was examined

by reducing the number of operational states below the required amount. To calculate

an output-only transmissibility that is line with an equivalent FRF-based measurement,

the number of operational states must be greater than or equal to the amount of inter-

face DoFs c. For the same experimental example in Fig.4.22, Tr,c
b c is calculated using

3 operational states, which equates to the three Dofs within c. This was confirmed to

be in line with an already established invariant FRF-based Tr,c
b c, and was compared

to the same transmissibility when only 1 or 2 operational states were used. It was

indicated by this figure that 1 operational state was insufficient at low frequencies but

reasonable as the frequency increases. When 2 operational states were used the

accuracy was increased at low frequencies, and it was indicated that having 1 opera-

tional state below the required amount would suffice. In this section, we will examine

a similar transmissibility, Tr,a
bc , which is used in the ORT method. In theory the same
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trends should be observed for this transmissibility as well.

Identically to Fig.5.8, Fig.5.9 shows the operational transmissibilities with an increasing

amount of operational states used from top to bottom. It is clear for both Fig.5.9a and

5.9b, when 1 operational state is used, the output-only transmissibilities do not match

the FRF-based ones. In the case of 2 operational states, there are certainly some

inaccuracies but begins to follow the FRF measurement much closer. In the bottom

sub-figures where 3 operational states were used, we achieve the best result and the

operational transmissibilities show good agreement with the FRF-based ones. When

the number of operational states equate to the number of c DoFs, noise increases for

the operational transmissibilities from around 3kHz. For the force transmissibility in the

single-interface case study (Fig.5.8a), noise does not increase as much as the three-

interface example in Fig.5.9a. This is likely due to the matrix inversion of Vc (see Eq.

5.6), as the matrix is now square. Increased noise at three operational states is also

observed in Fig.5.9b, which is also likely for the same reason (see Eq.5.3).

Figure 5.10: Operational Tr,a
bc . Number of operational states used changed incremen-

tally and compared against FRF-measurement. In reference to rigid-interface test rig,
Fig.4.26.
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For the rigid-interface example, the accuracy of the output-only response transmissibil-

ity is analysed when over-determined. In the top sub-figure of Fig.5.10, the operational

states of output-only Tr,a
bc is equal to the number of c DoFs. Once again an increase

in noise can be observed, which is attributed to Vc being square and thus causing

matrix inversion error. This is occurs when a matrix is ill-conditioned, which makes

it very sensitive to input changes when inverted. However when the problem is over

determined, noise is reduced as shown by the middle sub-figure, and even more so in

the bottom sub-figure when the number of operational states is double the amount of

c DoFs.

It was shown in the previous chapter the number of remote responses was changed

in the output-only transmissibility calculation. By adding an extra response, an extra

row is included to the matrix Vb or Va for Tr,a
bc and Tf,a

ca respectively. This has no effect

on the transmissibilities already established. As we already know no changes will take

place to the transmissibilities, no extra analysis is conducted on the remote responses.

On the other hand, adding or removing interface c DoFs will effect the rows of Vc which

does have the effect of changing the operational transmissibilities. The reason being

that the inversion of Vc applies a set of physical constraints, and by adding or removing

c points we alter the blocking constraints, which in turn affects the transmissibility term.

It should be noted that the transmissibilities calculated for all experimental examples

use all available remote and interface responses.

5.4 ORT prediction vs. direct measurement

Now that we have verified the accuracy of the output-only transmissibilities and de-

termined a suitable processing approach, we are able to incorporate them within the

ORT identities shown in Eq. 5.3 and 5.6. We begin by comparing the performance

of both ORT identities and the RT identity for the single interface experiment, fol-

lowed by the three resilient-interface experiment, and finally the rigid-interface exam-

ple. Each result is plotted alongside the directly measured YCcc, obtained from an FRF
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test. In Section 5.3, transmissibilities in the ORT identities were shown to be accurate

when the amount of operational states was equal to the number of c DoFs, and even

more so over determined. Therefore in this section, the ORT predictions for single

resilient-interface and rigid-interface examples are over determined, while the three

resilient-interface experiment equates the number of operational states to amount of c

DoFs. Additionally, no difference in accuracy was found when the amount of remote

responses changed, therefore all are included for all three experimental case stud-

ies. The mobility terms in the ORT and RT identities use all excitations and remote

responses available.
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(a) Round-trip prediction vs. direct measurement.

(b) Operational Round-trip prediction using Tf,a
ca vs. direct measurement.

(c) Operational Round-trip prediction using Tr,a
bc vs. direct measurement.

Figure 5.11: RT & ORT predictions vs. direct YCcc for single resilient-interface test rig,
Fig.4.4.
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(a) Round-trip prediction vs. direct measurement.

(b) Operational Round-trip prediction using Tf,a
ca vs. direct measurement.

(c) Operational Round-trip prediction using Tr,a
bc vs. direct measurement.

Figure 5.12: RT & ORT predictions vs. direct YCcc for three resilient-interface test rig,
Fig.4.10.
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In the single resilient-interface experiment, Fig.5.11a generally shows good agreement

between the RT identity and direct YCcc up to 3kHz. A series of small artefacts begin to

emerge from 310Hz, and increase in number and magnitude from 1.9kHz. These are

likely due to inconsistencies in the measured FRF matrices, especially YCba
, whose

inverse must be taken. The accuracy of the RT prediction begins to decrease as noise

increases from 3-5kHz. In Fig. 5.11b, the inclusion of operational force transmissibility

Tf,a
ca into the RT formula yields a point mobility prediction with less artefacts and noise.

Similarly to Fig.5.11a noise also increases from 3kHz, but to a lesser degree. The

accuracy of the Tf,a
ca ORT prediction falls from 2.75kHz. Unlike Fig.5.11a artefacts

do not emerge between 310Hz-2.75kHz. The operational response transmissibility

version of the ORT identity plotted in Fig.5.11c also shows good agreement to the

direct YCcc, displaying a similar overall accuracy to its force transmissibility counterpart.

Equivalently to Fig.5.11b the amount of artefacts are less than the RT prediction. All

YCcc predictions appear to be most precise between 100Hz-2kHz, with the exception of

the anti-resonance at 230Hz for Fig.5.11c. The Tr,a
bc ORT prediction shows the largest

decrease in accuracy from around 2.5kHz, which as stated previously, is due to the

effect of isolator-induced noise.

For the three resilient-interface experimental example, we present the RT & ORT pre-

dictions of YCcc in Fig.5.12. Similarly to the single resilient-interface example, Fig.5.12a

generally shows good agreement between the RT prediction and direct measurement

up to around 1kHz. Noise begins to affect the RT prediction from 2.5kHz and above.

On the other hand, the Tf,a
ca ORT prediction shows similar agreement overall with the

direct measurement. Correspondingly to the RT prediction, the accuracy of the ORT

begins to decrease from 1kHz and above. Noise also occurs from 2.5kHz, although

with increased magnitude compared to the RT method. For the Tr,a
bc ORT prediction in

Fig.5.12c, we see a similar performance in the 10Hz-1kHz range. Once again, accu-

racy begins to decrease above 1kHz, with noise appearing from 3-5kHz.
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(a) Round-trip prediction vs. direct measurement.

(b) Operational Round-trip prediction using Tr,a
bc vs. direct measurement.

Figure 5.13: RT & ORT predictions vs. direct YCcc for rigid-interface test rig, Fig.4.26.

Earlier in this chapter is was explained that the ORT identity using Tf,a
ca cannot be used

for the rigid-interface experimental example, as there are no responses installed on

A. Therefore, only the Eq.5.3 ORT identity can be compared against the RT prediction

and direct YCcc. Fig.5.13a appears as a highly accurate prediction for this experimental

example across the full frequency range. Very little noise and virtually no artefacts are

present for the RT method. The ORT prediction using Tr,a
bc also agrees well with the

direct measurement. However, between 10-110Hz artefacts are present and accuracy
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is slightly reduced. In the range 110Hz-2.5kHz the ORT prediction is highly accurate

and very few artefacts or noise can be observed. From 2.5kHz and above noise and

artefacts increase again, although the general trend of the prediction appears to follow

the direct YCcc.

5.5 Discussion

In this chapter, an operational extension of the RT identity termed the ORT identity

was derived and unveiled as a credible alternative. By combining a remote transfer

mobility and operational response measurements whilst a coupled assembly is ex-

cited by unknown internal forces, the point mobility at an interface c can be predicted

accurately.

In Section 5.2 the alternative methods of processing time domain data is analysed:

taking the FFT of 1 block, or all blocks without time-averaging. Overall across all

experimental examples, these techniques produced operational transmissibilities that

agreed well with the FRF-based measurements. Although the 1 block processing was

prone to increased noise at higher frequencies of Tf,a
ca , the overall accuracy achieved

was sufficient. All techniques for determining Tr,a
bc on the resilient interface experiments

had shown to be accurate, with increased noise at higher frequencies attributed to

attenuation based error. This was further proven as the rigid-interface experimental

example did not show noise in the same frequency range (3-5kHz). Additionally for

the rigid-interface example, both processing techniques were highly accurate when

heavily over-determined. As expected when the amount of operational states equated

the number of DoFs in c, increased error in the transmissibility was visible - attributed

to the matrix inversion of Vc which is ill-conditioned. In general, the all block no time-

averaging processing was the more accurate alternative across the case studies, but

not as accurate as the standard time-averaged approach shown in the next section.

What this part of the study has shown is that the alternative approaches are promising,

and may serve as an alternative when computational power is limited. This can be
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important in real-time calculation of operational transmissibilities, and is an area of

future work.

In Section 5.3 it was found for the single resilient and rigid interface experiments that

over-determining, i.e. increasing the number of operational states above the number

of interface DoFs c, yielded the most accurate operational transmissibility when com-

pared to the FRF-based measurement. In the three resilient-interface test rig, it was

shown when the number of operational states was the same as the amount of c DoFs

(3 in this example), there was good agreement with the FRF-based transmissibilities,

but caused an increase in noise which was attributed to a matrix inversion error of

an ill-conditioned Vc matrix. Further indicating the most accurate means of using the

operational transmissibilities in the ORT identities was to over-determine the problem.

Having a square Vc matrix would still yield a sufficiently accurate prediction but at the

cost of small increase in error.

It was found for all case studies in Section 5.4, that there is good agreement between

the ORT method and the directly measured point mobility. For the single resilient-

interface experiment, both versions of the ORT identity displayed fewer artefacts over-

all and slightly less noise than the RT method in higher frequencies. All prediction

methods displayed a drop in accuracy from roughly 2.5kHz upwards, with the response

transmissibility ORT identity showing the least accurate prediction in this region due to

the effect of isolator-induced noise. For the three resilient-interface example, all predic-

tion methods displayed a similar performance, where the accuracy began to decrease

from 1kHz upwards across the board. In both of these resilient interface experimental

examples, noise occurs from roughly 2.5 - 5kHz. For the rigid-interface experiment,

the force transmissibility ORT identity could not be used as there were no responses

installed on A, thus only a comparison between the response transmissibility ORT

and the RT could be made. It was found for this case study that the RT method was

the most accurate, showing virtually no noise or artefacts. The Tr,a
bc ORT identity did

also accurately prediction YCcc but was contaminated by noise and artefacts at high

frequencies.
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While the ORT method still requires one mobility to be measured, the inclusion of op-

erational transmissibilities indicates this is potentially more convenient in an industrial

setting. There are fewer mobility terms to be measured via roving hammer, while also

having identical accuracy to the RT method in the resilient interface case studies. For

rigid interface assemblies within industry it is indicated that the ORT can predict the

driving-point interface FRFs but at the cost of noise and artefacts at high frequencies.

One possible application for the ORT method is in real-time prediction. The single

mobility term in the identity can be measured once beforehand, and used in conjunc-

tion with real-time measured responses to monitor the point mobility YCcc. However,

further investigation is needed before definitively proving that possibility.
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Chapter 6

Identification of transmission paths &

unknown bridges

In this chapter the singular values (SVs) of mobilities and transmissibilities, obtained

using the SVD, are examined to detect transmission paths between source and re-

ceiver sub-structures using the “bottleneck” effect. Additionally, SVs are also examined

in detecting an unknown mechanical bridge which circumvents the bottleneck. The

theory, which is outlined in the beginning of this chapter, suggests observing the SVs

of output-only transmissibilities may be possible in achieving the detection of known

transmission paths and unknown mechanical bridges. This is particularly beneficial

for industrial applications. This is firstly tested on a mass-spring model, and finally a

experimental example.
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One of the main implementations of the SVD within the field of vibro-acoustics is noise

suppression, particularly in OMA (Araújo and Laier [2014]). Its uses have been ex-
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tended over the years into other applications, such as identifying modes within in a

system and determining which of those has the greatest energy contribution (Barton

[2023] Barton et al. [2023]). In this chapter another application of the SVD is introduced

for the context of coupled assemblies; identifying known transmission paths and any

changes due to mechanical bridges using a bottleneck effect. The bottleneck effect

is a well known phenomenon in the science and engineering, it refers to a situation

where the performance, capacity, or throughput of a system is constrained or limited

by a single component or process. This component or process, known as the “bottle-

neck” may either be of concern, such as the in the context of computing, but in others

it may be sought after in order to determine the maximum efficiency or output of the

system, much like the narrow neck of a bottle restricts the flow of liquid. In this chapter

and in the context of vibro-acoustics, the bottleneck effect can be used for restricting

multiple excitation mechanisms of a source to a limited subset of interface DoFs at a

connection point, thus allowing the identification of known transmission paths between

source and receiver sub-structures. In an industrial application, the radiated sound

measured to a receiver may be greater than predicted, despite appropriate measures

taken in attenuating sources (such as compressors or generators) with isolators. One

possibility is this is caused by an unknown mechanical bridge between source and re-

ceiver, circumventing the attenuation measures. If the size, weight and space around

the source allows, it may be possible to visually inspect and dismantle the source,

but this may take time. As shown throughout this thesis, output-only methods are

increasingly sought after in industrial applications. In the method shown in this chap-

ter, an experimental alternative which seeks to detect known transmission paths and

any unknown mechanical bridges via an output-only method is presented. However

some analysis is conducted before attempting to reach that possibility, by presenting

an EMA technique. In the EMA route, singular values (SVs) are analysed from the

SVD applied to mobilities on a simple mass-spring system. Theory of the method is

outlined in greater detail in the upcoming section, but in essence the amount of SVs for

mobilities and transmissibilities are observed to see if there is a correlation between
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the restricted amount of interface DoFs and mechanical bridges. The findings of the

initial study are used to validate the method in a more “manual” sense. As the end goal

is for the method to work in an output-only case, analysis of SVs is firstly conducted

on FRF-based transmissibilities, and then finally operational transmissibilities. In the

final part of the study, the method is tested on an experimental example.

6.1 Theory

For the detection of transmission paths and mechanical bridges, we start by consid-

ering a coupled assembly consisting of a source and receiver sub-structure which are

rigidly connected at a single point serving as the bottleneck.

Figure 6.1: Illustration of experimental setup to detect transmission paths and bridges.

In the above figure, an example of a coupled assembly setup to analyse transmission

paths is illustrated. Component A represents a source that contains multiple force

mechanisms, coupled to a receiver sub-structure B via a rigid point connection. At

the connection point between the sub-structures lies a subset of interface DoFs, c.

While the source A will have multiple excitation mechanisms, the calculated responses

in the receiver b are due to forces exerted by the c DoFs. Essentially, the b DoFs

are not directly affected by the source excitations at DoF subset a and have been
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’bottlenecked’ by the c DoFs. The question that this chapter seeks to answer is: if we

examine the SVs of either a mobility or transmissibility, can we determine how many

transmission paths exist between the c DoFs and the responses at b? Additionally, if

this is possible, will an extra SVs appear when a mechanical bridge exists? To answer

these questions, the proposed method is initially applied to mobilities. Firstly, we begin

with the definition of the SVD to some mobility Y,

Y = UΣVH (6.1)

As pointed out previously in Section 2.9, a matrix where the SVD is applied may be

either square or rectangular. Let’s assume for this example that Y is rectangular and is

M ×N . Σ will therefore also be rectangular with the size M ×N , containing the SVs σ

ordered in descending order along its diagonal, σ1 > σ2 > σ3 > . . .. All other elements

within Σ have a value of 0. The size of U will be M × M , consisting of left singular

vectors ui. On the other hand, V is N ×N and made up of right singular vectors vi. U

and V are both unitary (square and complex matrices) and of the form,

U =
[
u1,u2 . . .uM

]
(6.2)

V =
[
v1,v2 . . .vN

]
(6.3)

One explanation of what the SVD does, is that it splits up Y into a sum of ordered

single rank r matrices Ai,

Y =
r∑

i=1

Ai =
r∑

i=1

σiuiv
H
i (6.4)

Ai matrices corresponding to first and highest value SVs represent the most important

contributions within the force/velocity space. In relation to the detection of transmis-
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sion paths, they essentially reveal how many independent modes or DoFs contribute

to the coupled assemblies response for a given source excitation. For example, if

there are 4 interface DoFs in c, then at most there are 4 independent transmission

channels through the interface. The rank r in turn will be limited, which means up to

4 dominant SVs are obtained. Ai matrices corresponding to the final and smallest

value SVs represent the least important contributions, which will most likely be noise.

If a mechanical bridge is made between the source and receiver that circumvents the

bottleneck, a new transmission channel is created. I.e. the additional path allows an

energy transfer from the source, independent of c. This results in an additional domi-

nant SV, because r has been increased. In the next section, this theory will be applied

to three coupled mass-spring models, each being almost identical to one another, but

increasing in the number of c DoFs. This part of the study is to determine if the theory

works on the most ideal system. The first mass-spring system will be the simplest,

containing only a single c interface DoF, and will have the SVs of mobilities YCba
, YCxa,

YCbc
analysed. While this is the not the end goal, it is important to establish whether

the theory works in EMA sense before the eventually moving onto an output-only tech-

nique. This is because of the controlled conditions set by a roving hammer test, and

reduces the likelihood of experimental errors occurring, therefore yielding more accu-

rate results. Following this, the SVs of mobility-based transmissibilities Tr,a
ba , Tr,a

bc , Tr,a
da

are analysed on a mass-spring system with two c DoFs, and finally the operational

variants on a three c DoF system. These transmissibilities are defined as,

Tr,a
ba = YCba

Y−1
Caa

= VbV
+
a (6.5)

Tr,a
da = YCda

Y−1
Caa

= VdV
+
a (6.6)

Tr,a
bc = YCba

Y−1
Cca

= VbV
+
c (6.7)
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Subscripts denoted d are defined as the combined subsets of b and c. It should

be noted that the inverted operational velocity matrices in the above equations are

denoted with a pseudo-inverse. In Chapter 4, part of the analysis conducted sug-

gested over-determination yields more accurate operational transmissibilities. This

was demonstrated further for transmissibilities used in the ORT identities (Section 5.3).

In most industrial settings OMA is preferred, meaning transmissibilities will most likely

be calculated using operational responses. In this instance, complex internal force

mechanisms of the source can be bottlenecked by the c DoFs. This is certainly more

practical than applying multiple controlled roving hammer impacts on the source, which

means having to shut down the assembly (not always possible). One goal of this study

is to determine whether the theory mentioned can be applied to industrial scenarios

using output-only transmissibilities.

6.2 Mass-spring model example

To begin analysing the detection of transmission paths and unknown bridges, the most

fundamental model is constructed - a mass-spring model system. In this section three

are constructed; In the first only 1 c DoF exists, followed by 2 c DoFs, and finally

3 c DoFs. In the 1 c DoF model, the SVs of YCba
, YCbc

, and YCda
are examined.

In the next model the analysis of SVs for those mobility terms and transmissibilities

Tr,a
ba , Tr,a

da , Tr,a
bc calculated via FRFs and output-only responses is conducted. Finally

in the 3 c DoF example, the mobilities are omitted and only the SVs of the mentioned

transmissibilities will be analysed via FRFs and operational responses, for reasons

that will be explained later on. Additionally, for each model a bridge between A and B

is made using a spring. The question that these mass-spring model examples seek to

clarify is: do any of these mobilities or transmissibilities show the number of dominant

SVs corresponding to the amount of transmission paths?
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Figure 6.2: Single DoF interface mass-spring system.

Fig.6.2 has 1 interface c DoF. Within the source A lies 7 masses where the excitation

DoFs are applied. In the receiver B there are 4 masses where the responses are

measured.

Mass (kg) Spring (N/m)
m1 −m7 0.03 k1 − k14 1× 105

m8 0.01 k15 − k20 5× 103

m9 −m10 0.03 k21 − k23 1× 105

m11 0.05 k24 1.5× 105

m12 0.015 k25 1× 105

k26 5× 104

Table 6.1: Single DoF interface Mass-spring system values. Damping ratio ζ = 0.05.

In theory when there is no bridge circumventing the bottleneck, the amount of dominant

SVs should be 1 as it will correlate with the amount of transmission paths from the

bottleneck DoF subset c. Additionally when a bridge does exist (as shown by spring

k26), there will be 2 dominant SVs. One question of this study is: what kind of mobility

or transmissibility is inline with this theory? We will begin to answer this question, by

firstly observing the SVs of YCba
.
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(a) No bridge (b) Bridged

Figure 6.3: Singular values of YCba
for a single c DoF interface mass-spring system.

YCba
is analysed with and without a bridge in Fig.6.3b and 6.3a respectively. The latter

figure displays the SVs when the bridge, spring k26, is not present, while former shows

the SVs when bridge k26 is connected between the source DoF m1, and receiver DoF

m13. In this case, the number of dominant SVs of YCba
correspond to the amount of

transmission paths through the bottleneck (1), and also when the bridge is present (2).

In the next set of figures, the SVs of YCda
and YCbc

are analysed.

(a) No bridge (b) Bridged

Figure 6.4: Singular values of the mobility YCda
for a single DoF interface mass-spring

system.
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(a) No bridge (b) Bridged

Figure 6.5: Singular values of the mobility YCbc
for a single DoF interface mass-spring

system.

The amount of dominant SVs for YCda
in Fig.6.4 also correlate to the number of trans-

mission paths. There is 1 dominant SV when there is no bridge, and 2 when there is.

For Fig.6.5, YCbc
only displays 1 SV, even if a bridge is present or not. As YCbc

is a

4×1 matrix, the size of the singular value matrix Σ will be the same. The number of σ’s

within this matrix corresponds to its smallest dimension, which in this case is due to the

single c DoF. Therefore, only one σ is present in the Σ matrix for YCbc
. This suggests

that observing a mobility or transmissibility which uses the bottleneck c DoFs, may not

be suitable. In order to observe the correct number of transmission paths and unknown

bridges, the amount of SVs within Σ must be greater than number of DoFs within the

bottleneck subset c. This is investigated further in the next mass-spring model where

2 c DoFs will be used. As YCbc
in the next example will be 4 × 2, it is expected there

will only be 2 SVs.

202



CHAPTER 6. IDENTIFICATION OF TRANSMISSION PATHS & UNKNOWN
BRIDGES

Figure 6.6: Two DoF interface mass-spring system

As shown in the above figure, an additional c DoF has been added to the interface

subset. The mass and spring values for this system are given in the table below.

Mass (kg) Spring (N/m)
m1 −m7 0.03 k1 − k14 1× 105

m8 −m9 0.01 k15 − k20 5× 103

m10 −m11 0.03 k21 − k23 1× 105

m12 0.05 k24 1.5× 105

m13 0.015 k25 1× 105

k26 5× 104

Table 6.2: Two DoF interface Mass-spring system values. Damping ratio ζ = 0.05

It is expected the number of dominant SVs will increase by one in both bridged and

non-bridged scenarios for Yba and Yxa as shown in the previous example. Σ for both

of these quantities will be 4×7 and 6×7 respectively. As the number of σ is larger than

the amount of bottleneck c DoFs, in theory there should be a number of dominant SVs

corresponding to the amount of transmission paths. In the presence of a bridge (k26), Σ

will not increase, but as shown by the previous example, a small SV will turn dominant

due to the increased energy transfer from source to receiver. For the remaining mass-

spring models, the SVs of transmissibilities calculated via mobilities and operational

responses will be analysed in addition to the mobilities just covered in the 1 c DoF
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example. It should be noted that the output-only transmissibilities were calculated by

simulating operational forces to the source sub-structure. As we have already outlined

previously, such as in Section 4.1.4, an operational force matrix will be constructed

due to N amount of linearly independent states, which in this case is equal to the total

number of DoFs in the coupled system (13 in the 2 c DoF model, and 14 in the 3 c DoF

model). Therefore for the upcoming model, the operational force matrix F is 13 × 13.

As we’re only applying the operational forces to a DoFs, the first 7 rows of F have a

random value between 0-1, while the remaining rows (representing DoFs b and c) have

values of 0.

(a) No bridge (b) Bridged

Figure 6.7: Singular values of the mobility YCbc
for a double DoF interface mass-spring

system.

(a) No bridge (b) Bridged

Figure 6.8: SVs of mobility-based Tr,a
bc , for a double c DoF mass-spring system.

204



CHAPTER 6. IDENTIFICATION OF TRANSMISSION PATHS & UNKNOWN
BRIDGES

(a) No bridge (b) Bridged

Figure 6.9: SVs of output-only Tr,a
bc , for a double c DoF mass-spring system.

Firstly, we will examine the mobility and transmissibility between subsets b and c, YCbc

and Tr,a
bc . In Fig.6.7 2 SVs are visible when no bridge exists, which correlates with the

number of transmission paths to B. However, as expected, only 2 SVs are visible for

the bridged case. The SVs of Tr,a
bc , calculated via mobilities or operational responses in

Fig.6.8 and 6.9 respectively, also show just 2 in the bridged case as well. Looking back

to the single interface model, YCbc
displayed the same trend, where the non-bridged

and bridged cases showed just 1 SV. This is because of the dimensions of Σ for the

quantities using the bottleneck DoFs c. As outlined earlier in this section, when using

the reduced bottleneck DoFs, the amount of SVs will correspond to how many DoFs

are in c, which is not suitable for detecting a bridge. For this possibility, the smallest

dimension of Σ must be greater than c. This is why YCba
and YCda

in the previous

mass-spring model were able to account for the extra dominant SV when a bridge was

present - the smallest dimension of these matrices is much greater c, i.e. σn > c. In

the following figures, the SVs of the mobility and transmissibility between DoFs b and

a (YCba
and Tr,a

ba ) are examined.
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(a) No bridge (b) Bridged

Figure 6.10: SVs of YCba
, for a double c DoF mass-spring system.

(a) No bridge (b) Bridged

Figure 6.11: SVs of mobility-based Tr,a
ba , for a double c DoF mass-spring system.

(a) No bridge (b) Bridged

Figure 6.12: SVs of output-only Tr,a
ba , for a double c DoF mass-spring system.
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In Fig.6.10 the dominant SVs of YCba
corresponds to the number of transmission paths

to the responses b in both bridged and non-bridged cases. Similarly, for the mobility-

based and operational Tr,a
ba shown in Fig.6.11 and 6.12 respectively, 2 dominant SVs

are present in the non-bridged case, and 3 when a bridge exists. While the magnitudes

of the dominant SVs for YCba
are slightly reduced to Tr,a

ba , the trends are very similar.

So far for the 1 and 2 c DoF mass-spring models, YCba
and Tr,a

ba are correlating with the

amount of transmission paths to the responses in b, for both bridged and non-bridged

scenarios. In final set of figures for the 2 c DoF mass-spring model, we will observe the

SVs of the mobility and transmissibility between the combined subset d and a, YCda

and Tr,a
da .

(a) No bridge (b) Bridged

Figure 6.13: SVs of YCda
, for a double c DoF mass-spring system.

(a) No bridge (b) Bridged

Figure 6.14: SVs of mobility-based Tr,a
da , for a double c DoF mass-spring system.
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(a) No bridge (b) Bridged

Figure 6.15: SVs of output-only Tr,a
da , for a double c DoF mass-spring system.

For the mobility YCda
, Fig.6.14 shows 2 dominant SVs when there is no bridge, and

3 when there is a bridge. This same trend is also visible for the mobility-based and

output-only transmissibility Tr,a
da . So far the dominant SVs of YCba

, Tr,a
ba , YCda

and Tr,a
da

for the 1 and 2 c DoF models have corresponded to the number of transmission paths

to b responses in both bridged and non-bridged cases. Furthermore, across both

mass-spring examples the dominant SVs of a mobility and transmissibility using the

same DoF subsets appear very similar to each other. Therefore in the next mass-

spring model, the SVs of the mobilities will be omitted. While the quantities between

subsets b and c (YCbc
and Tr,a

bc ) do show the same amount of SVs as transmission

paths in the non-bridged cases, an extra SV is not visible for when there is a bridge

across the mass-spring examples presented. A main focus of this study is being able

to detect a mechanical bridge between the source and receiver sub-structure. This

means using these quantities isn’t helpful for this task, and thus will also be omitted

from the analysis of the 3 c DoF mass-spring model.
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Figure 6.16: Triple DoF interface mass-spring system

The dominant SVs of Tr,a
ba and Tr,a

da have so far corresponded with the transmission

paths to b responses, from the point of view of the interface c DoFs. For the 3 c DoF

mass-spring model, the B sub-structure has an increased amount of masses so that

the bottleneck remains at the interface DoFs. The mass and spring values for the

model presented in Fig.6.16 are as follows in the table below.

Mass (kg) Spring (N/m)
m1 −m7 0.03 k1 − k14 1× 105

m8 −m10 0.01 k15 − k26 5× 103

m11 −m17 0.03 k27 − k40 1× 105

k41 5× 104

Table 6.3: Three DoF interface Mass-spring system values. Damping ratio ζ = 0.05.
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(a) No bridge (b) Bridged

Figure 6.17: SVs of mobility-based Tr,a
ba , for a triple c DoF mass-spring system.

(a) No bridge (b) Bridged

Figure 6.18: SVs of output-only Tr,a
ba , for a triple c DoF mass-spring system.

For the 3 c DoF model, the dominant SVs for both mobility-based and output-only

measurements of Tr,a
ba correspond to the number of transmission paths for non-bridged

and bridged cases. In Fig.6.17a there are 3 dominant SVs, and 4 for the bridged case

in Fig.6.17b. Identically, as shown in the below figures, the number of dominant SVs of

mobility-based and operational Tr,a
da also correspond to how many transmission paths

exist for bridged and non-bridged scenarios.
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(a) No bridge (b) Bridged

Figure 6.19: SVs of mobility-based Tr,a
da , for a triple c DoF mass-spring system.

(a) No bridge (b) Bridged

Figure 6.20: SVs of output-only Tr,a
da , for a triple c DoF mass-spring system.

This mass-spring system study has indicated out of all quantities across the mass-

spring models presented, the ones that use b and a, or d and a DoF subsets, have cor-

related to the number of transmission paths from c. Additionally these transmissibilities

have displaying an extra dominant SV when a bridge circumventing the bottleneck ex-

ists. Furthermore, it is suggested by this study that using operational transmissibilities

between these subsets is a viable option in the detection of transmission paths and

unknown bridges. This is tested for an experimental model in the next section.
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6.3 Experimental model example

In this section, the SVs of mobilities and operational transmissibilities used in the

mass-spring model examples are analysed on an experimental model.

Figure 6.21: Top-down diagram of experimental example setup. Vertical bar A is the
source component, rigidly connected at a point to the horizontal bar B which is the
receiver.

In Fig.6.21, a 2D top-down diagram of the experimental coupled assembly used is

presented. It consists of two steel beams rigidly connected at a single point. The A

beam is a source sub-structure, while B is a receiver component. During the FRF test,

18 controlled excitations were applied: 8 in the z-axis, 2 in the y-axis, and 8 in the

x-axis. During this test, the source had no sensors installed. On the receiver beam

there are 8 uni-axial responses, denoted b: 4 facing the z-axis, and 2 in the x and y

axes. At the rigid connection lies 7 uni-axial responses, denoted as the interface DoFs

c. Excitations were applied in the same way as previous operational measurements

shown in this thesis in order to conduct the finite difference approximation. This is

shown in Fig.4.27. However, it was found during this study that applying the finite

difference to the interface yielded SVs that did no correspond with trends of bridged

and non-bridged cases in the mass-spring model. Thus the results shown for this

experimental study were not processed with the finite difference method. During the
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operational measurement, forces were applied using an impact hammer in a random

fashion for a 20 seconds without a force reference, and at the exact same 18 locations

during the FRF measurement. b responses and the c DoFs are in the same location.

During the operational measurement, 4 uni-axial sensors were installed in A, denoted

as subset a. For both tests, a bridge was made between the source and receiver by

super glueing a thin aluminium beam across. To begin, we will analyse the SVs of

YCba
.

(a) No bridge (b) Bridged

Figure 6.22: SV magnitudes of YCba
, for an experimental assembly.

For this experimental study, SV analysis is conducted differently to the mass-spring

examples. This is because, as demonstrated in Fig.6.22, it is more difficult to discern

the differences between bridged and non-bridged SVs. In the mass-spring model,

there is a clear distinction between dominant and non-dominant SVs. This is expected

with an idealised model. This however, does not translate to the experimental structure

presented in this study.
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(a) No bridge (b) Bridged

Figure 6.23: Normalised SV magnitudes of YCba
, for an experimental assembly.

To analyse the small differences between bridged and non-bridged tests, the SVs are

normalised. This is carried out by a summation of all SV magnitudes and dividing

each SV by the total magnitude. Each is then multiplied by 100 to give the percentage

contribution to the total magnitude, as shown by Fig.6.23. The smallest singular values

show a small increase in magnitude between tests. However, it is difficult to understand

just by how much when comparing bridged and non-bridged SV figures. Therefore

some quantification is needed.

(a) No bridge (b) Bridged

Figure 6.24: Number of significant SVs for YCba
at all frequencies between 10Hz -

5kHz, as shown by the blue plot. Red plot is the line of best fit, representing the overall
trend of significant SVs across the frequency range. In reference to the experimental
model in Fig. 6.21.
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To understand by how much the lowest singular values are contributing by, a percent-

age threshold is take on the normalised SVs. At say 5% and above, is what we will

call the ’Significant SVs’. At this cut-off we can assess how many singular values are

above 5% of the total SV magnitude. In other words, if the lowest singular values have

a higher magnitude contribution to the total, in say a bridged test, then more significant

SVs will be observed. In Fig.6.24, the number of significant SVs are plotted against

frequency for bridged and non-bridged tests. For the mobilities presented in this study,

a threshold of 1% is taken. In addition, a line of best fit is included (in red) to help

understand the rate of change in the number of significant SVs across the frequency

range. When observing the line of best fit for the non-bridged case, Fig.6.24a shows

that for 99% of the normalised SVs there are 4 SVs from 10Hz and ramps up to around

4.8 by 5kHz. For the bridged case as shown by Fig.6.24b, a slightly higher number at

10Hz of about 4.2 significant SVs can be observed, which ramps up to 5.6 by 5kHz.

Furthermore, more frequencies show a value of 7 in the bridged test. It is indicated by

Fig.6.24b there is a small increase in energy for the bridged test.

(a) No bridge (b) Bridged

Figure 6.25: Number of significant SVs for YCda
, on an experimental assembly.

In the case of YCda
the singular values show a similar picture. When the bridge is

present, Fig.6.25b shows more points in the frequency range that reach between 5

significant SVs and above. This is why the line of best fit has been raised for the

bridged case, starting at a value of 4.8, compared to 4.2 in the non-bridged test.
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(a) No bridge (b) Bridged

Figure 6.26: Number of significant SVs for YCbc
, on an experimental assembly.

In Fig.6.26 the SVs of YCbc
show no notable difference between bridged and non-

bridged tests. When a bridge is present, the previous mobilities showed an increase

in the amount of significant SVs at multiple frequencies, but has not been observed for

YCbc
. This is further indicated by the line of best fit, which shows virtually no difference

in both tests. In the previous mass-spring models, there was also no difference in the

number of SVs appearing. So far the SVs of YCda
and YCba

have shown a noticeable

difference between bridged and non-bridged tests - similarly to the mass-spring model

study.

For the remainder of this section, the operational transmissibilities analysed in the

mass-spring models will be examined. For the following figures, a significant SV

threshold of 2% was chosen. Firstly, we compare the above mobility with a trans-

missibility using the same subsets, Tr,a
bc .
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(a) No bridge (b) Bridged

Figure 6.27: Number of significant SVs for output-only Tr,a
bc , on an experimental as-

sembly.

The number of significant SVs of Tr,a
bc is less overall, because of the dimension of

the singular value matrix. The amount of SVs is equal to the smallest dimension of

the original matrix. For example, the mobility matrix YCba
is 8 × 18, and therefore will

have 8 SVs in the SV matrix. Comparing against YCbc
, a similar trend is observed.

In Fig.6.27, the difference between the amount of significant SVs from bridged and

non-bridged cases is very small. This is further supported when observing the line of

best fit, which shows almost no change. If the line of best fit is ignored, there is still

very little to distinguish between the bridged and non-bridged tests. It appears that the

experimental SVs of Tr,a
bc and YCbc

are comparable to the mass-spring results.
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(a) No bridge (b) Bridged

Figure 6.28: Number of significant SVs for output-only Tr,a
ba , on an experimental as-

sembly.

For the significant SVs of Tr,a
ba , the above figure shows there are more points in the

frequency range reaching a maximum of 4 SVs. Additionally, the line of best fit begins

at 3.1 and nearly 3.5 for non-bridged and bridged test respectively. Like the mobility

between these subsets of DoFs, YCba
, there is not much difference in the low frequen-

cies, but there are more points higher in the frequency range that have a value of

4.

(a) No bridge (b) Bridged

Figure 6.29: Number of significant SVs for output-only Tr,a
da , on an experimental as-

sembly.

Finally for Tr,a
da , a similar trend is observed to previous figure for Tr,a

ba . At more fre-

quencies we can see a maximum of 4 significant SVs for the bridged test, and when
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observing the line of best fit it begins at a value of 3.5 compared to 3.1 for the non-

bridged test in Fig.6.29a.

6.4 Discussion

Across all mass-spring model examples, YCba
, YCda

, Tr,a
ba , Tr,a

da showed the number

of dominant SVs consistently correlated with the transmission to b responses. When

a bridge was made between the source and receiver sub-structures, the rank r of

these quantities increased, resulting in an extra dominant SV. This part of the study

indicated the most reliable quantities to observe are between b and a, as well as be-

tween d (combined b and c DoF subsets) and a. Additionally, it was suggested that the

operational transmissibilities using these DoF subsets may be used in detecting the

number of transmission paths from the bottleneck, and any bridges between source A

and receiver B.

However, when observing the SVs of the experimental study a different trend was vis-

ible. For all mobilities and transmissibilities analysed there was not a clear distinction

between SVs, as they were all grouped closer to each other. I.e. dominant SVs were

not distinguishable from the rest. Therefore the exact number of transmission paths

could not be correlated to how many dominant SVs were present in the figures. To

understand how the SVs behave under bridged and non-bridged conditions, all SVs

of the mobilities and transmissibilities analysed were normalised to the total magni-

tude. This yielded a % contribution of each SV. At a particular threshold of the total

magnitude (1% for the mobilities, and 2% for transmissibilities), it was determined how

many SVs were above the cut-off. It was found in the bridged scenario, the smallest

SVs increased in magnitude for YCda
, YCba

, Tr,a
ba , and Tr,a

da , and therefore the number

of significant SVs increased when compared to the non-bridged test.

In summary, the mass-spring model examples indicated it may be possible to deter-

mine the amount of transmission paths and bridges by observing how many domi-

nant SVs are present. These quantities appear to be able to “see” all transmission
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through the bottleneck and a bridge circumventing the interface DoFs. It was sug-

gested in the mass-spring examples that the theory also applied to Tr,a
ba and Tr,a

da in

a simulated operational measurement. An output-only measurement is beneficial for

industrial scenarios, where the source component in a coupled assembly (such as

generator or compressor) has multiple excitation mechanisms. If it is rigidly coupled

at a point to a receiver structure, the bottlenecking effect on the operational forces

through a restricted number of DoFs at the point interface c, may yield dominant SVs

that correlate to the number of transmission paths. This is advantageous as no explicit

knowledge of the forces within the source is required when calculating an operational

transmissibility. It was found in the operational experimental study that output-only

Tr,a
ba and Tr,a

da were able to detect a bridge, however a clear distinction between domi-

nant SVs and the smallest SVs was not seen and made it difficult to discern the exact

amount of transmission paths from the bottleneck. An explanation for this is that in

the mass-spring models, the responses at b are largely governed by a much reduced

number of dominant modes or DoFs. At certain frequencies, a smaller amount of

specific resonant modes related to the c DoFs dominate the responses at b. As a re-

sult this leads to a significant contribution from a few singular values, corresponding

to physical modes where energy transfer is highly efficient. The mass-spring systems

exhibit clean, idealised behaviour without the complexities of damping, material hetero-

geneities, or boundary imperfections. This simplification makes it easier for dominant

modes to emerge at specific frequencies. Additionally, because there are relatively

few modes at play, there is a lower chance of modal overlap (where multiple modes

contribute similarly to the response at a given frequency). This leads to a clear sep-

aration of SVs, particularly near resonances. For a continuous system such as the

experimental assembly, coupling between modes can occur often, contributing to a

less pronounced hierarchy of singular values. Additionally, real beams have a theo-

retically infinite number of modes or DoFs. While practically only a finite number of

modes contribute significantly in the frequency range of interest, there will still be far

more modes than in the mass-spring model.
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An idea for further work is to construct an analytical model which has more modes than

mass-spring example and far fewer than experimental assembly. This can help link the

understanding between the two examples presented in this study, and suggest how

many modes the theory is restricted to. For the experimental example in Fig.6.22, it is

clear there is less of a distinction between the SVs (spacing between them decreases)

as frequency increases. It is not yet understood why this occurs, and requires further

investigation. Lastly, another area is to observe the effect of stiffness created by the

bridge on the SVs. If the relative stiffness of the bridge is greater than the material of

the coupled assembly, the overall magnitude of the SVs will be greater and thus make

it easier to detect a change.
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Conclusions

In this thesis, one of the main objectives was to investigate whether a novel approach

of including invariant operational transmissibilities can be used to enhance prediction

methods, specifically the RT method. Another aim was to investigate if they could also

be used in vibro-acoustic analysis methods, such as identifying transmission paths

and unknown bridges within coupled assemblies.

Before undertaking the first objective, the sensitivities of the RT method were exam-

ined. This study was carried out to examine potential sources of error before incorpo-

rating operational transmissibilities. As mentioned previously, the RT identity provides

a very convenient means of reconstructing the driving-point mobility at a connecting

interface DoF subset (c). However, it was found that when utilising the same amount

of remote DoFs (a and b) for reconstruction, a large spike in error would occur. The

source of this error is largely attributed to the inverted term Y−1
ab , which when having a

large condition number, made small errors on the input amplified when inverted. This

matrix inversion is well known and is a common theme throughout the research pre-

sented. This error was easily circumvented by reducing either only a or b, making the

mobility term rectangular, allowing the use of the least squares pseudo-inverse. An

interesting revelation from this study was that increasing or decreasing the number

of interface c DoFs in the line setup did not effect the accuracy of the driving-point
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prediction, suggesting there is some flexibility in how line interfaces are described.

In the experimental study, the same spike in error attributed the inversion of a square

Y−1
ab term was also observed. However, as it was highlighted in the discussion section

of that chapter, some limitations were observed with the example due to the sparse

array of sensors on either side of the interface. In the FE model, 77 a and b DoFs were

used either side of the interface c, while in the experiment there were only 8 a and 12

b DoFs. It was shown in the FE model that after a certain threshold in the amount of

remote DoFs in one subset, there was a sudden drop in error. In this case FE model

case, this appeared after 12 DoFs. Granted, having nearly the same amount as in the

FE model is impractical in real-world applications. In a future study, the remote DoF

subsets resolution should be increased to observe this theoretical drop seen in the nu-

merical model. In the final part of this chapter, the reconstructed transfer mobility was

also analysed for sensitivities. Four distinct pairs of a and b DoFs were chosen around

each of the sub-structures, revealing at certain resonances/modes that an increase

in amplitude at the a responses corresponded with an elevation in error. In order to

understand which pairs of a responses and b excitations yielded the least error, a plot

was constructed of a vs b with their error represented by a heat map. For the pairs that

showed the smallest error, the reconstructed transfer mobility was compared against

a direct measurement and indeed confirmed the difference at certain resonances was

reduced. While the analysis conducted on this formulation of the RT identity was not

the main focus, it has provided a foundation for a more rigorous sensitivity analysis in

future work. A final point that should be for this chapter is that while the interface de-

scription in both FE and experimental models was incomplete, this study still revealed

significant findings while only the dominant z-axis was used for c. Accounting for other

translations and rotations is another areas for future work as it will improve the accu-

racy of the predictions. However, this is more straightforward through an FE model

than an experimental model.

This thesis also investigated the invariance of both mobility-based and operational

transmissibilities. In particular the latter is of significant relevance to the ORT method
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presented in the chapter afterwards. As a whole a comprehensive understanding was

provided for the characteristics of transmissibilities under certain measurement con-

ditions. Three experimental coupled assembly were used to examine invariant trans-

missibilities: a single resilient-interface, three resilient-interfaces, and a single rigid

connection. With each experiment, complexity increased with the goal of unveiling the

tests of invariance that were applicable in a simple test rig could be applied to those

more representative of industrial ones. These tests for invariance included: excitation

positioning, the interchanging of an adjacent sub-structure, characterisation of inter-

face DoFs (c), and the number of remote DoFs used in their calculation.

The first and simplest check for invariance that was tested in all three examples was to

interchange A and observe whether the transmissibilities of B were the same. In the

first two examples, it was demonstrated that the transmissibilities of B were invariant

when only a single z-axis accelerometer beneath each isolator was used, suggesting

this sufficed for a complete characterisation of the interface DoFs (c). Some excitations

of a DoFs were applied near the edge, therefore inducing a moment force β. Despite

the presence of this rotation, the z-axis dynamics dominated. This was alluded to

in a paper co-authored by myself, and was confirmed by these examples. However,

future studies could explore forces applied in other planes to further test this invariance

on coupled assemblies with resilient connections. Additionally, when either mass or

damping was altered by the interchanged A component, it was revealed that invariance

was visible for the vast majority of the frequency range, except for very low frequencies.

In the rigid connection example, excitations were applied in x, y, and z, which also

induced moment forces α, β, γ. The transmission of translational and moment forces

are much greater in this example, thus c was characterised by the finite-difference

approximation method to account for all 6 DoFs. It was found in this study that the z

force was still the largest contributor at the interface DoF, and that the transmissibilities

of B were still accurate when only the z DoF was accounted for.

For testing invariance of transmissibilities of B for different force locations within A,

two transmissibilities (Tr,c
bc and Tr,a

bc ) were analysed. Specifically, the excitation posi-
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tioning was test at either the a DoFs or directly at the c interface DoFs. An important

assumption when using incorporating the blocking constraint definitions from blocked

force method, is the response field in the adjacent sub-structure to where the force is

applied will yield an identical response field. All experimental examples showed that

(within error) the two transmissibilities are very similar. Some error due to noise was

present at higher frequencies for Tr,a
bc in the resilient experiment examples. This is due

to the excitation at a traversing the isolators, which lead to higher attenuation in this

frequency range, and thus reaching the noise floor. For Tr,c
bc the noise at higher fre-

quencies was not observed, as the c DoF excitation was applied beneath the isolator

and thus the transmission of the force input was not subject to attenuation-based error.

This was later confirmed in the rigid connection example, where the two transmissibil-

ities were almost identical and noise did not contaminate Tr,a
bc at high frequencies.

In the final test for invariance, the number of remote DoFs (a or b) and interface (c)

DoFs were varied on the three resilient-interface. It was confirmed that the num-

ber of c DoFs must be equal to or greater than the number of remote DoFs to en-

sure invariance. Reducing the number of c DoFs resulted in transmissibilities (both

mobility-based and operational) that were no longer invariant. This occurred because

the blocking constraints were not fully applied to all connection points, and primarily

affected low frequencies. Invariance did re-emerge at higher frequencies. Addition-

ally, reducing the number of remote DoFs while maintaining sufficient c DoFs did not

invariance. However, when the remote DoFs were reduced specifically in an inverted

term, such as Y−1
Cac, invariance was lost. For the operational transmissibilities, equat-

ing the number of operational states to the c DoFs yielded an invariant transmissibility

at the cost of noise at higher frequencies. Interestingly, when the operational state

was reduced to 1 below the requirement, invariance emerged for the majority of the

frequency range except at the low end. Furthermore, noise did not appear to contam-

inate higher frequencies due to the minimisation of error via the pseudo-inverse. As

expected, over-determination improved transmissibility accuracy.

At the end of this chapter, the possibility of using the TICC for assessing the complete-

225



CHAPTER 7. CONCLUSIONS

ness of interfaces was explored, in particular by an output-only method to serve as an

alternative to the EMA strategy for the original ICC. The mass-spring model for which

this idea was tested on revealed there was clear distinction in magnitudes between

a transfer transmissibility Tf,a
ba across the coupled assembly and Tf,a

da , which included

the blocking interface DoFs in its calculation. The inclusion of interface DoFs that

had a complete description showed a transmissibility with a magnitude close to zero.

However, if the interface was not complete there was a significant rise in magnitude.

This was the case for both mobility-based and operational transmissibilities. However,

issues were apparent in the metric proposed for the output-only case. While the pos-

sibility of an output-only approach is promising, future work needs to address its use

on an experimental assembly while also testing different metrics such as a correlation

or coherence based approach.

These foundational insights into invariant transmissibilities had informed their use in

the next chapter, the ORT method. In this study it was validated that the ORT has the

potential to serve as a practical alternative in predicting interface point mobilities. It was

revealed across all experimental examples, that the ORT method achieved accurate

predictions that are comparable to the original RT method while also requiring fewer

FRF measurements, a significant advantage for industrial applications. Particularly in

the single resilient-interface, it was confirmed that over-determination by increasing

the operational states over the number of c DoFs, made the prediction more accurate

when compared to the RT method. While the ORT point reconstruction was accurate

across the majority of the frequency range, a common theme throughout out was a re-

duction in accuracy at high frequencies. In the three resilient-interface example noise

was present in this part of the range, which is attributed to the fact the transmissibili-

ties used had operational states applied above the isolator (a). In the rigid connection

example, noise was present in the higher frequencies but was certainly reduced, con-

firming attenuation based error did not effect the prediction. However, high frequency

artefacts were present. While the RT method across the resilient interface models was

very similar in performance to the ORT, it displayed a highly accurate prediction with
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little error in the rigid connection case. Overall, the ORT method displayed a robust

prediction of the interface point mobility and suggests the possibility of being a useful

tool within in industry. Its identity shows promise for real-time monitoring, where the

operational transmissibilities can be constantly measured in conjunction with a pre-

measured mobility. This application however warrants a future study on an industrial

size test rig to realise its potential for industry.

For the final objective of this thesis, it was investigated whether the relationship the

SVs of transmissibilities would introduce a novel way of detecting transmission paths

and unknown bridges. By constraining the interface DoFs to a reduced amount of

DoFs, the many excitations within the source component A would be bottlenecked by

c. In the mass-spring model examples, it was firstly indicated this was possible by

observing the dominant SVs of mobilities, and later for mobility-based and operational

transmissibilities. In particular, the most reliable quantity was Tr,a
da , as it correlated

the number of transmission paths from the interface as well as bridges circumventing

the c. This part of the study revealed there is potential in an SVD-based method of

transmission path detection. However in the experimental example, some divergences

from the idealised model appeared. For continuous systems, theoretically there are

an infinite number of modes and they exhibit exhibit more complex dynamic behaviour

such as damping and modal coupling. This is is why there was not a clear distinction

between dominant SVs and the smallest SVs. This made quantifying the number of

transmission paths challenging. However it was possible to detect a bridge. By taking

a threshold, say 1% of the total magnitude, the number of SVs above it were counted

and revealed there was an increase in SVs counted when a bridge was formed. These

findings emphasise the complexities of real-world systems, and forms the foundation

for future work. In particular, it is proposed that an ‘in-between’ model, such as a

numerical one which has more modes than the mass-spring model but less than the

experimental example, would bridge the understanding.

For the final remarks, this research has demonstrated the diverse possibilities for op-

erational methods in coupled systems by the use of the transmissibility concept. In
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particular, the challenges of point mobility prediction and the analysis of transmission

paths and bridges were addressed thoroughly. The insights gained have enhanced the

understanding of transmissibilities on coupled assemblies, especially via output-only

methods, while also potentially paving the way for real-time monitoring, diagnostics,

and design optimisation for real-world engineering applications.
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a full-scale aircraft. Journal of Aircraft, 50(5):1409–1419, 2013.

S. Klaassen and M. Van der Seijs. Introducing semm: A novel method for hybrid

modelling. In Dynamics of Coupled Structures, Volume 4, pages 117–125, 2018.

ISBN 978-3-319-74654-8.

S.W.B. Klaassen, M.V. van der Seijs, and D. de Klerk. System equivalent model mixing.

Mechanical Systems and Signal Processing, 105:90–112, 2018.

Y.E. Lage, M.M. Neves, N.M.M. Maia, and D. Tcherniak. Force transmissibility versus

233



BIBLIOGRAPHY

displacement transmissibility. Journal of Sound and Vibration, 333(22):5708–5722,

2014.

S.S. Law, J. Li, and Y. Ding. Structural response reconstruction with transmissibility

concept in frequency domain. Mechanical Systems and Signal Processing, 25(3):

952–968, 2011.

J. Li, T. Bao, and C.E. Ventura. An automated operational modal analysis algorithm

and its application to concrete dams. Mechanical Systems and Signal Processing,

168, 2022.

W. Liu and D.J. Ewins. Transmissibility properties of mdof systems. Proceedings of the

16th International Modal Analysis Conference (IMAC XVI), pages 847–854, 1998.

J.N. Macduff and J.R. Curreri. Vibration Control. McGraw-Hill, 1958.
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