
Applied Intelligence          (2025) 55:716 
https://doi.org/10.1007/s10489-025-06590-3

Small sample pipeline DR defect detection based on smooth
variational autoencoder and enhanced detection head faster RCNN

Ting Zhang1 · Tianyang You1 · Zhaoying Liu1 · Sadaqat Ur Rehman2 · Yanan Shi3,4 · Amr Munshi5

Accepted: 22 April 2025
© The Author(s) 2025

Abstract
The safe operation of gas pipelines is crucial for the safety of residents’ lives and property. However, accurately detecting
defects within these gas pipelines is a challenging task. To improve the accuracy of defect detection in pipeline DR images
with small sample sizes, we propose an enhanced Faster RCNN model based on a Smooth Variational Autoencoder and
Enhanced Detection Head (S-EDH-Faster RCNN). This model leverages a smooth variational autoencoder to reconstruct
features and enhances classification scores through an improved detection head, thereby boosting overall detection accuracy.
In detail, to address the issue of scarce training samples for new categories, we design a smooth variational autoencoder to
reconstruct features that better fit the distribution of training data. Furthermore, to refine classification precision, we present an
enhanced detection head that incorporates a convolutional block attention-based center point classification calibrationmodule,
which strengthens classification-related portions of the RoI features and adjusts classification scores accordingly. Finally, to
effectively learn characteristics of novel class samples, we introduce an adaptive fine-tuning method that adaptively updates
key convolutional kernels during the fine-tuning stage, enabling the model to generalize better to novel classes. Experimental
results demonstrate that our approach achieves superior detection performance over state-of-the-art models on both the
home-made PIP-DET dataset and the publicly available NEU-DET dataset, demonstrating its effectiveness.

Keywords Few-shot learning · Variational autoencoder · Enhanced detection head · Adaptive fine-tuning ·
Pipeline DR defect detection

1 Introduction

The health status of pipeline systems plays a critical role
in ensuring the safety of production and operations [1, 2].
Although significant advancements have been made in auto-
matic defect detection technologies in recent years, these
methods usually rely on large amounts of labeled data to train
efficient detectionmodels. In practical applications, however,
obtaining large-scale annotated defect data is often challeng-
ing and costly [3–6]. Thus, few-shot learning techniques are
particularly important in the field of pipeline defect detec-
tion [7–10].

To enhance the accuracy of defect detection under few-
shot conditions, researchers have proposed various methods.
Based on their training paradigms, these approaches can
primarily be categorized into meta-learning-based methods
and fine-tuning-based methods [11–13]. The meta-learning-
basedmethods improve themodel’s generalization capability
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for new tasks by teaching it how to learn [14, 15]. The specific
process involves initially pre-training a meta-model using a
large dataset, followed by rapid learning and adjustment with
a small amount of labeled data in new tasks to achieve effec-
tive object detection under few-shot conditions [16, 17]. For
instance, Han et al. proposed the Meta Faster RCNN [18],
which constructed two detection branches to detect base class
samples and novel class samples separately, thereby reduc-
ing classification confusion between base and novel classes.
Han et al. introduced a few-shot object detection method via
Variational Feature Aggregation (VFA) [19]. This approach,
based on Faster RCNN, incorporates a variational autoen-
coder to model support set samples, generating a normally
distributed feature distribution and then sampling from it as
class prototypes to improve detection accuracy.

However, this type of methods often entail complex
training processes and data organization, limiting their appli-
cation. In contrast, the fine-tuning-basedmethods are simpler
andmore effective [5, 20, 21]. Thesemethods first use a large
number of base class samples for initial model training, then
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fine-tune the detection head using a balanced dataset com-
posed of some base class samples and all novel class samples,
with the aim to achieve good detection performance on new
categories [22]. For example, Wang et al. proposed a Two-
stage Fine-tuning Approach (TFA) [8]. They first trained the
entire Faster RCNN on a large number of base classes, then
fine-tuned the detection head using novel class samples to
improve detection precision. Li et al. introduced a Class
Margin Equilibrium (CME) [23]. This method, also based
on Faster RCNN, incorporates a feature perturbation mod-
ule during the fine-tuning stage to dynamically adjust class
margins, allowing novel classes to occupy appropriate posi-
tions within the feature space of base classes, thus reducing
confusion between novel and different classes.

Whether employing meta-learning or fine-tuning meth-
ods, Faster RCNN has been widely used as a base detector
in few-shot object detection, achieving significant perfor-
mance improvements [20, 22, 24, 25]. Nevertheless, these
methods still face three main issues: (1) Insufficient novel
class features: Due to the limited data for novel classes, it
is challenging for the model to effectively learn the features
and distributions of these new categories, leading to weak
generalization capabilities for novel classes; (2) Classifica-
tion confusion: In few-shot scenarios, the model is prone
to confusing target classes with each other or potentially
misclassifying non-target classes as target ones, resulting in
decreased classification performance; (3) Neglecting fine-
tuning of the backbone network: Typically, the backbone
network only participates in training during the base class
phase, and not in the fine-tuning stage, preventing the model
from fully utilizing novel class samples.

Based on these consideration, we propose a Faster
RCNN model based on Smooth variational autoencoder and
Enhanced Detection Head (S-EDH-Faster RCNN). It adopts
a two-stage training process of involving base training and
fine-tuning. In the base training stage, a smooth variational
autoencoder learns realistic feature distributions from exten-
sive training data. In the fine-tuning stage, the backbone
network is adaptively fine-tuned to capture and learn the
characteristics of novel class samples. Simultaneously, the
smooth cariational autoencoder generates feature representa-
tions of novel class samples to increase the diversity of novel
classes. Finally, the enhanced detection head computes the
similarity scores between the enhanced RoI features and the
feature prototypes, calibrating classification scores with the
similarity scores to improve classification accuracy.

In summary, the main contributions of our work are:

1. We propose a Faster RCNN model based on smooth
variational autoencoder and enhanced detection head
for few-shot pipeline DR defect detection. It recon-
structs the feature distribution via the smooth variational

autoencoder and improves defect classification scores
with an enhanced detection head. During fine-tuning, the
backbone network is adaptively fine-tuned to learn the
features of novel class samples.

2. We present a sample feature distribution generation
method based on the smooth variational autoencoder (S-
VAE), enriching the feature representation of data by
generating diversified novel class sample features.

3. We construct an enhanced detection head (EDH). It lever-
ages a convolutional block attention-based center point
classification calibration module to calculate feature pro-
totypes and correct classification scores, thus enhancing
the model’s classification capabilities.

4. We design an adaptive fine-tuning strategy. It adaptively
updates the primary convolution kernels of the backbone
network during fine-tuning, allowing the model to better
learn the characteristics of novel class samples.

5. The proposed method achieves superior results com-
pared to the state-of-the-art models on both the self-made
PIP-DET dataset and the publicly available NEU-DET
dataset, demonstrating its effectiveness.

2 Related work

Our work is primarily related to three key tasks: variational
autoencoders, detection heads, and fine-tuning strategies.

2.1 Variational autoencoder

Variational AutoEncoder (VAE), introduced by Kingma and
Welling [26], focuses onprobabilisticmodelingof latent vari-
ables from input data to generate realistic new samples. VAEs
utilize an encoder to convert input data into latent variables,
followed by a decoder to reconstruct the data. During train-
ing, the loss function combines the reconstruction error with
the KL divergence between the latent variable distribution
and a standard normal distribution to optimize the model.

Despite VAE’s ability to generate realistic new samples,
they face main two challenges. First, the loss function com-
bining reconstruction error andKLdivergencemight produce
samples that are not sufficiently close to real ones [27]. Sec-
ond, the standard VAE may struggle to handle complex data
distributions, limiting their generative capacity and appli-
cation scope [28]. To enhance VAE’s performance, various
improvement methods have been proposed, mainly focusing
on reconstruction loss and regularization term enhance-
ments [27, 29, 30].

The improvements based on reconstruction loss involve
designing diverse reconstruction losses to encourage theVAE
to generate more realistic samples or features. For example,
Chen et al. proposed the Log Hyperbolic Cosine Variational
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AutoEncoder (Log-cosh VAE) [31], which reduces the
impact of outliers by using log-cosh loss. Naesseth et al.
introduced the Gamma Variational AutoEncoder (Gamma-
VAE) [32], which dynamically adjusts the value of learnable
parameters to generate higher quality reconstructed fea-
tures.Tomczak andWellingproposed theVariationalMixture
of Posteriors Prior Variational AutoEncoder (VampPrior
VAE) [33], which uses a flexible mixture prior to improve
reconstruction capabilities. Wang et al. suggested the Condi-
tional Variational AutoEncoder (CVAE) [34], which incor-
porates conditional information in the reconstruction loss
to make generated samples correspond better to given con-
ditions. Bai et al. presented the Hierarchical Variational
AutoEncoder (HVAE) [35], which introduces hierarchical
structures in the reconstruction loss to allow multi-scale rep-
resentation learning of the data.

The enhancements based on regularization focus on opti-
mizing the KL divergence to increase sample diversity.
Maxwell et al. proposed β-Variational Auto-Encoder (β-
VAE) [36], introducing a hyperparameter β in the KL
divergence term to generate higher-quality samples. Kumar
et al. introduced the Disentangled Inferred Prior Variational
Auto-Encoder (DIP-VAE) [37], which adds new terms to the
loss function to disentangle the latent space, enhancing the
independence of latent representations. Kolouri et al. pro-
posed the Sliced-Wasserstein Autoencoder (SWAE) [38],
incorporating the Sliced-Wasserstein distance in the loss
function to minimize the distance between the model output
distribution and the target distribution, thereby improving
sample quality. Pineau et al. put forward the Categorical
Variational AutoEncoder (CatVAE) [39], which introduces
discrete latent spaces to enhance the model’s interpretability.

Moreover, some researchers have integrated enhance-
ments in both reconstruction loss and regularization. For
instance, Cai et al. introduced the Two-Stage Variational
AutoEncoder (Two-Stage VAE) [40], where the training
process consists of two stages: the first stage focuses on opti-
mizing the encoder, and the second stage aims to improve
reconstruction quality and regularize the latent space, thus
enhancing both reconstruction loss and regularization.

Although these VAEs and their improvements perform
well with sufficient training data, they still encounter chal-
lenges in few-shot scenarios. On the one hand, noise and
outliers can interfere with VAE’s ability to capture actual
data distribution, reducing feature quality. On the other hand,
the limited distribution information obtained by VAEs may
include random or incidental correlations among some fea-
tures, leading tomisjudging these features as interdependent.
Therefore, we aim to improve both the reconstruction loss
and regularization of the standard VAE to enhance its perfor-
mance under few-shot conditions.

2.2 Detection head

The detection head of Faster RCNN comprises a classifi-
cation branch and a localization regression branch [41]. In
few-shot detection, the base class is the class that has suffi-
cient labeled data in the training phase, through which the
model learns generic features; while the novel class is the
class that has scarce data in the training phase, and the model
needs to rely onwhat it learns from the base class to detect the
novel class effectively with only a small number of samples.
The limited number of novel class samplesmakes it challeng-
ing for the model to adequately learn the characteristics of
new targets, often resulting in classification errors [42, 43]. To
address this issue, various improvement methods have been
proposed, which can be categorized into two types based on
the structure modification of the detection head: adding new
branches and optimizing existing structures.

The former methods introduce one or more independent
branches to enhance the performance of the detection head.
For instance, Li et al. proposed a ’Disentangle and Remerge’
method (DandR) [44], introducing an auxiliary branch for
knowledge distillation in the detection head of Faster RCNN
to reduce model parameters. Sun et al. proposed the Few-
Shot Object Detection via Contrastive Proposal Encoding
(FSCE) [45], adding a contrastive branch in the detection
head to decrease intra-class variance and increase inter-class
differences, thus reducing classification errors under few-
shot conditions.

The later methods focus on enhancing the performance of
current functional modules, without adding new independent
branches. For example, Yang et al. introduced the Context-
Transformer (CT) [46], incorporating context information
from images into the object classifier to strengthen feature
representation. Qiao et al. proposed the Prototypical Cali-
bration Block (PCB) [20], which calculates similarity scores
between feature prototypes and RoI features to calibrate the
softmax scores of the classification branch, thereby improv-
ing classification accuracy.

While these improved detection heads enhance classifica-
tion performance to some extent, they also have limitations.
Adding new branches can introduce independent functional
modules to improve detection head performance, but when
training samples are limited, the model either struggles to
distinguish similar category features accurately or confuses
novel classes with background classes.

2.3 Fine-tuning Strategy

In fine-tuning-based few-shot object detection, selectively
freezing certain network layers while tuning specific param-
eters prevents themodel from forgetting knowledge acquired
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during base training and avoids overfitting on novel class
samples [47]. To balance performance on base and novel
classes, researchers have proposed various fine-tuning strate-
gies, classified into two categories based on network layer
updating strategies: freezing all components except the detec-
tion head and unfreezing some components beyond the
detection head.

Strategies that freeze all components except the detection
head maintain the backbone network and region proposal
network (RPN) in a frozen state, updating only specific layers
in the detection head. For example, Wang et al. proposed the
Two-stage Fine-tuning Approach (TFA) [8], which freezes
all components except the detection head during the fine-
tuning stage to prevent degradation in base class detection
performance. Mpampis et al. introduced Symmetric Fine-
Tuning [48], which freezes the backbone network and RPN
but fine-tunes thefirst and last few layers of the detection head
to alleviate accuracy constraints and overfitting compared to
traditional methods that only fine-tune the final layers of the
detection head.

Strategies that unfreeze some components beyond the
detectionhead aim tobalancedetectionperformancebetween
base and novel classes, by unfreezing limited layers of the
backbone network and RPN. Fan et al. proposed the Bias-
Balanced RPN [49], updating the classification layer of the
RPN and the last layer of the classification and bounding
box regression branches in the detection head during fine-
tuning. Hao et al. introduced Few-shot object detection via
online inferential calibration (FSOIC) [50], employing a hier-
archical freezing strategy to selectively unfreeze different
network modules based on the number of training samples
(shot count). Specifically, when samples are scarce, the back-
bone network is frozen, and only the classifier and regressor
are updated; as the number of samples increases, Attention-
FPN, RPN, and RoI are gradually unfrozen to better adapt to
learning novel class features.

Although these fine-tuning methods achieve some suc-
cess in enhancing model adaptability, completely freezing
the backbone network during fine-tuning limits the model’s
feature extraction capabilities to knowledge acquired dur-
ing base class training, underutilizing novel class features.
Additionally, static freezing strategies lack flexibility, failing
to dynamically choose network layers for updating based on
data complexity.

3 Method

This section will first outline the overall architecture of
the S-EDH-Faster RCNN, then detail its core components:
Smooth Variational Autoencoder (S-VAE), Enhanced Detec-
tion Head (EDH), and Adaptive fine-tuning strategy. Finally,
the loss functions used to train this model will be given.

3.1 Overall architecture

To enhance the accuracy of defect detection in pipeline
DR images with few samples, we propose a Faster RCNN
based on Smooth variational autoencoder and Enhanced
Detection Head, referred to as S-EDH-Faster RCNN. This
model optimizes Faster RCNN through three avenues: gen-
erating reconstructed features using a Smooth Variational
Autoencoder (S-VAE), improving classification precision
with an enhanced detection head, and dynamically adjusting
the backbone network via an adaptive fine-tuning strategy.
Figure 1 illustrates the overall structure of this model.

As shown in Fig. 1, due to the scarcity of novel class
samples, the model uses a smooth variational autoencoder
to learn the latent distribution of input data during fea-
ture extraction, thereby generating new training features. To
enhance the classification accuracy between novel and back-
ground classes, we incorporate Center Point Classification

Fig. 1 The overall architecture of the S-EDH-Faster RCNN model. It combines a training strategy of a Smooth Variational Autoencoder (S-VAE),
an enhanced detection head, and an adaptive fine-tuning backbone network to optimize defect detection performance on few-shot data
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Calibration (CPCC) into the classifier for improved optimiza-
tion. Finally, to enable the model to effectively learn novel
class features, we synchronously adjusted the backbone
network during the fine-tuning stage through an adaptive
fine-tuning style.

The training process of S-EDH-Faster RCNN consists of
two stages: base training and fine-tuning. In the base train-
ing stage, the model is trained using abundant base class
sample data (Dtrain = Dbase). For an input image, the multi-
scale feature maps are first extracted using the backbone
network. These multi-scale features are then flattened into
vectors and fed into the Smooth Variational Autoencoder
(S-VAE) to obtain reconstructed features F

′
. These recon-

structed features are passed to the region proposal network
(RPN), generating a series of candidate regions that, after
RoI pooling and feature extraction, provide RoI features for
subsequent detection. Finally, the detection head classifies
and locates these RoI features, outputting defect categories
and locations.

In thefine-tuning stage, themodel is fine-tunedusing abal-
anced dataset containing novel class samples and randomly
sampled base class samples (Dtrain = Dnovel ∪ Dbase′).
There are two main differences with the base training stage:
First, to enhance the model’s performance in detecting novel
class samples, the backbone network is not completely frozen
but adaptively selects the first k convolutional kernels for
updating. Second, to increase the classification precision
of novel features, we design an enhanced detection head.
Before computing the class scores, the cosine similarity
scores between the feature prototypes and the enhanced novel
features are calculated and weighted with the softmax scores
to improve classification accuracy. Specifically, for RoI fea-
tures, ResNet18 is utilized to extract features highly relevant
to classification. These features are then input into a convo-
lutional block attention module (CBAM) to obtain the RoI
features with enhanced classification characteristics. CBAM
is a type of attention module that enhances model focus by
prioritizing certain features. It specifically does this through
channel attention,which focuses on themost informative fea-
tures across channels, and spatial attention, which highlights
important spatial regions in the input. This dual mechanism
helps direct themodel’s attention to themost relevant features
for better performance on tasks such as image recognition.
The feature prototype is the most characteristic point within
a specific class. Specifically, it is a summary of the features
that best define a particular class. In classification tasks, this
prototype can be used to enhance themodel’s interpret ability
and improve its accuracy by comparing new data points with
these representative feature prototypes. Finally, the cosine
similarity scores between the enhanced RoI features and
each class prototype feature are calculated andweightedwith
the classifier’s softmax scores to form the final classification
scores.

3.2 Smooth variational autoencoder

To make the VAE better deal with noise and learn indepen-
dent features, we propose a Smooth Variational Autoencoder
(S-VAE), utilizingLog-cosh and smoothL1 as reconstruction
losses to handle large errors more effectively. Simultane-
ously, we use the distance between latent variables as a regu-
larization term to decouple latent variables in the latent space.

Specifically, let hi denote the feature of real data, ĥi rep-
resent the reconstructed features by S-VAE, t indicate the
error between actual and predicted values |hi − ĥi |, z is the
latent variable, φ represent the parameters of the encoder,
qφ(z) mean the distribution of latent variable z, and p(z)
indicate the prior distribution. Log-cosh and smooth L1 can
be expressed as:

L log−cosh(h, ĥ) = 1

a

∑

i

log
(
cosh(a(hi − ĥi ))

)

= 1

a

∑

i

log

(
ea t − e−a t

2

)
→

{ |t|− 1
a log 2, when |t|→∞

0.5a t2, when |t|→0

(1)

Lsmooth L1 =
{
0.5t2, if |t| < 1
|t| − 0.5, otherwise

(2)

where a is a positive hyperparameter adjusting the sensitiv-
ity of the loss function to errors. When the error |t| is large,
log-cosh and smooth L1 approximate the L1 norm, showing
robustness to large errors. When |t| is small, they approxi-
mate the L2 norm, exhibiting smoothing advantages.

The improved reconstruction loss can be expressed as:

L recon(|t|) = αL log-cosh(|t|) + (1 − α)Lsmooth L1(|t|) (3)

where α is a hyperparameter between 0 and 1 controlling the
contributions of the two losses.

Additionally, considering that each dimension in the
latent space corresponds to a latent variable, these variables
ideally should independently represent different generative
factors. If there are correlations among latent variables,
they may carry redundant information, affecting the model’s
expressiveness by failing to independently represent different
generative factors. Therefore, we use the distance between
latent variables as a regularization term to achieve decou-
pling, which is represented as:

D(qφ(z)||p(z))=λod
∑

i �= j

[
Covqφ(z)[z]

]2
i j

+ λd
∑

i

([
Covqφ(z)[z]

]
i i

−1
)2

(4)

where
∑

i �= j

[
Covqφ(z)[z]

]2
i j

represents the sum of the off-
diagonal elements of the covariance matrix, penalizing
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non-diagonal elements, and
∑

i

([
Covqφ(z)[z]

]
i i

− 1
)2

rep-

resents the sum of the squared differences between the
diagonal elements of the covariance matrix and 1, adjusting
the covariancematrix of the latent variables to ensure that the
variance of each latent variable approximates 1, maintaining
an appropriate level of decoupling in the latent space, λod
and λd are hyperparameters.

In summary, the total loss of the improved S-VAE aims to
incorporate the above factors and is expressed as:

LS−VAE = L recon(|t|) + DKL(qφ(z|x)||p(z))
+βD(qφ(z)||p(z)) (5)

where L recon(|t|) denotes the reconstruction loss calculated
using log-cosh and smooth L1 losses, DKL(qφ(z|x)||p(z))
represents the KL divergence between the encoder output
qφ(z|x) and the prior distribution p(z), D(qφ(z)||p(z)) sig-
nifies the decoupling regularization term, and β is the weight
of the term D(qφ(z)||p(z)).

3.3 Enhanced detection head

In small-sample defect detection tasks, low-quality scores
generated by the model often lead to two issues: high-score
false positives and low-score missed detections. That is, the
model erroneously identifies non-target class samples (nega-
tive samples) as target class samples (positive samples) or

fails to correctly recognize target class samples (positive
samples) [51–53]. To address this challenge, we present an
enhanced detection head that utilizes the similarity scores
between feature prototypes and sample features to calibrate
classification scores, thereby reducing high-score false pos-
itives and mitigating low-score missed detections. Figure 2
shows the overall structure of the enhanced detection head.

Specifically, it starts by leveraging a shallow network,
ResNet18, to further extract features highly pertinent to clas-
sification. These classification-related features are then fed
into aCBAMto obtain the enhancedRoI features. Finally, the
cosine similarity between these enhanced RoI features and
the prototype features of each class is computed, and this
similarity score is fused with the softmax scores generated
by the classifier to produce the final classification scores.

3.3.1 Convolutional block attention module

The Convolutional Block Attention Module (CBAM) calcu-
lates the weights of features in channel attention and spatial
attention modules separately, enhancing key features related
to the classification task while suppressing irrelevant fea-
tures. Figure 3 illustrates the structure of CBAM.

As depicted in Fig. 3, CBAMmainly comprises two parts:
channel attention and spatial attention. Channel attention
computes the importance weight of each feature channel, stre-
ngthening significant channels; spatial attention calculates

Fig. 2 The structure of the enhanced detection head. The enhanced
detection head uses a feature extractor and aConvolutional BlockAtten-
tionModule (CBAM) to further refine the features,which are thenpaired

with a Centroid Classification Calibration (CPCC) module to improve
classification accuracy through score fusion
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Fig. 3 The structure of the convolutional block attention module(CBAM). CBAM uses the Channel Attention Module (CAM) and the Spatial
Attention Module (SAM) to enhance feature expression in collaboration

the importance weight of each spatial position in the feature
map, highlighting crucial areas.

In the channel attention calculation phase, average pool-
ing and max pooling are applied to the feature vector, which
is then input into a Multi-Layer Perceptron (MLP). The out-
puts are summedandprocessed by the sigmoid function to get
the final channel attention map. Let F be the classification-
relevant features extracted by ResNet18, C represents the
number of feature channels, AvgPool denotes the global
average pooling operation,MaxPool denotes the global max-
imum pooling operation, and σ(·) is the sigmoid function.
The channel attention process can be expressed as:

Mc(F) = σ (MLP(AvgPool(F)) + MLP(MaxPool(F)))

(6)

In the spatial attention calculation phase, average pooling
and max pooling are first applied to the feature map along
the channel dimension. The two results are concatenated and
processed by a 7 × 7 convolution layer, followed by a sig-
moid function to obtain the spatial attention map. The spatial
attention process can be expressed as:

Ms(F) = σ
(
Conv7×7 ([AvgPool(F);MaxPool(F)])

)
(7)

where Conv7×7 represents a 7 × 7 convolution layer, and
[AvgPool(F);MaxPool(F)] denotes the concatenation of
average pooling and max pooling results along the channel
dimension, resulting in a 2 × H × W feature map.

3.3.2 Center Point classification calibration

Traditional feature prototypes are often generated by averag-
ing the feature vectors of all samples in a class. However,
it is susceptible to outliers, making the feature prototype

inaccurately represent the actual feature distribution of the
class. Especially in small-sample scenarios, when the sample
size is limited or intra-class feature distribution is dispersed,
the prototype computed by averaging may deviate from
the actual class center, affecting classification performance.
Hence,we adopt theMedoidsmethod to compute feature pro-
totypes. By selecting the feature with the minimum distance
to other features in the feature space as the prototype, it better
represents the class center and reduces the impact of outliers.

Specifically, let there be a feature set {F1, F2, . . . , Fn},
usingEuclideandistance to define a distancemetricd(Fi , F j ):

d(Fi , F j ) =
√√√√

m∑

k=1

(Fik − F jk)2 (8)

where Fik and F jk represent the values of features Fi and
F j in the k-th dimension, respectively.

For the i-th feature Fi , we first calculate the sum of dis-
tances to all other features S(Fi ):

S(Fi ) =
n∑

j=1

d(Fi , F j ) (9)

Then, find the feature F p that minimizes S(Fi ):

F p = argmin
Fi

S(Fi ) (10)

The feature prototype for each class is calculated from all
the enhanced RoI feature vectors of that class, with F p as
the selected feature prototype.

After obtaining the feature prototype F p, it is used in
the classification calibration module. The main task of this
module is to select the enhanced novel class RoI features out-
putted by theRoI feature extractor and compare themwith the
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feature prototypes of each class, calculating the cosine sim-
ilarity between them. The similarity score is then combined
with the classification score from the classifier to yield the
final classification score. During the testing phase, the clas-
sification calibration module performs score calibration for
all classes’ enhanced RoI features. For each class c, the fea-
ture prototype F p can be computed according to the formula.
After getting the feature prototype, the Enhanced Detection
Head calculates the cosine similarity between the RoI fea-
ture vector FRoI and each feature prototype vector F p. The
cosine similarity can be expressed as:

CosSim(FRoI, F p) = FRoI · F p

‖FRoI‖‖F p‖ (11)

where FRoI · F p represents the dot product of vectors, and
‖FRoI‖ and ‖F p‖ represent the norms of vectors FRoI and
F p, respectively.

Simultaneously, the RoI feature vector FRoI is also input
into the classifier to obtain the preliminary classification
scores Sclass, where Sclass = [s1, s2, . . . , sC ], with C repre-
senting the number of classes, and si representing the score
of the i-th class. The cosine similarity scores for each class
are weighted and fused with the corresponding classification
scores to get the final classification scores Sfinal,c:

Sfinal,c = γCosSim(FRoI, F p) + (1 − γ )Sfinal,c (12)

whereγ and (1−γ ) are theweight parameters used to balance
the cosine similarity scores and softmax classification scores.

3.4 Adaptive fine-tuning

In the two-stage training process, traditional methods usually
freeze the backbone network and only fine-tune the detec-
tion head. This strategy may result in the model failing to
adequately learn the characteristics of novel class samples.
To address this issue, we propose an adaptive fine-tuning
method, which automatically selects and updates the top k
important convolutional kernels in the backbone network to
ensure effective feature extraction from novel class samples.

The L2 norm is utilized as a measure of the importance of
convolutional kernels. The calculation formula is:

‖W i‖2 =
√∑

j

w2
i j (13)

where W i represents the i-th convolutional kernel, and wi j

represents the j-th parameter value within the i-th convolu-
tional kernel.

After obtaining the L2 norms of the convolutional kernels,
these kernels are sorted by their importance, and the top k
important ones are selected for updating.

3.5 Loss functions

In the first stage, the RPN binary cross-entropy loss is used
to optimize the model’s ability to distinguish between fore-
ground and background, which is represented as:

LRPN_cls = − 1

N

1

Nanchor

N∑

i=1

Nanchor∑

j=1

[
yi jc log( y

′
i jc)

+(1 − yi jc) log(1 − y′
i jc)

]
(14)

where yi jc representswhether the j-th anchor in the i-th sam-
ple is foreground (yi jc = 1) or background ( yi jc = 0), y′

i jc
is the predicted foreground probability for the j-th anchor,
N is the number of training samples, and Nanchor denotes the
number of anchors per sample.

The regression loss in the RPN is used to optimize the
model’s accuracy in predicting the positions of bounding
boxes, which is:

LRPN_reg = 1

N

1

Nanchor

N∑

i=1

Nanchor∑

j=1

smoothL1
(
y′
i jb− yi jb

)
· yi jc

(15)

where yi jb represents the ground truth bounding box parame-
ters for the j-th anchor in the i-th sample, and y′

i jb represents
the predicted bounding box parameters, N is the number of
training samples, and Nanchor is the number of anchor sam-
ples.

The bounding box classification loss optivmizes themodel’s
ability to differentiate between different categories. It can be
described as:

Lcls = − 1

N

[
N∑

i=1

C∑

c=1

yic log( y
∗
ic)

]
(16)

where yic represents the true class label of the i-th sample,
y∗
ic represents the predicted class probability, C denotes the

number of categories, and N is the number of training sam-
ples.

The Smooth L1 loss for bounding box regression is used
for precise localization of bounding boxes, which is:

Lreg = 1

N

N∑

i=1

smoothL1( y∗
ib − yib) (17)

where yib represents the true bounding box parameters, y∗
ib

represents the predicted bounding box parameters, and N
denotes the number of training samples.

The loss for S-VAEconstrains the latent variables encoded
to approximate a standard normal distribution. The formula
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is:

LS−VAE=Lrecon+DKL(qφ(z|x)||p(z))+βD(qφ(z)||p(z))
(18)

where Lrecon represents the reconstruction loss calculated
using log-cosh and smooth L1 losses, DKL(qφ(z|x)|| p(z))
represents the KL divergence between the encoder output
q(z|x) and the prior distribution p(z), and D(q(z)||p(z))
denotes the decoupling regularization term, with β being the
weight parameter.

The total loss function during the base training stage can
be expressed as:

Lbase = LRPN_cls+LRPN_reg+Lcls+Lreg+LS−VAE (19)

In the second stage, in addition to the losses from the first
stage, an additional similarity loss for the EDH is introduced.
The EDH generates the final classification score by com-
puting the cosine similarity score between RoI features and
feature prototypes, CosSim(FRoI, F p), and fusing it with the
softmax score. The loss is:

Lsimilari t y = −
N∑

i=1

C∑

c=1

(
CosSim(FRoI, F p) · yic

)
(20)

where CosSim(FRoI, F p) represents the cosine similarity
between theRoI feature vector FRoI and the feature prototype
F p, and yic represents the true class label of the i-th sample,
N is the number of training samples, and C is the counts of
the classes.

The total loss function during the fine-tuning stage can be
expressed as:

L f ine_tuning = LRPN_cls + LRPN_reg + Lcls + Lreg

+LS−VAE + Lsimilari t y (21)

4 Experimental Results

To validate the effectiveness of the proposed method, this
section compares S-EDH-Faster RCNN with other mod-
els. It will introduce the datasets used, evaluation metrics,
experimental details, and a detailed comparisonwith existing
methods and ablation experiments, followed by the corre-
sponding analysis. All experiments were conducted in a
Linux environment using the PyTorch-based deep learning
framework on a server equipped with an NVIDIA RTX
A4000 GPU.

4.1 Dataset

To evaluate the performance of ourmethod in few-shot object
detection tasks, experiments were conducted on a self-made
gas pipeline defect image dataset (PIP-DET). The PIP-DET
dataset covers 20 defect categories, totaling 6,010 samples,
with 4,258 samples in the training set and 1,752 samples
in the test set. The images were annotated using LabelImg.
For fair comparison, the dataset partitioning method follows
previous works [8, 19, 54, 55]. Specifically, on PIP-DET
dataset, 15 classes are randomly selected as base classes,
while the remaining 5 classes are defined as novel classes.
Each novel class contains K=1, 2, 3, 5, 10 annotated training
samples to simulate few-shot scenarios. In this study, three
randomsplits named split1, split2 and split3were considered.
Table 1 provides detailed information about PIP-DET, and
Fig. 4 shows annotation examples of different defect images.

4.2 Evaluationmetrics

Mean Average Precision (mAP) represents the average pre-
cision across all categories, calculated as:

Precision = TP

TP + FN
(22)

Table 1 The detail information
of PIP-DET dataset

Class Name Number Class Name Number

1 Incomplete fusion 694 11 Root concavity 417

2 Porosity 697 12 Lack of fusion (internal) 217

3 Incomplete penetration 699 13 Lack of fusion (external) 327

4 Crack 389 14 Porosity cluster 243

5 Tungsten inclusion 699 15 Root burn-through 385

6 Slag inclusion 710 16 Transverse crack 340

7 Undercut 286 17 Hot crack 271

8 Burn-through 364 18 Weld bead 482

9 Blowhole 417 19 Insufficient weld metal 300

10 Concave 283 20 Misalignment 392
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Fig. 4 Example images of defects with annotations on PIP-DET dataset

Recall = TP

TP + FN
(23)

APi =
n−1∑

j=0

(R j+1 − R j )p
∗
j (24)

mAP = 1

Nc

Nc∑

i=1

APi (25)

where precision and recall represent the accuracy of model
predictions and the ability to identify positive samples; TP,
FP, and FN denote the number of true positive, false posi-
tive, and false negative samples, respectively. n denotes the
number of interpolations performed on the precision-recall
curve, and the recall rate after interpolation is: R j = j

n , j ∈
{0, 1, 2, . . . , n}, p∗

j is the precision at R j . APi represents
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the average precision for the i-th class; Nc represents the
number of categories.

Based on mAP, different average precision metrics are
used to measure model performance, including:

1. mAP50: Average precision of all categories when the IoU
threshold is 0.5.

2. bAP: Average precision of base classes when the IoU
threshold is 0.5.

3. nAP: Average precision of novel classes when the IoU
threshold is 0.5.

4.3 Implementation details

4.3.1 Parameter settings

ResNet-101 pretrained on ImageNet is adopted as the back-
bone network, with a mini-batch size of 16, optimized using
Stochastic Gradient Descent (SGD). During the base train-
ing stage, the initial learning rate was set to 1× 10−3, with a
momentum coefficient of 0.9 and a weight decay parameter
of 1e-4. During the few-shot fine-tuning stage, the learning
rate was adjusted to 0.0004.

4.3.2 Selection of S-VAE loss balancing coefficients˛ andˇ

In (3) and (5), the S-VAE loss function includes two
adjustable parameters, α and β. α = {0.1, 0.2, 0.3, 0.4, 0.5}
and β = {0.2, 0.3, 0.4, 0.5, 0.6} are taken as candidate
values. Using the model without S-VAE as a baseline, it
experimented by gradually changing the values of α and β.
Figure 5 shows the impact of parameters α and β on the

Fig. 5 Experimental results of α and β parameter comparison. The
effects of different α and β combinations on the model accuracy were
compared in the form of heat maps

Table 2 Results for different γ values

γ 0.2 0.3 0.4 0.5 0.6 0.7

mAP 65.39 65.74 67.08 68.04 67.22 66.83

experimental results. Through heatmap analysis, it can be
found that when α = 0.2 and β = 0.4, the model achieved
the best average precision, improving by 2.36% compared
to the model without S-VAE. This indicates that the balance
effect in the loss function is optimal under this parameter
combination, maximizing model performance.

4.3.3 Selection of the enhanced detection head score
balancing coefficient �

As shown in (12), the final class score computed by the
Enhanced Detection Head includes a balancing coefficient
γ . It experimented with γ = {0.2, 0.3, 0.4, 0.5, 0.6, 0.7} to
compare the effects of different values. Table 2 presents the
impact of differentγ values on the experimental results. From
Table 2, it can be seen that,whenγ = 0.5, themodel achieved
the highest detection result at 68.04%. Therefore, γ = 0.5 is
selected as the final parameter.

4.3.4 Selection of fine-tuning update ratio k

During fine-tuning, different update ratios k affect the num-
ber of updated convolution kernels, thus influencing the
experimental results. Table 3 presents the impact of dif-
ferent update ratios on the experimental results, where the
bold number denotes the best result and the underlined is the
second best result. As shown in Table 3, when 26% of the
convolutional kernels in the backbone network were updated
per epoch, the model achieved the best average precision

Table 3 Results of different k

k (%) mAP bAP nAP

0 65.04 70.10 49.84

20 65.96 73.57 43.12

21 65.93 75.05 38.55

22 66.82 75.12 41.93

23 66.84 74.60 43.55

24 66.29 75.58 38.42

25 67.82 76.04 43.14

26 68.07 76.07 44.08

27 67.24 75.75 41.70

28 67.70 74.63 43.94

29 66.01 74.39 40.87

30 65.96 73.57 43.12
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for all categories and base classes, with 68.07% and 76.07%,
respectively. Therefore, the adaptive fine-tuning ratio was set
to 26%.

4.4 Comparison with the state-of-the-art methods

To validate the effectiveness of S-EDH-Faster RCNN, exper-
iments comparing it with other methods on PIP-DET dataset
were conducted. Table 4 displays themeanAveragePrecision
across three novel class splits (split1, split2, and split3), cov-
ering different sample shots (1, 2, 3, 5, 10 shots). In Table 4,
bold numbers indicate the best results,while underlined num-
bers indicate the second-best results. Figure 6 shows the
experimental results in a line chart, and Fig. 7 illustrates
examples of detection results.

From the results in Table 4, Figs. 6 and 7, it can be
drawn that: For split1, S-EDH-Faster RCNN achieved bet-
ter detection results in most sample sizes. Specifically, it
reached novel class detection accuracies of 34.13%, 39.08%,
45.81%, 49.42%, and 52.85% for 1, 2, 3, 5 and 10 shots,
respectively. Compared to the second-best method, S-EDH-
Faster RCNN improved by 2.23%, 0.08%, 1.94%, 2.83%,
and 2.12%. Additionally, for split2, S-EDH-Faster RCNN
consistently achieved the best detection accuracy for all sam-
ple sizes. For 1, 2, 3, 5 and 10 shots, it attained novel class
average precisions of 34.52%, 40.04%, 40.41%, 44.13%,
and 51.62%, surpassing the second-best method by 5.49%,

8.69%, 2.42%, 2.49%, and 4.16%. Besides, for split3, except
for 1 shot, S-EDH-Faster RCNN achieved the best results
in almost all scenarios. In detail, for 2, 3, 5 and 10 shots,
it achieved 37.01%, 39.56%, 45.29%, and 53.46% novel
class average precision, surpassing the second-best method
by 3.29%, 2.20%, 1.89%, and 3.36%. For 1 shot, it obtained
an average precision of 35.48%, just 0.14% lower than the top
result. Overall, the proposed method not only outperformed
other methods in most cases but also successfully identi-
fied and located novel class defects, further demonstrating
its effectiveness.

4.5 Ablation study

This section evaluates the impact of different modules on
the performance of the proposed method through a series of
ablation experiments. Specifically, these experiments include
testing S-VAE, enhanced detection head, and fine-tuning
strategy, comparing them with other implementations, and
using split1 with 10 shots as an example for analysis.

4.5.1 Impact of different components on detection results

To explore the specific impact of each improved component
on detection results, this section conducts experiments using
different combinations of improvements, thereby determin-
ing the detection performance of S-EDH-Faster RCNNunder

Fig. 6 Line graph of experimental results (nAP) on PIP-DET dataset. The average class precision (nAP) of S-EDH-Faster RCNN was compared
with that of other advanced methods by using novel classes with different shots on three data splits.
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Fig. 7 Detection examples of
different methods on PIP-DET
split1 (10 shots)

different enhancements. Table 5 presents the corresponding
results.

From Table 5, it is clear that all different improvement
combinations outperform the baseline Faster RCNN. When
using one improvementmethod, when only using S-VAE, the
improved model achieves an average precision of 65.00%;
when only adopting the enhanced detection head, the aver-
age precision is 64.74%; when using adaptive fine-tuning
alone, the average precision is 64.92%. When using two
improvement methods, the combination of S-VAE and EDH
achieves an average precision of 66.79%; the combination

Table 5 Ablation study of proposed modules

Method S-VAE EDH Adaptive mAP
Adjustment

Faster RCNN 62.64

(i) � 65.00

(ii) � 64.74

(iii) � 64.92

(iv) � � 66.79

(v) � � 67.24

(vi) � � 66.20

(vii) � � � 68.07

of S-VAE and adaptive fine-tuning achieves an average pre-
cision of 67.24%; the combination of enhanced detection
head and adaptive fine-tuning achieves an average preci-
sion of 66.20%. When all three improvement methods are
used simultaneously, themodel’s average precision increases
to 68.07%. This indicates that S-VAE, EDH, and adaptive
fine-tuning all effectively improve the model’s detection
performance, with their combined effect being the best,
significantly enhancing the overall performance of S-EDH-
Faster RCNN.

4.5.2 Impact of different variational autoencoders on
detection results

To investigate the impact of different VAEs on detection
results, experimentswere conducted using variousVAEs, and
the detection performance of S-EDH-Faster RCNN under
different conditions were assessed. Table 6 details the exper-
imental results using different VAEs on the split1 with 10
shots scenario. S-VAE w/ Log-cosh, S-VAE w/ smooth L1,
and S-VAE w/ DIP represent S-VAE solely using Log-cosh,
smooth L1, and DIP loss functions, respectively. Figure 8
visualizes the feature space of different VAEs using t-SNE.

From Table 6 and Fig. 8, it can be got that: Compared
with standardVAE and variants, S-VAE and its variants show
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Table 6 Performance comparison of different VAE

Method mAP bAP nAP

Standard VAE [26] 64.17 70.00 46.66

CVAE [34] 66.05 70.42 52.92

CatVAE [39] 64.77 70.76 46.79

Gamma-VAE [32] 65.44 70.93 48.95

β-VAE [36] 63.37 68.60 47.67

VampPriorVAE [33] 65.56 70.29 51.36

DIP-VAE [37] 66.11 71.80 49.04

SWAE [38] 66.29 70.99 52.17

Two-Stage VAE [40] 63.36 70.58 41.68

Log-cosh VAE [31] 66.41 71.10 52.32

HVAE [35] 64.88 71.37 45.39

S-VAE w/ Log-cosh 66.27 70.83 52.58

S-VAE w/ smooth L1 67.03 71.96 52.25

S-VAE w/ DIP 65.92 71.24 49.95

S-VAE (Ours) 68.07 73.14 52.85

improvements inmAP and bAPmetrics. Specifically, S-VAE
achieves the best overall detection performance,with anmAP
of 68.07%, bAP of 73.14%, and nAP of 52.85%. Compared
to other VAEs, S-VAE improves mAP by 1.66%-4.71% and

bAP by 1.34%-4.54%. When S-VAE uses Log-cosh, smooth
L1, and DIP loss functions simultaneously, it achieves opti-
mal results, with mAP improved by 1.04%-2.15%, bAP by
1.18%-2.31%, and nAP by 0.27%-2.90% compared to S-
VAEusing other loss functions. This is becauseLog-cosh and
smooth L1 as reconstruction losses handle large errors more
effectively; additionally, using the distance between latent
variables as a regularization term better decouples latent vari-
ables in the variational autoencoder’s latent space.

Meanwhile, regarding feature distribution, the class dis-
tributions in the feature space generated by S-VAE are more
separated, with clear class boundaries and higher intra-class
compactness, superior to other methods. Specifically, cat-
egories in standard VAE, CatVAE, β-VAE, and SWAE are
dispersed,with loose intra-class feature distributions, leading
to blurred boundaries for some class feature clusters, making
it difficult to accurately distinguish different clusters. CVAE,
Gamma-VAE, VampVAE, and DIP VAE show tighter intra-
class feature distributions, but their inter-class distances are
too small, resulting in significant overlaps. Log-cosh VAE
and HVAE show very tight class distributions with few over-
laps. This demonstrates that S-VAEcangenerate high-quality
samples, providing more valuable data for model training.

Overall, the various loss functions in S-VAE significantly
enhance the model’s detection performance, especially in
bAP and mAP. Moreover, S-VAE achieves the best overall

Fig. 8 Feature space of features
generated by VAE and its
variants. The distribution of
standard VAE and its variants in
the feature space is visualized
through t-SNE.
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Table 7 Performance comparison of detection heads

Type Method mAP bAP nAP

No Improvement TFA [8] 62.64 67.05 49.40

New Branch DandR [44] 65.59 70.37 51.25

CPE [45] 64.47 68.95 51.03

Optimization of CT [46] 63.79 70.09 44.90

Structural PCB [20] 65.23 71.07 47.72

Functionality EDH 68.07 73.14 52.85

results, indicating that the design of these three loss functions
effectively improves model performance.

4.5.3 Impact of Different Detection Heads on Detection
Results

To investigate the impact of different detection heads
on S-EDH-Faster RCNN’s detection results, experiments
were conducted using Disentangle and Remerge branches
(DandR), Contrastive Proposal Encoding (CPE), Context-
Transformer (CT), Prototypical Calibration Block (PCB),
and the proposed Enhanced Detection Head. Table 7 shows
the detection accuracies of S-EDH-Faster RCNN using dif-
ferent detection heads under the split1with 10 shots scenario.

From Table 7, we can find that: The method of using the
EDH achieved the best results, with mean average precisions
for all classes, base classes and novel classes at 68.07%,
73.14%, and 52.85%, respectively. Compared to other meth-
ods, these figures represent improvements of 2.48%-5.43%,
2.07%-6.09%, and1.60%-7.95%.TheEDHoutperformsoth-
ers by utilizing CBAM to strengthen classification features,
allowing the model to focus more on important regions,
thereby improving classification performance. Additionally,
by computing cosine similarity between enhanced RoI fea-
tures and class prototype features and combining this with
softmax scores, the detection head better integrates feature
extraction and classifier judgment, ultimately enhancing the
model’s detection effectiveness.

4.5.4 Impact of different fine-tuning strategies
on detection results

To explore the effect of different fine-tuning strategies on
the detection results of S-EDH-Faster RCNN, this subsection
employs various fine-tuning strategies to train S-EDH-Faster
RCNN.Table 8 andFig. 9present the correspondingdetection
results.

From Table 8, it is evident that when using the adaptive
fine-tuning method, S-EDH-Faster RCNN achieves an aver-
age accuracy of 68.07%, outperforming other strategies by
5.06%-6.62%. Additionally, the average precision for base
classes and novel classes are 73.14% and 52.85%, respec-
tively, which are 2.1%-6.15% and 3.45%-14.89% higher
than those achieved using other strategies. This improve-
ment can be attributed to the model dynamically learning
the features of novel class samples by adaptively selecting
important convolutional kernels in the backbone network,
thereby demonstrating stronger generalization ability in few-
shot scenarios.

4.6 Ablation studies on blurring, lighting,
and occlusion condition

In order to critically evaluate the robustness of the model
S-EDH-Faster RCNN, this subsection performs ablation
studies under blurring, illumination, and occlusion condi-
tions, with extensive ablation studies under a variety of
challenging conditions. The purpose of these experiments
is to understand the impact of each adverse condition on the
model’s detection performance, so as to gain insight into its
practical applicability in real-world scenarios.

4.6.1 Impact of different degrees of blurring on detection
results

To explore the impact of blur on the detection results, we sim-
ulated different degrees of blurring using Gaussian blur with
different kernel sizes and standard deviations σ . The mag-
nitude relationship between Gaussian kernel and standard

Table 8 Performance
comparison of fine-tuning
methods

Type Method mAP bAP nAP

Fine-tune only TFA [8] 62.64 67.05 49.40

the detection heads Symmetric Fine-Tuning [48] 61.45 66.99 44.83

Fine-tune only Bias-Balanced RPN [49] 62.77 71.04 37.96

fixed network layers Online Inferential Calibration [50] 63.01 67.77 48.73

Dynamically fine-tune the Adaptive Fine-Tuning 68.07 73.14 52.85

backbone network

123



Small sample pipeline dr defect detection based... Page 17 of 29   716 

Fig. 9 Visualization of the
effect of Gaussian blur on object
detection accuracy on PIP-DET
split1 (10 shots)

deviation is: σ = 0.3× ((kernel− 1) × 0.5− 1) + 0.8. The
0.3 and 0.8 in the formula are empirical coefficients that are
used to establish a reasonable mapping between the convolu-
tion kernel size and the standard deviation. Table 9 and Fig. 9
show the results of adding blurring to all training set images
on PIP-DET dataset (taking split1-10 shots as an example).

From Table 9, it can be got that: Kernel=0, σ=0 (no
blurring applied) yields the highest performance across
all metrics, with mAP of 68.07%, bAP of 73.14%, and
nAP of 52.85%. This serves as the baseline for compar-
ing blurred combinations. Specifically, under slight blurring
(kernel size=3×3, σ=0.8), the model maintained high per-
formance, with mAP of 65.34%, bAP of 71.15%, and nAP
of 47.90%.When the kernel size increased to 5 and the σ was
1.1, the mAP decreased slightly to 62.16%, bAP to 67.26%,
and nAP to 46.84%. The kernel size was further enhanced
to 7 with σ=1.4, and the mAP decreased to 55.72%, bAP
to 58.83%, and nAP to 46.37%. When the kernel size is
9×9 and the standard deviation is 1.7, the mAP decreases
to 51.01%, bAP decreases to 52.11%, and nAP increases
slightly to 47.70%. However, under the strongest blurring
processing (kernel size=11×11, σ=2.0), the performance of

Table 9 Impact of Gaussian Blur on object detection accuracy on PIP-
DET split1 (10 shots)

Kernel Size σ mAP bAP nAP

0×0 0 68.07 73.14 52.85

3×3 0.8 65.34 71.15 47.90

5×5 1.1 62.16 67.26 46.84

7×7 1.4 55.72 58.83 46.37

9×9 1.7 51.01 52.11 47.70

11×11 2.0 49.73 51.53 44.30

themodel decreased significantly, withmAPof 49.73%, bAP
of 51.53%, and nAP of 44.30%. This demonstrates that with
the increase of blurring, the detection accuracy of the model
generally decreased, especially in the case of high blurring.

4.6.2 Impact of different degrees of lighting on detection
results

To analyze the impact of light on the detection results,
we construct experiments with different brightness levels.
Table 10 andFig. 10 present the detection performance across
five different brightness levels on PIP-DET dataset (using
split1-10 shots as an example).

From Table 10 and Fig. 10, it can be find that: the high-
est detection performance is achieved under normal lighting
conditions (Brightness=0), with an mAP of 68.07%, bAP of
73.14%, and nAP of 52.85%. This serves as the baseline for
comparison with other brightness settings.

Under moderate brightness reduction (Brightness=-25),
the model maintains relatively high performance, with an
mAP of 66.28%, bAP of 72.00%, and nAP of 49.12%.
However, with a more extreme reduction in brightness
(Brightness=-50), detection accuracy drops significantly,

Table 10 Impact of brightness changes on object detection accuracy
on PIP-DET split1 (10 shots)

Brightness mAP bAP nAP

-50 64.38 70.80 45.12

-25 66.28 72.00 49.12

0 68.07 73.14 52.85

25 66.25 71.58 50.25

50 65.85 72.44 46.09
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Fig. 10 Visualization of the
effect of brightness on object
detection accuracy on PIP-DET
split1 (10 shots)

with an mAP of 64.38%, bAP of 70.80%, and nAP of
45.12%. This suggests that under darker conditions, the
model struggles to extract useful features, leading to per-
formance degradation.

Similarly, increasing brightness to 25 and 50 leads to
a slight decline in performance. At Brightness=25, it got
66.25% mAP, 71.58% bAP, and 50.25% nAP. With an even
higher brightness level (Brightness=50), the mAP decreases
to 65.85%, bAP to 72.44%, and nAP to 46.09%. This indi-
cates that excessive brightness can also impact detection
performance, likely due to overexposure causing loss of
important details.

Overall, this demonstrate that while moderate lighting
changes have minimal impact, extreme lighting conditions
may reduce detection accuracy, with darker conditions hav-
ing a more significant negative effect.

4.6.3 Impact of Different Degrees of Occlusion on Detection
Results

To evaluate the robustness of the model against occlusion,
we introduced occlusion patches covering 5%, 10%, 15%,
20%, and 25% of the image area during training. These
occlusions are simulated with randomly placed rectangular
patches of varying aspect ratios, mimicking real-world dust,
lens smudges, and occlusion projections. Table 11 andFig. 11
present the detection performance across different occlusion
levels on PIP-DET dataset (using split1-10 shots as an exam-
ple).

Tables 11 and Fig. 11 present the detection performance
across different occlusion levels on PIP-DET dataset (using
split1-10 shots as an example).

The results indicate that detection performance decreases
as occlusion levels increase. The highest accuracy is observed
under no occlusion (Occlusion=0%), with an mAP of
68.07%, bAP of 73.14%, and nAP of 52.85%, serving as
the baseline for comparison.

Under minor occlusion (5%), the model maintains rel-
atively high performance, with an mAP of 65.89%, bAP of
72.57%, and nAP of 45.85%. However, as the occlusion level
increases to 10%, mAP decreases to 65.24%, and nAP drops
to 43.46%, showing a clear negative impact on detecting
novel objects.

With moderate occlusion (15-20%), the performance fur-
ther declines. At 15% occlusion, the mAP drops to 64.79%,
andnAPdecreases to 41.64%.At 20%,mAPdeclines slightly

Table 11 Impact of occlusion on object detection accuracy onPIP-DET
split1 (10 shots)

Occlusion Percentage mAP bAP nAP

5% 65.89 72.57 45.85

10% 65.24 72.50 43.46

15% 64.79 72.51 41.64

20% 64.51 72.57 40.33

25% 64.15 72.50 39.10

0% (No Occlusion) 68.07 73.14 52.85
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Fig. 11 Visualization of the
effect of brightness on object
detection accuracy on PIP-DET
split1 (10 shots)

to 64.51%, and nAP drops to 40.33%, highlighting the diffi-
culty in identifying partially obscured objects.

When occlusion reaches 25%, the detection accuracy
declines significantly, with mAP falling to 64.15%, bAP to
72.50%, and nAP to 39.10%, demonstrating that high occlu-
sion levels severely hinder the model’s ability to recognize
novel objects.

The overall trend suggests that as occlusion increases,
detection accuracy, especially for novel objects (nAP).While
the model shows some robustness to minor occlusions (less
than 10%), larger occlusions (more than 15%) significantly
degrade performance, likely due to missing key visual fea-
tures required for recognition.

4.7 Comparison on the public NEU-DET dataset

To validate the performance of the proposed method on a
public dataset, this subsection selects the NEU-DET dataset
to compare the detection performance of different methods.
The experiments were conducted under different numbers of
training samples (1, 2, 3, 5 and 10 shots).

NEU-DET is a dataset for steel surface defect detection,
containing six types of defects with 300 samples each, total-
ing 1,800 samples and corresponding labels [56]. The dataset
is divided into 1,260 training samples and 540 test sam-
ples. Figure 12 shows annotation examples of defect images.
In this experiment, four classes were randomly selected as
base classes, and the remaining two classes were defined as
novel classes. Each novel class had K=1, 2, 3, 5, 10 anno-
tated training samples to simulate few-shot scenarios. This
study considered three randomsplits, named split1, split2 and
split3. During training and testing, all images in the dataset
were resized to 200×200 with 3 channels.

Table 12 shows the average accuracy of different methods
on novel classes,where bold numbers indicate the best results
and underlined numbers indicate the second-best results.
Figure 13 showcases detection examples of different meth-
ods. From Table 12 and Fig. 11, it can be concluded that:
The proposed method outperforms other methods overall
across all splits and shots. Specifically, in split1, the pro-
posed method achieved 15.72% nAP with only one sample.
As the number of samples increased, the nAP significantly
improved, reaching 38.21% with ten samples. In split2, the
proposed method achieved the highest nAP for all sample
sizes. Similarly, in split3, the proposed method achieved
the highest average accuracy in most cases. Additionally,
from the detection example images, the proposed meth-
ods detection results closely matched the true annotations.
Other methods, such as the CT method, exhibited false pos-
itives, while the VFA method showed multiple overlapping
bounding boxes. This indicates that the proposedmethod can
accurately detect and locate objects in few-shot scenarios.

4.8 Comparison on the public PCB dataset

In order to validate the performance of the proposed method
on other material datasets and in different scenes, this sub-
section selects the PCB dataset [57] to compare the detection
performance of different methods. The experiments were
conducted under different numbers of training samples (1,
2, 3, 5 and 10 shots).

This dataset is specifically designed for defect detection in
printed circuit boards and consists of a total of 12,428 images
across six defect categories: missing hole, mouse bite, open
circuit, short, spur and spurious copper. The detail detec-
tion results of different methods are provided in Table 13.
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Fig. 12 Examples of defect images with annotations on NEU-DET

Figure 14 shows annotation examples of defect images. In
this experiment, four classes were randomly selected as base
classes, and the remaining two classes were defined as novel
classes. Each novel class hadK=1, 2, 3, 5, 10 annotated train-
ing samples to simulate few-shot scenarios. We considered
three random splits, named split1, split2 and split3.

Table 13 shows the average accuracy of different methods
on novel classes in the PCB dataset, where bold numbers
indicate the best results and underlined numbers indicate the
second-best results. From Table 13, it can be concluded that:
The proposed method outperforms other methods overall
across all splits and shots. Specifically, in split1, the proposed

method achieved 34.75% nAP with only one sample. As
the number of samples increased, the nAP significantly
improved, reaching 56.65% with ten samples. In split2, the
proposed method achieved the highest nAP for all sample
sizes, with a notable improvement from 32.12% with one
sample to 52.44% with ten samples. Similarly, in split3, the
proposed method achieved the highest average accuracy in
most cases, starting at 30.68% with one sample and reach-
ing 54.74% with ten samples. Figure 15 shows the detection
results of the different methods.

The proposed method’s consistent superiority across all
splits and sample sizes demonstrates its robustness and

Table 12 Experimental results (nAP) of different methods on NEU-DET dataset

Method Novel Split1 Novel Split2 Novel Split3
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

CME [23] 8.47 9.27 11.69 16.22 22.69 4.49 5.63 8.47 10.82 16.64 3.68 3.99 8.75 8.87 17.19

FSCE [45] 12.25 15.72 18.68 25.74 33.15 8.57 10.47 12.47 20.42 29.19 4.74 10.21 11.69 19.74 26.86

TFA [8] 9.93 12.03 18.05 20.56 30.68 7.51 9.19 12.99 16.49 26.63 5.83 7.01 10.95 19.64 25.12

Meta Faster 6.45 7.77 10.41 15.21 20.93 2.75 4.14 7.46 10.02 17.29 2.67 3.09 4.08 8.34 11.91

RCNN [18]

DandR [44] 15.42 16.21 19.25 26.89 35.26 9.35 11.22 14.78 20.49 30.52 7.07 10.56 12.38 18.40 27.80

VFA [19] 11.33 16.41 17.91 23.94 32.54 8.63 10.79 15.32 20.95 31.22 7.23 9.11 8.97 18.62 27.77

DeFRCN [20] 10.68 11.59 19.01 24.01 31.52 7.26 10.29 15.69 18.37 28.52 5.86 7.52 9.92 17.44 24.43

CT [46] 7.97 9.79 11.53 17.23 21.63 3.15 5.25 9.65 9.73 17.52 3.66 4.42 5.41 9.09 15.31

RegAD [59] 5.91 8.52 12.29 20.52 27.85 2.72 5.65 8.43 16.71 24.21 1.26 2.68 7.22 15.46 22.59

Ours 15.72 17.39 20.47 29.51 38.21 9.42 12.72 19.16 22.56 35.13 8.18 11.99 15.75 23.34 30.32
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Fig. 13 Detection examples of
different methods on NEU-DET
split1 (10 shots)

effectiveness in few-shot scenarios. Other methods, such as
DeFRCN and DandR, also showed competitive performance
but were consistently outperformed by the proposed method.
For instance, in split1, DeFRCN achieved 53.78% nAP with
ten samples, which is close but still lower than the pro-
posedmethod’s 56.65%. Similarly, in split2,DandRachieved

47.33% nAP with ten samples, which is significantly lower
than the proposed method’s 52.44%. These results highlight
the proposed method’s ability to generalize well across dif-
ferent splits and sample sizes, making it a strong candidate
for few-shot object detection tasks on PCB dataset.

Table 13 Experimental results (nAP) of different methods on PCB dataset

Method Novel Split1 Novel Split2 Novel Split3
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

CME [23] 27.04 31.64 36.03 39.72 42.35 22.42 24.37 34.17 35.02 38.74 19.66 24.44 32.37 33.13 41.95

FSCE [45] 29.48 35.63 39.51 45.07 51.87 19.57 22.14 27.91 34.5 43.25 24.01 29.71 34.14 42.22 50.48

TFA [8] 27.27 29.36 37.66 44.09 50.52 23.24 26.92 31.78 30.51 34.00 23.12 27.82 34.39 39.96 40.46

Meta Faster 9.30 17.70 19.51 20.69 25.99 7.45 10.74 11.24 14.22 18.30 9.60 14.39 16.44 17.87 24.19

RCNN [18]

DandR [44] 32.46 35.86 39.93 44.17 51.78 29.49 31.32 36.01 44.89 47.33 24.82 28.93 35.86 40.41 42.76

VFA [19] 27.05 32.70 35.23 39.28 44.59 23.65 30.70 35.94 39.82 44.24 28.53 31.83 38.03 42.88 47.38

DeFRCN [20] 31.22 38.75 44.64 47.55 53.78 28.83 32.07 38.74 42.70 50.44 28.82 34.38 39.79 44.05 50.82

CT [46] 7.74 10.00 16.23 17.23 25.69 7.92 12.45 17.49 20.24 33.73 7.16 12.23 16.91 19.35 28.57

RegAD [59] 24.42 31.44 35.22 40.37 46.78 19.99 24.19 27.33 33.16 40.06 21.81 23.90 28.60 32.96 42.29

Ours 34.75 39.75 44.56 49.04 56.65 32.12 35.11 41.15 45.12 52.44 30.68 39.62 40.18 46.35 54.74
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Fig. 14 Examples of defect images with annotations on PCB datasets

4.9 Comparison on the public MT defect dataset

In order to validate the performance of the proposed method
on other material datasets and different scenes, this sub-
section selects the MT defect dataset [58] to compare the
detection performanceof differentmethods. The experiments
were conducted under different numbers of training samples
(1, 2, 3, 5 and 10 shots).

In the MT defect dataset, the images of 5 common
magnetic tile defects and a no-defect class, totaling 393
images, were collected, and their pixel level ground-truth

were labeled. Figure 16 shows annotation examples of defect
images. In order to adapt to the detection task, we converted
the mask annotations of the segmentation task into the anno-
tations of object detection. In this experiment, four classes
were randomly selected as base classes, and the remaining
two classes were defined as novel classes. Each novel class
had K=1, 2, 3, 5, 10 annotated training samples to simu-
late few-shot scenarios. This study considered three random
splits, named split1, split2 and split3.

From the comparison results in Table 14 and Fig 17,
it can be seen that the proposed method achieves the best

Fig. 15 Detection examples of
different methods on PCB split1
(10 shots)
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Fig. 16 Examples of defect
images with annotations on MT
split1 (10 shots)

performance across all splits and different sample sizes,
significantly outperforming other methods. For example, in
split1, the method reaches an nAP of 16.96% with only one
sample, and its performance further improves as the number
of samples increases, reaching 40.72% in the 10-shot set-
ting. In split2 and split3, the method also maintains a leading
position in most cases. In the 10-shot setting of split1, split2,
and split3, the proposedmethod outperforms the second-best
method by 3.59%, 4.03%, and 2.62%, respectively, further
demonstrating its robustness and superiority. From the detec-
tion example images, the results of the proposedmethod align
well with the ground truth annotations, indicating its stronger
object detection capability in few-shot scenarios.

4.10 The computational complexity of different
methods

The Table 15 lists the impact of different approaches on
model size (#param) and FLOPs. From these results, it can be
seen that the number of parameters of our method is 59.3M,
and the number of floating-point operations is 18.7G.

5 Discussion

Although the model demonstrates a high level of perfor-
mance in detecting novel classes of defects, there remain
instances of extremely challenging or complex defect mor-
phologies that result in over-detection or under-detection
issues. Figure 18 shows examples of over-detection and
under-detection on PIP-DET dataset. In cases of over-
detection, themodel excessively interprets irrelevant features
in the background, mistakenly identifying additional areas
as defective. In scenarios involving multiple defects, the
model fails to recognize all the genuine defects present.

This indicates that when detecting novel class samples, if
the samples lack enough representativeness or the defects
are inherently difficult to detect, the model may be prone to
over-detection or under-detection.

Figure 19 (a) reveals themean value of the original feature
distribution at 0.3389, with a standard deviation of 0.4547,
and a peak value reaching 6.1654. Figure 19 (b) shows that
the feature distribution generated by S-VAE closely aligns
with the original, registering a mean value of 0.3313, a stan-
dard deviation of 0.4445, and a maximum of 4.9915, closely
approximating the initial data while maintaining a similar
histogram shape. Figure 19 (c) displays the reconstructed fea-
ture maps post-application of a blur with kernel size 21×21
and a standard deviation of 3.5, noting a reduction in the
mean feature distribution to 0.3145, a decrease in standard
deviation to 0.4283, and a reduced peak of 3.4113. Similarly,
Fig. 19 (d) presents the reconstructed feature maps following
the introduction of 20% salt-and-pepper noise to the original
image, marking a substantial rise in the mean to 0.7745, an
escalation in standard deviation to 0.9235, and a peak value
of 6.9007. Figure 20 illustrates the characterization of the
first eight channels of layer 2.

This visualization in Fig. 21 illustrates the failures of
Medoids in a noisy environment. Specifically, when there
are too many outlier points, it will bring high noise to the
calculation, causing the Medoids to choose the features that
deviate from the main cluster as the feature prototype. Since
Medoids must select data points as the center, in a high-noise
environment, it may mistakenly select some features that are
far away from the real cluster, or even choose noise features
as the center, resulting in unreasonable calculation results for
feature prototypes. Although using Medoids can reduce the
impact of outliers, it may still not completely eliminate the
negative effects of these factors, especially when the feature
distribution is more dispersed or there is a lot of noise.
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Fig. 17 Detection examples of
different methods on MT split1
(10 shots)

6 Conclusion

This paper proposes a Faster RCNN-basedmethod for small-
sample pipeline DR defect detection, incorporating a smooth

Table 15 Computational complexity of different methods

Method #param. (M) FLOPs (G)

CME [23] 60.1 15.3

FSCE [45] 58.6 15.7

TFA [8] 55.5 13.4

Meta Faster 62.6 16.5

RCNN [18]

DandR [44] 66.5 19.4

VFA [19] 60.3 15.4

DeFRCN [20] 58.3 16.1

CT [46] 60.0 15.7

RegAD [59] 78.5 22.3

Ours 59.3 18.7

variational autoencoder and enhanced detection head. The
main contributions of this work include the following three
aspects: First, to alleviate the issue of scarce novel class
training samples, a smooth variational autoencoder is used to
reconstruct features during DR defect image feature extrac-
tion, better fitting the distribution of training data. Second,
to enhance the accuracy of classification tasks, an enhanced
detection head is designed, employing a CBAM-based center
point classification calibration module to correct classifi-
cation scores, thereby improving classification precision.
Finally, to better learn the characteristics of novel class sam-
ples, an adaptive fine-tuning method is proposed, adaptively
updating key convolutional kernels in the backbone network
during the fine-tuning stage, enabling the model to gener-
alize better to novel classes. Experimental results on both
the self-made dataset and public datasets demonstrate that
the proposed method outperforms others in terms of average
accuracy, proving its superiority.

However, our method still has limitations. As pointed
in Discussion, its performance is affected by the generated
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Fig. 18 Examples of
over-detection and
under-detection on PIP-DET
dataset

Fig. 19 Histogram of S-VAE features under high-intensity salt-and-pepper noise and Gaussian blur

Fig. 20 Examples of S-VAE failures under high-intensity salt-and-pepper noise and Gaussian blur
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Fig. 21 Examples of Medoids method failures in high-noise situations.
In 2D simulation experiments, when the features are highly discrete,
it is difficult for the Medoids method to select the truly representative
feature prototypes

features. Therefor, in the future, one direction is to explore
advanced generation methods, to better adapt to different
types of defects or datasets. Furthermore, integrating self-
supervised or semi-supervised learning techniques could
enhance its ability to generalize to datasets with limited
labeled samples, such as rare defect detection or high-
resolution satellite image analysis.
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