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Abstract This paper introduces a novel approach for
planning smooth trajectories of robotic manipulators
by leveragingmultiquadric radial basis functions (MQ-
RBFs). The proposed approach aims to achieve opti-
mal trajectories by minimizing a multi-objective func-
tion that accounts for both time and jerk optimization.
The MQ-RBF interpolation technique ensures that the
trajectory meets velocity, acceleration, and jerk lim-
its, while ensuring jerk continuity. Comparative eval-
uations are conducted in two cases: with and without
optimization. In the first case, the MQ-RBF interpola-
tion approach is compared with various RBF interpola-
tionmodels. In the second case, theMQ-RBF trajectory
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approach is compared with alternative state-of-the-art
trajectory planning techniques, such as fifth-order B-
splines and trigonometric spline functions, for gener-
ating optimal time-jerk trajectories for 6-joint robotic
manipulators using optimization algorithms. Numeri-
cal and experimental results demonstrate the superior
performance of the proposed technique in efficiently
planning smooth trajectories compared to existing tra-
jectory planning approaches and validate its effective-
ness across various scenarios.

Keywords Interpolation techniques · MQ-RBF ·
Robotics · Time-jerk optimization · Trajectory
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1 Introduction

Trajectory planning is the foundation of motion control
for robots to accomplish a desired task [1]. It is often
approached from three perspectives: the temporal [2,3],
the motion smoothness [4], or addressing the trade-off
between these two aspects [5]. Motion smoothness is a
critical issue in precision manufacturing. Therefore, by
maintaining a smooth trajectory, it is possible to prevent
abrupt variations in load, prolong the lifespan of the
joints, and position control precision can be enhanced
[6]. To this end, many studies have been conducted on
planning and optimizing trajectories by using different
objective functions and constraints.
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In robotics, trajectoryplanning is commonlydescribed
by polynomials [7–9], splines [10–29] or Bézier [30–
33] interpolation functions, among other techniques.
The employment of polynomial functions of higher
order enables the generation of motion profiles char-
acterized by enhanced smoothness. However, this
approach comes with the drawback of a general rise
in high speed values, assuming a constant total execu-
tion time. For instance, in [7], polynomial functions up
to the 9th order are considered to present a description
of the acceleration profile under the condition of an
acceleration constraint. Mohamed et al. [8] employed
3rd, 4th, 5th, and 6th degree polynomials along with
cycloidal and elliptical formulas to plan the optimal
trajectory of a 3-DOFpositioningmicro-robot.Anopti-
mal time-jerk algorithm for trajectory planning subject
to kinematic constraints is proposed byBureerat et al. in
[9], where a fifth-order polynomial function is adopted
to connect two sub-paths, the beginning and interme-
diate positions, to the end position. However, only a
few articles employed polynomials with degree greater
than seven to describe displacement.

The cubic splines have been employed to construct
the trajectory of robotic manipulators in many papers
[10–14]. In their proposed approach, Gasparetto et
al. [10,11] applied cubic splines and the sequential
quadratic programming (SQP) algorithm to optimize
the bi-objective function related to the total execution
time and the integral of the squared jerk along the
whole trajectory. Similarly, in [4], the authors intro-
duce a technique for optimizing minimum-jerk (MJ)
trajectories to achieve a global solution using interval
analysis. A series of cubic splines functions are used
for interpolation. That approach can produce a contin-
uous jerk, but it has very high computing requirements.
The authors of [15,16] provide a description of the tra-
jectory planning to get minimal time along specified
tasks using algebraic splines for industrial manipula-
tors. Furthermore, Gallant and Gosselin [17] focused
on the issue of increasingmanipulator payload capacity
for pick-and-place tasks in joint-space trajectory plan-
ning by optimizing cubic splines and Bernstein poly-
nomials with a SQP optimization technique.

The applications ofB-splines, just like cubic splines,
have also been investigated in many research works
with various algorithms, including cubic B-splines
[18–21], quintic B-splines [5,11,22–27], and seventh-
order B-splines [28,29]. For instance, Saravanan et
al. [18] developed a novel optimum trajectory plan-

ning method based on evolutionary theory using cubic
B-splines. Zhang et al. [22] developed a trajectory
planning approach for robots under obstacles using
a multi-objective optimization technique to obtain an
optimal time-jerk trajectory. Their approach uses fifth-
order B-splines to construct joint trajectories with kine-
matic and obstacle constraints. Moreover, Huang et
al. [27] proposed the NSGA-II optimization technique
to minimize time-jerk trajectory planning under kine-
matic constraints through the application of a fifth-
order B-spline curve. In [28], the authors interpolated
the set points of the robot trajectory using a seventh-
order B-spline interpolation curve, which was opti-
mized through the SQP technique to produce time-
optimal and jerk-continuous trajectories that satisfy
nonlinear kinematic constraints. Furthermore, in [29]
the authors used a seventh-degree B-spline curve inter-
polation, where smoothness is controlled via boundary
conditions and motion constraints.

Some studies on robot trajectory planning have
proposed Bézier curves [30–33]. In [30], the authors
addressed the trajectory planning problem for a 6-
DOF gluing robot. They used a Bézier curve to pro-
vide smooth and controlled tracking performance of
the trajectory during the transition between two differ-
ent movement segments in the Cartesian space. The
optimal model for the least-time trajectory planning
for the robot by a Bézier curve in the Cartesian space
using the genetic algorithm (GA) is established in [32],
which considers constraints like joint angular velocity
and acceleration.Moreover, in [33], a method was used
to get the trajectory of the rotational part of the robot
manipulator. Since interpolating the transform matrix
is difficult, the use of a quaternion is introduced, which
is easily interpolated, and Bézier motion is applied to
plan the smooth path of the end-effector.

The S-curve and AS-curve are discussed in several
studies for the trajectory planning of robotic manipu-
lators [34–39]. Lambrechts et al. [37] focused on an S-
curve for single-axis motion control. It is demonstrated
that these trajectories are time-optimal in the most rele-
vant cases.Wu et al. [38] presented an algorithm to gen-
erate time-optimal and smooth joint trajectories in pick-
and-place tasks, based on a locally enhanced asym-
metrical jerk motion profile. Similarly, Perumaal and
Jawahar [39] concentrated on the planning of a jerk-
limited trigonometric S-curve trajectory for a 6-DOF
roboticmanipulator in pick-and-place tasks. Their sim-
ulation results reveal that this approach creates faster
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and smoother movements compared with spline-based
trajectories. Nevertheless, the maximum allowed jerk
cannot be achieved in the acceleration and deceleration
phases owing to the conservative nature of the synchro-
nization technique, which results in unnecessary per-
formance excess and an extra increase in the overall
execution time.

Many papers in the literature investigate the combi-
nation of different functions for the description of tra-
jectories [40–44]. Liu et al. [40] proposed to optimize
the motion time by combining the cubic splines inter-
polation functions in the Cartesian space with the B-
spline interpolation functions in the joint space. While
cubic splines and B-splines functions simplify trajec-
tory planning, they do not allow the robot manipulator
to fully utilize its capabilities to save cycle time. Kucuk
[41] took further steps to construct time-optimal trajec-
tories by combining the cubic spline functions with the
seventh-order polynomial and using a particle swarm
optimization (PSO) algorithm for serial and parallel
robotic manipulators. Other well-known approaches
rely on polynomial interpolation functions, such as
the third-order and fifth-order interpolation functions
introduced by Cook and Ho [42]. This approach makes
use of spline functions, although it does not ensure jerk
continuity along the trajectory, whereas Petrinec et al.
[43], as well as Boscariol et al. [44], mix forth with
fifth-order polynomial functions to interpolate the tra-
jectory through a series of intermediate points and solve
the problem of jerk continuity.

In addition to these various interpolation functions,
in this paper special attention is paid to radial basis
functions (RBFs) for interpolation, which are used
effectively for scattered data interpolation problems in
any number of dimensions. In this context, the work
[45] presents two techniques for solving continuous-
time optimal control problems based on RBF interpo-
lation and arbitrary discretization. The choice of any
global RBF as an interpolation function and of all
arbitrary points as discretization points satisfy both
the RBF collocation method and the RBF-Galerkin
method, allowing for the development of a flexible
solution to optimal control problems, particularlywhen
involving non-smooth problems. This intriguing study
might be thought of as an extension of [46]. Moreover,
Mirinejad et al. [47] present a straightforward approach
to optimum control problems based on the global radial
basis function interpolation at any collocation point.
The authors of [48] introduced a novel technique to get

smooth trajectory planning for robot manipulators in
pick-and-place tasks by means of Gaussian RBF inter-
polation. Furthermore, Alipanah et al. [49] describe
a numerical approach for solving the brachistochrone
problem. It is based on the utilization of collocation
points and the approximation of multiquadric radial
basis function solutions. The approximate solution is
computed in the form of a series whose components
are easily calculated. To show the capabilities of the
suggested technique, an error analysis and numerical
results are presented. In [50], the MQ-RBF interpo-
lation profile has been presented with application to
the six-joint PUMA 560 manipulator to satisfy the null
limit conditions on velocities and accelerations. How-
ever, that study overlooks the null limit for jerks at the
start and end of themotion. Based onMQ-RBF to solve
initial value problems, adaptive radial basis function
methods have been developed in [51]. These adaptive
methods use the free parameter in order to adaptively
improve the local convergence of the numerical solu-
tion, and they are based on the regularity of the solution,
which is given in derivatives of the solution, to control
the rate of convergence.

This paper introduces a novel and efficient approach
for constructing joint trajectories for manipulators
based on multiquadrics-RBFs. By performing tra-
jectory planning in the robot joint configuration,
the approach proposed in this work enables easy
achievement of transferswith via-points,whilemeeting
imposed boundary conditions. Through trajectory opti-
mization, the proposed techniqueyieldsminimum-time
and smooth trajectory profiles that adhere to kinematic
constraints of robotic manipulators. The main contri-
butions of this work are summarized in the following:

• Smooth trajectoryplanningbasedonMQ-RBFs:
The use of MQ-RBFs enables the planning of
smooth trajectories for robot manipulators, pro-
viding continuous derivatives for any order within
the interpolation interval and ensuring compliance
to imposed kinematic constraints. Compared to
other trajectory planning techniques, the proposed
approach based on MQ-RBFs satisfies null limit
conditions on velocities, accelerations, and jerks.

• Optimal trajectory generation based on MQ-
RBFs: The proposed technique based on MQ-
RBFs generates joint trajectories comparable to
trigonometric spline and 5th-order B-spline meth-
ods in terms of transfer time, but with significantly
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reduced jerk. Additionally, it overcomes issues
associatedwith ill-conditionedmatrices often encoun-
tered with high-degree curve spline interpolation
methods.

• Minimum jerk index: Comparative analysis with
state-of-the-art techniques demonstrates that the
proposed MQ-RBF approach produces the mini-
mum jerk index, while maintaining transfer time,
showcasing its superiority over existing approaches.

• Boundary conditions: To the best of the authors’
knowledge, very few interpolation functions in the
literature address trajectory planning for robotic
systems using the same interpolation technique
such as MQ-RBFs, while allowing for variations in
boundary conditions, such as setting null velocity,
acceleration, and jerk, or null velocity and acceler-
ation without null jerk.

The remainder of this paper is organized as follows.
In Sect. 2, the issue of trajectory planning optimiza-
tion is stated, namely the multi-objective function to
optimize. In Sect. 3, MQ-RBF is chosen to create the
joint trajectory, taking into consideration the boundary
conditions. Section4 outlines the applied optimization
algorithms with the MQ-RBF process consideration.
In Sect. 5, the suggested approach is contrasted with
a variety of different RBF interpolation strategies. In
Sect. 6, the proposed interpolation approach is tested
to obtain a time-jerk optimal trajectory for the 6-DOF
robotmanipulator using two distinct optimization algo-
rithms, SQP and NSGA-II. Furthermore, the experi-
mental results on aUR5e robot are illustrated in Sect. 7.
Finally, the conclusions of this work are reported in
Sect. 8.

2 Formulation of the optimization problem

In industrial tasks, robotic systems need to move
through a set of via-points in the operational space.
Directly planning the trajectory in the Cartesian space
can be challenging, so the above via-points are first
converted into joint space coordinates through inverse
kinematics. Based on these joint space via-points, a
trajectory is designed and then optimized to achieve a
specific goal. The trajectory is expected to have a travel
time as low as feasible to maximize productivity in
industrial applications, and it needs to be smooth to pre-
vent excessive mechanical vibrations while imposing
kinematic constraints. By keeping the travel time and

themotion smooth, the robot can operate efficiently and
avoid issues like excessive vibration during its tasks.

Hence, the optimization problem is mathematically
formulated as follows. The objective function that has
to be minimized is:

Fobj = KT T + KJ JM (1)

The objective function in Eq. (1) is formulated using
two conflicting objectives: travel time (T ) and jerk
(JM), eachweighted by the factors KT and KJ , respec-
tively. The execution time is equal to:

T =
m−1∑

i=1

hi (2)

and the absolute mean jerk can be computed as:

JM =
n∑

j=1

√
1

T

∫ T

0

...
q 2

j (t) dt (3)

The optimization problem is subject to the following
constraints:

⎧
⎪⎨

⎪⎩

|q̇ j (t)| ≤ q̇max
j , j = 1, ..., n

|q̈ j (t)| ≤ q̈max
j , j = 1, ..., n

|...q j (t)| ≤ ...
q max

j , j = 1, ..., n

(4)

The definitions of the aforementioned symbols can
be found in Table 1. It is important to recognize that
the objectives minimizing travel time and jerk (rate of
change of acceleration) have conflicting effects. Min-
imizing travel time aims to make the robot complete
its motion as quickly as possible, which often requires
higher accelerations and jerks. Conversely, minimizing
jerk ensures a smoother motion by reducing sudden
changes in acceleration, but this generally increases
the travel time because the robot must move more
gradually. Thus, optimizing for one of these objectives
often negatively affects the other, requiring a trade-
off between travel time and smoothness in trajectory
planning. Furthermore, the trajectory that effectively
addresses the optimization problem must satisfy the
interpolation conditions for all knots while also meet-
ing the kinematic limits of velocity, acceleration, and
jerk outlined in Eq. (4).
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Table 1 Nomenclature of symbols

Symbol Definition

Fobj Objective function

KT Weight of the term proportional to
the total time

T Total time of the trajectory

KJ Weight of the term proportional to
the jerk

JM Jerk index objective function

m Number of interpolating points

n Number of robot joints

hi Time interval between two knots

q̇ j , q̈ j ,
...
q j Velocity, acceleration, and jerk of

the j-th joint

q̇max
j , q̈max

j ,
...
q max

j Velocity, acceleration, and jerk
limits for the j-th joint

In order to evaluate the effectiveness of the MQ-
RBF approach, the weighting coefficients KT and KJ

in the objective function expressed in Eq. (1) have to
be properly selected. These coefficients balance the
two contributions of the cost function: one term pro-
portional to the total time, and one proportional to the
jerk. The optimization problem can be solved for any
values of KT and KJ , which weight the cost function
between the cases of minimum time and minimum jerk
to achieve the desired trade-off between total time and
smoothness of the trajectory. If KJ = 0, the objective
function effectively reduces to minimizing only travel
time (T ), since the jerk term is no longer considered in
the optimization. Conversely, if KT = 0, the function
focuses solely on minimizing jerk (JM), as the time-
dependent term is removed. Thus, the selection of KT

and KJ determines the trade-off between minimizing
time and achieving a smooth trajectory.

3 Proposed approach

3.1 Interpolation problem

The trajectory generation problem can be described as
follows: given a set of points (xi , yi ) for i = 1, ...,m,
which represent the via-points of a trajectory, the goal
is to find a continuous function f (x) that connects these

points as follows:

f (xi ) = yi , i = 1, ...,m where xi �= x j , i �= j

(5)

The trajectory is supposed to start at (x1, y1) and to end
at (xm, ym).

3.2 Definition of the trajectory by means of MQ-RBFs

To solve this problem, in this paper an original formu-
lation based on the Multiquadric Radial Basis Func-
tions (MQ-RBFs) technique is proposed for the func-
tion approximation. The MQ-RBF method was intro-
duced in 1971 by R. L. Hardy [52,53] for fitting geo-
graphical data. The technique of MQ-RBF interpola-
tion, which was developed by Hardy, received little
attention until 1979. Nevertheless, subsequent research
[54] showcased that the MQ-RBF technique outper-
forms other approaches in handling data interpolation
issues across more than thirty distinct functions that
were analyzed.

A radial basis function (RBF) is naturally defined
as a multivariate function that can be represented as a
function of a single variable. RBFs have been widely
used in applications involving large data sizes, as they
arewell-suited for handling highly nonlinear problems.
Moreover, an RBF is a real-valued function, meaning
its value depends only on the radial distance from the
origin or any specified reference point, known as the
center point c, which is known as the radial basis func-
tion (RBF), so that:

ϕ(x, c) = ‖x − c‖ (6)

Where ϕ is the RBF basis function, the norm ‖ · ‖
denotes the Euclidean distance between the coordinate
of a point x and the RBF center c, with r = ‖x − c‖.
Any multivariate function that can be expressed as uni-
variate function of the Euclidean norm ‖ · ‖ is called
radial basis function. Some classical RBFs are shown
in Table 2.

The RBF basis function can be:

• Infinitely smooth (global RBF) with a free positive
parameter, often referred to as the shape parameter
σ as in Gaussian and Multiquadric cases;
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Table 2 Overview on classical RBFs

RBF Name Symbol Basis function

Gaussian Ga-RBF exp
(
− 1

2
r2

σ 2

)
, σ > 0

Inverse multiquadric IMQ-RBF 1/
√
r2 + σ 2, σ > 0

Inverse quadrics IQ-RBF 1/(r2 + σ 2), σ > 0

Multiquadric MQ-RBF
√
r2 + σ 2, σ > 0

Thin plate spline TPS-RBF r2 log(r)

Polyharmonic splines PS-RBF

{
rk if k = 1, 3, 5, ...

rk ln(r) if k = 2, 4, 6, ...

• Piecewise smooth without a shape parameter σ ,
such as in thin plate splines and polyharmonic
splines.

In this study, particular focus is given to robot trajec-
tory interpolation using MQ-RBF, which is expressed
as follows [55]:

ϕ(r) =
√
r2 + σ 2 with σ > 0 (7)

A significant property of MQ-RBF is that it is nonsin-
gular, simple to use [56], and a conditionally positive
definite function [57]. Furthermore, the user should set
the shape parameter σ , which is utilized to modify the
overall form of the RBF during the approximation pro-
cess [54].

3.2.1 Velocity profile expression

The velocity profile expression was determined using
an analytical derivation of Eq. (7), yielding the follow-
ing formula:

∂ϕ(r)

∂x
= (x − c)√

r2 + σ 2
= (x − c)

ϕ(r)
(8)

3.2.2 Acceleration profile expression

The acceleration profile expression was determined
using an analytical derivation of Eq. (8), yielding the
following formula:

∂2ϕ(r)

∂x2
= 1√

r2 + σ 2
− (x − c)2

(r2 + σ 2)3/2

=
(
1 − (x − c)2

ϕ(r)2

)
1

ϕ(r)
(9)

3.2.3 Jerk profile expression

The jerk profile expression was determined using an
analytical derivation of Eq. (9), yielding the following
formula:

∂3ϕ(r)

∂x3
= 3(x − c)3

(r2 + σ 2)5/2
− 3(x − c)

(r2 + σ 2)3/2

=
(
3(x − c)3

ϕ(r)2
− 3(x − c)

)
1

ϕ(r)3
(10)

Thus, to approximate the interpolating function f
everywhere by a linear combination of certain RBFs
ϕ j , yields, [55]:

f (x) =
m∑

j=1

ω jϕ j (r j ) with r j = ‖x − c j‖ (11)

Where f (x) is a sum of m RBFs ϕ j , each associated
with a center c j = x j and weighted by an appropriate
weightω j . x represents the input forwhich the function
f has to be evaluated. By choosingm interpolate nodes,
the function f (x) can be approximated as:

yi =
m∑

j=1

ω jϕ j‖xi − x j‖ i = 1, ...,m (12)

After some algebra, solving the interpolation problem
leads to a system of linear equations in the form:

AW = Y (13)

where Y is a vector with elements yi ,W is a vector with
elements ω j , and A is a matrix with rows ϕ(xi ). Note
that the entries of the interpolation matrix are given by
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Ai j = ϕ j (xi ), with i, j = 1, ...,m. Thus, using Eq. (7),
the coefficient matrix can be defined as follows:

A =

⎡

⎢⎢⎢⎣

1 ϕ2(x1) · · · ϕm(x1)
ϕ1(x2) 1 · · · ϕm(x2)

...
...

. . .
...

ϕ1(xm) ϕ2(xm) 1 · · · 1

⎤

⎥⎥⎥⎦ (14)

The associated weightsW may be determined by solv-
ing Eq. (13) as follows:

W = A−1Y (15)

3.2.4 Boundary conditions

The time scale in the context of robot trajectory is
denoted by x as an independent variable, and the points
need to be interpolated in an ascending order, i.e.,
x1 < x2 < ... < xm . Similarly, the velocity, accel-
eration, and jerk associated with the first and last knots
of a trajectory have to be assigned, i.e.,

v1 = ∂ f (x = x1)

∂x
, vm = ∂ f (x = xm)

∂x
(16)

a1 = ∂2 f (x = x1)

∂x2
, am = ∂2 f (x = xm)

∂x2
(17)

j1 = ∂3 f (x = x1)

∂x3
, jm = ∂3 f (x = xm)

∂x3
(18)

where velocities v1, vm , accelerations a1, am , and jerks
j1, jm are given data of the problem.

To achieve this objective, three virtual via-points are
added near x1, and three virtual via-points near xm ,
so that the initial and final conditions for velocity,
acceleration, and jerk can be respected. Thus, Eq. (12)
becomes:

f (x) =
m+6∑

j=1

ω jϕ j‖x − c j‖ (19)

The associated linear system is defined by the follow-
ing elements: the coefficients matrix A, the vector of
unknown weight coefficientsW , and the vector Y . The
coefficients matrix A with dimensions [m+6×m+6]
is defined as:

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ϕ2(x1) · · · ϕm(x1) ϕm+1(x1) · · · ϕm+6(x1)
ϕ1(x2) 1 · · · ϕm(x2) ϕm+1(x2) · · · ϕm+6(x2)

...
...

. . .
...

...
...

...

ϕ1(xm) ϕ2(xm) · · · 1 ϕm+1(xm) · · · ϕm+6(xm)

ϕ′
1(xm+1) ϕ′

2(xm+1) · · · ϕ′
m(xm+1) ϕ′

m+1(xm+1) · · · ϕ′
m+6(xm+1)

ϕ′
1(xm+2) ϕ′

2(xm+2) · · · ϕ′
m(xm+2) ϕ′

m+1(xm+2) · · · ϕ′
m+6(xm+2)

ϕ′′
1 (xm+3) ϕ′′

2 (xm+3) · · · ϕ′′
m(xm+3) ϕ′′

m+1(xm+3) · · · ϕ′′
m+6(xm+3)

ϕ′′
1 (xm+4) ϕ′′

2 (xm+4) · · · ϕ′′
m(xm+4) ϕ′′

m+1(xm+4) · · · ϕ′′
m+6(xm+4)

ϕ′′′
1 (xm+5) ϕ′′′

2 (xm+5) · · · ϕ′′′
m (xm+5) ϕ′′′

m+1(xm+5) · · · ϕ′′′
m+6(xm+5)

ϕ′′′
1 (xm+6) ϕ′′′

2 (xm+6) · · · ϕ′′′
m (xm+6) ϕ′′′

m+1(xm+6) · · · ϕ′′′
m+6(xm+6)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

Regarding the matrix A, the last six rows are cal-
culated using the Eqs. (8) and (9), Moreover, the extra
knots of RBF trajectory are introduced in the following
instances:

xm+1 = x1 + δ(x2 − x1), xm+2 = xm − δ(xm − xm−1)

xm+3 = x1 + 2δ(x2 − x1), xm+4 = xm − 2δ(xm − xm−1)

xm+6 = x1 + 3δ(x2 − x1), xm+6 = xm − 3δ(xm − xm−1)

(21)

where δ = 0.02 represents a control parameter ensur-
ing smooth transitions between virtual via-points.

The vector of unknown weight coefficients W with
dimension [m + 6 × 1] is:

W = [ω1, · · · , ωm, ωm+1, · · · , ωm+6]T (22)
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The last element of the linear system Y with dimension
[m + 6 × 1] becomes:

Y = [y1, · · · , ym, v1, vm, a1, am, j1, jm]T (23)

4 Proposed optimization techniques

This section provides the definitions of the optimization
techniques, as well as the optimization process consid-
ered for trajectory generation using MQ-RBF profiles.

4.1 Optimization process consideration

The optimization problem at hand focuses on deter-
mining the minimum-time smooth motion trajecto-
ries for robotic manipulators. In this approach, the
shape parameters of each trajectory candidate based
on MQ-RBF are determined by unique parameters
chosen for each joint trajectory, denoted as σi . These
parameters are adjusted during the optimization pro-
cess. The optimization variable vector, denoted as F =
(h1, ..., hm−1, σ1, ..., σn), represents the solution to the
problem. The objective is to find an optimal set of val-
ues for the time intervals h j with j = 1, ...,m − 1,
and suitable shape parameters σi with i = 1, ..., n that
minimize the cost function while adhering to the kine-
matic constraints for all joints. This optimization pro-
cess utilizes the Multiquadric-RBF interpolation tech-
nique, ensuring smooth trajectorieswhile satisfying the
imposed kinematic constraints.

4.2 Optimization framework

The optimization framework is designed to address
the multi-objective nature of the problem, focusing on
both trajectory time and jerk minimization. Each opti-
mization technique is applied independently, ensuring
a thorough exploration and exploitation of the solution
space.

The Sequential Quadratic Programming (SQP) is a
powerful optimizationmethod suitable for solving non-
linear optimization problems with constraints. While
it is not inherently multi-objective, it can be used for
precise single-objective optimization after converting
themulti-objective problem into a single-objective one.
The SQP algorithm iteratively solves a sequence of

quadratic programming subproblems to converge to an
optimal solution. It is ideal for detailed optimization,
particularly for problemswith complex constraints, and
it solves iteratively quadratic approximations of the
original problem. The SQP method effectively man-
ages kinematic constraints such as velocity, acceler-
ation, and jerk, enhancing solution precision through
iterative refinement.

The Elitist Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II) is a popular evolutionary algo-
rithm used for solving multi-objective optimization
problems. It effectively maintains a balance between
exploration and exploitation by preserving a diverse
set of solutions and promoting convergence towards
the Pareto front. NSGA-II handles conflicting objec-
tives efficiently by finding a set of optimal trade-off
solutions [58,59].

The proposed optimization algorithm employs SQP
and NSGA-II as independent techniques to address
the trajectory planning problem. NSGA-II explores the
solution space by maintaining diversity and promot-
ing convergence towards the Pareto front, while SQP
refines solutions to enhance precision within the con-
straints. By applying NSGA-II and SQP separately, the
algorithm ensures a comprehensive optimization pro-
cess, resulting in smooth and efficient trajectories that
meet all kinematic constraints. This dual-application
strategy allows for thorough exploration and exploita-
tion of the solution space, ultimately leading to the gen-
eration of high-quality trajectories for robotic manipu-
lators.

5 Trajectory planning using RBFs interpolation

To provide an illustrative example, the trajectory plan-
ning for specified tasks is examined using the same
single link trajectory, as shown in [20]. The trajectory
must establish connections between the joint positions
q = [120◦, 60◦, 80◦, 120◦, 0◦] while simultaneously
adhering to further given constraints at both the start-
ing and ending positions of motion, including the null
limit velocity, acceleration, and jerk. The time intervals
used are equal to 2 s between two consecutive knots.
This example aims at examining the application ofMQ-
RBF interpolation approach for planning joint trajec-
tories for manipulators and compare the yielded results
with those achieved by theGa-RBF, IMQ-RBF, and IQ-
RBF trajectory models. To achieve this objective, three
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Fig. 1 Trajectories
obtained using four
different RBF interpolation
approaches: joint positions
(a), velocities (b),
accelerations (b), and jerks
(d)
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Table 3 Maximum values of position Qmax , velocity Vmax , acceleration Amax , and jerk Jmax obtained with different RBFs

RBF Qmax [deg] Vmax [deg/s] Amax [deg/s2] Jmax [deg/s2]

Ga-RBF 148.53 119.58 177.55 387.59

IMQ-RBF 122.88 100.45 166.97 429.95

IQ-RBF 120.85 103.01 238.54 577.20

MQ-RBF 131.99 102.43 138.88 338.47

extra knots are introduced to the limit configurations
according to Eq. (21). Furthermore, the shape param-
eter σ is considered to be uniform across all applied
RBF models, and it is supposed to be σ = 1.

The trajectories plots of the four RBF models that
connect the via-points and their related derivatives pro-
files are given in Fig. 1 for comparison. Table 3 sum-
marizes the maximum recorded values. From Fig. 1, it
can be noted that the four RBF position profiles appear
not to be considerably different, and they connect all
via-points positions in a smooth way. From the deriva-
tives profiles of the trajectory, it is apparent that the
Ga-RBF and the IMQ-RBF trajectories behave like the
MQ-RBF trajectory and that the MQ-RBF model has a
better score in terms of maximum values of jerk when
compared to other RBF models, as stated in Table 3.

Furthermore, Fig. 1 shows that the IQ-RBF trajectory
has a superior displacement profile. Nevertheless, this
advantage is achieved by higher amounts of velocity
and acceleration and, consequently, an oscillating jerk
trajectory profile with much greater values in contrast
to the other RBF models.

In addition, the computation of the trajectory param-
eters takes an average of 0.48 s for the four RBF inter-
polation methods, and 6.61 ms for the MQ-RBF tra-
jectory method on a personal computer with an Intel
Core i7-5850U 2.00 GHz processor and 8 GB RAM in
Matlab™ environment.
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Fig. 2 The Puma 560 robot manipulator

6 Trajectory generation for 6-DOF robot
manipulator

In this second example, the goal is to generate a smooth
motion for a 6-DOF robot manipulator PUMA 560
(Fig. 2) using the proposed MQ-RBF interpolation
approach, and to evaluate its performance by com-
paring the outcomes with those obtained using other
interpolation functions proposed in recent studies. The
evaluation is conducted through two optimization tech-
niques: first, a comparison with fifth-order B-splines
and trigonometric spline interpolation functions, as
presented in [23,60], respectively, where the SQP opti-
mization technique was applied; and second, a compar-
ison with fifth-order B-splines functions, as shown in
[27], where the trajectories were optimized using the
NSGA-II optimization technique.

There are four different poses (m = 4) of the manip-
ulator at each knot point. In this paper, joint space val-
ues obtained from one of the acceptable inverse kine-
matics solutions have been directly used, as described
by the above authors. The joint values yielded for these
knots are presented in Table 4, while meeting the kine-
matic limits reported in Table 5.

It should be noted that the initial and final val-
ues of the joint trajectory were set to zero for the
first, second, and third derivatives of trajectory pro-
files as in [23,27,60]. Thus, to enable the comparison
of the results, three additional knots with the associated
Multiquadric-RBFs have been added in each extreme
interval (h1 and hn), as described in Sect. 3.2.4. There-
fore, a linear systemof (m+6) equationsmust be solved
to obtain the Multiquadric-RBF weight coefficients.

6.1 Smooth trajectory using SQP technique

In this case, to ensure a fair comparison of outcomes,
the values of the weighting coefficients KT and KJ in
the objective function Eq. (1) have been adjusted, as
prescribed by Gasparetto and Zanotto [23] and Simon-
Isik [60]. This adjustment has been made so that the
travel time of the proposed MQ-RBF approach and the
technique presented in [23,60] are identical, which is
approximately 9.1 s. By implementing the MQ-RBF
approach, the total travelling time of the trajectory
was found to be T = 9.0971 s. Furthermore, the
optimal values of time intervals are h1 = 3.4197 s,
h2 = 2.3798 s, and h3 = 3.2976 s. In addition, the
optimal values of MQ-RBF shape parameters are σ1 =
1.5312, σ2 = 1.6210, σ3 = 1.5216, σ4 = 1.8624,
σ5 = 1.6740, and σ6 = 1.5347.

Figure 3 shows the joint trajectories and their cor-
responding third-order derivatives of the 6-DOF robot
manipulator. The graphs in the figure indicate that the
initial and final points of the joint trajectory curves have
zero values for the first, second, and third derivatives,
which confirms that all kinematic limits have beenmet.

Table 6 presents the maximum kinematic values for
all joints. The values in the table show that all kine-
matic requirements for the robot trajectory have been
fulfilled. Furthermore, these results are compared with
those obtained in Gasparetto’s and Simon’s works in
[23,60]. To minimize the time-jerk objective function,
Gasparetto [23] used fifth-order B-splines interpola-
tion and theSQPoptimization technique. Simon’swork
[60], on the other hand, uses a minimum-jerk trigono-
metric spline to interpolate the trajectory. As indicated
in Table 6, the employment of the MQ-RBF approach
resulted in lower jerk values for joints 1, 3, 4, 5, and
6 compared to Gasparetto and Simon methods, with
reduction rates ranging from 6% to 11% and 5% to
21% compared with those obtained by the algorithms
proposed in [23,60], respectively.

The mean kinematic values of velocities, accelera-
tions, and jerks for all joints obtained using the MQ-
RBF method are presented in Table 7 and compared
againwith the values obtainedusing the techniques pro-
posed byGasparetto [23] and Simon [60]. The compar-
ison reveals that the proposed MQ-RBF interpolation
method produces comparable results to the outcomes
provided by the techniques of Gasparetto and Simon’s
techniques in [23,60] concerning the lower mean val-
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Table 4 Joint-space knots for the trajectory planning

Knot Joint [deg]
q1 q2 q3 q4 q5 q6

1 −10 20 15 150 30 120

2 60 50 100 100 110 60

3 20 120 −10 40 90 100

4 55 35 30 10 70 25

Table 5 Kinematic limits of the PUMA robot joints

Limit Joint [deg]
q1 q2 q3 q4 q5 q6

velocity [◦/s] 100 95 100 150 130 110

acceleration [◦/s2] 60 60 75 70 90 80

jerk [◦/s3] 60 66 85 70 75 70

Fig. 3 Optimal joint
positions (a), velocities (b),
accelerations (c), and jerks
(d) using SQP

ues for velocity, acceleration, and jerk of almost all the
robot joints.

6.2 Smooth trajectory using NSGA-II technique

To further test the proposed approach, in this section a
second case is presented,where theMQ-RBF interpola-
tion method is compared with the fifth-order B-splines
interpolation function, inwhich the stated problemwith
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Table 6 Maximum kinematic values obtained using the SQP optimization technique

Algorithm q1 q2 q3 q4 q5 q6

Proposed approach Vmax [◦/s] 36.66 46.67 62.59 27.60 40.02 40.71

Amax [◦/s2] 39.76 52.67 69.38 16.09 32.70 44.84

Jmax [◦/s3] 51.35 64.50 73.67 20.49 48.84 58.72

Gasparetto [23] Vmax [◦/s] 37.57 41.96 61.49 28.90 41.53 38.14

Amax [◦/s2] 39.07 43.65 65.60 15.87 33.88 39.94

Jmax [◦/s3] 54.94 65.90 78.13 23.02 52.73 65.15

Simon [60] Vmax [◦/s] 39.84 47.67 57.54 28.67 44.29 43.00

Amax [◦/s2] 39.03 46.40 62.05 19.89 35.61 43.73

Jmax [◦/s3] 54.82 59.28 80.84 25.99 49.04 61.47

Table 7 Mean kinematic values obtained using the SQP optimization technique

Algorithm q1 q2 q3 q4 q5 q6

Proposed approach Vmean [◦/s] 15.92 20.24 26.68 15.23 14.03 19.13

Amean [◦/s2] 18.26 19.26 30.50 6.01 12.53 22.02

Jmean [◦/s3] 26.86 25.17 43.79 5.43 15.75 32.71

Gasparetto [23] Vmean [◦/s] 16.94 20.70 27.45 15.38 15.92 19.47

Amean [◦/s2] 19.08 18.15 30.60 6.50 14.92 21.84

Jmean [◦/s3] 26.26 20.69 41.26 6.39 18.18 30.35

Simon [60] Vmean [◦/s] 16.87 22.11 26.41 15.38 16.76 20.24

Amean [◦/s2] 19.48 19.99 30.07 6.53 15.02 23.52

Jmean [◦/s3] 27.51 23.97 41.27 9.10 18.07 33.77

optimum time-jerk trajectories (Eq. 2 and 3) is a multi-
objective nonlinear problem solved by using a power-
ful optimization algorithm. The NSGA-II technique in
Matlab™ was applied to optimize the objective func-
tions for the robot manipulator using the same control
parameters as in [27], where the population size is 100,
the generation number is 80, and themutation probabil-
ity is selected as 1/n = 1/5 = 0.2 (where n represents
the number of variables) as proposed by Deb [61]. Dis-
tribution indexes for real-codedmutation and crossover
operators are 100 and20, respectively, as recommended
by Deb [61].

Figure 4 shows the optimum Pareto front derived
using NSGA-II. On this front, the transfer time varies
from 9.098 to 14.84 s, and the jerk index ranges from
36.58 to 155.70◦/s3. In contrast, the Huang’s approach
[27] employs 5th-order B-splines to interpolate the tra-
jectory and optimize it using NSGA-II. In this study,
the transfer time varies from 9.058 to 13.96 s, and the
jerk index ranges from 55.55 to 188.98◦/s3. The afore-

Fig. 4 Pareto front for time-jerk optimal trajectory planning for
the 6-DOF robot manipulator

mentioned Pareto front was also capable of producing
a solution with the same transfer time of about 9.1s.
The time intervals minimized by MQ-RBF interpola-
tion approach solution in this work (h1 = 3.4315 s,
h2 = 2.3228 s, h3 = 3.3438 s, T = 9.0981 s) require
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only a jerk index of 155.70◦/s3. While in Huang’s
work [27], for the same transfer time, a jerk index of
188.98◦/s3 is needed, which is a considerable reduc-
tion of about 17%. Furthermore, Fig. 4 shows that the
solution with a transfer time of about 14.84 s has a jerk
index of 36.58◦/s3, representing a 34% improvement
above [27].

The trajectories of the robot manipulator and their
derivatives corresponding to the minimum time-jerk
solution are illustrated in Fig. 5. The results in this
figure indicate that the first three derivatives of joint
trajectory curves are null at the start and end points of
the trajectory and also show that they meet all kine-
matic limits of the manipulator. Furthermore, Table 8
illustrates the maximum kinematic values for all joints.
These values demonstrate that all kinematic limits of
the manipulator have been satisfied, and the maximum
jerk values of joints 1, 3, 4, 5, and 6 produced by the
MQ-RBF approach are lower by 3%, 4%, 34%, 21%,
and 3%, respectively, compared to those yielded by
the fifth-order B-Spline functions [27]. Additionally,
as indicated in Table 9, the mean jerk values of joints
1, 5, and 6 are lower by 3%, 9%, and 1%, respectively,
than those of [27].

6.3 Discussion and comparison of results

To conduct a complete comparison ofMQ-RBFconsid-
ering both optimization techniques, Table 10 reports the
average kinematic values for the 6-joint robot manipu-
lator. These values illustrate the outcomes of employing
the MQ-RBF approach with both optimization tech-
niques, which are as follows:

• For the SQP optimization technique, the maxi-
mum jerk value yielded by the MQ-RBF approach
resulted in lower jerk values, with reduction rates
ranging of 6% and 4% compared to those gen-
erated by the algorithms described in [23,60],
respectively. Moreover, while the mean jerk value
achieved by [23] is 4% lower than the proposed
approach, the MQ-RBF method still yields lower
jerk values compared to the trajectory interpo-
lated by trigonometric splines in Simon [60]. From
Fig. 6, it can be concluded that the MQ-RBF inter-
polation method yields competitive results com-
pared to the previous studies [23,60] in terms of
kinematic values.

• For the NSGA-II optimization technique, the max-
imum and mean jerk values obtained by the MQ-
RBF approach are lower compared to those yielded
byfifth-orderB-Splines functions [27]. Particularly
notable is the reduction in maximum jerk values,
with a reduction rate ranging from 7%. FromFig. 6,
it can be seen that the proposed approach outper-
formed the previous studies [27] in terms of veloc-
ity, acceleration, and jerk values.

7 Experimental results

Toverify the practical usability of the proposed interpo-
lation approach on a real robotics scenario, the method
is experimentally tested on a 6-DOFUR5e robotmanu-
factured by Universal Robots using the example trajec-
tory shown in the previous section. The robot, shown
in Fig. 7, is a lightweight and small-sized industrial
arm with a payload of 5 kg, a weight of 20.6 kg, and
a maximum reach of 850 mm. The manipulator is pro-
grammed in ROS (Robot Operating System) Melodic
Morenia using Python and it is controlled with a com-
puter equipped with 32 GB RAM and an Intel Core i9
processor runningUbuntu 18.04. Data acquisition from
the robot is performed by means of the Real-Time Data
Exchange (RTDE) protocol through a TCP/IP connec-
tion.

To ensure compliance with the robot operational
constraints and prevent collisions with the workbench,
adjustments were made to the test task described in
the previous section. The experimental validation was
performed considering all the six joints of the UR5e
robot, with modifications involved inverting the sign
of the knot positions for joint 2, 3 and 4, while
maintaining their displacements. The modified knots
positions of joint 2, 3 and 4 were set as follows
[−20◦,−50◦,−120◦,−35◦], [−15◦,−100◦, 10◦,
−30◦], and [−150◦,−100◦,−40◦,−10◦]with an opti-
mal transfer time of 9.0971 s. The robotic arm operates
with a positioning accuracy of 0.1 mm. The considered
kinematic limits are reported in Table 5.

The measured joint-space profiles for all six robot
arms are presented in Fig. 8, providing a compari-
son between experimental and simulation results. The
results indicate that the robot successfully tracked
the trajectory with accuracy, maintaining smooth joint
motion throughout. Overall, the experimental profiles
are in accordance with the simulated ones in general.
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Fig. 5 Optimal joint
positions (a), velocities (b),
accelerations (c), and jerks
(d) using NSGA-II
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Table 8 Maximum kinematic values obtained using the NSGA-II optimization technique

Algorithm q1 q2 q3 q4 q5 q6

Proposed approach Vmax [◦/s] 35.85 46.25 63.96 31.45 41.12 42.07

Amax [◦/s2] 40.45 53.29 71.18 17.94 33.88 46.94

Jmax [◦/s3] 57.06 65.16 79.14 17.08 43.63 58.11

Huang [27] Vmax [◦/s] 39.27 47.05 50.65 29.15 43.35 41.98

Amax [◦/s2] 42.67 53.04 70.53 17.6 35.75 48.19

Jmax [◦/s3] 59.00 62.28 82.92 26.20 55.4 60.20

Table 9 Mean kinematic values obtained using the NSGA-II optimization technique

Algorithm q1 q2 q3 q4 q5 q6

Proposed approach Vmean [◦/s] 15.92 20.18 26.80 15.23 14.15 19.15

Amean [◦/s2] 17.97 19.22 31.11 6.84 13.05 22.94

Jmean [◦/s3] 27.15 25.35 44.57 7.05 16.34 33.67

Huang [27] Vmean [◦/s] 16.33 21.50 26.33 15.39 15.59 19.78

Amean [◦/s2] 19.36 20.74 30.93 6.41 14.61 23.51

Jmean [◦/s3] 27.86 25.33 43.61 7.00 17.93 33.95
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Table 10 Average of maximum and mean kinematic values using SQP and NSGA-II

Algorithm Optimiz. Interp. Av. of max. Av. of mean
approach approach kin. values kin. values

Proposed SQP MQ-RBF V [◦/s] 42.37 18.54

approach A [◦/s2] 42.58 18.10

J [◦/s3] 52.93 24.95

Gasparetto [23] SQP Quintic V [◦/s] 41.59 19.31

B-splines A [◦/s2] 39.66 18.51

J [◦/s3] 56.64 23.85

Simon [60] SQP Trigonometric V [◦/s] 43.50 19.62

splines A [◦/s2] 41.11 19.10

J [◦/s3] 55.24 25.61

Proposed NSGA-II MQ-RBF V [◦/s] 43.45 18.57

approach A [◦/s2] 43.95 18.52

J [◦/s3] 53.36 25.69

Huang [27] NSGA-II Quintic V [◦/s] 41.90 19.15

B-splines A [◦/s2] 44.63 19.26

J [◦/s3] 57.66 25.94

Fig. 6 Average of
maximum and mean
kinematic values using SQP
(a, b) and NSGA-II (c, d)
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Fig. 7 The UR5e
manipulator by Universal
Robots and its control box
(a); path of the robot
end-effector in the Cartesian
space (b)

Fig. 8 Desired and
experimental joint positions
of the UR5e robot using the
proposed approach
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Although tiny deviation exists between the experimen-
tal curves and the simulatedones, the range and thevari-
ation tendency of the curves in each figure are nearly
the same. The maximum position errors for joints one
through six are around 1.3◦, 1.7◦, 2.3◦, 1.0◦, 1.5◦, and
1.5◦, respectively.At the end of the trajectory, the errors
for all joints arm remain within 0.01◦. Based on these
observations the experimental results confirm the prac-
tical effectiveness of the proposed trajectory planning
algorithm. The optimized trajectory was indeed suc-
cessfully executed on a real robot, validating the appli-
cability and reliability of the proposed MQ-RBF inter-
polation approach.

8 Conclusions

A novel and efficient approach for designing joint tra-
jectories for roboticmanipulators basedonMultiquadrics-
RBFs has been presented in this work. The trajectory
planning is performed in the robot joint space, where
it is possible to easily obtain motions between pre-
defined via-points thatmeet the imposed boundary con-
ditions. By optimizing the trajectory, a minimum-time
and smooth trajectory profile that meets the kinematic
constraints is obtained. The proposed technique has
been validated through both simulation and experimen-
tal tests, and its results have been compared with those
of previous state-of-the-art approaches [20,23,27,60].

The performance of the proposed technique can
be summarized based on the following observations:
the construction of the trajectory by using MQ-RBFs
enables to plan smooth trajectories for the robotic
manipulator while meeting imposed kinematic con-
straints and satisfying not only the null limit condi-
tions on velocities and accelerations, but also the null
limit conditions on velocities, accelerations, and jerks
compared to other trajectory planning techniques. The
proposed technique based onMQ-RBFs has shown the
ability to plan joint trajectories comparable to trigono-
metric splines and 5th-orderB-splines in terms of trans-
fer time, while offering an infinite order of derivation
and reduced jerk. Furthermore, the proposed approach
has advantages over spline interpolation, particularly
in reducing the risk of ill-conditioned matrices with
high-degree curves. Finally, compared to previous tech-
niques, the MQ-RBFs approach achieves a lower jerk
index, while maintaining the transfer time. However,
one limitation of the proposed approach is that the

average of the maximum kinematic values, specifically
velocity and acceleration, is not always lower than that
of compared approaches in the considered test cases.

In future developments of this work, the proposed
MQ-RBF approach will be applied for the planning
of optimal smooth trajectories for mobile robots and
parallel manipulators. Furthermore, future develop-
ments of this work will also consider the extension
of the proposed appraoch to higher-order derivatives,
e.g., jounce, to further improve the performance of
the approach in planning optimal smooth trajectories.
Future works will also consider different optimization
strategies and alternative RBF-hybrid methods to gen-
erate smooth trajectories for robotic manipulators.
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a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.
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