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Abstract Isoprene is a reactive hydrocarbon emitted to the atmosphere in large quantities by terrestrial
vegetation. Annual total isoprene emissions exceed 300 Tg a− 1, but emission rates vary widely among plant
species and are sensitive to meteorological and environmental conditions including temperature, sunlight,
and soil moisture. Due to its high reactivity, isoprene has a large impact on air quality and climate pollutants
such as ozone and aerosols. It is also an important sink for the hydroxyl radical which impacts the lifetime of
the important greenhouse gas methane along with many other trace gas species. Modeling the impacts of
isoprene emissions on atmospheric chemistry and climate requires accurate isoprene emission estimates.
These can be obtained using the empirical Model of Emissions of Gases and Aerosols from Nature
(MEGAN), but the parameterization of this model is uncertain due in part to limited field observations. In
this study, we use ground‐based measurements of isoprene concentrations and fluxes from 11 field sites to
assess the variability of the isoprene emission temperature response across ecosystems. We then use these
observations in a Metropolis‐Hastings Markov Chain Monte Carlo (MHMCMC) data assimilation
framework to optimize the MEGAN temperature response function. We find that the performance of
MEGAN can be significantly improved at several high‐latitude field sites by increasing the modeled
sensitivity of isoprene emissions to past temperatures. At some sites, the optimized model was nearly four
times more sensitive to temperature than the unoptimized model. This has implications for air quality
modeling in a warming climate.

Plain Language Summary Many species of plants emit a reactive gas called isoprene in response
to environmental stressors. Isoprene is emitted in large quantities globally and readily reacts with other gases
in the atmosphere to produce pollutants like ground‐level ozone and aerosols, which impact both air quality
and climate. Emission rates are highly variable among plant species and are very sensitive to temperature,
with rates increasing exponentially during hot weather. Current models of isoprene emissions appear to
underestimate the temperature sensitivity of emissions for some plant species, espcially in high‐latitude
regions like the Arctic. In this study, we used measurements from a diverse range of ecosystems around to the
world to quantify the temperature sensitivity of isoprene emissions and compare with the predictions of a
widely used isoprene emission model. We found that model performed well in many ecosystems but
underestimated the temperature sensitivity in several locations, including temperate forests and high‐latitude
tundra where the measured temperature sensitivity was up to four times greater than model predictions. We
used the observations to optimize parameters in the model, and found that this greatly improved model
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predictions during high‐temperature periods. This has important implications for air quality and climate
modeling in a warming world.

1. Introduction
Isoprene is a reactive volatile organic compound (VOC) emitted in large quantities by terrestrial vegetation. It has
the largest emission rate of any non‐methane VOC, with total annual isoprene emissions estimated at ∼300–
800 Tg a− 1 (Guenther et al., 2012). Emission rates differ among plant species and are sensitive to environmental
conditions including temperature and sunlight (Guenther et al., 1993), soil moisture (Potosnak et al., 2014), and
canopy environment properties like leaf area and leaf age (Alves et al., 2016, 2018; Chen et al., 2018; Goldstein
et al., 1998; Wu et al., 2016), resulting significant emission variability across a large range of spatial and temporal
scales. As a precursor to ozone (O3), carbon monoxide (CO), formaldehyde (CH2O), and secondary organic
aerosols (SOA), as well as a major sink for the hydroxyl (OH) radical (the primary oxidizing agent in the
troposphere), isoprene has a large impact on global atmospheric chemistry and climate processes (Claeys
et al., 2004; Sprengnether et al., 2002; Trainer et al., 1987). Accurate estimates of isoprene emissions are required
in atmospheric chemistry and climate models to minimize uncertainties in trace gas and aerosol concentrations,
greenhouse gas lifetimes (Pike & Young, 2009), radiation budgets, and cloud and aerosol processes (Palmer
et al., 2022; Stanton & Tandon, 2023).

Temperature and sunlight are the primary drivers of short‐term isoprene emission variability due to the coupling
of isoprene emissions with photosynthesis (Guenther et al., 1993). The temperature response of isoprene emis-
sions can be modeled as an exponential increase with temperature up to an optimum value, beyond which further
increases in temperature lead to a reduction in emissions (Guenther et al., 2006). Previous studies have found that
the magnitude of this optimum as well as the temperature at which it occurs depend on past temperatures on
timescales from one day to several weeks (Geron et al., 2000; Hanson & Sharkey, 2001; Monson et al., 1994;
Pétron et al., 2001), possibly due to changes in the production of the isoprene substrate dimethylallyl pyro-
phosphate (DMAPP) or the activity of the isoprene synthase enzyme (Fall & Wildermuth, 1998). In this way,
emissions exhibit a thermal hysteresis effect where plants acclimated to higher average temperatures will have a
larger emission peak at a higher temperature than plants acclimated to lower temperatures. In isoprene emission
models, the temperature response can be represented as a dimensionless activity factor commonly denoted by γT
which scales vegetation‐specific emission factors up or down depending on temperature (Guenther et al., 2006,
2012).

While there has been much success in modeling instantaneous temperature‐driven isoprene emission variability
(e.g., Situ et al., 2014), substantial uncertainties remain. Recent studies have found that γT as it is implemented in
the widely used Model of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther et al., 2006) may
be underestimating the temperature sensitivity of isoprene emissions for some vegetation types; isoprene emis-
sion studies have historically focused on closed‐canopy forest environments, so the variable performance of
models across different ecosystems may partially reflect this bias (Guenther et al., 2020). Elevated temperature
sensitivity of isoprene emissions has been reported in several environments including high‐latitude tundra (Angot
et al., 2020; Holst et al., 2010; Kramshøj et al., 2016; Seco et al., 2020, 2022; Tang et al., 2016; Tiiva et al., 2008),
boreal wetland vegetation (Vettikkat et al., 2023), Australian Eucalyptus trees (Emmerson et al., 2020), and
tropical rainforest in the Amazon basin (DiMaria et al., 2023) and Borneo (Langford et al., 2010). This under-
estimated temperature sensitivity can lead to low biases in isoprene emission estimates during high‐temperature
periods, which has important implications for air quality modeling during heatwaves (Emmerson et al., 2020;
Ferracci, Bolas, et al., 2020; Ferracci, Harris, et al., 2020) and in a warming climate, particularly at high‐latitude
sites due to rapidly increasing temperatures in that region compared to the rest of the world (England et al., 2021).

In a previous study, DiMaria et al. (2023) found that by optimizing the parameterization of the temperature
response function γT using eddy covariance isoprene flux observations within a Metropolis‐Hastings Markov
Chain Monte Carlo (MHMCMC) data assimilation framework, the temporal variability of MEGAN isoprene
emissions at an Amazonian field site agreed more closely with the observations. That same study found lower
temperature sensitivity at a UK field site, adding to a growing body of evidence that the temperature sensitivity of
isoprene emissions varies among ecosystems. Because that study reported results for just two sites, broader
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conclusions about ecosystem‐scale variability in the temperature response could not be drawn. A recent meta‐
analysis of more than 40‐year of plant monoterpene emissions has found that the temperature sensitivity var-
ies with plant functional type and that these variations can be modeled by re‐parameterizing MEGAN (Bourt-
soukidis et al., 2024). However, because that study primarily focused on the light‐independent fraction of
monoterpene emissions whose temperature response is represented by a simple exponential function in MEGAN,
their conclusions cannot be directly translated to isoprene which has a more complex temperature response
function. Other studies using different optimization methodologies have also improved the modeled temperature
sensitivity of isoprene emissions for a variety of vegetation types including palm oil plantations (Misztal
et al., 2011), tropical rainforest (Langford et al., 2010), high‐latitude tundra and wetlands (Seco et al., 2022;
Vettikkat et al., 2023), and Eucalyptus trees (Emmerson et al., 2020). However, differences in methodology,
including but not limited to the formulation of the modeled temperature response, the choice of normalization
temperature, the use of either air or leaf temperature to drive modeled temperature sensitivity, and the use of
canopy models of varying degrees of complexity, make direct comparisons between existing studies challenging.
Furthermore, most of these existing studies did not directly optimize the modeled thermal hysteresis effect.
Recent studies have shown that this effect may play an important role in controlling the enhanced temperature
sensitivity observed in high‐latitude vegetation, particularly sedges (H. Wang et al., 2024a, 2024b). Similar
enhancements were also seen for sedges in urban environments (H. Wang, Nagalingam, et al., 2024).

In this study, we build upon the work of DiMaria et al. (2023) and use observations at 11 field sites to measure the
isoprene emission temperature response. The sites represent a diverse range of ecosystems including high‐latitude
and alpine tundra, tropical rainforest, and temperate woodlands. We use an updated data filtering and normali-
zation methodology to derive the emission temperature sensitivity from isoprene flux and concentration mea-
surements which is less sensitive to model errors than the method used by DiMaria et al. (2023). We then apply
the same MHMCMC data assimilation methodology from that study to optimize the parameterization of the
modeled temperature response γT at each measurement site to improve model‐observation agreement where
possible. A consistent methodology is applied to all field sites, allowing for direct comparison of the temperature
sensitivity across a wide range of ecosystems. Special attention is given to the parameterization of the thermal
hysteresis effect. The overall aim of this study is to quantify the variability of the temperature response across
ecosystems and obtain an optimized parameterization for γT at each site which best reflects the observations. The
long‐term goal of this work is to develop an ecosystem‐specific parameterization of γT that can be used in global
isoprene emission models.

2. Methods
2.1. Field Sites and Measurement Descriptions

The locations of the field sites are shown in Figure 1, and the basic properties of the data sets are presented in
Table 1. In addition to isoprene fluxes and concentrations, meteorological measurements including temperature
(T), photosynthetic photon flux density (PPFD), soil water content (SWC), leaf area index (LAI), wind speed
(WS), and wind direction (WD) were also used, though not all quantities were available for every site. More
information about each data set, including measurement site characteristics, is available in Text S1 in Supporting
Information S1. Note that the STM data set was previously used by DiMaria et al. (2023); we retain it here only for
the purpose of validating our updated data filtering and normalization methodology, described in Section 2.3.

2.2. Modeling the Isoprene Emission Temperature Response With γT

In the MEGAN model, the sensitivity of isoprene emissions to temperature can be represented by the dimen-
sionless function γT (Guenther et al., 2006), given by

γT = EOpt [
CT2 exp(CT1x)

(CT2 − CT1 (1 − exp(CT2x)))
], (1)

where x is a temperature‐dependent variable given by
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x =

⎡

⎢
⎢
⎢
⎣

1
TOpt

−
1
T

R

⎤

⎥
⎥
⎥
⎦
, (2)

R is the ideal gas constant (0.00831 kJ K− 1 mol− 1), TOpt is the peak emission temperature given by

TOpt = TMAX + [K1 (T24 − 297)], (3)

Figure 1. Location of field sites used in this study. Site descriptions are given in Table 1 and in Text S1 in Supporting Information S1. (a) Three field sites (ALH, WYT,
and ACM) are on the island of Great Britain. (b) Four field sites are in continental Europe, including one (CTP) in Italy and three (ABK, FNS, and SNA) in
Fennoscandia. (c) Two field sites (AABC and CTV) are in Alabama in the Southeastern United States. (d) Two field sites (ATTO and STM) are in the Brazilian
Amazon. The STM and WYT sites were also used in DiMaria et al. (2023).

Journal of Geophysical Research: Biogeosciences 10.1029/2025JG008806

DIMARIA ET AL. 4 of 26

 21698961, 2025, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2025JG

008806 by T
est, W

iley O
nline L

ibrary on [17/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Ta
bl

e
1

Fi
el
d
Si
te

an
d
D
at
a
Se
tD

es
cr
ip
tio

ns

Si
te

Lo
ca
tio

n
V
eg
et
at
io
n
de
sc
rip

tio
n

Ti
m
e
pe
rio

da
M
ea
su
re
m
en
tt
yp

e
A
nc
ill
ar
y
da
ta

R
ef
er
en
ce
s

A
A
B
C

A
la
ba
m
a
A
qu

at
ic

B
io
di
ve
rs
ity

C
en
te
r,
A
L,

U
SA

(3
2.
69

5°
N
,8

7.
24

9°
W
)

M
ix
ed

te
m
pe
ra
te

fo
re
st

2
Ju
n–

14
Ju
l2

01
3

C
on

ce
nt
ra
tio

n
T

PP
FD

W
S

W
D

LA
I

SW
C

Su
et

al
.(
20

16
)

N
ag
or
ie

ta
l.
(2
01

9)

A
B
K

St
or
da
le
n
m
ire

co
m
pl
ex
,

ne
ar

A
bi
sk
o,

Sw
ed
en

(6
8.
35

6°
N
,1

9.
04

5°
E)

H
ig
h‐
la
tit
ud

e
tu
nd

ra
7–

31
Ju
l2

01
8

Fl
ux

Tb

PP
FD

Se
co

et
al
.(
20

22
)

A
C
M

A
uc
he
nc
or
th

M
os
s,
ne
ar

Pe
ni
cu
ik
,S

co
tla

nd
,U

K
(5
5.
79

2°
N
,3

.2
42

°W
)

Tr
an
si
tio

na
ll
ow

la
nd

bo
g

1
Ju
n–

21
Ju
l2

01
5

Fl
ux

T
PP

FD
La

ng
fo
rd

et
al
.(
20

22
)

A
LH

A
lic

e
H
ol
tF

or
es
t,
H
am

ps
hi
re
,

En
gl
an
d,

U
K

(5
1.
17

°,
0.
85

°W
)

O
ak
‐d
om

in
at
ed

de
ci
du

ou
s
fo
re
st

15
Ju
n–

16
A
ug

20
05

Fl
ux

T
PP

FD
LA

I

La
ng

fo
rd

et
al
.(
20

17
)

A
TT

O
A
m
az
on

Ta
ll
To

w
er

O
bs
er
va
to
ry
,A

m
az
on

as
,B

ra
zi
l

(2
.1
44

°S
,5

9,
00

0°
W
)

Tr
op

ic
al

ra
in
fo
re
st

1–
31

A
ug

20
14

C
on

ce
nt
ra
tio

n
T

PP
FD

W
S

W
D

Y
áñ
ez
‐S
er
ra
no

et
al
.(
20

15
)

D
ia
s‐
Ju
ni
or

et
al
.(
20

14
)

C
TP

C
as
te
lp
or
zi
an
o,

La
zi
o,

Ita
ly

(4
1.
74

°N
,1

2.
40

°E
)

M
ed
ite

rr
an
ea
n
co
as
ta
l

hy
gr
op

hi
lo
us

fo
re
st

13
Se

p–
1
O
ct

20
11

Fl
ux

T
PP

FD
LA

I

Fa
re
s
et

al
.(
20

13
)

La
ng

fo
rd

et
al
.(
20

17
)

C
TV

SE
A
R
C
H

flu
x
to
w
er
,B

re
nt
,

A
la
ba
m
a,
U
SA

(3
2.
95

°N
,8

7.
13

4°
W
)

M
ix
ed

te
m
pe
ra
te

fo
re
st
/a
gr
ic
ul
tu
ra
l

2
Ju
n–

14
Ju
l2

01
3

C
on

ce
nt
ra
tio

n
T

PP
FD

W
S

W
D

H
id
y
et

al
.(
20

14
)

X
io
ng

et
al
.(
20

15
)

FN
S

H
ar
da
ng

ar
vi
dd

a
pl
at
ea
u,

ne
ar

Fi
ns
e,
N
or
w
ay

(6
0.
59

4°
N
,7

.5
27

°E
)

O
ro
ar
ct
ic

(a
lp
in
e)

tu
nd

ra
1
Ju
l–
15

Se
p
20

19
Fl
ux

Tb

PP
FD

Se
co

et
al
.(
20

22
)

SN
A

Si
ik
an
ev
a
1
si
te
,n

ea
rH

yy
tiä

lä
Fo

re
st
ry

Fi
el
d
St
at
io
n,

Fi
nl
an
d

(6
1.
83

3°
N
,2

4.
19

3°
E)

O
lig

ot
ro
ph

ic
fe
n
(b
or
ea
lw

et
la
nd

)
19

M
ay
–2

8
Ju
n
20

21
Fl
ux

T
PP

FD
LA

I

V
et
tik

ka
te

ta
l.
(2
02

3)

ST
M

A
m
er
iF
lu
x
si
te

B
R
‐S
a1
,n

ea
r

Sa
nt
ar
ém

,P
ar
á,
B
ra
zi
l

(2
.8
57

°S
,5

4.
95

9°
W
)

Tr
op

ic
al

ra
in
fo
re
st

1–
16

Ju
n
20

14
Fl
ux

T
PP

FD
Sa

rk
ar

et
al
.(
20

20
,2

02
2)

W
Y
T

W
yt
ha
m

W
oo

ds
,O

xf
or
ds
hi
re
,

En
gl
an
d,

U
K

(5
1.
46

°N
,1

.2
0°
W
)

O
ak
‐d
om

in
at
ed

de
ci
du

ou
s
fo
re
st

25
M
ay

20
18

–1
5
O
ct

20
22

C
on

ce
nt
ra
tio

n
T

PP
FD

SW
C

LA
I

W
S

W
D

Fe
rr
ac
ci
,B

ol
as
,e
ta

l.
(2
02

0)
,

Fe
rr
ac
ci
,H

ar
ris

,e
ta

l.
(2
02

0)
B
ro
w
n
et

al
.(
20

20
)

En
vi
ro
nm

en
ta
lC

ha
ng

e
N
et
w
or
k

(E
C
)h

ttp
://
w
w
w
.e
cn
.a
c.
uk

/

a I
n
so
m
ec

as
es

lo
ng

er
tim

es
er
ie
sw

er
ea

va
ila

bl
e,
bu

tw
eu

se
d
as

m
al
le
rs
ub

se
to
ft
he

da
ta
to
lim

it
va
ria

bi
lit
y
as
so
ci
at
ed

w
ith

se
as
on

al
ch
an
ge
si
n
le
af
ar
ea
,l
ea
fa
ge
,a
nd

so
il
m
oi
st
ur
e.

b B
ot
h
ai
rt
em

pe
ra
tu
re

an
d
ve
ge
ta
tio

n
su
rf
ac
e
te
m
pe
ra
tu
re

m
ea
su
re
m
en
ts
w
er
e
av
ai
la
bl
e
at

th
es
e
si
te
s.

Journal of Geophysical Research: Biogeosciences 10.1029/2025JG008806

DIMARIA ET AL. 5 of 26

 21698961, 2025, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2025JG

008806 by T
est, W

iley O
nline L

ibrary on [17/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.ecn.ac.uk/


and EOpt is the optimum emission point given by

EOpt = CEO × exp[K2 (T24 − 297)]. (4)

The parameters CT1 and CT2 are empirical fitting parameters which control
the width of the γT function along the temperature axis, while TMAX is the
temperature at which emissions are maximized. The T24 term represents the
average temperature of the past 24 hr Equations 3 and 4 describe the thermal
hysteresis effect, in which the temperature of peak emissions TOpt and
magnitude of peak emissions EOpt change based on past temperatures. The
empirical parameters K1 and K2 set the strength of this hysteresis effect and
are based on a relatively small number of experimental studies (Geron

et al., 2000; Hanson & Sharkey, 2001; Monson et al., 1994; Pétron et al., 2001). The CEO parameter is a
normalization factor that controls the magnitude of the emissions (Guenther et al., 2012).

Note that the thermal hysteresis effect has been observed over a range of time scales, and different imple-
mentations of the γT algorithm have accounted for this variability over 15‐day (e.g., Guenther et al., 1999) and 10‐
day time scales (e.g., Guenther et al., 2006) in addition to 24‐hr time scales through the use of additional pa-
rameters in Equations 3 and 4 or by using different numerical values of K1 and K2. We focus on the 24‐hr time
scale to ensure consistency with the previous work of DiMaria et al. (2023). Sensitivity tests showed that opti-
mizing the parameterization of the thermal hysteresis effect in γT across multiple time scales simultaneously (e.g.,
by including both T24 and T240) was not feasible because the observation uncertainties were too large to constrain
this relatively small additional source of variability. However, it is likely that longer‐term effects play a role for at
least one data set in Table 1. At the SNA site, Vettikkat et al. (2023) found that isoprene emissions were elevated
for several days after a short period of anomalously hot weather. This provides direct evidence that thermal
hysteresis impacts isoprene emissions at this site on time scales longer than 24 hr, but optimizing this longer‐term
effect is beyond the scope of this study.

We use the Parameterized Canopy Environment Emission Activity (PCEEA) implementation of γT . In this
version, the empirical parameter values are based on a canopy physics simulation for warm broadleaf forests
(Guenther et al., 2006). Table 2 shows the PCEEA parameter values used in our study. Canopy physics processes,
including the relationship between air temperature and vegetation surface temperature, are implicitly contained in
the empirical parameterization of γT . The uncertainties associated with our use of the PCEEA implementation
have been discussed in DiMaria et al. (2023) and are discussed in Section 4.3.2. While full canopy‐physics
versions of MEGAN exist (e.g., MEGAN3 (Guenther et al., 2020)), parameterizations like the PCEEA are
more easily integrated in global atmospheric chemistry models because they require fewer driving variables and
have lower computational costs (Silva et al., 2020). Optimized versions of these simplified parameterizations can
therefore be more readily applied in global models.

Note that γT is not intended to model secondary temperature‐related impacts on isoprene emissions during times
of drought stress. In particular, isoprene emissions have been observed to increase under conditions of moderate
drought (Otu‐Larbi et al., 2020; Seco et al., 2015), and this effect is thought to be due to increased leaf temperature
due to a reduction in evapotranspiration from the leaf surface (Potosnak et al., 2014). While the empirical pa-
rameters in γT could in principle be tuned during times of drought to capture this behavior, this would be
inappropriate as it ignores the underlying mechanistic drivers. We therefore limit our analysis in this study to non‐
drought conditions to ensure we are not misattributing drought effects to errors in the γT parameterization.

2.3. Deriving γT From Observations

The data sets described in Section 2.1 consist of isoprene flux or mixing ratio measurement time series, along with
ancillary meteorological observations including temperature, sunlight, and in some cases soil moisture, wind-
speed, WD, and leaf area index. To obtain the temperature response from these data, other sources of emission
variability must be filtered out. This filtering process is briefly described in Section 2.3.1. Additional details are
available in Text S2 in Supporting Information S1.

Table 2
A Priori γT Parameterization Used in This Study

Parameter Value Description

CEO 1.75 Normalization factor

TMAX 313 K Peak emission temperature

CT1 80 kJ mol− 1 Fitting parameter

CT2 200 kJ mol− 1 Fitting parameter

K1 0.6 Sensitivity of TOpt to T24
K2 0.08 Sensitivity of EOpt to T24
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Once the measurements have been filtered, they must be normalized such that they can be directly compared with
the dimensionless temperature response function γT . This normalization process, which is described in Sec-
tion 2.3.2, ensures that we can quantitatively compare the observed and modeled temperature sensitivity without
being affected by uncertainties in the magnitude of modeled emissions, which are sensitive to errors in vegetation‐
specific basal emission factors (Batista et al., 2019; Guenther et al., 1993, 1995; Li et al., 2021).

2.3.1. Observation Filtering

To extract the temperature sensitivity from isoprene flux observations, it is necessary to account for other sources
of emission variability including sunlight, leaf area, and soil moisture. The use of isoprene concentration mea-
surements instead of fluxes requires additional filtering, as isoprene concentrations will depend not only on
emission rates but also on chemistry and transport processes in the atmosphere (Ferracci, Bolas, et al., 2020;
Ferracci, Harris, et al., 2020). We filter the observations to account for isoprene variability due to PPFD, SWC,
LAI, WS, and WD. Table 3 shows the filtering thresholds used at each measurement site. Briefly, filtering for
measurements with high PPFD values eliminates sunlight‐drive isoprene emission variability and also minimizes
variability in photochemical loss rates and vertical mixing. Similarly, filtering based on LAI and SWC limits
isoprene emission variability due to changes in leaf area and drought stress. Accounting for WS and WD min-
imizes variability in atmospheric dispersion rates, which is necessary when using isoprene concentration mea-
surements instead of flux measurements. A detailed description of the data filtering process is available in Text S2
in Supporting Information S1, which includes justifications for the thresholds presented in Table 3 and a
consideration of potential sources of error (see also the Discussion in Sections 4.3.3 and 4.3.4).

Figures 2 and 3 show the isoprene measurement time series data at each field site (left column), with filtered
measurements indicated. Also shown (right column) are the same data plotted against temperature measurements.
At the SNA site (Figures 3g and 3h), the isoprene fluxes have been normalized by LAI using the MEGAN leaf
area activity factor,

γLAI =
0.49LAI
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 0.2LAI2

√ , (5)

Table 3
Measurement Filter Characteristics and Observed Q10 Values

Site

Filter thresholds/Bands

NObs/NFiltered Q10PPFD (μmol/m2/s) LAI (m2/m2) WS (m/s) WD (°)

AABC >800 ‐‐‐ 1.199–2.344 105.54–286.19 557/20 4.83 ± 1.09

ABK >1,500 ‐‐‐ ‐‐‐ ‐‐‐ 1,488/53 11.16 ± 1.36 (air)
11.17 ± 1.94 (leaf)

ACM >1,200 ‐‐‐ ‐‐‐ ‐‐‐ 168/15 15.77 ± 8.23

ALH >650 >4.8 ‐‐‐ ‐‐‐ 1,156/59 5.81 ± 1.04

ATTO >1,640 ‐‐‐ 1.42–3.58 73.9–224.4 293/21 2.62 ± 0.88

CTP >3,000 >4.8 ‐‐‐ ‐‐‐ 187/26 3.47 ± 1.66

CTV >800 ‐‐‐ 0.586–2.913 77.31–189.4 426/18 2.92 ± 0.52

FNS >1,500 ‐‐‐ ‐‐‐ ‐‐‐ 3,648/71 2.68 ± 0.49 (air)
2.21 ± 0.34 (leaf)

SNA >1,500 0.2–0.55a ‐‐‐ ‐‐‐ 543/41 4.88 ± 0.79b

WYTc >1,300 3.2 0.8787–2.575 140.6–230.6 10,308/58
(66 during drought conditionsc)

7.95 ± 0.91
(4.01 ± 0.32 during drought conditionsc)

Note. Entries containing three dashes (“‐‐‐”) indicate that data was not available. aIsoprene fluxes were normalized by γLAI due to large monotonic increase in LAI
throughout the measurement time series at SNA. bOur Q10 at SNA is different than in Vettikkat et al. (2023) due to our higher PFFD cutoff, normalization by LAI,
and inclusion of heat‐stress affected data which were omitted from the calculation of Q10 in that study.

cThe WYT data were additionally filtered for soil water content
(SWC) > 22% to exclude drought conditions.
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where LAI is the leaf area index (Guenther et al., 2006). Larger versions of these plots are available in the
Supporting Information (Figures S7–S16 in Supporting Information S1). An exponential fit to the filtered data as
a function of temperature is shown, described by

ISOP = F0 ×Q
( T− T010 )
10 , (6)

where F0 is the value of ISOP at a chosen normalization temperature T0 (in this case, equal to the mean tem-
perature of each data set) and Q10 is equal to the fractional change in ISOP for a 10° change in temperature. This
approach is based on the method of Seco et al. (2022). Q10 is therefore a measure of the sensitivity of ISOP to
temperature, and it does not depend on the chosen normalization temperature T0. The Q10 values listed in Table 3
were all calculated using Equation 6, with only the filtered observations included in the calculation.

Note that for two data sets (ABK and FNS), leaf temperature measurements were available in addition to air
temperature measurements. Leaf temperatures were generally higher than air temperatures, but the measured
temperature sensitivityQ10 was largely unaffected by the choice of temperature data (the differences inQ10 values
in Figures 2d and 3f are not statistically significant given the errors on Q10). Other studies have found that this is

Figure 2. Raw (black) and filtered (red) isoprene measurement time series at field sites AABC, ABK, ACM, ALH, and ATTO (panels a, c, e, g, i). Raw (black dots) and
filtered (red triangles) isoprene measurements plotted against temperature at the same field sites (panels b, d, f, h, j). The function fits in the right column are calculated
with Equation 6. For larger versions of these panels, please refer to Figures S8–S12 in Supporting Information S1. The green data in panel (d) is plotted against leaf
temperature (crosses show unfiltered data, triangles show filtered data).
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not always the case. For example, Seco et al. (2020) found a strong dependence of Q10 on the choice of air
temperature/leaf temperature data at a wetland site located only a few hundred meters away from our high‐latitude
tundra site at Abisko, illustrating that the importance of leaf temperature measurements varies across ecosystems.
Note also that the impact of drought stress on temperature sensitivity is clearly apparent at WYT in Figures 3i and
3j; emissions are generally higher during drought periods, but the measured sensitivity of emissions to temper-
ature is actually lower. While not the focus of this paper, there is clearly a relationship between drought and
isoprene emission temperature sensitivity that warrants further investigation.

2.3.2. Normalization

The measurements shown in Figures 2 and 3 are expressed in units of isoprene fluxes or concentrations, while γT
is a dimensionless scaling factor. To allow for a direct comparison between the observations and γT , we normalize
both quantities such that they are equal to 1 at the mean temperature of each data set. This allows for a direct
comparison of the measured and modeled sensitivity of emissions to temperature (i.e., the change in emissions for
a given change in temperature) as quantified by the Q10 term in Figures 2 and 3. Note that the temperature
sensitivity as quantified by Q10 does not depend on normalization, since it only measures the relative change in

Figure 3. Raw (black) and filtered (red) isoprene measurement time series at field sites CTP, CTV, FNS, SNA, and WYT (panels a, c, e, g, i). Raw (black dots) and
filtered (red triangles) isoprene measurements plotted against temperature at the same field sites (panels b, d, f, h, j). The function fits in the right column are calculated
with Equation 6. For larger versions of these panels, please refer to Figures S13–S17 in Supporting Information S1. The green data in panel (f) is plotted against leaf
temperature (crosses show unfiltered data, triangles show filtered data). The blue X symbols in panels (i)–(j) were impacted by drought stress and were omitted from
subsequent analyses.
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emissions for a 10‐degree change in temperature. The normalized observations are compared to γT in Figure 5 for
each data set.

This normalization method effectively gives us an “observed” γT from the filtered time series observations,
consistent with the approach used in other isoprene flux studies (e.g., Seco et al., 2022; Vettikkat et al., 2023; H.
Wang et al., 2024b). The method previously used by DiMaria et al. (2023) to derive an “observed” γT relied on
calculating other MEGAN activity factors such as γPAR (the sunlight response) and γLAI (the leaf area response).
Each of these activity factors is subject to uncertainties, and while the impact of these uncertainties was largely
mitigated in DiMaria et al. (2023) by filtering out non‐temperature sources of emission variability, our current
method circumvents this problem entirely. This is particularly important given that possible errors in the sunlight
response γPAR have already been reported for one of the data sets used here (Langford et al., 2022). Our current
method is sensitive only to errors in the isoprene observations and in the quality of data filtering, not to errors in
any additional modeled quantities. The only exception is the SNA data set, where we had to use γLAI to normalize
the isoprene flux measurements as described in Section 2.3.1.

2.4. Optimizing Model Parameters

Our goal is to optimize the γT parameters independently at each of the measurement sites to improve model
performance. Excluding the CEO parameter because it has no impact on the normalized temperature response,
there are 31 unique combinations of the remaining 5 γT parameters (TMAX, CT1, CT2, K1, and K2). Only those
parameters included in a given combination are optimized, while the remaining parameters are fixed to their a
priori values from Table 2 (e.g., optimizing TMAX while leaving CT1, CT2, K1, and K2 fixed). At each site, we
attempt to optimize all 31 parameter combinations using only the observations from that site. The sensitivity of γT
to the various empirical parameters is highly variable and depends on temperature, with most parameters having a
larger impact on γT at higher temperatures (DiMaria et al., 2023). As a result, some combinations of parameters
are easier to constrain with observations than others. Furthermore, because each data set has a different mea-
surement error, parameter combinations that can be reliably constrained at one measurement site may not be
constrained at a different site.

One structural limitation of our analysis is the assumption that even though the parameter values may be incorrect,
γT is still the correct model of the isoprene emission temperature response (i.e., the functional form of γT
adequately describes temperature response). While obtaining a new functional form for γT is beyond the scope of
this study, we attempt to deal with this limitation by using two separate optimization algorithms to constrain the γT
parameters. We first use a Levenberg‐Marquardt (LM) non‐linear least squares curve‐fitting algorithm (see Text
S3 in Supporting Information S1) to optimize all parameter–dataset combinations, without accounting for
observation errors. The only purpose of this experiment is to determine whether γT can in principle be re‐
parameterized to capture the observed temperature response at each field site. This accounts for the possibility
that the functional form of γT may be mischaracterized for some vegetation types. If γT cannot be fit to the

Figure 4. Metropolis‐Hastings Markov Chain Monte Carlo data assimilation algorithm. Steps 2 to 10 are repeated for a user‐
defined number of iterations N. In this study we use N= 40,000. The step size Δx is adjusted every nstep iterations to ensure a
sample acceptance rate of between 23% and 44%.
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observations at a particular field site for any parameter values even with zero observation error, it is possible that
the temperature response may not be appropriately characterized at that site. In such cases it would not be sensible
to proceed with the MHMCMC optimization. These experiments are presented in Text S4 in Supporting
Information S1.

For each promising configuration identified with the LM algorithm, we then use a MHMCMC algorithm which
properly accounts for the observation errors to optimize the model parameters (see Section 2.4.1). The
MHMCMC approach provides robust estimates of the posterior parameter probability distribution which con-
siders the sensitivity of γT to the parameters and the observation error, while also revealing emergent correlations
between free parameters.

2.4.1. MHMCMC Algorithm

The MHMCMC method uses Bayesian inference to combine information from models and observations in a
statistically consistent way (Haario et al., 2001). This technique has been applied in ecosystem modeling contexts
to constrain empirical model parameters (e.g., Bloom et al., 2015; Bloom et al., 2020; Xu et al., 2006; Ziehn
et al., 2012). Starting from Bayes' Theorem, for a vector x containing the model parameters, we can define the
posterior probability density function of x given a set of observational constraints y as

P(x|y)∝ P(x)P(y|x) (7)

where P(x) is the a priori probability distribution of x and P(y|x) is the model likelihood function (i.e., the
likelihood of a set of observations y given model parameters x). Assuming Gaussian error statistics and no
covariance between observation errors, we can define a model likelihood function as

P(y|x) = exp(− 0.5∑
nobs

n=1

(Hn(x) − yn)
2

σ2n
) (8)

where nobs is the total number of observations, yn is the nth observation, Hn(x) is the corresponding model state
(i.e., the value of γT given a particular set of model parameters), and σ2n is the observation variance.

We follow DiMaria et al. (2023) and assume a non‐informative uniform P(x) for all model parameters such that P
(x) = constant for all x ∈ [xmin, xmax] and P(x) = 0 elsewhere. The values of xmin and xmax were set to 0.1 and 10
times the prior parameter values shown in Table 2. The use of a non‐informative prior with a large range allows
the parameter optimization to be more strongly influenced by the observations, instead of being pulled toward the
a priori values. This is desirable given the large spread in γT parameter values reported in previous studies. For
example, Emmerson et al. (2020) measured a five‐fold increase in the CT2 for Eucalypt species under certain
growing conditions. Seco et al. (2022) similarly measured large increases in several γT parameters, while other
studies have found smaller but still significant differences on the order of 50%–100% between the a priori
MEGAN predictions and the fitted γT parameters (e.g., Langford et al., 2010; Misztal et al., 2011; Wilkinson
et al., 2006).

To ensure equal sampling probability across multiple orders of magnitude for the parameters, x is log‐transformed
in the Bayesian inference step of the MHMCMC algorithm, such that P(x) is effectively treated as a log‐uniform
distribution by the sampling algorithm. With these constraints, the posterior parameter probability P(x|y) for all
x ∈ [xmin, xmax] is simply proportional to the model likelihood function P(y|x) given by Equation 8. Maximizing
this probability gives us an error‐weighted fit of the parameters to the observations, along with their probability
distributions.

Because P(x|y) is proportional to P(x)P(y|x), we can directly sample the posterior parameter probability distri-
bution (Equation 7) using the model likelihood function (Equation 8). This sampling is done using the adaptive
MHMCMC algorithm of Haario et al. (2001), based on the approach of Bloom et al. (2020) and using aMATLAB
program developed by Yang et al. (2021, 2022). The algorithm is summarized in Figure 4 below. In Figure 4, xi is
the ith iteration of the parameter vector x, xa is the a priori parameter vector, ∆x is the parameter perturbation, N is
the total number of iterations (4 × 104 in our experiments), H(xi) is the model calculated using parameters xi, P
(xi|y) is the parameter probability calculated using Equation 8,U is a uniform distribution, nstep is the perturbation
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step size adjustment frequency or learning rate, δ is the adjustment to the parameter perturbation Δx, and % is the
modulo operator which returns the remainder of an integer division operation. The length of the parameter vector
x varies from 1–5 depending on how many parameters are being optimized.

Because only the ratio of probabilities is used in Step 5, P(x|y) does not need to be normalized and so P(y) can
be omitted from Bayes' Theorem. Steps 5–8 of Algorithm 1 ensure that parameter values which maximize the
probability in given by Equation 8 are more likely to be accepted; the comparison to a random number U
between 0 and 1 ensures that there is always some probability of rejecting more likely parameters, which
prevents the algorithm from getting stuck in a local probability maximum (Haario et al., 2001). Following
Ziehn et al. (2012), the adjustment δ to the perturbation Δx is chosen from a proposal distribution every
nstep = 50 to achieve a parameter acceptance rate between 23%–44%; this allows for sufficient exploration of
parameter space while minimizing the required number of iterations. This adjustment is done using the evolving
covariance of the samples as in Haario et al. (2001) and Bloom et al. (2020). In all of our experiments, the first
half of the samples were then discarded as burn‐in, and the remaining half were subsampled by a factor of 20 to
reduce correlations between samples, giving a final distribution of 1,000 parameter samples for each
experiment.

Figure 5. Normalized filtered isoprene measurements (red circles) compared with a priori parameterization of γT (black) as a function of air temperature based on the
parameters in Table 2 at each measurement site (panels a, c, d, e, f, g, h, j, k, l). Panels b and i show the same information plotted against measured leaf temperature. The
black crosses are the a priori MEGAN predictions using the same T and T24 values at which the observations were made, while the black line is calculated continuously
as a function of T using the mean value of T24. The red curves show an exponential fit to the observations using Equation 2, which was used to derive the Q10 sensitivity
metric. The red error bars show the observation errors of the measurements propagated through Equation 6. The shaded gray area represents the range of γT values due to
changes in the mean 24‐hr temperature T24, and therefore illustrates the effect of thermal hysteresis as described by Equations 3 and 4.
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3. Results
3.1. Observed Temperature Response

Figure 5 shows the normalized measured temperature response compared with the a priori γT parameterization for
each data set (i.e., the parameterization shown in Table 2). The range in γT shown in Figure 5 with the gray
shading was calculated using the maximum and minimum observed values of T24 during the observation period;
as such, this represents the thermal hysteresis effect described by Equations 3 and 4 and not an uncertainty. There
is large variability in the measured temperature response across the measurement sites. At the AABC, ATTO ,
CTV, and CTP measurement sites, the observations are in good agreement with the a priori parameterization of
γT . The good agreement between the observations and γT at the Amazonian ATTO site contrasts strongly with the
results at the Amazonian STM site (∼460 km East of ATTO) reported by DiMaria et al. (2023) (see Figure S1 in
Supporting Information S1). The exponential fit to the observations at the FNS site is in good agreement with the a
priori γT , but there is a large amount of scatter in the high‐temperature measurements at that site (Figure 5j). When
using leaf temperature measurements (Figure 5i) instead of air temperature (Figure 5j), much of this scatter is
contained within variability of γT driven by changes in T24; the larger variability of γT in Figure 5i is simply due to
the larger variability of leaf temperature compared to air temperature, and this can be seen to a lesser extent at the
ABK site (Figures 5b and 5c).

The observations showed a higher sensitivity to temperature than the a priori γT at the ABK, ALH, SNA, and
WYT measurement sites. In particular, the results imply that γT underestimates high‐temperature isoprene
emissions at these sites. This is consistent with the findings of Seco et al. (2022) at the ABK field site. For SNA,
the heightened temperature sensitivity observed here is likely due to the impacts of heat stress reported by
Vettikkat et al. (2023). That study found that isoprene emissions at the site were substantially higher for several
days after a period of abnormally hot temperatures. Notably, the heightened temperature sensitivity at WYT was
not observed at this same measurement site in DiMaria et al. (2023). However, that study relied on a much shorter
measurement time series (∼3 weeks in May–June 2018) which lacked high‐temperature observations where the
discrepancies between the model and the observations are apparent. This clearly demonstrates the sensitivity of
the optimized γT parameterization to the observational constraints and suggests that using relatively small data
sets to train the parameterization with MHMCMCmay introduce out‐of‐sample biases if the training data set does
not capture a sufficiently wide range of temperatures.

3.2. MHMCMC Optimization

We applied the MHMCMC algorithm to all promising parameter configurations from the LM optimization ex-
periments, as described in Text S4 in the Supporting Information S1 (i.e., configurations where an optimized set
of parameters could be found when we ignored measurement errors). As expected, many of the parameter
configurations could not be reliably constrained due to the low sensitivity of γT to the parameters as well as the
impact of observation errors. This was especially true at measurement sites where the a priori γT was already in
good agreement with the observations. While in principle the MHMCMC optimization should simply return the a
priori parameters in such cases, in practice the low sensitivity of γT to the parameters means that very precise
observations are required to discern the impact of changing any of the parameters unless there are large differ-
ences between the model and the observations.

Despite these difficulties, we found that the MHMCMC was able to reliably constrain the K2 parameter at the
ABK, SNA, andWYT sites (Figures 6a–6c, respectively). From Equation 4,K2 determines how sensitive the peak
emission rate EOpt is to changes in T24 (the average temperature of the past 24 hr). A larger value of K2 produces a
larger change in the peak emission rate EOpt as a function of T24, which is illustrated in Figure S2 in Supporting
Information S1. In all three cases, increasing K2 had little impact on γT at low temperatures but greatly improved
model‐observation agreement at high temperatures. This is clearly visible in the residuals shown in Figure 6d–6f
for each site. The probability distributions of the optimized K2 values for each site are shown in Figures 6g–6i.
Note that parameter histogram is much narrower at the SNA site compared to ABK and WYT; this is a direct
consequence of the smaller observation errors at SNA (as reported by Vettikkat et al., 2023) compared to the other
two sites. The results shown in Figure 6 are summarized in Table 4.

We have chosen to primarily focus on the optimization of K2 because it has a clear physical interpretation;
namely, an increase in K2 represents a stronger thermal hysteresis effect as governed by Equation 4. The recent
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studies of H. Wang et al. (2024a, 2024b), H. Wang, Nagalingam, et al. (2024) suggests that focusing on the
parameterization of the thermal hysteresis effect is reasonable. Furthermore, Vettikkat et al. (2023) found
increased isoprene emissions after a period of abnormally hot temperatures at SNA, indicating that thermal
hysteresis plays an important role at that site.

Figure 7 shows an alternate MHMCMC optimization result at WYT using CT1 and CT2 as free parameters instead
of K2. As with the K2 optimization from Figures 6c, 6f, and 6i, the MHMCMC algorithm was able to improve
high‐temperature model‐observation agreement (Figures 7a and 7b) with a similar reduction in the residuals.
Figure 7c shows the two‐dimensional probability distribution of CT1 and CT2, where the color bar indicates the
number of parameter samples in each 2D bin. In this case the parameters are not as well constrained as K2 was in
Figure 6i, resulting in larger posterior errors in Figure 7a. The area below the dashed line in Figure 7c is within the
allowable range of the CT1 and CT2 parameters (specifically, CT2 > 20 and CT1 > 8); however, the sampling
algorithm avoids this region because simultaneously using large values of CT1 and small values of CT2 leads to
large biases between the model and the observations. This illustrates how MHMCMC can reveal correlations
between model parameters.

Figure 6. Metropolis‐Hastings Markov Chain Monte Carlo optimization results for K2 parameter at ABK (left), SNA (middle), and WYT (right) measurement sites. The
observations, a priori γT model, and posterior γT model are shown in panels (a)–(c). The residuals are shown in panels (d)–(f). The posterior K2 distribution is shown in
the histograms in panels (g)–(i), with the median value indicated by the solid blue line and the prior value indicated by the dashed black line.

Table 4
Selected Metropolis‐Hastings Markov Chain Monte Carlo Optimization Results

Site Free parameters Prior residual Posterior residual Prior parameters Posterior parameter median Posterior parameter StdDev

ABK K2 − 0.338 − 0.025 0.08 0.291 0.011

SNA K2 0.247 0.121 0.08 0.130 0.003

WYT K2 − 0.115 − 0.010 0.08 0.154 0.026

WYT CT1CT2
a − 0.115 − 0.006 80 kJ mol− 1

200 kJ mol− 1
193 kJ mol− 1

640 kJ mol− 1a
60 kJ mol− 1

490 kJ mol− 1a

aThe posterior CT2 distribution is highly skewed (see Figure 7c), with a median of 640 and a mode of 282.
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The ability of the MHMCMC method to optimize model parameters is strongly limited by the observation error
which appears in the denominator of Equation 8. Figure S5 in Supporting Information S1 shows MHMCMC
parameter optimizations for three additional measurement sites (AABC, ALH, and ACM) with their observation
errors artificially deflated to a small constant value of 0.05. While none of these configurations could be con-
strained by the MHMCMC when the actual observation errors were used, all of them could be constrained when
using the artificially deflated errors.

4. Discussion
4.1. Variability of γT Across Ecosystems

There is large variability in the measured isoprene emission temperature response among the different field sites,
as indicated by the large range of observedQ10. This variability could be due to physiological differences between
vegetation species. In particular, it may reflect differing stress tolerances of the local vegetation at each field site.
The production of isoprene in plant leaves is believed to contribute to abiotic stress tolerance, possibly protecting
vegetation from heat stress, drought, herbivory, and oxidation from radicals like ozone (Monson et al., 2021).
Based on genetic evidence, it is believed that isoprene emission capacity has evolved independently many times
throughout the plant kingdom (Harley et al., 1999; Sharkey et al., 2005). The mechanism by which isoprene
protects plants from stress is unknown; previous studies suggested that isoprene helps stabilize cell membranes
and quench oxidants through direct reaction (Sharkey et al., 2008), but subsequent work found that isoprene
concentrations within plant tissues are not high enough for this to be plausible (Harvey et al., 2015). A more
current hypothesis is that isoprene production is associated with beneficial protein production within plant leaves
(Monson et al., 2021). In any case, the observed variability in γT may reflect differing physiological stress re-
sponses from vegetation to the local environment, which may be plausible given the wide range of ecosystems
studied here.

Figure 7. Metropolis‐Hastings Markov Chain Monte Carlo optimization results for CT1 and CT2 parameters at WYT field site. (a) The observations, prior γT model, and
posterior γT model. (b) The prior and posterior residuals. (c) The 2D posterior probability distribution of CT1 and CT2, with darker colors indicating higher probability.
The a priori parameterization is indicated by the black star, and the dashed black line indicates an emergent boundary.
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Alternatively, the observed variability could be due differences in the canopy structure of different ecosystems.
The PCEEA implementation of γT is parameterized based on a full canopy physics simulation for warm broadleaf
forests; it would therefore be unsurprising to see differences in model performance for other canopy environ-
ments, and indeed this implementation has been shown to produce local biases relative to full canopy physics
models despite good global agreement (Guenther et al., 2006). Discerning between physiological and canopy‐
related effects requires leaf temperature measurements, which were not available at most field sites. We
discuss this source of error in Section 4.3.2.

Of the four boreal‐Arctic sites, three showed higher temperature sensitivity than the a priori γT parameterization:
ACM, ABK, and SNA. This is consistent with previous studies of high‐latitude vegetation. For example, using
enclosure measurements of tundra vegetation at a Northern Alaska field site, Angot et al. (2020) found that
isoprene emissions continued to increase at air temperatures above 30°C, whereas MEGAN predicted a decline in
emissions at these temperatures. Another study using enclosure measurements over the course of a growing
season found that the measured isoprene temperature response was roughly 50% steeper than MEGAN pre-
dictions for subarctic Salix mysinites and Betula nana shrubs (Li et al., 2023). Kramshøj et al. (2016), Seco
et al. (2020, 2022), and Vettikkat et al. (2023) similarly found increased temperature sensitivity for isoprene
emissions from high‐latitude vegetation. At the ABK site, similar results were obtained regardless of whether air
temperature or leaf temperature was used to calculate γT , suggesting that the observed high temperature sensi-
tivity is a physiological property of the vegetation and not related to the parameterization of the air‐temperature/
leaf temperature relationship in the canopy. Conversely, nearby wetland measurements reported by Seco
et al. (2020) showed large differences between air‐temperature and leaf‐temperature derived temperature
sensitivity (see Section 4.3.2).

In contrast to these sites, the observations at the Norwegian FNS site were in good agreement with the a priori γT
parameterization. This is true with both air and leaf temperature measurements, again suggesting a physiological
explanation. There are fairly large differences in vegetation at FNS compared to the other two Fennoscandian sites
ABK and SNA, possibly because FNS is an alpine site at higher elevation above sea level (1,222 m) compared to
ABK (360 m) or SNA (162 m). Similarly, the ACM site is at a relatively low elevation of 270 m above sea level.
Despite its distance from the other sites, the vegetation at ACM is similar to ABK and SNA, including abundant
Sphagnum mosses and Eriophorum vaginatum sedges. Recent work by H. Wang et al. (2024b) has demonsrated
that sedges in particular are responsible for the high isoprene emission rates measured at several high‐latitude
sites.

The observations were in good agreement with the a priori γT parameterization at AABC and CTV in central
Alabama and CTP in Italy. However, the measured temperature sensitivity at the ALH and WYT sites in the
United Kingdom was significantly higher than the a priori γT . Isoprene emissions at all five of these sites are
dominated by Quercus (oak trees), but the species and climatic conditions are not the same: Quercus robur
(European oak) dominates at ALH and WYT, Quercus ilex (holm oak) and Quercus suber (cork oak) dominate at
CTP, and none of these species are present at the North American AABC and CTV sites. In terms of climate, the
ALH and WYT sites experience generally cooler growing seasons compared to the Italian and North American
sites, which likely impacts the heat stress response of local vegetation. These results suggest thatQuercus robur is
more sensitive to temperature than the oak species found at the lower‐latitude sites, or alternatively, the individual
specimens at ALH and WYT may be more sensitive to temperature due to their generally cooler growing con-
ditions during spring and summer. Another study of a Mediterranean oak forest (Quercus pubsecens) in southern
France found good agreement with the modeled temperature and sunlight response γT × γPAR (Kalogridis
et al., 2014); while they did not specifically investigate the parameterization of γT , this is further evidence that the
vegetation at the UK sites ALH and WYT responds differently to temperature variations than oaks from warmer
regions. A previous study of North American oak species in the Missouri Ozarks found significant differences in
both temperature and drought sensitivity for different species (Geron et al., 2016), so it is unsurprising that we see
different behavior amongst our oak‐dominated sites in this study.

The observed temperature sensitivity at the ATTO site in the Amazon rainforest is in good agreement with the a
priori γT parameterization. This is in stark contrast with the observations at the STM site (Figure S1 in Supporting
Information S1), also in the Amazon rainforest ∼460 km east of ATTO. The measurements at both sites were
taken from towers above a closed broadleaf forest canopy. The dominant vegetation species at each site are
different, with STM being primarily Erisma uncinatum Warm., Carapa guianensis Aubl., Manilkara huberi
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(Ducke) A. Chev., and Protium sp. (Gonçalves and Santos, 2008) and ATTO featuring Pouteria, Pourouma,
Helicostylis, andCecropia (Mota de Oliveira et al., 2022). It is possible that the STM vegetation, which is adapted
to the comparatively drier conditions of the Eastern Amazon basin (Nepstad et al., 1994; Saleska et al., 2003),
exhibits higher temperature sensitivity than vegetation found in the more humid central and Western portions of
the basin.

Previous studies have already demonstrated variability in γT in tropical ecosystems, and our results are consistent
with this. In particular, multiple field and laboratory studies have found increased temperature sensitivity for
tropical vegetation. Langford et al. (2010) found a two‐fold increase in EOpt (the maximum value of γT described
by Equation 4) in a tropical rainforest in Malaysia's Sabah region, consistent with laboratory experiments for
tropical Ficus trees (Oku et al., 2008). Similarly, Misztal et al. (2011) found higher TMAX for oil palms in
Malaysian Borneo, in agreement with laboratory measurements of Wilkinson et al. (2006). In Australia,
Emmerson et al. (2020) found up to three‐fold increases in EOpt using laboratory measurements of Eucalypt
species. Given this large variability, there is some precedent for the differences we observed between the ATTO
and STM sites.

4.2. Strong Thermal Hysteresis Effect at Several Mid‐To‐High Latitude Field Sites

The heightened temperature sensitivity of isoprene emissions at several field sites (ABK, SNA, WYT) was
successfully modeled by γT when the value of the K2 parameter was increased in the MHMCMC optimization
(Figure 6), leading to improved model‐observation agreement at high temperatures. An increase in K2 produces a
larger thermal hysteresis effect in Equation 4, which implies that the vegetation is responding more strongly to
variations in average ambient temperatures (T24) than predicted by the baseline γT parameterization. Vettikkat
et al. (2023) previously found that isoprene emissions at SNA were elevated for several days after a period of
anomalously hot weather, providing direct observational evidence for a strong thermal hysteresis effect which is
captured in our optimized model. While the time scale of the observed thermal hysteresis effect at SNA is likely
longer than 24 hr, we were still able to improveMEGAN's performance using only the K2 parameter on 24‐hr time
scales. Other data sets not used in this study have also shown that the thermal hysteresis effect may be responsible
for the heightened temperature sensitivity of high‐latitude isoprene emissions compared to MEGAN predictions,
especially for sedge species (H. Wang et al., 2024a, 2024b). Our optimization results are consistent with these
findings.

Underestimating the temperature sensitivity of emissions has been shown in other studies to lead to under-
predictions of isoprene emissions during high‐temperature periods (Emmerson et al., 2020; Vettikkat et al., 2023).
This may be especially problematic for emission modeling at high latitudes because the arctic region is warming
significantly faster than the rest of the planet (England et al., 2021). Our results suggest that a simple re‐
parameterization of the thermal hysteresis effect in γT can account for much of the observed temperature
sensitivity, which will allow for more accurate modeling of arctic isoprene emissions and their impacts on at-
mospheric chemistry as the region warms. In other regions, we expect the increased temperature sensitivity of
emissions to be important during heatwaves. For example, while DiMaria et al. (2023) found good agreement
between γT and isoprene observations at WYT using a short time series in May 2018, here we find significant
disagreements at high temperatures which were easily accounted for by increasing the strength of thermal hys-
teresis via the K2 parameter. Even if anomalously high temperatures are infrequent (as is the case with the filtered
WYT time series data), the exponential relationship between emissions and temperature means that such events
have a disproportionately large impact on isoprene emissions. Furthermore, the increasing frequency of heat-
waves (Perkins‐Kirkpatrick et al., 2012; Perkins‐Kirkpatrick & Lewis, 2020) in many regions of the world in-
dicates that accurately modeling the temperature sensitivity of isoprene emissions will be increasingly important
in the future.

Overall, our results illustrate the importance of accurately parameterizing the thermal hysteresis effect in γT for a
variety of vegetation types. We have shown that isoprene flux and concentration measurements can be used for
this purpose. Controlled experiments should also be performed to measure γT under a range of ambient tem-
perature conditions. This would make it possible to conclusively determine whether the thermal hysteresis effect
is responsible for the increased temperature sensitivity observed at our field sites. The recent measurements of H.
Wang et al. (2024b) strongly suggest that the increased strength of the thermal hysteresis effect at arctic field sites
is a real physiological effect.
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4.3. Uncertainties and Limitations

The analysis presented in this study is subject to several important limitations and sources of uncertainty. In
addition to observation errors and the low sensitivity of γT to its parameterization, there are four other major
sources of uncertainty which affect the interpretation of our optimization experiments. These are the lack of leaf
temperature measurements at most field sites, the impact of non‐temperature sources of isoprene variability, the
reliance on concentration rather than flux measurements at some field sites, and equifinality which makes
interpretation of the optimized parameters difficult. These are discussed in the following subsections. We also
discuss how uncertainties in γT fit into the broader context of isoprene emission modeling, which is subject to
many other sources of error such as landcover and drought stress uncertainties.

4.3.1. Observation‐Related Limitations: Low Parameter Sensitivity and Time Series Length

The most significant obstacle to our γT optimization experiments is the relatively low sensitivity of γT to its
parameterization at ordinary ambient temperatures. In most cases the optimized posterior γT parameterization is
indistinguishable from the a priori parameterization at low temperatures. The severity of this problem depends on
the precision of the observations, as more precise observations allow us to observe smaller changes in γT due to
changing parameters. Constraining the model parameters therefore requires sufficiently precise observations at
higher temperatures where the parameters have a larger impact. Since anomalously high temperatures are by‐
definition uncommon, longer time series measurements are helpful for ensuring we properly sample this
regime. The WYT data set provides the best example of the importance of high‐temperature observations.
DiMaria et al. (2023) found no significant discrepancies between the observations and the a priori γT parame-
terization at this site when using a shorter subset of the data that did not include enough high temperature ob-
servations. In this study, we found similarly good agreement between the observations and the a priori γT at low
temperatures, but significant discrepancies at higher temperatures. This is clear justification for measuring longer
time series, ideally spanning seasonal or interannual timescales, in order to avoid sampling biases. The use of
longer time series does require more careful data filtering to deal with seasonal variability related to changes in
LAI, leaf age, and soil moisture (see Section 4.3.3), so concurrent measurements of these quantities would also be
required.

Since it may not always be feasible to collect long time series records, especially in remote regions of the tropics
or the Arctic, another solution is to perform direct measurements of isoprene fluxes from vegetation over a wide
range of temperatures to constrain γT as was done in Emmerson et al. (2020) for Australian Eucalypt trees. That
study used a laboratory environment where the environmental conditions including air temperature could be
precisely controlled. This approach ensures that the data used to train the optimized γT parameterization cover a
sufficiently wide range of temperatures with minimal confounding effects from other environmental variables,
something that is not always possible with time series measurements.

4.3.2. Leaf Temperature and Simplified Canopy Parameterizations

Isoprene emission rates depend on leaf temperature, which can be substantially different than ambient air tem-
perature in some ecosystems. The lack of leaf surface temperature measurements at most of the field sites makes it
impossible to determine whether the observed errors in γT are due to physiological properties of the local
vegetation, or whether they instead reflect errors in the relationship between air temperature and leaf temperature;
this relationship is implicit in the parameterization of γT when using air temperature as a model input and depends
on radiative transfer within the vegetation canopy. The PCEEA implementation has been shown to lead to local
biases relative to full canopy models (Guenther et al., 2006), including at the ALH and CTP field sites used in this
study (Fares et al., 2013; Langford et al., 2017). We do not have leaf temperature measurements at SNA, but a full
5‐layer canopy physics simulation showed that air leaf temperature was typically within 1°C of the ambient air
temperature at that site (Vettikkat et al., 2023). At ABK and FNS, we found no significant differences in tem-
perature sensitivity (as quantified by Q10) when using measured air temperature or leaf temperature. On the other
hand, Seco et al. (2020) found that the measured temperature sensitivity at a wetland site near our ABK site was
nearly 10× greater when using leaf temperature rather than air temperature measurements to calculate γT . It is
therefore clear that even though leaf temperature measurements did not have a significant impact on the measured
temperature sensitivity in our study, we cannot assume this will be true for other sites. This uncertainty extends
beyond isoprene emission modeling. A recent study has found that for high‐latitude vegetation in particular,
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differences between air and leaf temperature can lead to large errors in hydrological and carbon cycle models
(Tang et al., 2024). Leaf temperature measurements should be made whenever possible to reduce these sources of
error.

This issue can be partially addressed by using an explicit canopy model to calculate γT instead of the simplified
PCEEA implementation as was done by Vettikkat et al. (2023) at SNA, but doing this globally requires accurate
representations of a broad range of canopy environments and additional driving variables to simulate radiation
and atmospheric transport processes. Attempts to reduce this complexity in global models using machine learning
approaches have been shown to introduce ecosystem‐dependent emission biases, but they do show reasonably
good agreement with full canopy physics models (Silva et al., 2020). Other studies like Emmerson et al. (2020)
have avoided the canopy model issue entirely by measuring γT directly at the leaf‐level in laboratory experiments,
which allows for the unambiguous observation of physiological effects. Similarly, repeating our optimization
experiments with a full canopy physics model like MEGAN3 would help to disentangle the effects of canopy
environment and plant physiology and would therefore be worthwhile. However, using parameters derived from
full canopy physics simulations or leaf‐level measurements in global atmospheric models will inevitably require
the use of a simplified canopy parameterization. Despite the uncertainties associated with the simplified PCEEA
parameterization, its ease of use in global models made it a sensible choice for this study.

4.3.3. Data Filtering Uncertainties

Non‐temperature related isoprene variability can be mistakenly attributed to γT if it is not properly accounted for
via data filtering. While we are confident in the data filtering methodology described in Section 2.3.1, there are a
few caveats worth addressing. First, our data sets do not include leaf age measurements, even though leaf age is
known to impact isoprene emission capacity (Alves et al., 2016, 2018; Guenther et al., 2006). Many of our data
sets contain LAI measurements, and while there are algorithms for calculating the leaf age activity factor γAGE
based on changes in total LAI, this approach is less effective in situations where leaf total area is relatively
constant such as in tropical broadleaf forests. Because leaf age primarily impacts emissions during seasonal
transitions when there are large populations of young or senescing leaves (Alves et al., 2018), this can be partially
avoided by using relatively short time series and avoiding the beginning and end of the growing season. However,
as discussed in Section 4.3.1, the use of short time series introduces a different source of error where we may not
be adequately sampling high‐temperature periods, as was the case at the WYT site in DiMaria et al. (2023). It
would therefore be preferable to obtain longer time series with sufficient ancillary measurements to account for
emission variability due to LAI, leaf age, and soil moisture.

Our analysis at the SNA site may be impacted by leaf age, as it spans the beginning of the local growing season
during a time of rapid foliage expansion; this may lead to an overestimate of the measured temperature sensitivity
at SNA, as increasing temperatures are correlated with leaf maturation. The other important caveat is drought
stress. While we are confident that this was not an issue at our field sites based on the arguments presented in
Section 2.3.1, we cannot definitively rule it out without measurements of soil moisture and knowledge of the
vegetation wilting point at the measurement sites. The importance of drought stress in isoprene emission
modeling is being increasingly recognized (Potosnak et al., 2014; Seco et al., 2015; Jiang et al., 2018; Bamberger
et al., 2017; Otu‐Larbi et al., 2020; Y. Wang et al., 2022; H. Wang et al., 2022), and future measurement cam-
paigns should ensure necessary observations are obtained to quantify this effect.

4.3.4. Uncertainties Associated With Mixing Ratio Measurements

As discussed previously, deriving γT from mixing ratio measurements requires that we account for variability in
atmospheric dispersion and photochemical losses. Photochemical loss rate variability is strongly coupled to
sunlight‐driven OH production, so this is largely accounted for by filtering for high‐PPFD observations. At three
of our field sites (AABC, CTV, and WYT), dispersion is the dominant loss process, so this is likely not a large
source of error. However, this argument may not be valid at the ATTO field site due to the longer lifetime of
isoprene in the Amazon (Palmer et al., 2022), as well as the fact that the ATTO site is surrounded in all directions
by isoprene emission sources for very large distances. An additional complicating factor is that isoprene sup-
presses its own OH sink when emissions are high enough, leading to a non‐linear relationship between isoprene
emissions and atmospheric concentrations (Feiner et al., 2016; Fu et al., 2019). However, GEOS‐Chem (The
International GEOS‐Chem User Community, 2021) model results suggest that this non‐linearity can be mostly
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eliminated by filtering the observations for sunlight and WS/direction (i.e., photochemical and dispersive loss
rates) in midlatitude regions (see Figure S6 in Supporting Information S1), and to a lesser extent in tropical
regions like the Amazon Basin (see Figure S7 in Supporting Information S1). Additional non‐linearity might be
introduced by temperature‐dependent NOx emissions from soils (Hudman et al., 2012). A reduction in the at-
mospheric isoprene lifetime driven by increased NOx emissions at high temperatures could effectively dampen
the derived temperature sensitivity of isoprene emissions, because higher isoprene emission rates would be
correlated with reduced isoprene lifetimes and a consequently smaller buildup of atmospheric isoprene con-
centrations. Concurrent NOx measurements would be required to quantify this effect.

A final issue with mixing ratio measurements is that the temperature dependence of atmospheric isoprene con-
centrations depends on the altitude at which measurements are made, with higher altitude measurements showing
less sensitivity to temperature than lower altitude measurements (Kalogridis et al., 2014). This can be clearly seen
at the ATTO field. The ATTOmeasurements presented earlier were taken at a height of 81 m above ground level,
which is well‐above the mean local canopy height of 35 m. In Figure 8 we have repeated the filtering process
described in Section 2.3.1 for two additional elevations (25 and 53 m above ground level). There are large dif-
ferences in the measured temperature response at these three altitudes. However, the measurements at h = 25 m
are within the forest canopy and thus are not suitable as proxies for canopy scale isoprene fluxes, and the dif-
ferences between the h= 53 m and h= 81 mmeasurements are too small to be distinguishable by our MHMCMC
optimization given the large amount of scatter and relatively large measurement uncertainties. In any case, while
isoprene mixing ratio measurements are extremely valuable, we recognize that interpreting them in terms of
isoprene emission rates is more uncertain than using eddy covariance flux measurements.

4.3.5. Equifinality

The final major obstacle for interpretation is equifinality, wherein different combinations of parameters and
model inputs yield the same output. Uncertainties in model inputs were previously found to be a large source of
error in isoprene emission model optimization (DiMaria et al., 2023), which we effectively avoid here by
exclusively relying on locally measured meteorological variables and avoiding the use of other model compo-
nents in our calculations (except at the SNA site where we used γLAI) . Despite these improvements, there is
always the possibility of inappropriately using model parameters as “tuning knobs” to improve model‐
observation agreement without sufficient physical justification. An example of this problem is the MHMCMC
optimization at the WYT field site; in Figure 6(c) we improve the model performance by optimizing K2, but in
Figure 7 we achieve similar improvements optimizing CT1 and CT2. The emergent boundary in Figure 7 also
shows that posterior parameters can be correlated with each other (in this case CT1 and CT2). It is for this reason
that we focused primarily on the optimization of the K2 parameter, since it is easy to interpret the impact of this

Figure 8. Observed temperature response at ATTO h = 81 m (red triangles), h = 53 m (black crosses), and h = 25 m (blue
circles). An exponential fit using Equation 6 is shown for each measurement height: 25 m (dashed‐dotted blue), 53 m (dotted
black), and 81 m (solid red). Note that he 25 m elevation measurements are below the mean forest canopy height of 35 m.
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parameter on emissions in physical terms (i.e., it controls the strength of the thermal hysteresis effect). The recent
studies of H.Wang et al. (2024a, 2024b), H.Wang, Nagalingam, et al. (2024) suggest that focusing on the thermal
hysteresis effect is appropriate for sedges which are present at the high‐latitude sites used in this study. Overall,
we adopt the view that parameter optimizations which use a smaller number of easily interpretable free pa-
rameters are better than those which rely on more parameters, or those which cannot be easily explained in terms
of physical processes.

4.3.6. Temperature Response Uncertainties in the Context of Isoprene Emission Modeling

Optimizing the temperature response of modeled isoprene emissions can reduce model biases and produce more
realistic temporal variability of modeled emissions, but these improvements must be considered in the context of
other uncertainties in isoprene emission modeling. Basal emission factors, which quantify the emission capacity
of vegetation at various spatial scales, are thought to be the largest source of error in isoprene emission models
(Guenther et al., 2012; Langford et al., 2010). Calculation of these emission factors for use in global models
requires representative isoprene emission measurements for each vegetation or ecosystem type. In practice,
emission factors in global models are typically extrapolated based on measurements for a particular plant
functional type due to a lack of observation coverage, particularly in remote regions and the tropics (Guenther
et al., 2006, 2012; Marais et al., 2014). This is a source of error due to uncertainties in vegetation distributions as
well as the large variability in isoprene emission capacities among plant species, including those that are closely
related (Batista et al., 2019; Guenther et al., 1993; Li et al., 2021). An additional source of error is that the
calculation of basal emission factors relies on activity factors including γT to normalize measured isoprene fluxes
to pre‐defined “standard” meteorological conditions (Kalgoridis et al., 2014; Langford et al., 2017; Niinemets
et al., 2011). Uncertainties in land use and landcover, including plant functional type distributions, also impact
isoprene emission models (Arneth et al., 2011; Guenther et al., 2006; Opacka et al., 2021; Pfister et al., 2008).

Like the temperature response γT , the emission sensitivity to sunlight (γPAR), leaf area (γLAI), leaf age (γAGE), and
soil moisture (γSM) are empirically parameterized based on observations and are subject to uncertainties. Emission
sensitivity to sunlight is generally less pronounced than the temperature sensitivity because γT exhibits expo-
nential growth up to relatively high temperatures (Guenther et al., 2006); nevertheless, γPAR is uncertain and
observations from a variety of vegetation types have shown significant deviations from the a priori γPAR
parameterization (e.g., Langford et al., 2017, 2022). Sensitivity of emissions to LAI and leaf age can be significant
on monthly to seasonal timescales, particularly in low‐LAI environments where γLAI is not saturated due to the
square‐root dependance of γLAI on LAI (Guenther et al., 2006) and during seasonal transitions with large pop-
ulations of young or senescing leaves (Alves et al., 2018). The soil moisture activity factor γSM has received
significant attention in recent years and is increasingly being recognized as a major driver of isoprene emission
variability during periods of drought stress (Bamberger et al., 2017; Jiang et al., 2018; Opacka et al., 2022; Otu‐
Larbi et al., 2020; Potosnak et al., 2014; Seco et al., 2015; Y. Wang et al., 2022; H. Wang et al., 2022). Moderate
drought stress can lead to an increase in emissions and changes in the emission temperature sensitivity (Potosnak
et al., 2014; H.Wang et al., 2022: see also Figure 3j), while severe drought stress leads to a reduction in emissions.

There have been improvements to MEGAN with the release of version 3 (Guenther et al., 2020). Many have
focused on the calculation of the basal emission factors (Guenther et al., 2020) as well as the representation of the
drought stress response γSM (Jiang et al., 2018; Otu‐Larbi et al., 2020; Y. Wang et al., 2022; H. Wang et al., 2022).
Further reducing uncertainties in γT would add to these efforts and lead to more accurate isoprene emission
models, such as the recent work by H. Wang et al. (2024a, 2024b), H. Wang, Nagalingam, et al. (2024) for Arctic
and urban vegetation.

5. Conclusions
We showed that the temperature sensitivity of isoprene emissions was highly variable across a range of field sites
in different ecosystems. In particular, the temperature sensitivity at many sites was higher than predicted by the
existing γT model. We found that γT could be reparametrized using MHMCMC data assimilation at several field
sites, leading to improved model‐observation agreement. Increasing the strength of the thermal hysteresis effect
yielded the most promising results, allowing γT to model the rapid increase in emissions at high temperatures
while not altering its behavior at lower temperatures. This allowed us to accurately model the observed
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temperature sensitivity at two high‐latitude field sites and a UK field site where the original γT parameterization
was inadequate.

Future work should continue to prioritize the collection of isoprene flux measurements in a diverse range of
ecosystems to quantify the variability of γT .We especially encourage measurements in underrepresented regions
such as the Arctic and the tropics. Measurements in urban areas will also be useful to accurately model the air
quality impacts of urban greening efforts in a warming climate (Wei et al., 2024). Due to the low sensitivity of γT
to its parameterization at typical ambient temperatures, controlled experiments with leaf‐level flux measurements
should be used to directly measure the thermal hysteresis effect where possible. This method would eliminate the
ambiguity in our interpretation of the optimized parameterization (i.e., physiological differences vs. air‐tem-
perature/leaf‐temperature relationships) and would also reduce uncertainties related to the use of small data sets in
the γT optimization. Specifically, the differences in the observed temperature response at Wytham Woods in this
study compared to DiMaria et al. (2023) showed that the optimization is critically dependent on having enough
high‐temperature observations to see the effects of errors in the γT parameterization. In cases where such ex-
periments are not feasible, we can still gain valuable information about the γT parameterization from canopy‐scale
flux or mixing ratio measurements provided that ancillary meteorological data are available for observation
filtering, and that the measurements are sufficiently precise to be able to discriminate between different γT pa-
rameterizations. In these cases, collecting longer time series on seasonal‐to‐interannual scales will help reduce
sampling biases, which will be especially useful for constraining emission responses during stressful but rela-
tively uncommon periods such as severe heatwaves and droughts.

Given the large variability in the isoprene emission temperature response across ecosystems and vegetation
species, the long‐term goal of this work is to develop an ecosystem‐specific parameterization of γT that can be
used in global isoprene emission models. The parameterization of γT could then be tied to specific landcover or
plant functional types in the same way as basal emission factors. Using global chemical transport models, the
impact of the updated γT parameterization on air quality and climate pollutants could be quantified. This will
inevitably require a very large observational data set with which we can constrain γT . To that end, we strongly
encourage the publication of existing isoprene measurements, along with ancillary meteorological and envi-
ronmental observations, in publicly accessible repositories. The coordinated publication of these data in a
centralized location would greatly facilitate model optimization and development work and would allow re-
searchers to readily extend the analysis presented here to a wider variety of ecosystems.

Data Availability Statement
A repository containing all data and code necessary to reproduce our analysis is available at https://doi.org/10.
5281/zenodo.15262183 (DiMaria et al., 2025). TheMEGAN 2.1 source code can be obtained from https://bai.ess.
uci.edu/megan/data‐and‐code (Guenther, 2024). The original MHMCMC Matlab code upon which our work is
based is available at https://doi.org/10.5281/zenodo.4904195 (Yang et al., 2021). All isoprene measurements and
ancillary meteorological measurements used in this study are publicly available and can be obtained from the
references listed in Table 1. Historical weather records were obtained from Visual Crossing (https://www.vis-
ualcrossing.com/weather‐history; Last Accessed: 29 October 2023) to screen for drought conditions in cases
where soil moisture measurements were not available.
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