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A B S T R A C T

Due to their importance in monitoring and modelling Earth’s climate, the Global Climate Observing System 
(GCOS) designates leaf area index (LAI) and the fraction of absorbed photosynthetically active radiation (FAPAR) 
as essential climate variables (ECVs). The Simplified Level 2 Biophysical Processor (SL2P) has proven particularly 
popular for decametric (i.e. 10 m to 100 m) retrieval of these ECVs. Comprehensive validation has shown that 
due to simplifying assumptions in the underlying radiative transfer models (RTMs), biases persist in SL2P re
trievals. To avoid RTM assumptions altogether, an empirical data-driven approach might be considered. Yet, 
such a strategy has historically been prevented by the limited quantity and quality of available in situ reference 
measurements, as well as the large number of training samples traditionally required by machine learning 
regression algorithms. New opportunities are now offered by recently established continental-scale environ
mental monitoring networks, advances in automated data processing and uncertainty evaluation, and machine 
learning regression algorithms that require many fewer training samples. The Ground Reference Observations 
Underlying Novel Decametric Vegetation Data Products from Earth Observation (GROUNDED EO) project was 
initiated to take advantage of these opportunities. We describe the empirical data-driven LAI and FAPAR 
retrieval approach adopted within the project, involving i) generation of a database containing over 16,000 
fiducial reference measurements covering 81 National Ecological Observatory Network (NEON), Integrated 
Carbon Observation System (ICOS), and Terrestrial Ecosystem Research Network (TERN) sites between 2013 and 
2022, ii) development of an empirical data-driven algorithm for Sentinel-2 LAI and FAPAR retrieval based on 
Gaussian processes, and iii) evaluation of GROUNDED EO retrievals through intercomparison with the current 
state-of-the-art in decametric retrieval (i.e. SL2P, and a modified version of SL2P developed by the Canada Centre 
for Remote Sensing – SL2P-CCRS), as well as validation against unseen fiducial reference measurements. In the 
majority of cases (and despite not making use of ancillary data such as land cover), the empirical data-driven 
GROUNDED EO retrievals were subject to reduced bias than those from SL2P and SL2P-CCRS, as well as 
increased fulfilment of user requirements (i.e. 74% of LAI and 69% of FAPAR retrievals overall). Consequently, 
the approach has potential to reduce uncertainty in key inputs for climate monitoring and modelling, agricultural 
and forest management, and biodiversity assessment.

1. Introduction

Due to their fundamental importance in monitoring and modelling 
Earth’s climate, the Global Climate Observing System (GCOS, 2019) 
designates leaf area index (LAI) and the fraction of absorbed 

photosynthetically active radiation (FAPAR) as essential climate vari
ables (ECVs). LAI is defined as half the total green leaf area per unit 
horizontal ground area, whilst FAPAR is defined as the fraction of 
photosynthetically active radiation (PAR, i.e. radiation between 400 nm 
and 700 nm) absorbed by vegetation for a specified illumination. In 
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addition to climate monitoring and modelling, these biophysical vari
ables are widely used for agricultural and forest management, as well as 
biodiversity assessment, forming a crucial input into models of vegeta
tion productivity and crop yield, and representing a useful indicator of 
landscape disturbance (Ogutu et al., 2013; Richardson et al., 2013; 
Sellers et al., 1997). Over the last 25 years, a range of operational al
gorithms and products have been developed to retrieve LAI and FAPAR 
from optical satellite remote sensing data, with a primary focus on 
hectometric (i.e. 100 m to 1 km) and kilometric (i.e. > 1 km) spatial 
resolution instruments such as the Advanced Very High Resolution 
Radiometer (García-Haro et al., 2018), Moderate Resolution Imaging 
Spectroradiometer and successor Visible Infrared Imaging Radiometer 
Suite (Yan et al., 2016a, 2018), and Ocean and Land Colour Instrument 
(Gobron et al., 2022; Kovács et al., 2023; Reyes-Muñoz et al., 2022). 
With ≤ 3 day repeat global coverage, these products have proven 
invaluable for regional and global monitoring. Nevertheless, higher 
spatial resolution retrievals are required in applications including pre
cision agriculture, forest management, and climate adaptation (Clevers 
and Gitelson, 2013; GCOS, 2019; Majasalmi and Rautiainen, 2016).

Within the last decade, the advent of analysis ready data (ARD) from 
instruments such as the Landsat 8/9 Operational Land Imager (OLI) 
(Vermote et al., 2016) and the Sentinel-2 Multispectral Instrument (MSI) 
(Drusch et al., 2012) has led to an increased focus on decametric (i.e. 10 
m to 100 m) biophysical retrieval. Indeed, for LAI and FAPAR, GCOS 
currently specifies threshold, breakthrough, and target spatial resolution 
requirements of 250 m, 100 m and 10 m, respectively. The Simplified 
Level 2 Prototype Processor (SL2P) retrieval algorithm (Weiss and Baret, 
2016) has proven particularly popular for generating ‘L2B’ products 
(including LAI and FAPAR) from OLI and MSI surface reflectance data, 
owing to its widespread availability and ease of adoption. Free and open 
implementations are available within the European Space Agency’s 
(ESA’s) Sentinel Application Platform (SNAP) (https://step.esa.int/ma 
in/toolboxes/sentinel-2-toolbox/sentinel-2-toolbox-features), as well 
as in Google Earth Engine via the Landscape Evolution and Forecasting 
(LEAF) Toolbox (https://github.com/rfernand387/leaf-toolbox). SL2P 
adopts a hybrid retrieval approach, using simulations from the coupled 
Leaf Optical Properties Spectra (PROSPECT) (Feret et al., 2008; Jac
quemoud and Baret, 1990) and Scattering by Arbitrarily Inclined Leaves 
(SAIL) (Verhoef, 1984; Verhoef et al., 2007) radiative transfer models 
(RTMs) to train artificial neural networks for retrieval. Notably, SAIL 
represents the canopy as a horizontally homogeneous turbid medium, 
and is known to perform poorly in heterogeneous canopies that deviate 
strongly from this assumption (Richter et al., 2009; Verger et al., 2011).

Comprehensive validation of SL2P LAI and FAPAR retrievals has 
demonstrated acceptable performance over homogeneous canopies (e.g. 
cultivated crops, grasslands, pasture/hay, and shrub/scrub vegetation), 
but biases over heterogeneous canopies (e.g. forests and woodlands) 
(Brown et al., 2019, 2021b; Djamai et al., 2019; Fernandes et al., 2023, 
2024; Hassanpour et al., 2024; Hu et al., 2020; Putzenlechner et al., 
2019; Upreti et al., 2019; Vanino et al., 2018; Vuolo et al., 2016; Xie 
et al., 2019). For example, Fernandes et al. (2024), report that SL2P LAI 
retrievals meet user requirements over > 90% of non-forest sites, but 
only 50% of forest sites, indicating that algorithm improvements are 
clearly required. In an attempt to address the issue, several strategies 
have been tested, including empirical bias correction of SL2P LAI re
trievals (Fernandes et al., 2023), as well as the replacement of SAIL with 
a heterogeneous canopy RTM (Fernandes et al., 2024). A version of SL2P 
using the 4SAIL2 heterogeneous RTM, SL2P-CCRS, was found to reduce 
the bias of LAI retrievals over forests, but the overall difference with 
respect to fiducial reference measurements was virtually unchanged due 
to lower precision (Fernandes et al., 2024).

To avoid the assumptions associated with RTM simulations alto
gether, an empirical data-driven approach might be considered, in 
which machine learning regression algorithms are trained with a large 
number of high-quality in situ reference and contemporaneous satellite 
observations. So far, however, such a strategy has been difficult to 

implement globally. This has primarily been due to the limited quantity 
and quality of representative in situ reference measurements, which 
have historically been collected during one-off field campaigns (typi
cally during the peak of the growing season, thereby representing a 
limited range of vegetation condition), and have been subject to 
unquantified measurement uncertainties (Camacho et al., 2013; Fang 
et al., 2019; Garrigues et al., 2008; Weiss et al., 2014; Yan et al., 2016b). 
These factors have been compounded by the nature of the machine 
learning regression algorithms themselves, which traditionally required 
a vast number of training samples to achieve acceptable levels of per
formance over large or diverse domains (Combal et al., 2003; Weiss 
et al., 2000).

In recent years, new continental-scale environmental monitoring 
networks have been established and are now collecting long-term in situ 
reference observations over permanent measurement sites on a routine 
basis. Examples include the National Ecological Observatory Network 
(NEON) in the United States (Kao et al., 2012; Meier et al., 2023), the 
Integrated Carbon Observation System (ICOS) in Europe (Gielen et al., 
2018), and the Terrestrial Ecosystem Research Network (TERN) in 
Australia (Cleverly et al., 2019; Karan et al., 2016). Crucially, these 
networks adopt standard data collection protocols, ensuring the data 
they provide is consistent. Whilst several of these networks only provide 
raw observations, automated data processing tools now enable the 
derivation of biophysical variables including LAI and FAPAR from their 
archives using a common processing chain (Brown et al., 2020b, 2023; 
Brown and Leblanc, 2024; Chianucci et al., 2022; Chianucci and Macek, 
2023; Serouart et al., 2022). In addition, developments under ESA’s 
Fiducial Reference Measurements for Vegetation (FRM4VEG) pro
gramme provide the means to quantify the uncertainty of the derived 
measurements in a metrologically robust manner (Brown et al., 2021a; 
Camacho et al., 2024; Goryl et al., 2023; Niro et al., 2021).

In parallel to substantial increases in the availability of in situ 
reference observations, and in particular, fiducial reference measure
ments, new retrieval algorithm training strategies such as active 
learning have been gaining popularity. Through the use of uncertainty- 
and diversity-based criteria, active learning aims to select only the most 
informative samples for training (Berger et al., 2021; Verrelst et al., 
2020; Verrelst et al., 2016). When coupled with machine learning 
regression algorithms, these methods have been demonstrated to require 
many fewer training samples (i.e. hundreds) (Berger et al., 2021; Estévez 
et al., 2022; Verrelst et al., 2020) than for traditional training strategies 
(i.e. tens of thousands to hundreds of thousands) (Combal et al., 2003; 
Weiss et al., 2000). Meanwhile, alternative non-parametric machine 
learning regression algorithms such as Gaussian process regression 
(GPR) (also termed Gaussian processes) have risen to prominence 
(Rasmussen and Williams, 2006). Due to the adoption of a Bayesian 
approach to the regression problem, GPR inherently provides retrieval 
(i.e. model-based) uncertainty estimates in the form of a posterior 
probability distribution (whose mean and standard deviation represent 
the retrieved value and its uncertainty, respectively) (Verrelst et al., 
2013, 2015b). Retrieval uncertainty estimates are a growing require
ment, for example in data assimilation schemes (Chernetskiy et al., 
2017; Lewis et al., 2012; Mathieu and O’Niell, 2008), enabling users to 
weight observations on the basis of their confidence (Demarty et al., 
2007; Raupach et al., 2005; Richardson et al., 2011), making such a 
feature particularly attractive. Indeed, per-pixel retrieval uncertainty 
estimates are a goal of the Committee on Earth Observation Satellites 
(CEOS, 2024) ARD standard.

Within the framework of ESA’s Living Planet Fellowship programme, 
the Ground Reference Observations Underlying Novel Decametric 
Vegetation Data Products from Earth Observation (GROUNDED EO) 
project (https://eo4society.esa.int/projects/grounded-eo) was initiated 
to take advantage of opportunities afforded by new continental-scale 
environmental monitoring networks, automated data processing and 
uncertainty evaluation methods, as well as advances in machine 
learning regression techniques. In this paper, we describe the empirical 
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data-driven LAI and FAPAR retrieval approach developed within the 
project for application to Sentinel-2. We focus on Sentinel-2 due to the 
extensive validation of existing retrieval algorithms for Sentinel-2 
products, the operational availability of free and open data, and the 
similarities between Sentinel-2 and upcoming missions such as Landsat 
Next (Wulder et al., 2022). The specific objectives of the paper are to: 

1. Describe the generation of an extensive database suitable for cali
bration and validation of decametric LAI and FAPAR retrieval algo
rithms and products, containing fiducial reference measurements 
from 81 NEON, ICOS, and TERN sites (hereafter termed the 
GROUNDED EO database);

2. Detail the development of a new empirical data-driven biophysical 
retrieval algorithm for Sentinel-2 LAI and FAPAR, based on Gaussian 
processes (hereafter termed the GROUNDED EO retrieval algorithm);

3. Provide a comprehensive evaluation of GROUNDED EO LAI and 
FAPAR retrievals through intercomparison with the current state-of- 
the-art in decametric retrieval approaches (i.e. SL2P and SL2P-CCRS) 
as well as validation against unseen fiducial reference 
measurements.

By adopting an empirical data-driven approach that utilises consis
tent, representative fiducial reference measurements with characterised 
uncertainties, and by avoiding assumptions associated with RTM sim
ulations, it is hypothesised that GROUNDED EO will reduce biases 
associated with existing decametric LAI and FAPAR retrieval algorithms. 
For downstream applications, which typically involve spatiotemporal 
synthesis, reducing bias is critical, since random errors are suppressed 
by averaging, whereas systematic errors are not (Brown et al., 2024a; 
Fernandes et al., 2024). In this respect, the approach has potential to 
reduce uncertainty in key inputs for climate monitoring and modelling, 
agricultural and forest management, and biodiversity assessment.

2. Materials and methods

2.1. Overview

An overview of the applied workflow is provided in Fig. 1. This relied 
upon the generation of fiducial reference measurements from raw in situ 
digital hemispherical photography (DHP) and digital cover photography 
(DCP) data collected at 81 NEON, ICOS, and TERN sites (1–2), which 
were then matched to spatiotemporally coincident Sentinel-2 L2A sur
face reflectance observations (3). Matched pairs of fiducial reference 
measurements and L2A observations were used to train GPR models (4), 
and the trained models were applied for LAI and FAPAR retrieval (5). 
Intercomparison against SL2P and SL2P-CCRS was carried out (6–7), 
and all retrieval algorithms were validated against unseen fiducial 
reference measurements (8). A detailed description of each step is pro
vided in the following sub-sections.

2.2. Study sites and generation of the GROUNDED EO fiducial reference 
database

To train the empirical data-driven GROUNDED EO retrieval algo
rithm, an extensive database of in situ reference measurements was 
required. One of the largest reference datasets for biophysical variables 
is the DIRECT database maintained by the Land Product Validation 
(LPV) sub-group of the CEOS Working Group on Calibration and Vali
dation (WGCV). In its latest version (2.1), it contains 280 LAI and 128 
FAPAR samples from 176 sites, but unfortunately, it was designed for 
the calibration and validation of kilometric products, and features only 
3 km × 3 km averages, making it ill-suited for decametric remote sensing 
data (Camacho, 2021). In terms of decametric LAI and FAPAR products, 
two in situ reference datasets widely used for calibration and validation 
were developed respectively under the Implementing Multiscale Agri
cultural Indicators Exploiting Sentinels (ImagineS) project and 

Fig. 1. Overview of the training and evaluation of the empirical data-driven GROUNDED EO retrieval algorithm (including intercomparison with SL2P and SL2P- 
CCRS – shown with dashed lines).
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Copernicus Ground Based Observations for Validation (GBOV) service. 
Whilst useful for Landsat 8, ImagineS, covering 15 sites, contains few 
observations since the launch of the Sentinel-2 missions in 2015 
(Camacho et al., 2021; Fuster et al., 2020). The GBOV dataset, on the 
other hand, contains a greater number of observations from within 
Sentinel-2’s lifetime, but has been primarily restricted to a subset of 
NEON sites (Brown et al., 2021b; Brown et al., 2020a).

For the purposes of this study, we expanded upon the NEON data 
included within the GBOV dataset, making full use of all 47 terrestrial 
NEON sites, as well as data from an additional 20 ICOS and 14 TERN 
sites (Fig. 2 and Appendix A). These networks were selected because 
they operate free and open data policies and adopt standardised and 
documented data collection protocols, allowing consistent in situ 
reference measurements to be generated. We note that data from one-off 
field campaigns were not considered, as they would not allow seasonal 
variations in the reflectance-biophysical variable relationship to be 
captured, nor would they enable assessment of retrieval temporal sta
bility (Djamai et al., 2025). Networks with restrictions on data use were 
also disregarded, as were as networks that did not provide access to raw 
data. Access to raw data was critical because i) it was necessary to derive 
uncertainties in an end-to-end manner, and ii) our aim was to apply 
common automated processing chains to achieve a greater degree of 
consistency in the derived in situ reference measurements than has been 
possible in previous datasets, which have been compiled from different 
groups using a range of data processing methods. The 81 sites spanned 
cultivated crops, deciduous broadleaf forest, evergreen broadleaf forest, 
evergreen needleleaf forest, grasslands, mixed forest, pasture/hay, 
shrub/scrub and woody wetlands over the United States, Europe, and 
Australia, covering the period from 2013 to 2022 (Fig. 2 and Appendix 
A).

To monitor vegetation biophysical properties, NEON and ICOS make 
use of DHP, whereas TERN uses a mixture of DHP and DCP depending on 
the site in question. Whilst DHP makes use of a fisheye lens with a 180◦

field-of-view, only a standard digital camera with a 15◦ to 30◦ field-of- 
view is required by DCP. Crucially, this smaller field-of-view is known 
to result in more even sky luminance, less sensitivity to exposure, and a 
stronger contrast between the sky and vegetation, facilitating successful 
classification even for images captured under sub-optimal illumination 
conditions (i.e. non-uniform skies and outside of dawn/dusk) 
(Macfarlane et al., 2007b; Macfarlane et al., 2007a; Pekin and Macfar
lane, 2009). This greatly simplifies logistics associated with field data 
collection. All networks sample multiple times per year within 
elementary sampling units (ESUs) suitable for the calibration and 

validation of decametric remote sensing data (Table 1). Neither NEON 
nor TERN process their DHP or DCP data, whilst ICOS provide only site- 
level averages as opposed to values at the ESU level. Thus, full pro
cessing of all images was required. The quantity of data to be handled 
necessitated a fully automated approach.

The HemiPy (Brown et al., 2023) and CoverPy (Brown and Leblanc, 
2024) modules were utilised for automated processing of DHP and DCP 
images, respectively. They calculate estimates of gap fraction to derive 
overstory plant area index (PAI), understory green area index (GAI), the 
fraction of vegetation cover (FCOVER), and for HemiPy, the fraction of 
intercepted photosynthetically active radiation (FIPAR). Note that GAI 
incorporates all green plant elements (e.g. stems), not only leaves (Baret 
et al., 2010a). Critically, HemiPy and CoverPy adopt the recommenda
tions of the FRM4VEG project (Brown et al., 2021a; Camacho et al., 
2024), propagating uncertainties (due to variability in gap fraction) 
through the derivation of the considered variables, in line with the In
ternational Standards Organisation (ISO) Guide to the Expression of 
Uncertainty in Measurement (GUM) (Working Group 1 of the Joint 
Committee for Guides in Metrology, 2008). Over 280,000 individual 
DHP or DCP images were processed, yielding a database containing 
more than 16,000 unique ESU-level observations between 2013 and 
2022 (Table 1).

Note that HemiPy and CoverPy account for clumping at both the 
within- and between-crown scales, allowing PAI to be computed (as 
opposed to effective PAI (PAIe), in which a random distribution of plant 
material is assumed). To achieve this, HemiPy makes use of Lang and 
Yueqin’s (1986) method, in which PAI is derived from the mean of the 
natural logarithm of gap fraction values over all azimuth cells and im
ages within an ESU (as opposed to the natural logarithm of mean gap 
fraction values). Leblanc and Fournier (2014) evaluated several 
clumping correction approaches using three-dimensional forest simu
lations, finding that although the method of Leblanc et al. (2005) was 
the best performing, the performance of Lang and Yueqin’s (1986)
approach was comparable when calculated using an azimuth cell size of 
15◦, which is very close to the 10◦ adopted by HemiPy (both methods led 
to an RMSD in PAI of between 1.0 and 1.1). Meanwhile, CoverPy ac
counts for clumping through calculation of mean crown cover and 
crown porosity over all images within an ESU, which themselves are 
determined on the basis of the number of small, within-crown, and large, 
between-crown gaps (Brown and Leblanc, 2024; Chianucci et al., 2022; 
Macfarlane et al., 2007a, 2007b). Full details on the processing algo
rithms adopted by HemiPy and CoverPy are available in Brown et al. 
(2023) and Brown and Leblanc (2024).

Fig. 2. Location of the 81 NEON, ICOS, and TERN sites from which raw in situ data were obtained and processed to derive fiducial reference measurements (black 
circles). The circle size is proportional to the number of years (1 to 10) of data available at each site. Background land cover data are from WorldCover 2020 (ESA, 
2021). Please refer to Appendix A for site-specific land cover information.
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To account for shoot-scale clumping in needleleaf canopies, a mul
tiplicative correction is often applied based on destructively sampled 
shoots, corresponding to 

γ =
1

4 STAR
(1) 

where STAR is the shoot silhouette-to-total needle area ratio, with 
values typically ranging from 0.13 to 0.20 (Pisek et al., 2025; Stenberg, 
1996). However, this correction was considered liable to overestimate 
PAI for three reasons. Firstly, image resolution is usually insufficient to 
resolve gaps within small or far-away shoots, leading to an over
estimation of PAI that partly compensates for underestimation due to 
shoot-scale clumping. This implies that, for photographic methods, the 
average imaged shoot silhouette-to-total needle area ratio should be 
used in place of STAR. Secondly, STAR is only applicable to shoots – no 
correction should be applied to viewed woody area (Stenberg, 1996). 
This implies that the correction factor should be reduced as a function of 
the woody-to-total ratio. Thirdly, the correction assumes a random 
distribution of shoots, whereas recent work has indicated that shoots 
may not be randomly distributed at the scale of a 10◦ zenith and azimuth 
cell (as is adopted by HemiPy). Using terrestrial laser scanning and a 0.8 
m length scale (approximately equivalent to a 10◦ zenith and azimuth 
cell at a 5 m distance), Schraik et al. (2021) found a within-crown STAR 
of 0.20 to 0.25 (γ = 1 to 1.25) for Norway spruce, where STAR report
edly ranges from 0.14 to 0.18 (γ = 1.39 to 1.79) (Pisek et al., 2025). 
These issues all suggest that the applied correction factor should, in fact, 
be substantially less than 1

4 STAR. Considering the large natural variability 
in STAR (Pisek et al., 2025; Stenberg, 1996) and the lack of knowledge of 
each factor for a given measurement, we assumed γ = 1. This likely led to 
some degree of underestimation of PAI for needleleaf canopies, but more 
research is required to confirm and quantify the extent of this 
underestimation.

It should be noted that the quality of DHP-derived biophysical var
iables is strongly dependent on the illumination conditions under which 
images are captured (Bréda, 2003; Chianucci and Cutini, 2012; Jonck
heere et al., 2004). As a result, in parallel to the automated derivation of 
PAI, GAI, and FIPAR, manual inspection of each set of DHP images 
(corresponding to a single ESU) was undertaken to assign a quality flag. 
As in previous validation studies, we discarded all ESUs containing DHP 
images that demonstrated fixed pattern noise, overexposure, colour 
balance issues, variable illumination, or foreign objects within the field- 
of-view from further analysis (Brown et al., 2021b; Brown et al., 2020a).

2.3. Correcting the GROUNDED EO database for missing understory 
measurements and overstory woody area

Although the majority of sites considered in this study routinely 
collect both upwards- and downwards-facing DHP and DCP images, 
enabling the understory and overstory to be characterised, only 
upwards-facing DHP images are provided by ICOS (despite the docu
mented presence of understory vegetation) (George et al., 2021; Gielen 
et al., 2018). Previous work has shown that the understory may repre
sent a substantial proportion of the total canopy, particularly at forest 
sites, and that biases of > 0.5 in PAI may be observed if in situ mea
surements neglect the understory layer (Brown et al., 2020a). Discarding 

forest observations lacking understory data within the database, as has 
previously been recommended as good practice (Brown et al., 2020a; 
Camacho et al., 2013; Weiss et al., 2014), would have led to no coverage 
over Europe. Instead, we made use of previously published information 
available at the considered ICOS sites, in which the effective GAI (GAIe) 
of the understory layer had been quantified using DCP and two radio
metric methods (George et al., 2021). The inter-method uncertainty in 
the understory GAIe values was computed as the standard deviation of 
the mean over the three measurement approaches (Appendix B). It is 
worth noting that these observations were, in some cases, obtained from 
different moments in the season, and the resulting mismatch between 
the fixed understory and temporally resolved overstory observations 
must be acknowledged as a source of uncertainty. In the absence of other 
available information, however, it was judged that use of these site- 
specific values was superior to assuming no understory (which would 
have led to a gross error of greater magnitude).

Empirical relationships were used to transform the observed under
story GAIe at each ICOS site to understory GAI and FIPAR. These were 
derived from those observations within the GROUNDED EO database 
containing all three variables (Appendix B). Following FRM4VEG rec
ommendations (Brown et al., 2021a), orthogonal distance regression 
(ODR) was used to establish these relationships. ODR accounts for un
certainties in both predictor and response variables (Boggs et al., 1987), 
and enabled random error within the understory GAIe, GAI, and FIPAR 
values to be largely suppressed. Meanwhile, ODR prediction un
certainties associated with the understory GAI and FIPAR estimates 
could be propagated through all subsequent calculations, thereby 
enabling quantification of uncertainty in the results due to use of these 
understory estimates.

In addition to a lack of understory measurements at forest sites, a 
further issue that had to be corrected for prior to training the GROUN
DED EO retrieval algorithm was the influence of woody material. Woody 
material is known to represent up to 35% of total plant area in forests 
(Gower et al., 1999), and recent work has demonstrated errors of up to 
61% when no correction for woody material is undertaken (Brown et al., 
2024b). Unless near-infrared cameras (which are not currently utilised 
by NEON, ICOS, or TERN) are adopted (Brown et al., 2024b), foliage and 
woody material is difficult to automatically distinguish in upwards- 
facing DHP and DCP data, as RGB images correctly exposed for gap 
fraction estimation typically demonstrate little contrast between the two 
canopy elements (Woodgate et al., 2016). Nevertheless, with high res
olution and bit-depth DSLR cameras such as those adopted by NEON, 
careful manual interpretation of enhanced raw images is possible.

For the purposes of this study, baseline wood area index (WAI) 
values and uncertainties were determined from manually classified early 
spring images from at least one ESU at each NEON site (Appendix C). 
Raw images were enhanced in Nikon NX Studio prior to classification, to 
maximise the contrast between green foliage and woody material by 
increasing the ‘shadow protection’ setting. Where WAI values were 
available for multiple ESUs within a site, the mean was computed. In this 
case, the uncertainty associated with each WAI value was propagated 
through the calculation of the mean (representing observation-level 
uncertainty), which was added in quadrature to the standard devia
tion of the mean (representing uncertainty due to variability between 
observations) to obtain the total uncertainty in site-level WAI. A per- 

Table 1 
Overview of in situ sampling conducted by NEON, ICOS and TERN.

Network Sites Method Temporal frequency ESU extent Sampling points per 
ESU

Unique ESU-level 
observations

Approximate number of 
images

NEON 47 DHP Every two weeks within the 
growing season

20 m × 20 m to 40 m 
× 40 m

12 14,141 258,216

ICOS 20 DHP Six times per year 30 m × 30 m 9 1776 15,984

TERN 14
DHP & 
DCP

Site dependent, up to five times 
per year 100 m × 100 m 36 169 6084
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observation woody-to-total ratio (α) was then computed as the ratio of 
the baseline WAI to the observed PAI.

The WAI estimation approach relied on high resolution (≥ 24 MP) 
and bit-depth (≥ 14-bit) cameras adopted by NEON and so could not be 
consistently applied to the lower resolution images at ICOS and TERN 
sites. Instead, to enable a first-order woody area correction for these 
networks, the mean α was computed from the NEON data to provide 
values representative of each forest type (Appendix C). Again, the un
certainty associated with each α value was propagated through the 
calculation of the mean, which was added in quadrature to the associ
ated standard deviation. Since the α values for each forest type were 
seasonally varying and covered multiple sites spanning a variety of eco- 
climatic conditions, uncertainty due to both seasonal and site-related 
variability was captured by this latter term.

By implementing the woody area corrections, we could derive LAI 
and FAPAR from the values obtained from HemiPy and CoverPy as 

LAI = PAIup (1 − α)+GAIdown (2) 

FAPAR = FIPARup (1 − α)+
[
1 − FIPARup (1 − α)

]
FIPARdown (3) 

where PAIup, GAIdown, FIPARup, and FIPARdown represent overstory (up) 
and understory (down) PAI, GAI, and FIPAR values, respectively. Un
certainties in PAIup, GAIdown, FIPARup, FIPARdown, and α were propagated 
through Eqs. 2 and 3 according to the law of propagation of uncertainty, 
following Brown et al. (2021b). Our corrections assumed no woody 
material in values derived from downwards-facing images, as unlike the 
upwards-facing image classification, the downwards-facing image clas
sification adopted by HemiPy and CoverPy is sensitive to green elements 
only (Brown et al., 2023; Brown and Leblanc, 2024; Meyer and Neto, 
2008). Note Eq. 3 assumes that, because of strong absorption by 
photosynthetic pigments, the difference between FAPAR and FIPAR is 
negligible for green foliage (Li et al., 2015; Weiss et al., 2014). It is 
known that differences of up to 0.1 can occur over very bright back
grounds (i.e. snow), but Gobron et al. (2006) demonstrated that such 
differences can be neglected in the overall FAPAR uncertainty budget 
under usual conditions and where a vegetated understory is present.

2.4. Sentinel-2 data processing and spatiotemporal matchup procedure

All Sentinel-2 L2A observations available over our study sites since 
launch of Sentinel-2A (June 2015) and within the period during which 
fiducial reference measurements were available (i.e. until the end of 
2022) were obtained. Unfortunately, the Sentinel-2 Collection 1 
reprocessing had not been completed at the time of data curation (ESA, 
2024), and L2A products were not available prior to 24th March 2018 in 
Europe and 13th December 2018 for the rest of the world (ESA, 2018). 
Thus, all L1C top-of-atmosphere reflectance scenes prior to these dates 
were locally processed to L2A using Sen2Cor (Müller-Wilm, 2018). The 
L2A scene classification map was used to mask invalid pixels due to 
cloud, cloud shadow, thin cirrus, water, or snow, as well as dark, satu
rated, or defective pixels. Fiducial reference measurements were paired 
with corresponding Sentinel-2 observations acquired within one day 
(yielding 4167 matchups). For ESUs larger than a Sentinel-2 pixel, the 
mean of the corresponding pixels was computed. Recent work used a 
larger temporal window of one week (Fernandes et al., 2024; Fernandes 
et al., 2023), as has also been adopted in several previous studies (Baret 
et al., 2005; Brown et al., 2021a; De Kauwe et al., 2011). Whilst a larger 
temporal window would have arguably provided a greater number of 
matchups, it would have also resulted in greater potential mismatch due 
to phenological variations. This is particularly true over deciduous for
est, where changes in biophysical variables occur very rapidly at the 
start and end of the growing season (Brown et al., 2020b; Brown et al., 
2019), but also over cultivated crops, where rapid changes may occur 
due to harvesting and management activities. Whilst such variations 
may not be a major concern in studies using data from the peak of the 

growing season (Brown et al., 2021a), they were of increased impor
tance here given the multitemporal nature of the fiducial reference 
measurements utilised.

2.5. Training the GROUNDED EO retrieval algorithm with Gaussian 
processes and active learning

Unlike artificial neural networks, in which sample size primarily 
impacts the computation time of the training rather than the retrieval 
phase, for Gaussian processes, retrieval time grows cubically with 
sample size (Berger et al., 2021; Rivera-Caicedo et al., 2017). A small but 
high-quality training dataset is therefore desirable. To optimise the 
matchup database so that it contained only the most informative sam
ples, five active learning methods implemented within the ‘Machine 
Learning Regression Algorithm’ toolbox of the Automated Radiative 
Transfer Models Operator (ARTMO) were applied (Verrelst et al., 2015a, 
2015b). These included the angle-based diversity (ABD), cluster-based 
diversity (CBD), and Euclidean distance-based diversity (EBD) 
methods, which rely on diversity-based criteria, as well as variance- 
based pool of regressors (PAL), and residual regression active learning 
(RSAL), which rely on uncertainty-based criteria. Samples were 
sequentially added according to these criteria and kept if they led to an 
improvement (assessed against a testing dataset). A full description of 
each method is provided by Verrelst et al. (2016). Random sampling was 
also implemented in addition to the active learning methods. In the 
interests of computational efficiency, kernel ridge regression was 
adopted for matchup database optimisation, as it is closely related to 
Gaussian processes (Verrelst et al., 2020), but proved substantially less 
computationally demanding. Given the same kernel and hyper
parameters, the prediction of kernel ridge regression is identical to the 
mean of the posterior probability distribution provided by GPR 
(Kanagawa et al., 2018).

To apply the active learning methods, the overall matchup database 
was randomly divided into initialisation (1%), ‘pool’ (49%), and testing 
(50%) sets. Samples were iteratively added from the ‘pool’ to the initi
alisation set according to the ABD, CBD, EBD, RSAL, PAL, and random 
sampling criteria, until the root mean square difference (RMSD), as 
assessed against the testing set, stabilised. Finally, the set of observa
tions with the lowest RMSD for each method was deemed the optimised 
matchup dataset. Python’s ‘scikit-learn’ (Pedregosa et al., 2011) 
implementation of GPR, which enables per-observation uncertainties to 
be accounted for within the training process, was used to train the 
empirical data-driven GROUNDED EO retrieval algorithm. This was 
achieved by passing the square of the standard uncertainty (i.e. vari
ance) associated with each fiducial reference measurement to the 
‘GaussianProcessRegressor’ function via the ‘alpha’ parameter, which 
represents the variance of Gaussian measurement noise on the training 
observations (Schraik et al., 2021). The radial basis function was 
selected as the kernel, and Sentinel-2 bands 1 to 8A, 9, 11, and 12, as 
well as the cosine of the solar zenith, view zenith, and relative azimuth 
angle, were provided as inputs. As a consequence of the matchup 
database optimisation results (Section 3.1), a random sample of 400 
observations was ultimately selected for training.

2.6. Validation and intercomparison of GROUNDED EO, SL2P, and 
SL2P-CCRS retrievals

To assess the GROUNDED EO retrieval algorithm against the current 
state-of-the-art in decametric LAI and FAPAR retrieval, intercomparison 
against Python implementations (https://github.com/djamainajib/S 
L2P-SL2PCCRS_PYTHON) of SL2P (Weiss and Baret, 2016) and SL2P- 
CCRS (Fernandes et al., 2024) was undertaken using valid matchups 
(i.e. those not flagged by SL2P or SL2P-CCRS to indicate inputs/outputs 
were out of domain/range). To ensure they were comparable, only re
trievals valid for both SL2P and SL2P-CCRS were used in the calculation 
of statistics (n = 3226). Both SL2P and SL2P-CCRS rely on artificial 
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neural networks for retrieval: SL2P uses the homogeneous SAIL RTM for 
training, whilst SL2P-CCRS makes use of the heterogeneous 4SAIL2 RTM 
for forest pixels and SAIL for non-forest pixels. Only pixels corre
sponding to fiducial reference measurement matchups were considered, 
as the objective of intercomparison was solely to better contextualise our 
validation results. Our study was concerned with thematic uncertainty 
(assessment of which can be considered a prerequisite to the computa
tionally demanding and costly nature of global application). A more 
comprehensive intercomparison between GROUNDED EO, SL2P, and 
SL2P-CCRS using global, seasonally representative sampling was beyond 
the scope of our work.

It is worth noting that we did not undertake intercomparison against 
hectometric or kilometric LAI and FAPAR products. This was motivated 
by two key factors. Firstly, because of landscape heterogeneity and the 
non-linear nature of the reflectance-biophysical variable relationship, it 
is widely known that such products are subject to scaling errors. In 
principle, LAI retrieved from coarser spatial resolution data should equal 
the arithmetic mean of that derived from finer spatial resolution data. In 
practice, the coarser spatial resolution estimates tend to underestimate 
LAI due to these scaling errors (Garrigues et al., 2006; Tian et al., 2002). 
Comparison against hectometric or kilometric products, was, therefore, 
likely to lead to discrepancies indicative of scaling errors as opposed to 
useful information on the performance of the GROUNDED EO, SL2P, and 
SL2P-CCRS retrievals. Secondly, our study was explicitly focussed on 
decametric retrievals required in applications such as precision agri
culture, forest management, and climate adaptation, where current 
hectometric or kilometric products are of little use, failing to comply 
with GCOS spatial resolution requirements for LAI and FAPAR (see 
Section 1).

Since only a small subset (i.e. 400 observations) of the entire 
matchup database was used to train the GPR models, GROUNDED EO 
LAI and FAPAR retrievals could be validated against fiducial reference 
measurements that were not used for training (hereafter termed the 
validation dataset). However, because it was recognised that the per
formance for sites included within both the training and validation 
datasets might be unfairly advantaged, a leave-site-out validation 
scheme was adopted. Within this scheme, each site was sequentially 
removed from the training dataset, a GPR model was trained, and ob
servations from that site within the validation dataset were then used to 
assess the resulting retrievals, providing information on the capability of 
the model to generalise to unseen sites. To enable comparison, valida
tion of SL2P and SL2P-CCRS LAI and FAPAR retrievals was carried out 
using the same validation dataset.

Agreement between LAI and FAPAR retrievals and the validation 
dataset was assessed using the RMSD, normalised RMSD (NRMSD), bias, 
precision, and user agreement ratio (UAR). The slope and coefficient of 
determination (r2) were also determined using ordinary least square 
regression. The RMSD, NRMSD, bias, and precision were computed as 

RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(pi − oi)

2

√

(4) 

NRMSD =
RMSD

1
n
∑n

i=1
(oi)

(5) 

Bias =
1
n

∑n

i=1
(pi − oi) (6) 

Precision =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(pi − oi − Bias)2

√

(7) 

where pi represents the retrieval, oi represents the fiducial reference 
measurement, and n represents the number of comparisons. Using un
certainty propagation, the standard uncertainty in the RMSD, NRMSD, 
bias, and precision values resulting from the uncertainties associated 
with the retrievals and fiducial reference measurements was computed. 
The UAR, which corresponds to the percentage of retrievals meeting 
user requirements, was determined as 

UAR =
1
n

∑n

i=1
I[(|pi − oi| ≤ εabs ) ∨ (|pi − oi| ≤ εrel oi ) ] (8) 

where I[x] is the indicator function, εabs is the absolute requirement, and 
εrel is the relative requirement. For comparability with Djamai et al. 
(2019) and Brown et al. (2021b, 2020a), we used user requirements of 1 
unit (absolute) or 20% (relative) for LAI and 0.1 unit (absolute) or 20% 
(relative) for FAPAR. For LAI, these correspond to the Sentinels for 
Science (SEN4SCI, 2011) requirements. The stricter GCOS threshold 
requirements were not considered because uncertainties associated with 
fiducial reference measurements typically approach 1 unit for LAI and 
0.1 unit for FAPAR (Camacho et al., 2013; Fang et al., 2019; Garrigues 
et al., 2008) – a point highlighted in a recent study on conformity testing 
(Camacho et al., 2024). This makes compliance with the GCOS threshold 
requirements difficult to assess, as the reference data should ideally have 
a smaller uncertainty than the requirement (Widlowski, 2015). Addi
tionally, the GCOS requirements have not been revised for decametric 
sensors, whilst the SEN4SCI requirements used here as specific to 
Sentinel-2. Moreover, as they were applied to all investigated algo
rithms, the SEN4SCI requirements were sufficient for the purposes of 
algorithm comparison.

In addition to overall values, statistics were calculated for land cover 
type and LAI and FAPAR magnitude subsets following validation good 
practices (Fernandes et al., 2014). RMSD, bias, and precision were 
modelled as a function of fiducial reference LAI and FAPAR magnitude 
using third-order polynomial weighted least squares regression 
(Fernandes et al., 2023), with weights determined as the standard un
certainty (derived according to the law of propagation of uncertainty). 
Since performance has previously been shown to vary between canopies 
with homogeneous and heterogeneous radiative transfer regimes, this 
was carried out for subsets representing only homogeneous (i.e. culti
vated crops, grassland/herbaceous, shrub/scrub, and pasture/hay) or 
heterogeneous (i.e. deciduous broadleaf forest, evergreen broadleaf 
forest, evergreen needleleaf forest, mixed forest, and woody wetland) 
canopies.

3. Results

3.1. Performance of active learning and random sampling

The results of matchup database optimisation demonstrated similar 
performance amongst the active learning methods, with the optimised 
matchup datasets all consisting of less than ~ 400 samples (Fig. 3 and 
Table 2). For LAI, the active learning approaches achieved RMSD values 
of 0.75 to 0.80 with between 182 and 288 samples. However, they were 
outperformed by random sampling, which achieved an RMSD of 0.73 
using 403 samples (Fig. 3a and Table 2). Similar results were obtained 
for FAPAR, where the active learning approaches achieved RMSD values 
of 0.12 to 0.15 with between 31 and 355 samples. In this case, random 
sampling performed almost as well as the best active learning methods, 
achieving an RMSD of 0.13 using 269 samples (Fig. 3b and Table 2). It is 
worth noting that all samples within the ‘pool’ dataset were analysed 
against the testing dataset – the role of the active learning algorithms lies 
in selection/discarding of samples. Based on these results, the ultimate 
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decision to train the GROUNDED EO retrieval algorithm on 400 random 
samples was taken (Section 2.5).

3.2. Intercomparison of retrievals

Intercomparison revealed that GROUNDED EO and SL2P retrievals 
were well correlated (r2 = 0.94 and 0.92 for LAI and FAPAR, respec
tively), but subject to clear differences in absolute terms, with an overall 
RMSD (NRMSD) of 0.69 (41%) observed for LAI and 0.14 (33%) for 
FAPAR (Fig. 4). For LAI, the greatest differences were over deciduous 
broadleaf forest, evergreen needleleaf forest, mixed forest, and woody 
wetlands (RMSD = 0.69 to 0.91), where GROUNDED EO retrievals were 
substantially higher than their SL2P counterparts (bias = 0.31 to 0.71) 
(Fig. 4a and Appendix D). Similar results were obtained for FAPAR, with 
the greatest differences observed over deciduous broadleaf forest, 
evergreen broadleaf forest, evergreen needleleaf forest, and woody 
wetlands (RMSD = 0.14 to 0.18, bias = 0.09 to 0.15) (Fig. 4b and Ap
pendix D).

Much smaller differences were observed over cultivated crops, 
grassland/herbaceous, pasture/hay, and shrub/scrub (RMSD = 0.38 to 
0.58 for LAI and 0.08 to 0.13 for FAPAR), where GROUNDED EO re
trievals were slightly lower than their SL2P counterparts (bias = − 0.08 
to − 0.36 for LAI and − 0.03 to − 0.07 for FAPAR) (Fig. 4 and Appendix 
D). Differences between GROUNDED EO and SL2P retrievals appeared 
nearly linearly proportional to magnitude (slope = 1.39 for LAI and 1.28 
for FAPAR), though with clearly apparent land cover dependencies 
(Fig. 4). When assessed by SL2P retrieval magnitude, the greatest dif
ferences between SL2P and GROUNDED EO retrievals were observed for 
LAI values > 2 and FAPAR values > 0.4 (Fig. 4 and Appendix D).

Intercomparison of GROUNDED EO and SL2P-CCRS retrievals 
revealed increased overall agreement when compared to SL2P for LAI 
(RMSD = 0.70, NRMSD = 33%, bias = − 0.29) despite a slightly reduced 
r2 (0.92), but reduced overall agreement for FAPAR (r2 = 0.85, RMSD =
0.17, NRMSD = 42%, bias = 0.06) (Fig. 4). SL2P-CCRS and GROUNDED 
EO retrievals were subject to reduced differences over deciduous 
broadleaf forest for both variables (RMSD = 0.72, bias = − 0.24 for LAI 
and RMSD = 0.12, bias = 0.06 for FAPAR), and over evergreen broadleaf 
forest for FAPAR only (RMSD = 0.12, bias = 0.16) (Fig. 4 and Appendix 
D). This was not the case over evergreen needleleaf forest, mixed forest, 
or woody wetlands (RMSD = 0.74 to 1.32, bias = − 0.37 to − 1.08 for LAI 
and RMSD = 0.22 to 0.26, bias = 0.17 to 0.23 for FAPAR) (Fig. 4 and 
Appendix D). When assessed by SL2P-CCRS retrieval magnitude, the 
greatest differences between SL2P-CCRS and GROUNDED EO retrievals 
were observed for LAI values of 5 to 8 and FAPAR values between 0.5 
and 0.8 (Fig. 4 and Appendix D).

3.3. Overall performance of retrievals

Validation revealed that GROUNDED EO LAI and FAPAR retrievals 
were very strongly correlated to fiducial reference measurements (r2 =

0.84 to 0.89) demonstrating good overall agreement, with an RMSD 
(NRMSD) of 0.96 (51%) for LAI and 0.15 (31%) for FAPAR. User re
quirements were met for 74% of LAI and 69% of FAPAR retrievals 
(Fig. 5). Biases were small in both cases (− 0.06 for LAI and 0.00 for 

Fig. 3. RMSD as a function of the number of samples selected from the matchup database for the five active learning methods (ABD, CBD, EBD, PAL, and RSAL) and 
random sampling (RS) for LAI (a) and FAPAR (b). Note that ARTMO’s ‘Machine Learning Regression Algorithm’ toolbox, which implements the active learning 
methods, only outputs the RMSD associated with the selected (not discarded) samples.

Table 2 
Performance statistics associated with optimised matchup datasets according to 
the five active learning methods (ABD, CBD, EBD, PAL, and RSAL) as well as 
random sampling (RS).

Variable Method RMSD NRMSD (%) Bias Samples

LAI

ABD 0.78 46.76 − 0.01 226
CBD 0.77 46.25 0.02 217
EBD 0.80 47.62 0.00 182
PAL 0.75 44.65 0.02 288
RS 0.73 43.32 0.01 403
RSAL 0.77 46.20 − 0.07 288

FAPAR

ABD 0.12 29.42 0.00 355
CBD 0.15 36.63 − 0.03 31
EBD 0.13 32.19 0.01 106
PAL 0.13 30.47 0.00 175
RS 0.13 30.00 0.00 269
RSAL 0.13 30.97 0.00 211
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FAPAR), with differences being driven primarily by random rather than 
systematic error (precision = 0.96 for LAI and 0.15 for FAPAR) (Fig. 5). 
Assessed qualitatively, good temporal consistency between GROUNDED 
EO retrievals and fiducial reference measurements was also observed 
over sites representative of a broad range of vegetation types (i.e. 
grassland/herbaceous, shrub/scrub, deciduous broadleaf forest, culti
vated crops, mixed forest, and evergreen needleleaf forest). Seasonal 
peaks and troughs of GROUNDED EO retrievals and fiducial reference 
measurements were in phase, and the magnitudes of these were similar, 
though retrievals during low LAI conditions outside of the growing 
season (for which there were no fiducial reference measurements) 
appeared slightly noisier (Fig. 6).

When compared to GROUNDED EO retrievals, a reduced correlation 
with fiducial reference measurements was observed for SL2P LAI and 
FAPAR retrievals (r2 = 0.84 to 0.86), which demonstrated worse overall 
agreement, with an RMSD (NRMSD) of 1.07 (57%) for LAI and 0.18 
(37%) FAPAR (Fig. 5). This led to a reduced proportion of SL2P re
trievals meeting user requirements (69% for LAI and 53% for FAPAR). In 
this case, larger biases were observed (− 0.23 for LAI and − 0.04 for 
FAPAR), with the tendency of SL2P retrievals to underestimate larger 

values, as reflected by the slope of 0.50 for LAI and 0.60 for FAPAR 
(Fig. 5), and as evident in time series of SL2P retrievals and fiducial 
reference measurements (Fig. 6). It is worth noting that random error 
associated with SL2P retrievals was also increased (precision = 1.05 for 
LAI and 0.17 for FAPAR) when compared to GROUNDED EO retrievals 
(Fig. 5). SL2P-CCRS retrievals demonstrated superior overall perfor
mance than SL2P retrievals for LAI (RMSD = 0.99, NRMSD = 53%, bias 
= 0.23, UAR = 71%), but worse overall performance than SL2P re
trievals for FAPAR (RMSD = 0.20, NRMSD = 42%, bias = − 0.06, UAR =
51%), with worse overall performance than GROUNDED EO retrievals 
occurring in both cases (Fig. 5). The poor performance of SL2P-CCRS for 
FAPAR was particularly apparent for evergreen needleleaf forest, and so 
may be related to the scaling of simulated leaf reflectance/transmittance 
as a function of the needle-to-shoot area ratio (γ) within the algorithm 
(Fernandes et al., 2024) (i.e. the prior distribution of γ values adopted by 
SL2P-CCRS may result in biased retrievals and require revision). In 
terms of their temporal consistency with fiducial reference measure
ments, SL2P retrievals appeared qualitatively noisier than GROUNDED 
EO retrievals during the growing season and tended to underestimate 
peaks (Fig. 6).

Fig. 4. Intercomparison of GROUNDED EO vs. SL2P (a-b) and SL2P-CCRS (c-d) LAI (a, c) and FAPAR (b, d) retrievals. Error bars represent standard uncertainties. 
The dashed line represents a 1:1 relationship.

L.A. Brown et al.                                                                                                                                                                                                                                Remote Sensing of Environment 326 (2025) 114797 

9 



Fig. 5. Validation of GROUNDED EO (a-b), SL2P (c-d), and SL2P-CCRS (e-f) LAI (a, c, e) and FAPAR (b, d, f) retrievals against fiducial reference measurements. Error 
bars represent standard uncertainties. The dashed line represents a 1:1 relationship, whilst the shaded grey area represents user requirements.
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Fig. 6. Time series of GROUNDED EO, SL2P, and fiducial reference LAI at Dakota Coteau Field (DCFS), Moab (MOAB), Oak Ridge (ORNL), North Sterling (STER), 
Treehaven (TREE), and Wind River Experimental Forest (WREF). These sites were chosen to represent grassland/herbaceous, shrub/scrub, deciduous broadleaf 
forest, cultivated crops, mixed forest, and evergreen needleleaf forest, respectively.
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Table 3 
Performance of GROUNDED EO, SL2P, and SL2P-CCRS LAI and FAPAR retrievals with respect to fiducial reference measurements, by land cover type. The best performing results for each land cover type in terms of UAR 
are shown in bold and highlighted in grey.

   LAI  FAPAR 
 Land cover n r2 RMSD NRMSD (%) Bias Precision UAR (%) Slope  r2 RMSD NRMSD (%) Bias Precision UAR (%) Slope 

G
R

O
U

N
D

ED
 E

O
 

Cultivated 
crops 111 0.63 0.88±0.06 109.69±7.75 0.19±0.06 0.85±0.06 82.88 1.24±0.09  0.79 0.14±0.01 43.90±3.48 0.00±0.01 0.14±0.01 54.95 0.92±0.05 

Deciduous 
broadleaf 906 0.68 1.11±0.03 32.52±0.82 -0.53±0.03 0.98±0.03 67.00 0.73±0.02  0.69 0.15±0.00 21.46±0.55 -0.05±0.00 0.15±0.00 77.48 0.90±0.02 
Evergreen 
broadleaf 104 0.45 1.01±0.08 46.68±3.96 -0.19±0.08 0.99±0.08 69.23 0.39±0.04  0.55 0.17±0.02 34.38±3.48 0.06±0.012 0.16±0.01 63.46 0.55±0.05 
Evergreen 
needleleaf 845 0.42 1.11±0.03 56.92±1.63 0.15±0.03 1.10±0.03 62.01 0.64±0.03  0.58 0.18±0.00 34.23±0.91 0.03±0.004 0.18±0.00 55.98 0.77±0.02 
Grassland 

/herbaceous 576 0.60 0.69±0.03 131.51±5.13 0.24±0.03 0.65±0.03 87.85 1.10±0.04  0.76 0.12±0.00 48.71±1.71 0.03±0.004 0.12±0.00 70.66 0.89±0.02 
Mixed 
forest 124 0.62 1.13±0.09 36.28±2.54 -0.67±0.08 0.92±0.08 60.48 0.69±0.05  0.80 0.10±0.01 15.77±1.65 -0.01±0.01 0.10±0.01 84.68 0.87±0.04 

Pasture/ 
hay 191 0.68 0.60±0.05 77.63±6.27 0.28±0.05 0.53±0.05 89.01 1.13±0.06  0.70 0.14±0.01 35.62±2.04 -0.02±0.01 0.13±0.01 69.11 0.74±0.04 

Shrub/ 
scrub 319 0.33 0.52±0.05 300.26±26.46 0.17±0.04 0.49±0.04 95.30 0.72±0.06  0.67 0.10±0.01 133.19±8.24 0.05±0.01 0.09±0.01 77.74 1.02±0.04 

Woody 
wetlands 50 0.45 1.00±0.10 31.33±3.24 -0.14±0.10 0.99±0.10 62.00 0.66±0.10  0.55 0.14±0.02 19.35±2.37 0.01±0.02 0.14±0.02 74.00 0.72±0.09 

SL
2P

 

Cultivated 
crops 111 0.72 0.85±0.08 106.26±10.54 0.52±0.05 0.67±0.05 85.59 1.20±0.07  0.86 0.12±0.00 37.79±1.47 0.05±0.01 0.11±0.01 63.96 0.80±0.03 

Deciduous 
broadleaf 906 0.73 1.43±0.04 41.85±0.95 -1.02±0.03 1.00±0.03 50.77 0.50±0.01  0.68 0.19±0.00 26.98±0.31 -0.14±0.00 0.14±0.00 54.97 0.71±0.02 

Evergreen 
broadleaf 104 0.25 1.26±0.08 58.42±3.46 -0.50±0.08 1.16±0.08 50.96 0.18±0.03  0.33 0.22±0.01 44.20±1.82 -0.09±0.01 0.20±0.01 27.88 0.26±0.04 

Evergreen 
needleleaf 845 0.47 0.99±0.04 50.76±1.80 -0.17±0.03 0.98±0.03 69.59 0.40±0.02  0.49 0.20±0.00 38.54±0.54 -0.08±0.00 0.18±0.00 44.85 0.43±0.02 

Grassland 
/herbaceous 576 0.60 0.70±0.03 133.76±5.12 0.50±0.02 0.49±0.02 82.47 0.80±0.03  0.69 0.15±0.00 60.47±0.89 0.07±0.00 0.13±0.00 53.13 0.66±0.02 

Mixed 
forest 124 0.63 1.38±0.10 44.09±2.84 -0.98±0.09 0.97±0.09 47.58 0.44±0.03  0.72 0.16±0.01 24.77±1.23 -0.11±0.01 0.12±0.01 58.06 0.67±0.04 

Pasture/ 
hay 191 0.65 0.76±0.05 98.70±6.05 0.64±0.04 0.41±0.04 86.39 0.80±0.04  0.73 0.14±0.00 37.03±0.92 0.05±0.00 0.13±0.00 55.50 0.61±0.03 

Shrub/ 
scrub 319 0.41 0.47±0.03 27.61±17.74 0.24±0.02 0.40±0.02 92.79 0.67±0.04  0.67 0.12±0.00 148.17±4.18 0.08±0.00 0.08±0.00 70.53 0.89±0.04 

Woody 
wetlands 50 0.33 1.32±0.12 41.42±3.69 -0.85±0.12 1.01±0.12 58.00 0.35±0.07  0.39 0.21±0.01 29.67±1.20 -0.14±0.01 0.16±0.01 40.00 0.52±0.09 

SL
2P

-C
C

R
S 

Cultivated 
crops 111 0.72 0.85±0.08 106.26±10.54 0.52±0.05 0.67±0.05 85.59 1.20±0.07  0.86 0.12±0.00 37.79±1.47 0.05±0.01 0.11±0.01 63.96 0.80±0.03 

Deciduous 
broadleaf 906 0.68 1.05±0.03 30.65±0.94 -0.29±0.03 1.01±0.03 70.97 0.79±0.02  0.65 0.18±0.00 25.01±0.26 -0.10±0.00 0.14±0.00 65.56 0.76±0.02 

Evergreen 
broadleaf 104 0.15 1.33±0.07 61.58±3.25 -0.53±0.07 1.22±0.07 53.85 0.18±0.04  0.24 0.23±0.01 46.62±1.62 -0.10±0.01 0.21±0.01 29.81 0.25±0.04 

Evergreen 
needleleaf 845 0.41 1.17±0.05 59.86±2.50 0.52±0.05 1.05±0.05 57.04 0.54±0.02  0.40 0.26±0.00 49.69±0.60 -0.17±0.00 0.20±0.00 30.89 0.34±0.01 

Grassland 
/herbaceous 576 0.60 0.70±0.03 133.76±5.12 0.50±0.02 0.49±0.02 82.47 0.80±0.03  0.69 0.15±0.00 60.47±0.89 0.07±0.00 0.13±0.00 53.13 0.66±0.02 

Mixed 
forest 124 0.46 1.29±0.12 41.34±3.63 0.42±0.12 1.22±0.12 46.77 0.72±0.07  0.53 0.24±0.01 37.36±1.50 -0.18±0.01 0.16±0.01 41.13 0.70±0.06 

Pasture/ 
hay 191 0.65 0.76±0.05 98.70±6.05 0.64±0.04 0.41±0.04 86.39 0.80±0.04  0.73 0.14±0.00 37.03±0.92 0.05±0.00 0.13±0.00 55.50 0.61±0.03 

Shrub/ 
scrub 319 0.41 0.47±0.03 271.61±17.74 0.24±0.02 0.40±0.02 92.79 0.67±0.04  0.67 0.12±0.00 148.17±4.18 0.08±0.00 0.08±0.00 70.53 0.89±0.04 

Woody 
wetlands 50 0.29 1.46±0.18 45.85±5.87 0.52±0.17 1.36±0.17 52.00 0.68±0.15  0.30 0.29±0.01 41.05±1.77 -0.22±0.01 0.18±0.01 28.00 0.56±0.12 
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3.4. Performance of retrievals as a function of land cover type

The greatest differences between GROUNDED EO LAI retrievals and 
fiducial reference measurements were observed over deciduous broad
leaf forest, evergreen broadleaf forest, evergreen needleleaf forest, 
mixed forest, and woody wetlands (RMSD = 1.00 to 1.13, bias = 0.15 to 
− 0.67), where 60% to 69% of retrievals met user requirements, whilst 
smaller differences were observed over cultivated crops, grassland/ 
herbaceous, pasture/hay, and shrub/scrub (RMSD = 0.52 to 0.88, bias 
= 0.17 to 0.28), where 83% to 95% of GROUNDED EO retrievals met 
user requirements (Table 3). For FAPAR, the largest differences between 
retrievals and fiducial reference measurements occurred over evergreen 
broadleaf forest and evergreen needleleaf forest (RMSD = 0.17 to 0.18), 
where 56% to 63% of GROUNDED EO retrievals met user requirements, 
but these differences appeared to be primarily driven by random rather 
than systematic error (bias = 0.03 to 0.06, precision = 0.16 to 0.18) 
(Table 3). In terms of UAR, GROUNDED EO retrievals outperformed 
SL2P and SL2P-CCRS in all land cover types except cultivated crops, 
deciduous broadleaf forest, and evergreen needleleaf forest for LAI, and 
all land cover types except cultivated crops for FAPAR (Table 3).

For SL2P LAI retrievals, the greatest differences with respect to 
fiducial reference measurements were observed over deciduous broad
leaf forest, evergreen broadleaf forest, evergreen needleleaf forest, 
mixed forest, and woody wetlands (RMSD = 0.99 to 1.43, bias = − 0.17 
to − 1.02), where 48% to 70% of retrievals met user requirements. This 
was also true for FAPAR (RMSD = 0.16 to 0.22, bias = − 0.08 to − 0.14), 
where 28% to 58% of SL2P retrievals met user requirements (Table 3). In 
contrast, SL2P retrievals outperformed GROUNDED EO retrievals over 
cultivated crops (RMSD = 0.85, bias = 0.52, UAR = 86% for LAI and 
RMSD = 0.12, bias = 0.05, UAR = 64% for FAPAR) and evergreen 
needleleaf forest (for LAI only, RMSD = 0.99, bias = − 0.17, UAR = 70%) 
(Table 3).

As with SL2P, the greatest differences between SL2P-CCRS LAI re
trievals and fiducial reference measurements were observed for decid
uous broadleaf forest, evergreen broadleaf forest, evergreen needleleaf 
forest, mixed forest, and woody wetlands (RMSD = 1.05 to 1.46, bias =
− 0.53 to 0.52, UAR = 47% to 71%). Except for evergreen broadleaf 
forest and evergreen needleleaf forest, these differences were smaller 
than observed for SL2P retrievals (though larger than observed for 
GROUNDED EO retrievals with the exception of deciduous broadleaf 
forest) (Table 3). The greatest differences between SL2P-CCRS FAPAR 
retrievals and fiducial reference measurements also occurred over these 
land cover types, but in this case, differences were larger than for SL2P 
(and GROUNDED EO) retrievals (RMSD = 0.18 to 0.29, bias = − 0.10 to 
− 0.22, UAR = 28% to 66%) (Table 3). Note that since SL2P-CCRS uti
lises the same algorithm as SL2P for non-forest land cover, results over 
cultivated crops, grassland/herbaceous, pasture/hay, and shrub/scrub 
were identical to those observed for SL2P (Table 3).

3.5. Performance of retrievals as a function of fiducial reference 
magnitude

Since they average over different canopy types, overall performance 
statistics (Appendix F) are not necessarily informative of the perfor
mance achieved over specific environments. When only homogeneous 
(i.e. cultivated crops, grassland/herbaceous, shrub/scrub, and pasture/ 
hay) canopies were considered, compliance with user requirements in 
terms of RMSD was achieved by GROUNDED EO LAI retrievals at all LAI 
magnitudes, but only for LAI values ≤ 4 for SL2P and SL2P-CCRS 
(Fig. 7a). The performance of SL2P and SL2P-CCRS was identical 
(since they utilise the same algorithm for non-forest land cover). Similar 
patterns were observed in terms of bias and precision (Fig. 7a). 
GROUNDED EO retrievals were positively biased at LAI values ≤ 4.5 and 
negatively biased thereafter (with bias exceeding user requirements 

Fig. 7. Performance of GROUNDED EO, SL2P, and SL2P-CCRS LAI (a) and FAPAR (b) retrievals as a function of fiducial reference magnitude for homogeneous (i.e. 
cultivated crops, grassland/herbaceous, shrub/scrub, and pasture/hay) canopies. The dashed line represents a 1:1 relationship, whilst the shaded grey area represents 
user requirements. Error bands represent the 95% confidence interval.

L.A. Brown et al.                                                                                                                                                                                                                                Remote Sensing of Environment 326 (2025) 114797 

13 



only for LAI values ≥ 6). SL2P and SL2P-CCRS retrievals had a similar 
positive bias to GROUNDED EO retrievals for LAI values ≤ 2, but were 
negatively biased thereafter, exceeding user requirements for LAI values 
≥ 3 and reaching a bias of − 2 at LAI = 5. The precision of GROUNDED 
EO retrievals remained below 1 unit at all LAI magnitudes, whereas the 
precision of SL2P and SL2P-CCRS retrievals exceeded user requirements 
for LAI values ≥ 5 (Fig. 7a).

GROUNDED EO FAPAR retrievals over homogeneous canopies were 
compliant with user requirements in terms of RMSD for FAPAR values ≤
0.35 and ≥ 0.55, whilst SL2P and SL2P-CCRS retrievals were compliant 
for FAPAR values ≥ 0.35 (Fig. 7b). All algorithms were positively biased 
for FAPAR values ≤ 0.5 and negatively biased thereafter, however the 
bias of GROUNDED EO retrievals was generally below ± 0.05, whereas 
the bias of SL2P and SL2P-CCRS retrievals exceeded ± 0.1 at extreme 
FAPAR values. In terms of precision, GROUNDED EO retrievals were 
compliant with user requirements at FAPAR values ≤ 0.35 and ≥ 0.55, 
whilst SL2P and SL2P-CCRS retrievals were compliant at all FAPAR 
magnitudes (Fig. 7b).

When only heterogeneous (i.e. deciduous broadleaf forest, evergreen 
broadleaf forest, evergreen needleleaf forest, mixed forest, and woody 
wetland) canopies were considered, GROUNDED EO LAI retrievals were 
compliant with user requirements in terms of RMSD for LAI values ≤
5.5, whilst SL2P and SL2P-CCRS retrievals were only compliant for LAI 
values ≤ 3 and 3.5, respectively (Fig. 8a). For all retrieval algorithms, a 
negative relationship between LAI magnitude and bias was observed, 
with a bias of ~ 0.5 at LAI = 0, reaching − 1.5, − 2.5, and − 3 at LAI = 7 
for SL2P-CCRS, GROUNDED EO, and SL2P retrievals, respectively. The 
bias of GROUNDED EO retrievals exceeded user requirements for LAI 
values ≥ 5, whereas SL2P and SL2P-CCRS biases exceeded requirements 
for LAI values ≥ 3 and 4.5, respectively (Fig. 8a). In terms of precision, 
GROUNDED EO and SL2P retrievals achieved compliance with user 

requirements for all LAI magnitudes, whilst SL2P-CCRS retrievals were 
non-compliant for LAI values ≥ 3.5 and ≤ 5.5, respectively, though the 
requirements were only very slightly exceeded in this case (Fig. 8a).

GROUNDED EO FAPAR retrievals over heterogeneous canopies were 
compliant with user requirements in terms of RMSD for FAPAR values ≤
0.1 and ≥ 0.5, whilst SL2P and SL2P-CCRS retrievals were compliant for 
FAPAR values ≥ 0.2 (Fig. 8b). GROUNDED EO, SL2P, and SL2P-CCRS 
retrievals had similar positive biases for FAPAR values ≤ 0.5, 0.45, 
and 0.4, respectively, with negative biases thereafter. SL2P and SL2P- 
CCRS retrievals were compliant with user requirements in terms of 
precision at all FAPAR magnitudes, whereas GROUNDED EO retrievals 
were non-compliant for FAPAR values ≥ 0.2 and ≤ 0.5 (Fig. 8b).

4. Discussion

4.1. Empirical data-driven vs. hybrid biophysical variable retrieval

Existing decametric biophysical variable retrieval algorithms such as 
SL2P and SL2P-CCRS adopt a ‘hybrid’ retrieval approach, in that they 
combine RTMs and machine learning regression algorithms to facilitate 
computationally efficient retrieval (Verrelst et al., 2015a). The perfor
mance of such retrieval algorithms is dependent on the extent to which 
the adopted RTM can adequately represent the canopy of interest, the 
selected prior distributions of RTM input parameters, and the regression 
algorithm utilised. SAIL, which is used by SL2P, describes the canopy as 
a horizontally homogeneous turbid medium, and is known to perform 
poorly in heterogeneous canopies that deviate strongly from this 
assumption (Brown et al., 2024a; Richter et al., 2009; Verger et al., 
2011). We found that over heterogeneous canopies such as deciduous 
broadleaf forest, evergreen broadleaf forest, mixed forest and woody 
wetlands, substantial underestimation (negative biases of up to − 1.02 

Fig. 8. Performance of GROUNDED EO, SL2P, and SL2P-CCRS LAI (a) and FAPAR (b) retrievals as a function of fiducial reference magnitude for heterogeneous (i.e. 
deciduous broadleaf forest, evergreen broadleaf forest, evergreen needleleaf forest, mixed forest, and woody wetland) canopies. The dashed line represents a 1:1 
relationship, whilst the shaded grey area represents user requirements. Error bands represent the 95% confidence interval.
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for LAI and − 0.14 for FAPAR) were observed. This explains the apparent 
overestimation of SL2P retrievals by GROUNDED EO at higher values 
corresponding to these vegetation types (Fig. 4). Our results are 
consistent with a wide range of previously published validation efforts 
(Brown et al., 2021b; Brown et al., 2019; Djamai et al., 2019; Fernandes 
et al., 2024; Fernandes et al., 2023; Hu et al., 2020; Putzenlechner et al., 
2019; Upreti et al., 2019; Vanino et al., 2018; Vuolo et al., 2016; Xie 
et al., 2019).

Despite the known limitations of SAIL, adopting more complex RTMs 
with a greater degree of realism is not straightforward. As the number of 
input parameters increase (Roberts, 2001; Schlerf and Atzberger, 2006), 
their specification becomes more challenging. Retrieval also becomes ill- 
posed, in that i) multiple combinations of input parameters may lead to 
similar reflectance spectra, and ii) there may be more input parameters 
(i.e. unknowns) than information contained within the limited number 
of spectral bands available, confounding retrieval (Combal et al., 2003; 
Gobron et al., 1997; Verger et al., 2011; Verrelst et al., 2015a). It is 
worth recognising that due to data redundancy (whereby adjacent 
spectral bands contain limited additional information), hyperspectral 
observations from recent and upcoming spaceborne missions such as the 
Environmental Mapping and Analysis Program (EnMAP), Precursore 
Iperspettrale della Missione Applicativa (PRISMA), Copernicus Hyper
spectral Imaging Mission for the Environment (CHIME), and Surface 
Biology Geology (SBG) may not solve this problem (Brown et al., 2024a; 
Verger et al., 2011).

In an attempt to overcome the ill-posed nature of the inverse prob
lem, strategies involving the use of prior or ancillary information related 
to expected canopy conditions have been adopted. These have included 
prior distributions of RTM input parameters, land cover-specific algo
rithms, or cascaded approaches in which specific algorithms are applied 
on the basis of a variable that can be retrieved in a well-posed manner 
(Bacour et al., 2006; Baret et al., 2007; Brown et al., 2021b; Combal 
et al., 2003; Knyazikhin et al., 1998; Verger et al., 2011; Verrelst et al., 
2015a). Despite the adoption of these strategies, the performance of 
decametric biophysical variable retrieval algorithms making use of more 
complex RTMs has been mixed. For example, SL2P-CCRS uses the het
erogeneous 4SAIL2 RTM for training land cover-specific retrieval algo
rithms suitable for forest environments. Fernandes et al. (2024) found 
that whilst the increased complexity of the canopy representation in 
SL2P-CCRS did lead to reduced bias (as confirmed in this study), the 
overall difference with respect to fiducial reference measurements 
increased, due to a drop in the precision of retrievals (i.e. a bias-variance 
tradeoff).

For land cover-specific algorithms such as SL2P-CCRS, the need for 
an accurate and routinely updated land cover dataset is a non-trivial 
complication for operational application, since inaccuracies in the 
chosen decametric land cover product (e.g. due classification errors or 
changes in land cover) could lead to substantial uncertainty in the re
trievals (Fang et al., 2013). In this study, we utilised ground-based land 
cover information available from NEON, ICOS and TERN as input to 
SL2P-CCRS for the considered ESUs. Even in this case, there was some 
degree of uncertainty in the land cover labels (e.g. due to ambiguity in 
the definition of land cover classes, as well as the presence of ESUs 
containing a mixture of land cover types). It is likely that the uncertainty 
associated with satellite-derived land cover products would be greater 
still, meaning that the results reported for SL2P-CCRS in this study may 
be somewhat optimistic.

Within GROUNDED EO, we bypassed RTMs, adopting an empirical 
data-driven retrieval approach utilising Gaussian processes trained and 
validated on extensive fiducial reference measurements. Crucially, and 
as discussed in Section 1, Gaussian processes require many fewer 
training samples than other machine learning regression techniques 

such as artificial neural networks (Berger et al., 2021; Combal et al., 
2003; Estévez et al., 2022; Verrelst et al., 2020; Weiss et al., 2000). 
Whilst the utility of Gaussian processes for hybrid biophysical variable 
retrieval has been known for some time (Verrelst et al., 2015a), due to 
the limited quantity and quality of available in situ reference measure
ments (Camacho et al., 2013; Fang et al., 2019; Garrigues et al., 2008; 
Weiss et al., 2014; Yan et al., 2016b), relatively few studies have 
attempted extensive empirical data-driven training of Gaussian pro
cesses over multiple sites or vegetation types (Amin et al., 2020; 
Camacho et al., 2021; Revill et al., 2019; Verrelst et al., 2013; Verrelst 
et al., 2012; Xie et al., 2021). It is only thanks to the recent emergence of 
i) continental-scale environmental monitoring networks (Cleverly et al., 
2019; Gielen et al., 2018; Kao et al., 2012; Karan et al., 2016; Meier 
et al., 2023), ii) automated in situ data processing methods (Brown et al., 
2023; Brown et al., 2020b; Brown and Leblanc, 2024; Chianucci et al., 
2022; Chianucci and Macek, 2023), and iii) uncertainty evaluation ap
proaches (Brown et al., 2021a; Camacho et al., 2024; Goryl et al., 2023; 
Niro et al., 2021), that such a strategy is now feasible.

Our results indicate that the empirical data-driven strategy was 
effective: in the majority of cases (and despite not making use of ancil
lary data such as land cover) GROUNDED EO LAI and FAPAR retrievals 
were subject to reduced bias than those from SL2P and SL2P-CCRS, 
leading to increased fulfilment of user requirements (i.e. 74% of LAI 
and 69% of FAPAR retrievals overall, compared to 71% of LAI and 51% 
of FAPAR retrievals for SL2P-CCRS, the best hybrid approach tested). 
These findings reflect the results of Camacho et al. (2021), who 
demonstrated better performance for Gaussian process-based cropland 
GAI and FAPAR retrieval algorithms trained with the ImagineS database 
than for those trained with SAIL simulations. In our case, SL2P and SL2P- 
CCRS provided slightly better performance over croplands than 
GROUNDED EO for both LAI and FAPAR. The weaker performance of 
the GROUNDED EO retrievals may be due to the relatively low number 
of fiducial reference measurements of this land cover type contained 
within the matchup database, whilst the stronger performance of the 
SL2P retrievals reflects the homogeneous nature of these canopies. 
Despite this, it is worth noting that for homogeneous canopies with high 
LAI and FAPAR values, GROUNDED EO outperformed SL2P and SL2P- 
CCRS retrievals, where the latter algorithms demonstrated large bia
ses. Our results suggest there may be opportunity to further improve 
performance through fusion or ensemble retrieval approaches, 
leveraging the precision of the hybrid RTM-based approaches and the 
low bias of the GROUNDED EO solution (Baret et al., 2013). This may be 
particularly relevant for geographical regions not well-represented in 
the training dataset (Mederer et al., 2025).

4.2. Treatment of uncertainties

In addition to the retrieved value, users of satellite-derived bio
physical variables increasingly desire an estimate of retrieval uncer
tainty. As discussed in Section 1, uncertainty estimates are critical in 
allowing users to weight observations on the basis of their confidence 
(Demarty et al., 2007; Raupach et al., 2005; Richardson et al., 2011), 
and represent a growing requirement, particularly for application within 
data assimilation schemes (Chernetskiy et al., 2017; Lewis et al., 2012; 
Mathieu and O’Niell, 2008). Furthermore, recent work has explored the 
propagation of uncertainties in biophysical variable retrievals to 
downstream analyses, including the derivation of land surface 
phenology metrics (Graf et al., 2023), highlighting the crucial context 
such information can provide when assessing the impacts of environ
mental change. Gaussian processes, as adopted in the GROUNDED EO 
retrieval algorithm, inherently provide retrieval uncertainty estimates, 
whilst ‘predicted uncertainties’ may be produced in the case SL2P and 
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SL2P-CCRS, accounting for some, but not all, sources of uncertainty. 
These ‘predicted uncertainties’ are derived using a separate artificial 
neural network, which is trained to estimate the retrieval uncertainty 
that might be expected for a given satellite observation (itself assessed as 
the RMSD between the biophysical variable value and similar candidates 
within the training database) (Baret et al., 2010b; Brown et al., 2021b).

By making use of fiducial reference measurements with charac
terised uncertainties to train the GROUNDED EO retrieval algorithm, we 
attempted to move towards end-to-end uncertainty treatment, but 
further work is still necessary. Crucially, the Sentinel-2 L2A product 
does not yet provide per-pixel uncertainty estimates, so this source of 
uncertainty could not be explicitly considered in our work. Building on 
the radiometric uncertainty tool (RUT) already available for L1C prod
ucts (Gorroño et al., 2018; Gorroño et al., 2017), a L2A RUT has recently 
been developed, but unfortunately is not yet suitable for operational per- 
pixel application (Gorroño et al., 2024), preventing its use in our study. 
Although alternative atmospheric correction approaches such as Sensor 
Invariant Atmospheric Correction (SIAC) do provide per-pixel un
certainties, they do not yet utilise per-pixel L1C uncertainties as input 
(instead relying on an assumed constant of 5%) (Yin et al., 2022), so 
these also cannot strictly be considered end-to-end. In the future, space 
agencies and data providers must invest in the provision of per-pixel 
uncertainties incorporating all substantial uncertainty components, 
including those from upstream input data. Additional experiments to 
assess the potential impact of L2A surface reflectance uncertainties 
revealed that whilst they are not the dominant driver of overall retrieval 
uncertainty, they still represent an important term, with a relative 
contribution of 33% on average, compared to 67% for GPR-derived (i.e. 
model-based) uncertainties (Appendix G). In addition to uncertainties 
associated with the atmospheric correction itself, uncertainties related 
to geolocation and the instrument point spread function may also play 
an important role (Choi et al., 2025) and should be considered in future 
work.

4.3. Applicability of the GROUNDED EO approach to other sensors

Notwithstanding the strengths of the empirical data-driven strategy 
adopted in our study, a potential limitation for wider use is that the 
GROUNDED EO retrieval algorithm is, by its nature, specific to the 
spectral configuration of Sentinel-2’s MSI sensor. Differences in the 
number, position, and spectral response of MSI’s bands with respect to 
other sensors such as Landsat 8/9 OLI precludes direct application of the 
trained GPR models to these other sensors. In principle, separate GPR 
models could be trained using Landsat 8/9 OLI observations that are 
spatiotemporally coincident with fiducial reference measurements 
within the GROUNDED EO database, but this was beyond the scope of 
our study. Potential challenges include the lower temporal resolution of 
the Landsat 8/9 OLI archive, since only a single OLI sensor was in orbit 
for most of the time period covered by the fiducial reference measure
ments (Landsat 9 was launched only in 2021, and Landsat 8 alone has a 
repeat cycle of 16 days, as opposed to the 5-day repeat cycle of Sentinel- 
2A and –2B). The reduced spectral sampling of OLI in regions of the 
electromagnetic spectrum known to be important for vegetation bio
physical variable retrieval (i.e. the red-edge) is a further potential 
challenge. Future work should investigate the consistency of LAI and 
FAPAR retrievals from separate GPR models trained with Landsat 8/9 
OLI and Sentinel-2 MSI matchups, as well as the utility of products 
incorporating spectrally and spatially harmonised surface reflectance 
observations from the two missions (e.g. the Harmonised Landsat 
Sentinel (HLS) dataset) (Claverie et al., 2018). Comparison against 
further decametric LAI and FAPAR products including the High Reso
lution Global Land Surface Satellite (Hi-GLASS) suite (Jin et al., 2022), 
as well as other Landsat-based datasets (Kang et al., 2021; Wan et al., 
2024), should also be prioritised.

4.4. The need for continued provision and expansion of fiducial reference 
measurements

The efficacy of empirical data-driven approaches, such as the one 
adopted in this study, is ultimately dependent on the quality and 
representativeness of the observations used for training. Although it is 
clear that substantial advances in the availability of in situ reference 
observations (and fiducial reference measurements with characterised 
uncertainties) have been made, continued work is required. As discussed 
in Section 2.2, the GROUNDED EO database was constrained to a small 
number of continental-scale environmental monitoring networks 
(Cleverly et al., 2019; Gielen et al., 2018; Kao et al., 2012; Karan et al., 
2016; Meier et al., 2023), because of the need for free and open data 
policies, standardised, documented data collection protocols, and pro
vision of access to raw data. These requirements were crucial to main
taining consistency and enabling uncertainties to be derived in an end- 
to-end manner (Brown et al., 2021a). Containing more than 16,000 ESU- 
level observations derived from over 280,000 individual DHP or DCP 
images collected at 81 NEON, TERN, and ICOS sites between 2013 and 
2022, GROUNDED EO is likely the most extensive decametric fiducial 
reference database of vegetation biophysical variables to date.

Despite the strengths of the GROUNDED EO database, for some sites, 
the lack of understory observations and ancillary data on woody mate
rial meant that several assumptions were still required, and we would 
urge the respective environmental monitoring networks to follow the 
example of NEON and consider the collection of these variables as a 
matter of priority. Additionally, the majority of incorporated sites 
represent semi-natural environments, with relatively few agricultural 
locations (Appendix A). Perhaps more importantly, the considered net
works lack sites in the equatorial tropics (Fig. 2), which represent a high 
priority area for vegetation monitoring in the face of environmental 
change. Whilst our leave-site-out validation scheme provided informa
tion on the generalisation capabilities of the GROUNDED EO retrieval 
algorithm over unseen sites of sampled environments, further research 
will be required to determine how well the approach generalises to 
unsampled environments. The fact that the performance of the 
GROUNDED EO retrievals was worst at the highest LAI values, as might 
be experienced in equatorial regions, underscores the need for repre
sentative fiducial reference measurements – data-driven approaches 
cannot be expected to maintain the same performance for conditions 
beyond those represented in their training data. Co-ordinated effort and 
funding will be required to fill these data gaps, coverage of which is as 
important for validating existing hybrid retrieval algorithms as it is for 
training new or updated empirical data-driven ones (Cherif et al., 2023). 
Future work should focus on validating and refining the GROUNDED EO 
retrieval approach over regions not incorporated within the fiducial 
reference database through collection of additional independent in situ 
reference data.

5. Conclusions

Algorithms such as SL2P have proven popular for decametric 
retrieval of LAI and FAPAR, yet comprehensive validation has shown 
that, due to simplifying assumptions in the underlying RTMs, biases 
persist in SL2P retrievals. RTM assumptions might be avoided altogether 
with an empirical data-driven approach, but such a strategy has his
torically been prevented by the limited quantity and quality of available 
in situ reference measurements, as well as the large number of training 
samples traditionally required by machine learning regression algo
rithms. Thanks to recently established continental-scale environmental 
monitoring networks, advances in automated data processing and un
certainty evaluation, and machine learning regression algorithms 
requiring many fewer training samples such as Gaussian processes, 
empirical data-driven retrieval is now a possibility.
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In this study, we generated a database of more than 16,000 fiducial 
reference measurements from over 280,000 DHP or DCP images 
collected at 81 NEON, TERN, and ICOS sites between 2013 and 2022, 
which was then utilised to train Gaussian processes for Sentinel-2 LAI 
and FAPAR retrieval. Our results indicate that in the majority of cases 
(and despite not making use of ancillary data such as land cover), the 
empirical data-driven GROUNDED EO retrievals were subject to reduced 
bias than those from SL2P and SL2P-CCRS, leading to increased fulfil
ment of user requirements (i.e. 74% of LAI and 69% of FAPAR retrievals 
overall). Consequently, the approach has potential to reduce uncertainty 
in key inputs for climate monitoring and modelling, agricultural and 
forest management, and biodiversity assessment.
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Appendix A. Study sites

Table A1 
The 81 NEON, ICOS, and TERN sites from which raw in situ data were obtained and processed to derive fiducial reference measurements.

Site Modal land cover Latitude Longitude Primary 
method

Dates Reference

NEON

Abby Road Evergreen forest 45.7624 − 122.3303 DHP 2016 to 2022

National Ecological Observatory Network 
(2022)

UtqiaÄ¡vik Woody wetlands 71.2824 − 156.6194 DHP 2017 to 2022
Bartlett Experimental Forest Mixed forest 44.0639 − 71.2874 DHP 2014 to 2022
Blandy Experimental Farm Shrub/scrub 39.0337 − 78.0418 DHP 2015 to 2022

Caribou-Poker Creeks Research Watershed Deciduous forest 65.1540 − 147.5026 DHP 2017 to 2022
Lyndon B. Johnson National Grassland Deciduous forest 33.4012 − 97.5700 DHP 2016 to 2022

Central Plains Experimental Range Grassland/ 
herbaceous

40.8155 − 104.7456 DHP 2014 to 2022

Dakota Coteau Field Grassland/ 
herbaceous

47.1617 − 99.1066 DHP 2017 to 2022

Delta Junction Evergreen forest 63.8811 − 145.7514 DHP 2016 to 2022
Dead Lake Deciduous forest 32.5417 − 87.8039 DHP 2016 to 2022

Disney Wilderness Preserve Pasture/hay 28.1251 − 81.4362 DHP 2013 to 2022
Great Smoky Mountains National Park Deciduous forest 35.6890 − 83.5020 DHP 2016 to 2022

Guanica Forest Evergreen forest 17.9696 − 66.8687 DHP 2015 to 2022
Harvard Forest & Quabbin Watershed Mixed forest 42.5369 − 72.1727 DHP 2014 to 2022

Healy Shrub/scrub 63.8758 − 149.2134 DHP 2015 to 2022
The Jones Center at Ichauway Evergreen forest 31.1948 − 84.4686 DHP 2013 to 2022
Jornada Experimental Range Shrub/scrub 32.5907 − 106.8425 DHP 2015 to 2022
Konza Prairie Agroecosystem Cultivated crops 39.1105 − 96.6129 DHP 2017 to 2022

Konza Prairie Biological Station
Grassland/ 
herbaceous 39.1008 − 96.5631 DHP 2016 to 2022

Lajas Experimental Station Pasture/hay 18.0213 − 67.0769 DHP 2016 to 2022
(continued on next page)
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Table A1 (continued )

Site Modal land cover Latitude Longitude Primary 
method 

Dates Reference

Lenoir Landing Deciduous forest 31.8539 − 88.1612 DHP 2016 to 2022
Mountain Lake Biological Station Deciduous forest 37.3783 − 80.5249 DHP 2017 to 2022

Moab Shrub/scrub 38.2483 − 109.3883 DHP 2015 to 2022

Niwot Ridge
Grassland/ 
herbaceous

40.0543 − 105.5824 DHP 2015 to 2022

Northern Great Plains Research Laboratory Grassland/ 
herbaceous

46.7697 − 100.9154 DHP 2016 to 2022

Marvin Klemme Range Research Station Shrub/scrub 35.4106 − 99.0588 DHP 2016 to 2022
Onaqui Shrub/scrub 40.1776 − 112.4525 DHP 2014 to 2022

Oak Ridge Deciduous forest 35.9641 − 84.2826 DHP 2014 to 2022
Ordway-Swisher Biological Station Evergreen forest 29.6893 − 81.9934 DHP 2013 to 2022
Puu Makaala Natural Area Reserve Evergreen forest 19.5531 − 155.3173 DHP 2018 to 2022

Rocky Mountains Evergreen forest 40.2759 − 105.5460 DHP 2017 to 2022
Smithsonian Conservation Biology Institute Deciduous forest 38.8929 − 78.1395 DHP 2014 to 2022

Smithsonian Environmental Research Center Deciduous forest 38.8901 − 76.5600 DHP 2015 to 2022
San Joaquin Experimental Range Evergreen forest 37.1088 − 119.7323 DHP 2016 to 2022

Soaproot Saddle Evergreen forest 37.0334 − 119.2622 DHP 2018 to 2022
Santa Rita Experimental Range Shrub/scrub 31.9107 − 110.8355 DHP 2016 to 2022

Steigerwaldt-Chequamegon Deciduous forest 45.5089 − 89.5864 DHP 2015 to 2022
North Sterling Cultivated crops 40.4619 − 103.0293 DHP 2014 to 2022

Talladega National Forest Evergreen forest 32.9505 − 87.3933 DHP 2014 to 2022
Lower Teakettle Evergreen forest 37.0058 − 119.0060 DHP 2019 to 2022

Toolik Field Station Grassland/ 
herbaceous

68.6611 − 149.3705 DHP 2017 to 2022

Treehaven Mixed forest 45.4937 − 89.5857 DHP 2015 to 2022
KU Field Station Deciduous forest 39.0404 − 95.1922 DHP 2016 to 2022

University of Notre Dame Environmental 
Research Center

Deciduous forest 46.2339 − 89.5373 DHP 2014 to 2022

Chase Lake National Wildlife Refuge Grassland/ 
herbaceous

47.1282 − 99.2413 DHP 2014 to 2022

Wind River Experimental Forest Evergreen forest 45.8205 − 121.9519 DHP 2018 to 2022
Yellowstone National Park Evergreen forest 44.9535 − 110.5391 DHP 2018 to 2022

ICOS

Brasschaat Evergreen forest 51.3076 4.5198 DHP 2017 to 2022 Janssens et al. (2022)
Vielsalm Mixed forest 50.3050 5.9981 DHP 2018 to 2022 Vincke et al. (2022)
Davos Evergreen forest 46.8153 9.8559 DHP 2018 to 2022 Feigenwinter et al. (2022)

Hohes Holz Deciduous forest 52.0866 11.2224 DHP 2018 to 2022 Rebmann et al. (2022)
Tharandt Evergreen forest 50.9626 13.5652 DHP 2020 to 2022 Bernhofer et al. (2021)

Soroe Deciduous forest 55.4859 11.6446 DHP 2020 to 2022 Ibrom et al. (2022)
Hyytiälä Evergreen forest 61.8474 24.2948 DHP 2017 to 2022 Mammarella et al. (2022)

Sodankyla Evergreen forest 67.3624 26.6386 DHP 2019 to 2020 Aurela et al. (2020)
Bilos Evergreen forest 44.4937 − 0.9561 DHP 2018 to 2022 Loustau et al. (2022)

Font-Blanche Evergreen forest 43.2408 5.6787 DHP 2020 to 2022 Simioni et al. (2022)
Fontainebleau-Barbeau Deciduous forest 48.4764 2.7801 DHP 2018 to 2022 Berveiller et al. (2022)

Hesse Deciduous forest 48.6741 7.0647 DHP 2021 to 2022 Cuntz et al. (2022)
Puechabon Evergreen forest 43.7413 3.5957 DHP 2021 to 2022 Limousin et al. (2022)

Castelporziano Mixed forest 41.7043 12.3573 DHP 2021 to 2022 Fares et al. (2022)
Renon Evergreen forest 46.5869 11.4337 DHP 2020 to 2021 Montagnani et al. (2021)

San Rossore Evergreen forest 43.7320 10.2909 DHP 2018 to 2022 Arriga et al. (2022)
Hurdal Evergreen forest 60.3716 11.0795 DHP 2021 to 2022 Lange et al. (2022)

Hyltemossa Evergreen forest 56.0976 13.4190 DHP 2017 to 2022 Heliasz et al. (2022)
Norunda Evergreen forest 60.0865 17.4795 DHP 2017 to 2022 Mölder et al. (2022)

Svartberget Evergreen forest 64.2561 19.7745 DHP 2017 to 2021 Peichl et al. (2022)

TERN

Alice Mulga Shrub/scrub − 22.2828 133.2493 DCP 2011 to 2018 Cleverly et al. (2021)
Boyagin Evergreen forest − 32.4771 116.9386 DHP 2018 to 2021 Beringer et al. (2021a; 2021b)

Calperum Malle Shrub/scrub − 34.0027 140.5877 DCP 2013 to 2019 Meyer and Koerber (2021)
Cumberland Plain Evergreen forest − 33.6152 150.7236 DCP 2015 to 2021 Pendall et al. (2020)

Gingin Evergreen forest − 31.3764 115.7139 DCP 2015 to 2021 Silberstein et al. (2021)
Great Western Woodlands Evergreen forest − 30.1913 120.6541 DCP 2013 to 2022 Prober et al. (2020)

Karawatha Evergreen forest − 27.6333 153.0822 DCP 2015 to 2017 Hero and Lollback (2021)
Litchfield Evergreen forest − 13.1790 130.7945 DCP 2017 to 2022 Hutley et al. (2021)

Robson Creek Evergreen forest − 17.1175 145.6301 DHP 2014 to 2020 Liddell et al. (2016)
Samford Pasture/hay − 27.3881 152.8778 DCP 2017 to 2022 Grace et al. (2021)

Tumbarumba Evergreen forest − 35.6566 148.1517 DCP 2014 to 2021 Stol et al. (2021)
Warra Evergreen forest − 43.0950 146.6545 DHP 2015 to 2023 Wardlaw (2021)
Whroo Evergreen forest − 36.6732 145.0294 DHP 2014 to 2017 Beringer et al. (2021c)

Wombat Evergreen forest − 37.4222 144.0944 DHP 2015 to 2015 Arndt et al. (2021)
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Appendix B. Correcting for missing understory measurements at ICOS sites

At ICOS sites, understory GAIe was quantified using DCP and two radiometric methods (George et al., 2021). The inter-method uncertainty in the 
understory GAIe values was computed as the standard deviation of the mean over the three measurement approaches (Table B1). Empirical re
lationships were used to transform the observed understory GAIe at each ICOS site to understory GAI and FIPAR. These were derived from those 
observations within the GROUNDED EO database containing all three variables (Fig. B1). Following FRM4VEG recommendations (Brown et al., 
2021a), orthogonal distance regression (ODR) was used to establish these relationships.

Table B1 
Mean understory GAIe values reported by George et al. (2021), which were 
derived using three radiometric methods at each ICOS site.

GAIe

Site Mean Standard uncertainty

Brasschaat 0.34 0.20
Vielsalm 0.37 0.19
Davos 1.01 0.42
Hohes Holz 0.45 0.19
Tharandt 0.70 0.16
Soroe 0.57 0.21
Hyytiälä 1.50 0.10
Sodankyla 0.68 0.23
Bilos 1.85 0.32
Font-Blanche 0.97 0.15
Hesse 0.21 0.17
Puechabon 0.71 0.17
Castelporziano 0.36 0.23
Renon 1.23 0.15
San Rossore 0.44 0.26
Hurdal 1.61 0.04
Hyltemossa 1.22 0.12
Norunda 1.27 0.12
Svartberget 1.70 0.16

Fig. B1. Empirical relationships relating understory GAIe to understory GAI (a) and FIPAR (b), derived using ODR from those observations within the GROUNDED 
EO database containing all three variables.
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Appendix C. Overstory WAI at NEON sites

Table C1 
Baseline WAI values determined from manually classified early spring images from at least one ESU at each NEON site 
where a vegetated overstory is present.

WAI

Site Mean Standard uncertainty

Abby Road 1.06 0.11
Bartlett Experimental Forest 1.09 0.04
Blandy Experimental Farm 1.02 0.06
Caribou-Poker Creeks Research Watershed 0.72 0.06
Lyndon B. Johnson National Grassland 0.96 0.13
Delta Junction 0.59 0.07
Dead Lake 0.88 0.05
Disney Wilderness Preserve 0.89 0.29
Great Smoky Mountains National Park 0.93 0.02
Guanica Forest 0.95 0.05
Harvard Forest & Quabbin Watershed 0.91 0.14
Healy 0.79 0.04
The Jones Center At Ichauway 1.10 0.25
Konza Prairie Biological Station 0.81 0.02
Lajas Experimental Station 0.84 0.03
Lenoir Landing 1.90 0.40
Mountain Lake Biological Station 0.93 0.02
Oak Ridge 0.90 0.05
Ordway-Swisher Biological Station 0.79 0.04
Puu Makaala Natural Area Reserve 1.70 0.40
Rocky Mountains 1.25 0.14
Smithsonian Conservation Biology Institute 0.97 0.03
San Joaquin Experimental Range 0.43 0.15
Soaproot Saddle 0.08 0.02
Steigerwaldt-Chequamegon 0.97 0.02
Talladega National Forest 1.27 0.13
Lower Teakettle 2.41 0.20
Treehaven 0.87 0.02
KU Field Station 1.21 0.18
University of Notre Dame Environmental Research Center 1.00 0.03
Wind River Experimental Forest 2.50 0.40
Yellowstone National Park 0.79 0.04

Table C2 
Mean and standard uncertainty of woody-to-total (α) ratio values over all de
ciduous forest, evergreen forest, and mixed forest NEON ESUs.

Woody-to-total ratio (α)

Forest type Mean Standard uncertainty

Deciduous forest 0.35 0.27
Evergreen forest 0.59 0.28
Mixed forest 0.33 0.22
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Appendix D. Intercomparison results by land cover and magnitude

Table D1 
Intercomparison of GROUNDED EO vs. SL2P and SL2P-CCRS LAI and FAPAR retrievals, by land cover.

LAI FAPAR

Land cover n r2 RMSD NRMSD (%) Bias Precision Slope r2 RMSD NRMSD (%) Bias Precision Slope

GROUNDED  
EO vs. SL2P

Cultivated 
crops 111 0.89 0.56 ± 0.09 42.19 ± 6.44 − 0.33 ± 0.08 0.45 ± 0.08 1.05 ± 0.04 0.91 0.11 ± 0.01 30.11 ± 2.90 − 0.05 ± 0.01 0.10 ± 0.01 1.14 ± 0.04

Deciduous 
broadleaf

906 0.88 0.82 ± 0.04 34.31 ± 1.76 0.49 ± 0.03 0.66 ± 0.03 1.41 ± 0.02 0.87 0.14 ± 0.00 23.55 ± 0.65 0.09 ± 0.00 0.10 ± 0.00 1.18 ± 0.02

Evergreen 
broadleaf

104 0.81 0.50 ± 0.09 30.30 ± 5.96 0.31 ± 0.09 0.40 ± 0.09 1.46 ± 0.07 0.68 0.18 ± 0.01 46.24 ± 2.84 0.15 ± 0.01 0.11 ± 0.01 1.35 ± 0.09

Evergreen needleleaf 845 0.87 0.72 ± 0.03 40.37 ± 2.20 0.32 ± 0.03 0.64 ± 0.03 1.58 ± 0.02 0.79 0.18 ± 0.00 40.62 ± 0.93 0.11 ± 0.00 0.14 ± 0.00 1.48 ± 0.03
Grassland 
/herbaceous 579 0.76 0.58 ± 0.04 57.09 ± 3.67 − 0.26 ± 0.03 0.52 ± 0.03 1.20 ± 0.03 0.83 0.11 ± 0.01 35.80 ± 1.42 − 0.05 ± 0.00 0.10 ± 0.00 1.16 ± 0.02

Mixed 
forest 124 0.87 0.69 ± 0.09 31.97 ± 4.95 0.31 ± 0.09 0.61 ± 0.09 1.49 ± 0.05 0.85 0.13 ± 0.01 24.72 ± 1.78 0.10 ± 0.01 0.09 ± 0.01 1.14 ± 0.04

Pasture/ 
hay

191 0.79 0.58 ± 0.06 41.10 ± 4.38 − 0.36 ± 0.06 0.45 ± 0.06 1.23 ± 0.05 0.77 0.13 ± 0.01 29.27 ± 2.07 − 0.07 ± 0.01 0.11 ± 0.01 1.10 ± 0.04

Shrub/ 
scrub

319 0.60 0.38 ± 0.05 90.49 ± 12.25 − 0.08 ± 0.04 0.37 ± 0.04 0.93 ± 0.04 0.79 0.08 ± 0.01 49.22 ± 4.04 − 0.03 ± 0.01 0.07 ± 0.01 1.03 ± 0.03

Woody 
wetlands 50 0.87 0.91 ± 0.16 38.95 ± 8.09 0.71 ± 0.15 0.57 ± 0.15 1.51 ± 0.08 0.83 0.16 ± 0.02 29.14 ± 3.06 0.15 ± 0.02 0.08 ± 0.02 1.06 ± 0.07

GROUNDED  
EO vs. SL2P-CCRS

Cultivated 
crops 111 0.89 0.56 ± 0.09 42.19 ± 6.44 − 0.33 ± 0.08 0.45 ± 0.08 1.05 ± 0.04 0.91 0.11 ± 0.01 30.11 ± 2.90 − 0.05 ± 0.01 0.10 ± 0.01 1.14 ± 0.04

Deciduous 
broadleaf

906 0.83 0.72 ± 0.04 22.98 ± 1.13 − 0.24 ± 0.03 0.68 ± 0.03 0.84 ± 0.01 0.84 0.12 ± 0.00 19.64 ± 0.57 0.06 ± 0.00 0.12 ± 0.00 1.05 ± 0.02

Evergreen 
broadleaf

104 0.64 0.57 ± 0.08 35.24 ± 5.49 0.34 ± 0.08 0.46 ± 0.08 1.02 ± 0.08 0.52 0.12 ± 0.01 50.48 ± 2.52 0.16 ± 0.01 0.12 ± 0.01 1.05 ± 0.10

Evergreen needleleaf 845 0.76 0.74 ± 0.05 29.88 ± 1.70 − 0.37 ± 0.05 0.64 ± 0.05 1.02 ± 0.02 0.60 0.26 ± 0.00 73.79 ± 1.47 0.19 ± 0.00 0.17 ± 0.00 1.45 ± 0.04
Grassland 
/herbaceous 579 0.76 0.58 ± 0.04 57.09 ± 3.67 − 0.26 ± 0.03 0.52 ± 0.03 1.20 ± 0.03 0.83 0.11 ± 0.01 35.80 ± 1.42 − 0.05 ± 0.00 0.10 ± 0.00 1.16 ± 0.02

Mixed 
forest

124 0.76 1.32 ± 0.12 37.38 ± 2.74 − 1.08 ± 0.12 0.76 ± 0.12 0.72 ± 0.04 0.65 0.22 ± 0.01 47.14 ± 2.77 0.17 ± 0.01 0.13 ± 0.01 0.83 ± 0.05

Pasture/ 
hay

191 0.79 0.58 ± 0.06 41.10 ± 4.38 − 0.36 ± 0.06 0.45 ± 0.06 1.23 ± 0.05 0.77 0.13 ± 0.01 29.27 ± 2.07 − 0.07 ± 0.01 0.11 ± 0.01 1.10 ± 0.04

Shrub/ 
scrub 319 0.60 0.38 ± 0.05 90.49 ± 12.25 − 0.08 ± 0.04 0.37 ± 0.04 0.93 ± 0.04 0.79 0.08 ± 0.01 49.22 ± 4.04 − 0.03 ± 0.01 0.07 ± 0.01 1.03 ± 0.03

Woody 
wetlands 50 0.80 0.97 ± 0.20 26.25 ± 4.76 − 0.67 ± 0.19 0.71 ± 0.19 0.70 ± 0.05 0.69 0.25 ± 0.02 52.98 ± 4.70 0.23 ± 0.02 0.11 ± 0.02 0.79 ± 0.08
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Table D2 
Intercomparison of GROUNDED EO vs. SL2P and SL2P-CCRS LAI and FAPAR retrievals, by SL2P or SL2P-CCRS retrieval magnitude.

LAI FAPAR

Value n r2 RMSD NRMSD (%) Bias Precision Slope Value n r2 RMSD NRMSD (%) Bias Precision Slope

GROUNDED EO vs. SL2P

0 to 1 973 0.13 0.40 ± 0.03 84.60 ± 4.89 − 0.24 ± 0.02 0.32 ± 0.02 0.32 ± 0.03 0.0 to 0.1 261 0.12 0.05 ± 0.01 76.44 ± 11.78 − 0.03 ± 0.01 0.04 ± 0.01 0.64 ± 0.11
1 to 2 1059 0.53 0.63 ± 0.03 42.19 ± 1.91 − 0.10 ± 0.03 0.62 ± 0.03 2.03 ± 0.06 0.1 to 0.2 363 0.04 0.10 ± 0.01 64.22 ± 4.12 − 0.06 ± 0.01 0.07 ± 0.01 0.57 ± 0.14
2 to 3 796 0.42 0.85 ± 0.04 34.41 ± 1.78 0.69 ± 0.04 0.50 ± 0.04 1.45 ± 0.06 0.2 to 0.3 367 0.17 0.13 ± 0.01 50.40 ± 2.45 − 0.05 ± 0.01 0.12 ± 0.01 1.69 ± 0.20
3 to 4 360 0.31 0.98 ± 0.06 29.16 ± 2.14 0.88 ± 0.06 0.42 ± 0.06 1.12 ± 0.09 0.3 to 0.4 434 0.09 0.16 ± 0.01 44.15 ± 1.62 0.01 ± 0.01 0.16 ± 0.01 1.68 ± 0.25
4 to 5 35 0.01 0.84 ± 0.21 19.47 ± 5.39 0.51 ± 0.21 0.67 ± 0.21 0.20 ± 0.34 0.4 to 0.5 535 0.06 0.17 ± 0.01 37.50 ± 1.12 0.08 ± 0.01 0.15 ± 0.01 1.25 ± 0.22
5 to 6 3 0.96 1.0 ± 0.7 18.66 ± 12.65 − 0.90 ± 0.70 0.40 ± 0.70 3.30 ± 0.60 0.5 to 0.6 480 0.16 0.17 ± 0.01 31.75 ± 0.94 0.14 ± 0.01 0.10 ± 0.01 1.53 ± 0.16
6 to 7 – – – – – – – 0.6 to 0.7 359 0.15 0.15 ± 0.01 23.47 ± 0.86 0.13 ± 0.01 0.08 ± 0.01 1.09 ± 0.14
7 to 8 – – – – – – – 0.7 to 0.8 347 0.04 0.12 ± 0.01 15.79 ± 0.72 0.10 ± 0.01 0.06 ± 0.01 0.43 ± 0.11
8 to 9 – – – – – – – 0.8 to 0.9 74 0.25 0.06 ± 0.01 7.47 ± 1.47 0.02 ± 0.01 0.06 ± 0.01 − 0.69 ± 0.14
> 9 – – – – – – – 0.9 to 1.0 6 0.25 0.12 ± 0.06 13.39 ± 6.04 − 0.11 ± 0.05 0.04 ± 0.05 − 2.00 ± 1.70

GROUNDED EO vs. SL2P-CCRS

0 to 1 891 0.12 0.39 ± 0.03 87.63 ± 5.52 − 0.22 ± 0.03 0.32 ± 0.03 0.33 ± 0.03 0.0 to 0.1 254 0.06 0.06 ± 0.01 99.85 ± 15.81 − 0.02 ± 0.01 0.06 ± 0.01 0.65 ± 0.16
1 to 2 876 0.26 0.75 ± 0.03 51.20 ± 2.05 − 0.37 ± 0.03 0.66 ± 0.03 1.37 ± 0.08 0.1 to 0.2 418 0.05 0.13 ± 0.01 84.08 ± 4.35 − 0.03 ± 0.01 0.12 ± 0.01 1.05 ± 0.22
2 to 3 602 0.20 0.66 ± 0.05 26.40 ± 1.94 − 0.05 ± 0.05 0.66 ± 0.05 1.10 ± 0.09 0.2 to 0.3 532 0.11 0.20 ± 0.01 77.93 ± 2.38 0.05 ± 0.01 0.19 ± 0.01 2.13 ± 0.27
3 to 4 386 0.11 0.59 ± 0.07 16.84 ± 1.92 − 0.04 ± 0.07 0.58 ± 0.07 0.70 ± 0.10 0.3 to 0.4 495 0.04 0.23 ± 0.01 65.32 ± 1.70 0.11 ± 0.01 0.20 ± 0.01 1.48 ± 0.31
4 to 5 281 0.05 0.78 ± 0.08 17.33 ± 1.67 − 0.55 ± 0.08 0.56 ± 0.08 0.41 ± 0.11 0.4 to 0.5 456 0.01 0.23 ± 0.01 51.20 ± 1.36 0.12 ± 0.01 0.19 ± 0.01 0.60 ± 0.32
5 to 6 161 0.01 1.26 ± 0.11 23.39 ± 1.70 − 1.04 ± 0.10 0.70 ± 0.10 − 0.21 ± 0.18 0.5 to 0.6 321 0.08 0.17 ± 0.01 31.21 ± 1.23 0.12 ± 0.01 0.13 ± 0.01 1.26 ± 0.24
6 to 7 27 0.02 1.92 ± 0.27 29.92 ± 3.30 − 1.80 ± 0.26 0.66 ± 0.26 0.40 ± 0.60 0.6 to 0.7 259 0.10 0.14 ± 0.01 22.28 ± 1.09 0.11 ± 0.01 0.09 ± 0.01 1.05 ± 0.19
7 to 8 – – – – – – – 0.7 to 0.8 256 0.12 0.10 ± 0.01 13.33 ± 0.83 0.08 ± 0.01 0.06 ± 0.01 0.76 ± 0.13
8 to 9 – – – – – – – 0.8 to 0.9 211 0.00 0.05 ± 0.01 6.42 ± 0.93 0.03 ± 0.01 0.05 ± 0.01 − 0.11 ± 0.11
> 9 – – – – – – – 0.9 to 1.0 24 0.00 0.11 ± 0.03 12.23 ± 2.69 − 0.11 ± 0.02 0.04 ± 0.02 − 0.00 ± 0.60
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Appendix E. Validation results by magnitude

Table E1 
Performance of GROUNDED EO, SL2P, and SL2P-CCRS LAI and FAPAR retrievals with respect to fiducial reference measurements, by fiducial reference magnitude. The best performing results for each magnitude range in 
terms of UAR are shown in bold.

LAI FAPAR

Value n r2 RMSD NRMSD (%) Bias Precision UAR (%) Slope Value n r2 RMSD NRMSD (%) Bias Precision UAR (%) Slope

GROUNDED EO

0 to 1 1449 0.21 0.64 ± 0.02 209.12 ± 6.06 0.24 ± 0.02 0.59 ± 0.02 90.61 1.11 ± 0.06 0.0 to 0.1 635 0.07 0.12 ± 0.00 305.92 ± 12.00 0.05 ± 0.00 0.11 ± 0.00 81.26 0.99 ± 0.14
1 to 2 415 0.08 1.12 ± 0.04 76.44 ± 2.82 0.36 ± 0.04 1.06 ± 0.04 58.80 1.06 ± 0.18 0.1 to 0.2 296 0.04 0.16 ± 0.01 107.77 ± 4.70 0.08 ± 0.01 0.13 ± 0.01 58.78 0.96 ± 0.27
2 to 3 392 0.06 1.01 ± 0.04 40.68 ± 1.86 0.08 ± 0.04 1.01 ± 0.04 62.50 0.87 ± 0.18 0.2 to 0.3 254 0.06 0.15 ± 0.01 62.34 ± 2.77 0.04 ± 0.01 0.15 ± 0.01 54.33 1.29 ± 0.31
3 to 4 447 0.00 1.00 ± 0.05 28.83 ± 1.22 ¡0.40 ± 0.04 0.92 ± 0.04 69.35 0.13 ± 0.15 0.3 to 0.4 202 0.00 0.19 ± 0.01 54.69 ± 2.87 − 0.01 ± 0.01 0.19 ± 0.01 38.12 − 0.40 ± 0.50
4 to 5 346 0.04 1.25 ± 0.06 28.33 ± 1.28 ¡0.85 ± 0.06 0.92 ± 0.06 60.12 0.73 ± 0.18 0.4 to 0.5 184 0.05 0.17 ± 0.01 37.73 ± 2.03 − 0.02 ± 0.01 0.17 ± 0.01 42.39 1.40 ± 0.50
5 to 6 134 0.03 1.39 ± 0.09 26.09 ± 1.50 − 1.19 ± 0.10 0.73 ± 0.10 44.03 0.45 ± 0.23 0.5 to 0.6 244 0.03 0.19 ± 0.01 34.7 ± 2.14 0.04 ± 0.01 0.19 ± 0.01 41.39 1.20 ± 0.50
6 to 7 36 0.01 2.18 ± 0.12 34.16 ± 1.70 − 2.05 ± 0.13 0.74 ± 0.13 5.56 0.20 ± 0.40 0.6 to 0.7 282 0.01 0.16 ± 0.01 25.01 ± 1.02 ¡0.01 ± 0.01 0.16 ± 0.01 65.25 0.63 ± 0.34
7 to 8 6 0.01 2.60 ± 0.28 35.54 ± 3.46 − 2.58 ± 0.28 0.30 ± 0.28 0.00 0.10 ± 0.70 0.7 to 0.8 529 0.06 0.13 ± 0.01 17.49 ± 0.71 ¡0.02 ± 0.01 0.13 ± 0.01 82.61 1.13 ± 0.20
8 to 9 – – – – – – – – 0.8 to 0.9 436 0.06 0.13 ± 0.01 14.79 ± 0.61 ¡0.06 ± 0.01 0.11 ± 0.01 86.24 0.97 ± 0.19
> 9 – – – – – – – – > 0.9 164 0.03 0.14 ± 0.01 14.32 ± 0.89 ¡0.11 ± 0.01 0.08 ± 0.01 91.46 0.55 ± 0.24

SL2P

0 to 1 1449 0.38 0.66 ± 0.02 215.67 ± 5.60 0.50 ± 0.01 0.43 ± 0.01 85.85 1.20 ± 0.04 0.0 to 0.1 635 0.13 0.14 ± 0.00 368.60 ± 9.39 0.11 ± 0.00 0.09 ± 0.00 60.47 1.21 ± 0.13
1 to 2 415 0.09 0.71 ± 0.04 48.37 ± 2.98 0.26 ± 0.04 0.66 ± 0.04 87.23 0.71 ± 0.11 0.1 to 0.2 296 0.05 0.17 ± 0.00 113.71 ± 3.13 0.13 ± 0.00 0.10 ± 0.00 41.89 0.78 ± 0.20
2 to 3 392 0.03 0.71 ± 0.04 28.69 ± 1.74 ¡0.38 ± 0.05 0.60 ± 0.05 84.18 0.36 ± 0.10 0.2 to 0.3 254 0.06 0.13 ± 0.00 50.60 ± 1.76 0.08 ± 0.00 0.10 ± 0.00 56.30 0.81 ± 0.20
3 to 4 447 0.01 1.21 ± 0.05 34.76 ± 1.27 − 1.05 ± 0.05 0.61 ± 0.05 47.20 0.24 ± 0.10 0.3 to 0.4 202 0.00 0.13 ± 0.01 37.27 ± 1.98 0.02 ± 0.01 0.13 ± 0.01 55.94 ¡0.20 ± 0.33
4 to 5 346 0.08 1.71 ± 0.06 38.57 ± 1.20 − 1.58 ± 0.06 0.64 ± 0.06 18.79 0.67 ± 0.12 0.4 to 0.5 184 0.04 0.11 ± 0.01 24.58 ± 1.18 ¡0.04 ± 0.01 0.10 ± 0.01 64.13 0.78 ± 0.28
5 to 6 134 0.02 2.06 ± 0.11 38.57 ± 1.66 − 1.97 ± 0.12 0.60 ± 0.12 5.97 0.30 ± 0.18 0.5 to 0.6 244 0.05 0.14 ± 0.01 24.63 ± 1.16 ¡0.08 ± 0.01 0.11 ± 0.01 62.30 0.99 ± 0.29
6 to 7 36 0.06 3.09 ± 0.18 48.39 ± 2.56 − 3.06 ± 0.18 0.42 ± 0.18 0 0.34 ± 0.22 0.6 to 0.7 282 0.02 0.17 ± 0.01 26.68 ± 0.72 − 0.13 ± 0.01 0.12 ± 0.01 52.84 0.51 ± 0.24
7 to 8 6 0.03 3.8 ± 0.4 51.77 ± 5.56 − 3.80 ± 0.40 0.30 ± 0.40 0 − 0.20 ± 0.60 0.7 to 0.8 529 0.04 0.22 ± 0.00 28.67 ± 0.48 − 0.17 ± 0.00 0.13 ± 0.00 43.86 0.93 ± 0.20
8 to 9 – – – – – – – – 0.8 to 0.9 436 0.06 0.23 ± 0.00 26.75 ± 0.33 − 0.19 ± 0.00 0.12 ± 0.00 50.23 1.16 ± 0.21
> 9 – – – – – – – – > 0.9 164 0.05 0.23 ± 0.00 24.96 ± 0.35 − 0.22 ± 0.00 0.09 ± 0.00 43.90 0.79 ± 0.27

SL2P-CCRS

0 to 1 1449 0.39 0.79 ± 0.02 259.41 ± 8.12 0.59 ± 0.02 0.53 ± 0.02 79.43 1.47 ± 0.05 0.0 to 0.1 635 0.12 0.14 ± 0.00 358.72 ± 8.96 0.11 ± 0.00 0.09 ± 0.00 58.90 1.10 ± 0.12
1 to 2 415 0.10 0.98 ± 0.06 66.70 ± 4.35 0.56 ± 0.05 0.80 ± 0.05 72.53 0.93 ± 0.13 0.1 to 0.2 296 0.04 0.15 ± 0.00 102.57 ± 2.91 0.12 ± 0.00 0.10 ± 0.00 47.97 0.70 ± 0.19
2 to 3 392 0.06 0.97 ± 0.07 38.98 ± 2.84 0.21 ± 0.06 0.95 ± 0.06 70.92 0.81 ± 0.17 0.2 to 0.3 254 0.04 0.11 ± 0.00 44.87 ± 1.58 0.06 ± 0.00 0.10 ± 0.00 64.17 0.61 ± 0.20
3 to 4 447 0.01 1.16 ± 0.06 33.39 ± 1.56 − 0.24 ± 0.06 1.14 ± 0.06 59.06 0.37 ± 0.19 0.3 to 0.4 202 0.00 0.13 ± 0.01 37.65 ± 1.89 − 0.01 ± 0.01 0.13 ± 0.01 54.46 0.02 ± 0.34
4 to 5 346 0.07 1.27 ± 0.07 28.66 ± 1.42 − 0.47 ± 0.07 1.18 ± 0.07 55.78 1.21 ± 0.23 0.4 to 0.5 184 0.05 0.14 ± 0.01 30.62 ± 1.34 − 0.07 ± 0.01 0.12 ± 0.01 49.46 0.95 ± 0.32
5 to 6 134 0.01 1.19 ± 0.10 22.27 ± 1.96 ¡0.59 ± 0.12 1.03 ± 0.12 72.39 0.44 ± 0.33 0.5 to 0.6 244 0.06 0.18 ± 0.01 31.80 ± 1.26 − 0.12 ± 0.01 0.13 ± 0.01 41.39 1.29 ± 0.32
6 to 7 36 0.06 1.87 ± 0.17 29.37 ± 2.64 ¡1.75 ± 0.19 0.68 ± 0.19 27.78 0.60 ± 0.40 0.6 to 0.7 282 0.01 0.22 ± 0.01 33.53 ± 0.80 − 0.17 ± 0.01 0.14 ± 0.01 41.49 0.35 ± 0.29
7 to 8 6 0.21 2.30 ± 0.40 31.72 ± 5.81 ¡2.20 ± 0.40 0.70 ± 0.40 33.33 ¡1.50 ± 1.40 0.7 to 0.8 529 0.03 0.27 ± 0.01 35.60 ± 0.54 − 0.20 ± 0.00 0.17 ± 0.00 39.89 1.17 ± 0.27
8 to 9 – – – – – – – – 0.8 to 0.9 436 0.07 0.26 ± 0.00 30.28 ± 0.41 − 0.19 ± 0.00 0.18 ± 0.00 55.96 1.69 ± 0.30
> 9 – – – – – – – – > 0.9 164 0.05 0.21 ± 0.00 22.64 ± 0.31 − 0.18 ± 0.00 0.11 ± 0.00 64.63 0.98 ± 0.34
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Appendix F. Performance of retrievals as a function of fiducial reference magnitude (all canopy types)

Fig. F1. Performance of GROUNDED EO, SL2P, and SL2P-CCRS LAI (a) and FAPAR (b) retrievals as a function of fiducial reference magnitude for all canopy types. 
The dashed line represents a 1:1 relationship, whilst the shaded grey area represents user requirements. Error bands represent the 95% confidence interval.

Appendix G. Analysis of the potential impact of L2A surface reflectance uncertainty

In the absence of per-pixel uncertainties within the Sentinel-2 L2A product, we carried out an experiment to assess the potential contribution of 
L2A surface reflectance uncertainty to total LAI retrieval uncertainty. A Monte Carlo approach was adopted, in which 500 permutations of each GPR 
model were trained using the training dataset (see Section 2.5), but with surface reflectance values contaminated with Gaussian white noise consisting 
of multiplicative (2%) and additive (3%) components, assigned according to the expected L2A uncertainty of ~ 5% as demonstrated in previous 
surface reflectance intercomparison exercises (Djamai and Fernandes, 2018; Doxani et al., 2023, 2018). These trained GPR models were then applied 
to the reflectance observations within the validation dataset (see Section 2.6). From the 500 permutations of the trained GPR models, the standard 
deviation of the retrieved values was computed to represent the propagated L2A surface reflectance uncertainty. Total uncertainty in the retrieved 
values was determined by adding the GPR-derived (i.e. model-based) uncertainties and the propagated L2A surface reflectance uncertainties in 
quadrature, and the relative contribution of each component to the overall uncertainty budget was calculated. The results indicated that the GPR- 
derived (i.e. model-based) uncertainties were the dominant component, accounting for 67% of the total uncertainty on average, whereas the prop
agated L2A surface reflectance uncertainties accounted for 33% of the total uncertainty on average (Fig. G1).

Fig. G1. Relative contribution of GPR (i.e. model-based) and propagated L2A surface reflectance uncertainties to the overall LAI retrieval uncertainty budget.

Data availability

The GROUNDED EO fiducial reference database is archived on 
Zenodo: https://doi.org/10.5281/zenodo.14293472.

The GROUNDED EO retrieval algorithm is archived on GitHub: 
https://github.com/luke-a-brown/grounded-eo.
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Knyazikhin, Y., Wang, L., 2003. Retrieval of canopy biophysical variables from 
bidirectional reflectance. Remote Sens. Environ. 84, 1–15. https://doi.org/10.1016/ 
S0034-4257(02)00035-4.

De Kauwe, M.G., Disney, M.I., Quaife, T., Lewis, P., Williams, M., 2011. An assessment of 
the MODIS collection 5 leaf area index product for a region of mixed coniferous 
forest. Remote Sens. Environ. 115, 767–780. https://doi.org/10.1016/j. 
rse.2010.11.004.

Demarty, J., Chevallier, F., Friend, A.D., Viovy, N., Piao, S., Ciais, P., 2007. Assimilation 
of global MODIS leaf area index retrievals within a terrestrial biosphere model. 
Geophys. Res. Lett. 34, 1–6. https://doi.org/10.1029/2007GL030014.

Djamai, N., Fernandes, R., 2018. Comparison of SNAP-derived sentinel-2A L2A product 
to ESA product over Europe. Remote Sens. (Basel) 10, 926. https://doi.org/10.3390/ 
rs10060926.

Djamai, N., Fernandes, R., Sun, L., Hong, G., Brown, L.A., Morris, H., Dash, J., 2025. On 
the consistency and stability of vegetation biophysical variables retrievals from 
Landsat-8/9 and Sentinel-2. ISPRS J. Photogram. Remote Sens. 225, 329–347. 
https://doi.org/10.1016/j.isprsjprs.2025.04.006.

Djamai, N., Fernandes, R., Weiss, M., McNairn, H., Goïta, K., 2019. Validation of the 
sentinel simplified level 2 product prototype processor (SL2P) for mapping cropland 
biophysical variables using Sentinel-2/MSI and Landsat-8/OLI data. Remote Sens. 
Environ. 225, 416–430. https://doi.org/10.1016/j.rse.2019.03.020.

Doxani, G., Vermote, E., Roger, J., Gascon, F., Adriaensen, S., Frantz, D., Hagolle, O., 
Hollstein, A., Kirches, G., Li, F., Louis, J., Mangin, A., Pahlevan, N., Pflug, B., 
Vanhellemont, Q., 2018. Atmospheric correction inter-comparison exercise. Remote 
Sens. 10, 352. https://doi.org/10.3390/rs10020352.

Doxani, G., Vermote, E.F., Roger, J.-C., Skakun, S., Gascon, F., Collison, A., De 
Keukelaere, L., Desjardins, C., Frantz, D., Hagolle, O., Kim, M., Louis, J., Pacifici, F., 
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