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Abstract

It is over 100 years since the life-cycle of the malaria parasite Plasmodium was discovered, yet its intricacies remain
incompletely understood - a knowledge gap that may prove crucial for our efforts to control the disease. Phenotypic
screens have partially filled the void in the antimalarial drug market, but as compound libraries eventually become
exhausted, new medicines will only come from directed drug development based on a better understanding of
fundamental parasite biology. This review focusses on the unusual cell cycles of Plasmodium, which may present a rich
source of novel drug targets as well as a topic of fundamental biological interest. Plasmodium does not grow by
conventional binary fission, but rather by several syncytial modes of replication including schizogony and sporogony.
Here, we collate what is known about the various cell cycle events and their regulators throughout the Plasmodium
life-cycle, highlighting the differences between Plasmodium, model organisms and other apicomplexan parasites and
identifying areas where further study is required. The possibility of DNA replication and the cell cycle as a drug target is
also explored. Finally the use of existing tools, emerging technologies, their limitations and future directions to
elucidate the peculiarities of the Plasmodium cell cycle are discussed.
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Background
The malaria parasite owes its success in part to its ability
to ‘divide and conquer’ [1]. It pursues a complex, two-
host life-cycle involving both mosquito and human
hosts, in which each bottleneck is followed by a replica-
tion phase (Fig. 1). There are four periods of mitotic
DNA synthesis and one period of meiosis during the
course of the Plasmodium life-cycle [2]. The properties
of cell division at these replication phases differ funda-
mentally from conventional models of eukaryotic cell
division: rather than binary fission, the parasite opts pri-
marily for schizogony whereby a multinucleate syncyt-
ium is formed, prior to budding and cytokinesis [3].
Equally intriguing is the remarkably rapid process of
gamete formation, where male gametocytes undergo
three rounds of DNA replication in a matter of minutes,
producing eight male gametes [4, 5].
Such a complex life-cycle presumably requires sophis-

ticated global and local regulators, involving refined

checkpoint and DNA repair mechanisms [3], yet these
are currently only poorly understood. Along with the
unusual spatial and temporal dynamics of DNA replica-
tion, cell cycle regulators have been shown to be distinct
from human counterparts [6]. Thus, replication in Plas-
modium appears to be an excellent drug target: its
mechanisms and regulators are distinct from those of
the host organisms, the scale of reproductive output is
directly crucial to pathogenicity, and it offers the possi-
bility of interfering with the transmissibility of the para-
site. Furthermore, the parasite possesses two organelles
of bacterial origin, the apicoplast and mitochondrion,
both of which carry their own genomes and may
harbour distinct drug targets in the form of prokaryotic-
type replication proteins (apicoplast replication was re-
cently well-reviewed [7], so this article focusses only on
nuclear replication). Finally, in the current era of artemi-
sinin resistance, which appears to involve parasite ‘dor-
mancy’, understanding cell cycle arrest and checkpoints
is of utmost importance.
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The Plasmodium cell cycle
The standard eukaryotic cell cycle follows a clearly defined
series of stages during which the cell grows (interphase),
replicates its chromosomes (S phase) and divides (M
phase), with S phase often being flanked by two gap
phases called G1 and G2 (Fig. 2). The process is tightly
regulated by an extensive regulatory network that ensures

the cell is ready to progress onwards through the cycle
after each phase [8, 9]. Apicomplexans, including Plasmo-
dium spp., deviate significantly from this classical model,
allowing each cell to produce dozens or hundreds of new
daughter cells during a single replicative cycle. At the
heart of these adaptations is schizogony: a syncytial and
yet asynchronous form of replication and cell division,

Fig. 1 Schematic showing the life-cycle of P. falciparum. Each replicative stage of the life-cycle, together with the approximate fold-replication, is
highlighted in purple. Approximate parasite numbers within each host at each stage are also shown to highlight the severe bottlenecks and
massive expansions that occur throughout the life-cycle

Fig. 2 Schematic of the conventional eukaryotic cell cycle, highlighting the points at which cycle checkpoints operate
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which occurs in the mammalian host during hepatic and
erythrocytic infections, while a largely analogous process
called sporogony occurs in the mosquito vector during
oocyst formation (Fig. 1).
For the most virulent human malaria parasite, P. fal-

ciparum, the parasites in the erythrocytic cycle, when
grown in vitro, produce an average of 16 daughter mero-
zoites from a single infected erythrocyte. Of these, about
two-thirds can successfully invade new erythrocytes,
resulting in growth rates of up to 11-fold per 48-hour
cycle [10, 11]. Infected hepatocytes and oocysts have
been less closely studied, but each of these can produce
many thousands of daughter cells during a single repli-
cative cycle, taking ~ 7–10 days. Finally, the extremely
rapid replicative process of male gametogenesis takes
just 10–15 minutes (Table 1). Thus, there are huge vari-
ations of both speed and magnitude between the various
replicative stages of the Plasmodium life-cycle.

Cell-cycle mechanics at the cellular level
The Plasmodium cell cycle is best characterised during
erythrocytic schizogony, with the start of each cycle be-
ing associated with the invasion of a new erythrocyte by
a merozoite. During the first 24 hours post-invasion
(hpi), ring and early-trophozoite parasites possesses a
single haploid nucleus in interphase or G1. The centrio-
lar plaque (CP), which is functionally equivalent to the
centrosomes in higher eukaryotes, begins to assemble
and duplicate 20–24 hpi, marking the shift from growth
to replication. Replication of the chromosomes initiates
at estimated times of 29 hpi [12] or 24–26 hpi [13],
overlapping with the semi-conservative duplication of
the CP. It was initially proposed that several rounds of
continual chromosome replication would then occur,
followed by a single co-ordinated mass chromosome
segregation, nuclear division and formation of daughter
merozoites [14]; however, an alternative model entails
repeated cycles of replication, segregation and nuclear
envelope division, based upon the observed segregation
patterns of the CP [13]. In this model the characteristic
asynchronicity of schizogony correlates with the inherit-
ance of the CP, with nuclei that inherit the larger mother
CP being ready to divide sooner than those nuclei with
the daughter CP.

It is not known what signal induces a schizont to stop
its asynchronous nuclear divisions and undergo a final -
and apparently synchronous [13] - division, followed by
budding into membrane-bound daughter cells. Space or
nutrients within the host erythrocyte may become limit-
ing, or the timed production of a global cell cycle regula-
tor may be hard-wired into Plasmodium’s transcriptional
cascade [15]. The latter model could potentially enforce
synchronicity in the final nuclear division, but it would
presumably run the risk of ‘catching’ existing nuclei at dif-
ferent stages of S phase. Streipen and co-workers, working
largely in the related apicomplexan parasite Toxoplasma
gondii, have proposed that ‘local’ versus ‘global’ control is
centrally coordinated by the CPs [3, 16], while a remnant
flagellum is the organising principle for daughter cell bud-
ding [17]. This may also be true for Plasmodium, although
schizogony is numerically more complex than endodyo-
geny in T. gondii and the challenges of its coordination
may in fact be more analogous to the replication of hyphal
yeasts [18]. Overall, significant gaps remain in our under-
standing of the cell biology underlying schizogony, and
even less is known about the other phases of Plasmodium
replication (Fig. 1), for which erythrocytic schizogony may
yet prove an inadequate model.

Mechanics of DNA replication at the molecular
level
Many early-diverging eukaryotes, such as Trypanosoma
and Oxytricha, organise their genomes in extremely un-
usual ways [19, 20]; by comparison, the basic genome
structure of Plasmodium is quite conventional. There are
14 linear chromosomes with telomeres and centromeres,
plus two small organellar genomes in the mitochondrion
and apicoplast [21]. This conventional genome is repli-
cated, however, within the framework of fundamentally
unusual cell biology. Although much remains to be stud-
ied, some of the proteins and parameters involved in this
process have now begun to be elucidated.
Plasmodium encodes the basic replicative machinery

that is found in all eukaryotes, including DNA polymer-
ases [21, 22], proliferating cell nuclear antigen (PCNA)
[23, 24] and minichromosome maintenance proteins
(MCMs) [25, 26]. Components of the Origin Recognition
Complex (ORC) are also present although only two ORC
components have been characterised thus far in P.

Table 1 Summary of replicative stages in the P. falciparum life-cycle

Replicative stage Host Time period Daughter cells Rounds of replication Time available per
genome replication

Key references

Hepatic schizogony Human (liver) ~ 7 days > 10,000 ~ 14 ~ 12 h [108, 109]

Erythrocytic schizogony Human (bloodstream) 48 h ~ 16–20 4–5 ~ 4 h [13]

Gametogenesis Mosquito 15 min 8 3 < 4 min [4, 110]

Sporogony Mosquito ~ 10 days ~ 10,000 ~ 14 ~ 17 h [111, 112]
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falciparum, PfORC1 and PfORC5 [14, 27], while a puta-
tive ORC2 has been shown to be upregulated during gam-
etocyte activation in P. berghei [28]. The remaining
members of the complex are either absent or lack suffi-
cient homology with characterised members to allow clear
identification, although in P. berghei putative homologues
of ORC4 and ORC3 have recently been proposed [28].
The ORC-associated protein Cdc6 also lacks a clear
homologue in P. falciparum but a candidate has been pro-
posed in P. berghei [28]. Cdc6 is required for the recruit-
ment of Cdt1 and the loading of MCM proteins (to date
only a putative Cdt1-like gene has been identified in Plas-
modium). Interestingly, PfORC1 shares a homology region
with Cdc6 at the C-terminus and it may, therefore, be reg-
ulated in a Cdc6-like manner. In S. cerevisiae and humans,
the onset of Sphase results in the recruitment of two fur-
ther components to activate the MCM helicase: Cdc45
and the GINS complex (consisting of Sld5, Psf1, Psf2 and
Psf3). Sequence analysis has failed to identify a clear
homologue of Cdc45 in Plasmodium, while the members
of the GINS complex have been putatively identified,
based on low sequence homology, but it remains to be de-
termined whether they are functional.
ORC binds DNA and facilitates the initiation of repli-

cation. It recognises a conserved consensus sequence in
the yeast Saccharomyces cerevisiae, but in other eukary-
otes there is no consensus sequence and the preferred
composition of DNA bound by ORC varies from organ-
ism to organism [29]. Putative ORC-binding sequences
in P. falciparum have recently been identified in silico,
based on the AT-rich ORC-binding site of S. cerevisiae
(Fig. 3a): they are spaced only ~ 2500 bp apart in this
highly AT-rich genome and although selected sites do
show significant enrichment of ORC1 in ChIP assays
[30] (Fig. 3b), only a small proportion of these sites ap-
pear to be used for intra-erythrocytic replication. DNA
‘combing’ of labelled DNA fibres was recently used to
investigate the actual distribution of active replication
forks during erythrocytic schizogony (Fig. 3c) and this
revealed a mean distance of 65 kb between individual or-
igins, with replication forks moving at a mean rate of 1.
19 kb/min [31]. The rate of replication was not constant,
but decreased as the cells neared completion of schizog-
ony, coinciding with a reduction in the mean distance
between individual origins. Interestingly, this is the op-
posite of the pattern seen in human cells, where replica-
tion speeds up and origins become more widely spaced
as S phase proceeds. In a schizont, which is replicating
not 2-fold but ~ 16-fold, the availability of nucleotides,
the physical space available or the increasing compaction
of chromatin may all limit the speed of replication as S
phase advances [31].
During erythrocytic schizogony the first replication

(and possible nuclear division) requires 4–6 hours [13].

This, however, is not the maximal rate of replication for
the parasite. After ingestion by a mosquito, male game-
tocytes undergo a 3-fold replication of their genome in
less than 15 minutes, resulting in the production of 8
motile microgametes with 1N genome content [4, 5].
(Female gametocytes also mature and exit their host
cells upon entering a mosquito but no replication or cell
division occurs.) In the model rodent malaria species P.
berghei, in which much of the work on gametocytes has
been conducted, the first round of replication is usually
completed within a minute of gametocyte activation
[32]. Such extreme speed is unprecedented in eukaryotic
gametogenesis, and may reflect strong pressure to
complete the sexual cycle and exit the midgut before the
parasite cells are digested along with the blood meal. It
has yet to be determined whether the replication rate,
the number of simultaneously active origins or both are
significantly increased during gametocyte replication but
the question of replication fidelity clearly becomes par-
ticularly pressing at this unique point in the parasite’s
life-cycle. If the replication speed remains the same as it
is in erythrocytic schizogony, then almost all of the sug-
gested ORC-binding sites [30] must be used as origins
simultaneously. Precedents do exist for such extremely
flexible origin usage: in the earliest replications of Xen-
opus embryos, origins occur every 5–15 kb, spacing out
only after the mid-blastula transition [33]. Plasmodium
genome replication may be under similarly flexible con-
trol, although nothing is yet known about how this
might be differentially enforced in gametogenesis, spor-
ogony, hepatic and erythrocytic schizogony.

Regulation of the Plasmodium cell cycle
As described above, Plasmodium undergoes multiple un-
conventional cell cycles, in a variety of host cell types
and for varying durations. The intricacy and temporal/
spatial accuracy with which these cell cycles are gov-
erned requires global and local regulators that must be
fine-tuned and potentially equally unconventional. Al-
though the genomic revolution for Plasmodium has per-
mitted some investigation of these regulators, our
understanding at present is patchy and incomplete.

Cyclins and CDKs
In eukaryotic cells, cell cycle progression is governed by
cyclins and cyclin-dependent protein kinases (CDKs),
along with other proteins such the anaphase promoting
complex (APC), which promotes waves of cyclin degrad-
ation. The interplay between these regulatory and cata-
lytic components and their timely upregulation,
inhibition and degradation prompts sequential progres-
sion through G1, S, G2 and M phases [34] (Fig. 2).
The peculiarities of Plasmodium schizogony begin with

the lack of a G2 phase as the syncytial nuclei appear to

Matthews et al. Parasites & Vectors  (2018) 11:216 Page 4 of 13



alternate asynchronously between S and M phases prior to
the orchestrated event of cytokinesis [35] (Fig. 4a). This
raises questions about whether control of replicative cycles
through diffusible cytoplasmic factors is feasible [2, 12]. Al-
though such factors may exist, the Apicomplexa have a very
unusual repertoire of cyclins, CDKs and CDK-related ki-
nases (CRKs): in total, three cyclins, Cyc1, Cyc3 and Cyc4
[6], and seven CDK or CDK-related kinases, PK5, PK6,
Mrk1, Crk-1, Crk-3, Crk-5 [36] and Crk-4 [12], have been
identified in Plasmodium (Table 2).
None of the cyclins are homologs of canonical cell-cycle

cyclins (e.g. mammalian Cyc D, E and A) and they tend to
be ubiquitously expressed at many stages and not to ‘cycle’
as seen in mammalian cells [6, 37]. Amongst the CDKs,

PK5 is the only enzyme that clusters with mammalian
cell-cycle CDKs; of the others, Mrk1 is the putative func-
tional homologue of CDK7, which is both a CDK-
activating kinase and a component of the general tran-
scription factor TFIIH [38–40], Crk1 and Crk3 are hom-
ologous to transcriptional CDKs, and PK6 and Crk5 are
‘atypical’ CDKs specific to Apicomplexa [41–43].
Although PK5 is the putative homologue of mamma-

lian CDK1, Plasmodium encodes no cognate cyclins for
such an enzyme and the activator for PK5 remains un-
known: in vitro, it is unusually promiscuous and can be
activated by all three Plasmodium cyclins as well as
mammalian p25, cyclin H and RINGO [37, 44, 45]. The
partnership with Cyc1 is questionable because recent

Fig. 3 Development of techniques to examine the replication of the Plasmodium genome. a Bioinformatic analysis of conserved sequences at
and surrounding replication origins in the S. cerevisiae genome has led to identification of common motifs for searching the Plasmodium genome
[30]. Origins in S. cerevisiae consist of compact autonomously replicating sequences (ARS) with ‘A domain’ motifs (orange) and surrounding ‘B
domains’ (green). The Plasmodium genome has a high concentration of individual A and B domains (~ every 2500 bp) but a much lower
concentration when the requirement for closely associated domains is imposed (grey boxes). Bioinformatics approaches can only identify
putative origin sites and may fail to identify true origins (*) or identify sequences which are incapable of functioning as origins. b Chromatin
immuno-precipitation (ChIP) of the proteins required before and during replication, such as members of the Origin Recognition Complex (ORC),
allows experimental characterisation of origin sequences [30]. Following reversible DNA-protein cross linking, the genome is fragmented and the
proteins of interest are purified along with the associated DNA fragments, which are then sequenced. This may include origins that would never
be activated, and may miss those where the protein complex has dissociated from the chromosome. c Synthetic nucleoside labelling and DNA
combing techniques allow the labelling and fluorescent immunodetection of de novo DNA synthesis [31]. Parasites expressing viral thymidine
kinase can incorporate the synthetic nucleosides IdU (red) and CldU (green) which can be visualised in individual nuclei or on combed DNA
fibres, allowing the calculation of inter-origin distances and replication rates. The synthetic nucleosides will only be incorporated around active
origins (*) while inactive origins will remain unlabelled and therefore undetected
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immunoprecipitation studies failed to identify it [46].
Nevertheless, PK5 has been shown to be involved in
ORC1 phosphorylation, implicating it in DNA replica-
tion in erythrocytic stages [45]. Mrk1 is not apparently a
CDK-activating kinase in Plasmodium and although it
can interact in vitro with the replication factor complex
(PfRFC-5) and PfMCM6 [40], it actually appears to be
crucial for cytokinesis rather than replication, as indeed
is Cyc1 [46], with Mrk1 acting in a complex with Cyc1
and MAT1 [46]. Crk5 can be activated in vitro by Cyc1
and Cyc4 but its in vivo partner is again unknown; it is
involved in, but not essential for, erythrocytic schizogony

because its absence results in viable parasites with fewer
merozoites per schizont [43]. PK6 is proposed to be in-
volved in the onset of S phase in erythrocytic stages but
in vivo characterisation is lacking, and recombinant PK6
is cyclin-independent in vitro [47]. The remaining CDKs,
Crk-1 and Crk-3, are predicted to have roles in tran-
scriptional regulation and thus in cell growth and prolif-
eration [42, 48]. Overall, it is clear that Plasmodium cell
cycles are not regulated by conventional waves of cyclin/
CDK activity, although schizogony and sporogony do re-
quire Cyc1 and Cyc3, respectively [6, 46], and several
CDKs are evidently involved.

Non-cyclin/CDK cell cycle regulators
A host of cell cycle regulators beside the cyclins/CDKs
have been identified in Plasmodium (Fig. 4). Some of
these are homologs of conventional eukaryotic regula-
tors, including the NIMA kinases (Nek1-4) and the Aur-
ora kinases (Ark1-3): Nek1 plays an essential roles in
mitosis [43] and Nek2-4, in gametogenesis/meiosis [49–
51], while the Arks are involved in mitotic spindle for-
mation and cytokinesis [52]. Another - perhaps more in-
teresting - group of regulators are specific to the
unusual cell cycle modes of apicomplexans and there is
considerable interest in the plant-like calcium-
dependent protein kinases (CDPKs) as possible parasite-
specific drug targets, with CDPK4 playing multiple roles
in male gametogenesis [28] and CDPK7, in erythrocytic
schizogony [53]. Another Plasmodium-specific kinase,
PfCRK4, was recently identified as essential for DNA
replication in erythrocytic schizogony, although the
pathway in which it acts remains to be elucidated [12].
The regulation of Plasmodium’s atypical cell cycles could
clearly be rich source of novel drug targets, but much
work is still required to piece together the molecular sig-
nalling pathways involved.

Cell cycle checkpoints in Plasmodium
In addition to the cyclin-CDK regulatory network, there
are also defined checkpoints in yeast and mammalian sys-
tems that control cell cycle advancement. These serve as
quality control for cell growth (G1 checkpoint), successful
DNA replication or DNA damage (S and G2 checkpoints)
and chromosome attachment to the spindle (M check-
point) [54]. Checkpoints are particularly important for
avoiding re-replication and preventing the propagation of
incompletely replicated or damaged daughter genomes.
The existence of cell cycle checkpoints in Plasmodium

remains, in general, uncertain, and genes encoding key
checkpoint proteins such as Rb, p53, ATM and ATR
have not been identified. There is, however, some evi-
dence of a G1 checkpoint in the related parasite T. gon-
dii [55], and blood-stage Plasmodium parasites can
induce a comparable, reversible rest state/dormancy at

Fig. 4 Illustration of cell cycle phases in Plasmodium erythrocytic
schizogony (a) and Plasmodium male gametogenesis (b). The predicted
involvement of cyclins, CDKs and other kinases is shown at
each phase. Placement of such components is only loosely
chronological since most details are unknown. CDKs/Crks with a
dashed outline indicate cyclin independence. Crks or CDKs predicted
to be involved in transcriptional regulation are transparent (without
a white background). Interactions identified in vitro between cyclins
and CDKs are indicated by a dashed orange arrow. Table 2 identifies
all sources used to construct the figure. The cell cycles at sporogony
and hepatic schizogony are omitted due to the lack of information
about these stages
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the prereplicative ring stage in response to nutrient star-
vation [56] and drug pressure [57–59]. What induces
these states in the absence of a conventional G1 check-
point pathway is unclear.
DNA repair machinery is largely conserved in the para-

site genome, as described below, and parasites respond to
DNA damage by upregulating repair machinery and alter-
ing chromosome structure [60]. However, there is no ap-
parent G2, offering no opportunity for a G2 checkpoint
[13, 35] and the feasibility of intra-S and M checkpoints is
challenged by the striking variation in the speed of genome
replication at different life-cycle stages, particularly the un-
precedented rate in male gametocytes [61], sharply con-
trasting with a more conventional rate during erythrocytic
schizogony [13, 31]. Checkpoint regulation may be tempor-
ally possible during erythrocytic schizogony - and perhaps

also oocyst sporogony and hepatic schizogony - but not
gametogenesis. Spatially, schizogony also poses challenges
to checkpoint control. Although chromosomes do appear
to align with the hemispindle, which is anchored to a CP,
they remain uncondensed: it is thought that the centro-
meres remain constantly attached to CPs and that this may
help to separate the uncondensed chromosomes accurately
[3]. Finally, the syncytial nature of Plasmodium replication
raises questions about diffusible checkpoint factors and the
how the replication of individual genomes could be stalled
within a shared cytoplasm [2]. Nevertheless, the observa-
tion that schizonts produce very varied numbers of mero-
zoites while the erythrocytic cycle is always ~ 48 hours [62]
does imply that intra-S or M checkpoints may delay some
nuclei, and that the time span of schizogony is not imposed
by the number of merozoites to be produced.

Table 2 Regulators and their action in Plasmodium cell cycles

Regulator Stage of life-cyclea Cell cycle action Gene ID Reference

Cyclin Cyc1 Erythrocytic stages (Pf )
(peak expression in trophozoite)

Binds PfPK5 (in vitro) and PfMrk1
(in vivo). Role in segmentation

PF3D7_1463700; PBANKA_1233200 [44, 46,
113]

Cyc3 Oocyst formation (Pb) Binds PfPK5 (in vitro) PF3D7_0518400 (putative);
PBANKA_1233200

[6]

Cyc4 Unknown Activates PfCrk-5 in vitro PF3D7_1304700; PBANKA_1403200
(putative)

[43]

CDKs PK5 Erythrocytic schizogony (Pf) DNA synthesis PF3D7_1356900; PBANKA_1133200 [40, 45]

Mrk Erythrocytic schizogony (Pf)
(mRNA, however, more abundant
in gametocytes than in asexuals)

Cytokinesis in erythrocytic
schizogony (Pf). Transcriptional
regulator?

PF3D7_1014400; PBANKA_1212800 [38, 44, 46]

PK6 Erythrocytic schizogony
(trophozoite)

Onset of S phase
(cyclin independent)

PF3D7_1337100; PBANKA_1350900 [47]

Crks Crk-1 Gametocytes (Pf) Erythrocytic
schizogony (Pb)

Transcriptional regulator PF3D7_0417800; PBANKA_0719900 [114, 115]

Crk-3 Erythrocytic schizogony (Pf) Transcriptional regulator PF3D7_0415300; PBANKA_0717300 [42]

Crk-5 Erythrocytic schizogony (Pf) Proliferation - number of merozoites.
Activated by Cyc 1 and 4 in vitro.
Cyclin independent?

PF3D7_0615500; PBANKA_1230200 [43]

Other
Kinases

CDPK4 Gametogenesis (Pb) Mitotic spindle assembly PF3D7_0717500; PBANKA_0615200 [28]

CDPK7 Erythrocytic schizogony (Pf) Unknown PF3D7_1123100; PBANKA_0925200 [53]

Crk-4 Erythrocytic schizogony
(trophozoite/schizont) (Pf)

S phase PF3D7_0317200; PBANKA_0808000
(putative)

[12]

Nek-1 Erthrocytic schizogony/
Gametogenesis (Pb)

Mitosis PF3D7_1228300; PBANKA_1443000
(putative)

[116]

Nek-2 Zygote (Pb) Meiosis PF3D7_0525900; PBANKA_1240700 [49, 50]

Nek-3 Erythrocytic schizogony/
Gametogenesis (Pb)

Unknown PF3D7_1201600; PBANKA_0600600
(putative)

[117]

Nek-4 Zygote (Pb) Meiosis PF3D7_0719200; PBANKA_0616700 [49, 50]

Ark1 Erythrocytic schizogony/
Gametogenesis (Pb)

Mitotic spindle formation/
Cytokinesis

PF3D7_0605300; PBANKA_0104100 [52]

Ark2 Erythrocytic schizogony/
Gametogenesis (Pb)

Mitotic spindle formation/
Cytokinesis

PF3D7_0309200; PBANKA_0407400 [52]

Ark3 Erythrocytic schizogony/
Gametogenesis (Pb)

Mitotic spindle formation/
Cytokinesis

PF3D7_1356800; PBANKA_1133100 [52]

aInformation has been compiled from studies completed with either Plasmodium falciparum (Pf) or Plasmodium berghei (Pb) as indicated
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Variations in cell cycle speed also raise questions about
replicative fidelity and tolerance of karyotypic variation.
Indeed, this parasite’s relentless ability to develop resist-
ance against all antimalarials is undoubtedly linked to gen-
omic plasticity, but it remains debatable whether plasticity
is inherent in the P. falciparum genome, or is actually pro-
moted by unusually relaxed cell-cycle control. Under drug
pressure, P. falciparum erythrocytic stages can initiate
AT-track mediated, random duplication of segments of
the genome, followed by the establishment of pseudopoly-
ploids around a high priority locus. This permits fine-
tuning of amplicon numbers, relevant to drug pressure,
while avoiding genome damage and any deleterious muta-
tions in off-target loci [63]. In fact, 20 years ago the con-
cept of ‘hypermutator’ strains specific to certain global
regions was proposed to explain the fact that drug-
resistant parasites regularly arise in Southeast Asia [64],
but this has proved difficult to evidence, or to link it to
any molecular defect in DNA repair or checkpoints [65,
66]. Two recent studies have suggested that the mitotic
mutation rate does not vary between P. falciparum strains
and is not increased by drug pressure; rather, beneficial re-
sistance mutants are simply selected under drug pressure
[67, 68]. In this regard, P. falciparum’s active maintenance
of a highly AT-biased genome (81% A/T), with high inser-
tion/deletion rates and an overrepresentation of homopol-
ymeric A/T tracts [69], may be the key to rapid adaptive
evolution [70].
The extremely fast replication of male gametes raises a

particular conundrum in terms of checkpoints: does this
phase require especially stringent regulation, or con-
versely, more relaxed control to favour speed over fidelity?
The observation that some male gametes are produced
with apparently partial or absent nuclei (unpublished ob-
servations) and the fact that male-expressed genes display
fast rates of evolution [71] may suggest the latter. Proteins
involved in DNA replication and mitosis are simultan-
eously phosphorylated within the first 20 seconds of gam-
etocyte activation, contrary to the traditional view of
sequential progression through the cell cycle, and this
may facilitate the rapidity of gametogenesis [32]. Indeed,
the relatively limited repertoire of cell cycle kinases in
Plasmodium may also imply that some have dual func-
tions: CDPK4 has been implicated in assembly of the pre-
replicative complex, mitotic spindle formation, cytokinesis
and axoneme motility [28, 32, 72]. Extending this concept,
highly divergent kinases may also operate ‘incognito’ as
checkpoint kinases in Plasmodium.
Regardless of cell cycle speed, the parasite is clearly

able to promote genomic diversity during mitosis, as
well as more conventionally at meiosis. It seems unlikely
that the intricacy and precision of the Plasmodium cell
cycles would proceed unchecked, but evidence is cur-
rently lacking for clearly defined checkpoints and there

may be great flexibility in which checkpoints are
enforced during different types of replication.

DNA repair in Plasmodium
DNA damage can originate from a range of sources, the
most common in Plasmodium being reactive oxygen spe-
cies generated by metabolism, free radicals, which are
often produced after uptake of antimalarial drugs such as
chloroquine or artemisinin, and errors made during DNA
replication. Damage may affect individual bases or may
lead to the generation of potentially deadly double strand
breaks (DSBs). The mutational spectrum observed in P.
falciparum is highly unusual: the SNP mutation rate is 2.
45 × 10-10 mutations per base pair per life-cycle but this is
dwarfed by a 10-fold higher indel mutation rate, driven by
low complexity AT-rich sequences and a significant G:C
-> A:T transition bias [70]. This can promote the forma-
tion of pseudopolyploid loci, as described above, but the
core genome nevertheless remains intact, due to the pres-
ence of an effective DNA repair system including most -
although notably not all - of the pathways commonly
found in model eukaryotes.
Damage to individual bases is resolved by the excision re-

pair pathways that include nucleotide excision repair (NER)
, base excision repair (BER) and mismatch repair (MMR).
Orthologs of the majority of genes involved in the NER
pathway have been identified bioinformatically, with the ex-
ception of p62 and XPC [73]. Similarly, the majority of the
MMR pathway is present but there are notable differences
from other eukaryotes, with RecJ exonucleases appearing to
be absent while a UvrD helicase homolog, found in E. coli
but absent in humans, is present [74, 75]. Plasmodium fal-
ciparum lacks homologs for short-patch BER but a long-
path BER pathway is present [76].
The majority of eukaryotes rely upon two major path-

ways for the repair of double-strand breaks, homologous
recombination (HR) and non-homologous end joining
(NHEJ). The Plasmodium genome encodes a functional
HR pathway but the core genes of the NHEJ pathway
appear to be absent across the genus [21, 77], supported
by the inability to detect NHEJ products in vitro after
the experimental generation of DSBs [78, 79]. Accord-
ingly, HR is the prime source of DSB repair in the para-
site [79–81] (by contrast, T. gondii possesses a functional
NHEJ pathway, indicating loss of this pathway in Plas-
modium [82, 83]). HR, indeed, appears to be essential
for the completion of the parasite life-cycle because the
knockout of a zinc finger protein, PbZfp, in P. berghei
leads to a loss of transmission competence in mosqui-
toes due to a failure to recruit the topisomerase-like en-
zyme Spo11 to recombination hotspots [80]. During all
haploid growth phases the parasite must therefore rely
upon alternative end joining pathways such as
microhomology-mediated end joining (MMEJ) to repair
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DSBs within the core genome, because no repair tem-
plate exists to allow HR [84]. Bioinformatic comparisons
with the S. cerevisiae and human genomes have identi-
fied Plasmodium orthologs of the MMEJ components,
but studies of irradiated parasites suggest that the
process is inefficient or used infrequently, and that para-
sites with a 1N genome content are unable to repair
damage as efficiently as trophozoites with genome con-
tent of 2N or more [85–87].
Notably, this restriction does not apply to multigene

families, such as the var family of key virulence genes in
P. falciparum. There are ~ 60 hypervariable var gene ho-
mologs in every parasite genome so these can be repaired
via HR even in haploid parasites, using homologs within
the same family. This leads to important diversification of
these gene families during mitotic growth [68] (as well as
during meiosis), generating new antigenic variants that
can facilitate immune evasion during chronic human in-
fections. Var gene recombination does not require sub-
stantial stretches of high sequence homology and the
genes do not necessarily recombine with their closest ho-
mologues [68]; the physical clustering of var genes at the
nuclear periphery may favour sequence pairing even in
the absence of extensive homology.

DNA replication in Plasmodium as a potential
drug target
Historically, DNA replication has been an excellent drug
target in malaria parasites, as demonstrated by Fansidar:
an anti-folate drug combination which proved vital after
the emergence of chloroquine resistance in the late 1950s
[88]. Fansidar is a synergistic combination of two drugs
that block the pathway to production of reduced folate co-
factors (essential for nucleotide production and DNA syn-
thesis), but resistance to the combination arose fairly
rapidly [89, 90]. However, directly targeting the regulatory
machinery of the parasite, such as cell-cycle checkpoint
control, or eliciting DNA damage as a route to parasite
killing, may provide a greater hurdle to resistance develop-
ment. Indeed, DNA damage, together with protein dam-
age, is thought to be a mode of action for the frontline
antimalarial drug artemisinin, mediated through free radi-
cals [91]. Plasmodium falciparum responds to artemisinin
by inducing dormancy at G0/G1, downregulating DNA
synthesis-related cyclins/CDKs, upregulating putative
‘negative-regulatory’ cyclins/CDK’s [35] and upregulating
DNA repair machinery - specifically, PfRad51, PfRad54,
PfRPAIL and PfRPAIS [60, 92]. Artemisinin has also been
shown to induce G0/G1 arrest in Leishmania donovani
promastigotes [93] and in multiple cancer cell lines [35].
For Plasmodium, understanding the cell cycle arrest
phenotype takes on new urgency because it is considered
a key mechanism of artemisinin resistance [94]. This re-
sistance is not yet fully understood in molecular terms,

but it correlates with mutations in the Kelch-13 protein,
which in turn correlate with elevated levels of the
phosphoinositide-3-kinase enzyme PfPI3K [95]. PfPI3K, a
lipid kinase, is distantly related to protein kinases that are
key checkpoint proteins in most eukaryotes but are miss-
ing in Plasmodium - an intriguing similarity that is cur-
rently under investigation in our laboratory.
The ability of resistant parasites to survive in a dor-

mant state and recrudesce weeks later may be exacer-
bated by the recent finding that erythrocytic schizogony
is remarkably flexible in resistant parasites. Resistant
clones from Southeast Asia have a prolonged ring stage
and considerably shortened trophozoite stage, presum-
ably reducing drug exposure to the more vulnerable
trophozoite [57]. This phenotype was stable without ar-
temisinin drug pressure, which is particularly worrying
because it could reduce the available window for antima-
larials that target the trophozoite stage and that may be
used as partner drugs in artemisinin combination ther-
apies, or as alternative drugs if such therapies fail.
Artemisinin resistance first arose at the Thai/Cambo-

dian border, the historic epicentre of drug resistance de-
velopment, and Cambodian isolates have been shown to
have a mild mutator phenotype and mutations in a num-
ber of DNA repair genes, including members of the mis-
match repair pathway Mlh1, Pms1 and Exo1 [66]. (This
is in addition to mutations in the Kelch-13 propeller do-
main [96], which serves as a molecular marker for resist-
ance). In bacterial systems, mild mutators acquire
mutations at a lower rate than hypermutator lines but
remain able to purge deleterious mutations efficiently
from the genome and thus they can outcompete hyper-
mutators in the long term [97–100]. A fine balance is
clearly required between the need for accuracy and
adaptability, and this balance has probably shifted in P.
falciparum in response to continual pressure from anti-
malarial drug programmes. By analogy with cancer cells
- which frequently have deficient checkpoint and DNA
repair pathways - artemisinin resistant parasites may be
on a knife edge between efficient growth and the poten-
tial disaster of an under-regulated cell cycle, so it may be
possible to target them with drugs that exacerbate their
defects. Proteasome inhibitors can synergise with arte-
misinin by exacerbating the effects of protein damage
[101], so perhaps a similar strategy to inhibit a crucial
checkpoint or DNA repair pathway could exacerbate the
effects of artemisinin-induced DNA damage.
A better understanding of cell cycle regulation, check-

points and repair mechanisms in P. falciparum is needed
to aid the discovery of compounds that specifically inhibit
checkpoints or DNA repair. There may also be scope for
drugs that target the cell cycle itself, since components
such as the cyc-CDK machinery are distinct from human
counterparts. Indeed, like many Plasmodium proteins,
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some conserved replication proteins also have distinct N-
terminal extensions or inserted domains that could serve
as highly specific drug targets. Such discoveries could not
only circumvent artemisinin resistance but could also
identify a much-needed novel class of antimalarial agents.
Recently, the CDK inhibitors olomoucine (PfCRK1, PfPK5
and PfPK6 inhibitor), roscovitine (PfPK5 and PfPK6 in-
hibitor) and WR636638 (chalcone inhibitor of PfMRK)
were shown to have differential effects on artemisinin in-
duced dormancy [35]. The DNA synthesis inhibitor aphi-
dicolin and PfPK5 inhibitor flavopiridol also decrease
DNA replication in malaria parasites [102]. Overall, the
very fact that artemisinin is effective validates DNA dam-
age as a drug target, but the looming catastrophe of wide-
spread artemisinin resistance urgently demands a better
understanding of the resistance mechanism, its relation-
ship with DNA repair machinery, and with the control of
the Plasmodium cycle cell as a whole.

State-of-the-art focus: Experimental techniques to
study the Plasmodium cell cycle
Investigation of the Plasmodium cell cycle has been ham-
pered a lack of transferable techniques from other well-
studied systems. Erythrocytic schizogony has been most
thoroughly investigated because the blood stages of P. fal-
ciparum are relatively easy to culture. However, during
schizogony the small size of nuclei (diameter > 1 μm)
limits the resolution of immunofluorescence microscopy
and the multiple asynchronous rounds of replication com-
plicate flow cytometric definition of S phase parasites
based upon DNA content. Furthermore, synchronization
of blood-stage parasites, beyond age-range categories or
morphological classification via microscopy, has been
problematic because the most commonly used agents for
chemically synchronising cells at a precise cell-cycle
boundary are ineffective in Plasmodium [103].
Fortunately, in recent years significant technological

advances have occurred that will facilitate the study of
the Plasmodium cell cycle. The advent of bromodeox-
yuridine (BrdU) labelling for Plasmodium [104] means
that accurate detection of S phase entry and tracing of
de novo DNA synthesis is now possible (Fig. 3c). CRK4
depletion in P. falciparum has been shown halt DNA
replication [12] and might be exploited as a valuable
synchronisation tool. Progress in reverse-genetic tech-
niques such as Crispr/Cas9 [105], Selection linked inte-
gration (SLI) [106], and the DiCre system for conditional
knockdown [107] have improved the genetic tractability
and speed of genetic experiments in the parasite. Such
techniques can undoubtedly help to further characterise
the cyclin/CDK machinery and the elusive checkpoint
systems in Plasmodium. Along with advances in imaging
methods, such as improved deconvolution of widefield
microscopy, super resolution techniques and spinning

disk confocal microscopy, we are now better equipped
than ever to study the cell cycles of Plasmodium.

Conclusion
This review summarises our current knowledge about the
events of the Plasmodium cell cycles at both the cellular
and molecular levels, emphasising many areas of incom-
plete understanding. The cell cycles pursued by this para-
site vary enormously at different life-cycle stages, and
even the most accessible of these, which can be grown
readily in vitro in human erythrocytes, urgently demands
further study. This is especially so because of the great po-
tential for novel drug targets in this area of Plasmodium
biology. The increasing availability of experimental tools
for such work means that there has never been a better
time to advance our understanding of the cell cycle in this
globally important human parasite.
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