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Glossary: see end of document 
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Abstract:Reproduction is a fundamental aspect of life that affects all levels of biology, from genomes and 

development to population dynamics and diversification. The first Tree of Sex database synthesised the 

vast diversity of reproductive strategies and their intriguing distribution throughout eukaryotes. A decade 

on, we are reviving this initiative and greatly expanding its scope to provide the most comprehensive 

integration of knowledge on eukaryotic reproduction to date. In this perspective, we first identify 

important gaps in our current knowledge of reproductive strategies across eukaryotes. We then highlight 

a selection of questions that will benefit most from this new Tree of Sex project, including those related 

to the evolution of sex, modes of sex determination, sex chromosomes, and the consequences of various 

reproductive strategies. Finally, we outline our vision for the new Tree of Sex database and the consortium 

that will create it (treeofsex.ac.uk). The new database will cover all Eukaryota and include a wide selection 

of biological traits. It will also incorporate genomic data types that were scarce or non-existent at the time 

of the first Tree of Sex initiative. The new database will be publicly accessible, stable, and self-sustaining, 

thus greatly improving the accessibility of reproductive knowledge to researchers across disciplines for 

years to come. Lastly, the consortium will persist after the database is created to serve as a collaborative 

framework for research, prioritising ethical standards in the collection, use, and sharing of reproductive 

data. The new Tree of Sex consortium is open, and we encourage all who are interested in this topic to 

join us.   
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1. Introduction: 

Reproduction is a defining characteristic of life. Whether sexual, clonal, or one of a myriad of strategies in 

between, every extant species has some successful method for propagation. Importantly, an organism’s 

reproductive strategy (see the glossary for all terms in bold) can influence all biological levels of 

organisation, from genomes, cellular processes, development, physiology, through populations, ecology, 

behaviour, genetic diversity and the propensity for adaptation, diversification, and extinction. Describing 

the diversity of reproductive strategies among organisms and investigating how and why they evolve is 

thus essential when trying to understand the natural world.  

 

Given the numerous biological factors associated with reproductive strategies, their characterisation in 

diverse taxa requires multiple approaches and expertise from a broad range of disciplines including 

genetics/genomics, cell biology, physiology, developmental biology, ecology, behavioural ecology and 

evolutionary biology. Understanding the drivers and consequences of these strategies throughout nature 

requires subsequent in-depth analyses against a reliable phylogeny. However, before this is possible, 

information from disparate methodological and taxonomic disciplines must be integrated.  

 

Roughly a decade ago, a group of scientists created the Tree of Sex database (Tree of Sex Consortium, 

2014), collected data for over 37,000 species, across many eukaryotic lineages, and used it to gain several 

foundational insights into the distribution and evolution of reproductive strategies. These included the 

previously unrecognised lability and patterning of sex determination mechanisms across eukaryotes 

(Bachtrog et al., 2014), and well supported estimates of variation in the rates of transitions among 

different reproductive strategies (Blackmon et al., 2017; Blackmon & Demuth, 2014; Pennell et al., 2018). 

Since then, extensive research and methodological advancements, including the continuing genomic 

revolution, have deepened our insights into reproductive biology. To capitalise on these advances, we 

have revived the Tree of Sex consortium. We are now working towards a new database that not only 

updates the information compiled by the first initiative, but also largely expands its scope to include all 

clades of eukaryotes for which data exists, all reproductive strategies identified to date, and new data 

types including genomic data. Crucially, we will integrate this knowledge via a purpose-built ontology for 

reproductive biology, allowing us to connect information from disparate fields and from studies that are 

decades apart. The new Tree of Sex consortium will also serve as a framework for collaborative research 

to address fundamental questions about the evolution of reproductive strategies.  

 

To set the stage for the new Tree of Sex project, here we summarise existing efforts to describe the 

diversity of eukaryotic reproductive strategies and highlight the current gaps in our knowledge and their 

importance. We then describe some of the topics and unanswered questions that we believe will benefit 

most from large comparative approaches that the Tree of Sex database will enable. Lastly, we describe 

our plans for the Tree of Sex database and the consortium, emphasising the need for proactive 

engagement of a diversity of people, understandings, and perspectives so that we can build a database 

that encompasses the complexity and nuances of reproduction and its contexts throughout nature. 
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2. Characterising the diversity of reproductive strategies 

across eukaryotes 

Existing data on eukaryotic reproduction 

Taxonomically speaking, the first Tree of Sex database (Tree of Sex Consortium, 2014) remains the 

broadest integrated collection of information on reproduction in eukaryotes compiled to date. In the 

decade since, several additional databases (Table 1) have been assembled, focusing on reproduction-

related traits for distinct groups of organisms, including (but not limited to) fishes (Pla et al., 2022; Sember 

et al., 2021), amphibians and reptiles (Nemesházi & Bókony, 2023), insects (Chen et al., 2021), and plants 

(Baránková et al., 2020; Garcia et al., 2023). In addition, several other databases contain information that 

is relevant but not necessarily specific to reproduction, including karyotypes (Blackmon & Demuth, 2015a; 

Blaxter et al., 2024a; D’Ambrosio et al., 2017; Garcia et al., 2012; Jankásek et al., 2021; Román-Palacios et 

al., 2021; Sochorová et al., 2018) and genome sizes (Gregory, 2024; Pellicer & Leitch, 2020). Because 

reproductive strategies depend on and shape genomic characteristics (e.g., divergence, sex 

chromosomes, karyotype), these data types can greatly improve our understanding of the reproductive 

strategy of a given species. 

 

Together, the above databases contain information for tens of thousands of species including the 

presence or absence of sexual reproduction, mating systems, sex allocation, sex determination, 

karyotype, sex chromosome differentiation, ecological and behavioural phenotypes and many other traits 

that can inform the study of reproduction. However, these datasets are currently difficult to use in 

combination, as they lack standardised terms. Moreover, the lack of a common phylogeny hampers 

evolutionary analyses outside of the taxonomic bounds of each individual database.  

Gaps in our knowledge of reproduction in eukaryotes 

Despite extensive efforts, existing databases capture only a portion of the existing literature, which itself 

does not encompass the full diversity of reproductive strategies in nature. To identify taxonomic gaps in 

our knowledge, we conducted a literature search based on a non-exhaustive set of 36 keywords related 

to reproductive strategies (see legend of Figure 1). The search hits reveal a substantial taxonomic bias in 

the literature on reproductive strategies (Figure 1A). Unsurprisingly, species with relevance to medicine, 

agriculture and basic research (such as humans, mice, fruit flies, and the roundworm Caenorhabditis 

elegans) have received the most research interest. Indeed, over half of all papers studying chordates focus 

on humans or mice. Consequently, the spread of research across individual phyla does not reflect their 

species richness (Figure 1C). 

 

One additional factor likely contributing to these taxonomic biases is the difficulty of characterising 

reproductive strategies in non-model organisms. However, technological advancements are mitigating 

many such issues. Genomic techniques can help characterise the ploidy, karyotype, inheritance, sex 

chromosomes, sex-specific gene expression patterns, population dynamics, and other reproduction-
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relevant traits, in many cases without any prior knowledge. While it is still necessary to integrate such 

data with ecological, phenotypic, quantitative genetics, and cytogenetic approaches in order to gain a 

holistic picture of reproduction in a given species, genomics can provide a valuable foundation on which 

to build our understanding of reproduction, even in hard to study organisms (Deakin et al., 2019; Stöck et 

al., 2021a; Zaidem et al., 2019).  

 

In addition to biases from methodological limitations or applied practices, it is well known that the 

attention received by a given study system in biology is also affected by cultural and geographical biases. 

Owing to differences in resources and funding access, the most biodiverse regions of the planet have 

received the least research focus (Linck & Cadena, 2024; Titley et al., 2017). This also affects the diversity 

of researchers studying a given species as well as phrasing of hypotheses (Ahnesjö et al., 2020). Despite 

the ever-increasing yearly publication rates across science (Bornmann et al., 2021), the taxonomic biases 

in the distribution of publications on reproductive strategies per phylum have remained stable for over 

70 years (Figure 1A). The available genomes show a different skew (Figure 1B) to that of the published 

literature, however this has again changed little through time. Together, the stability of these trends 

highlights that closing the taxonomic gaps in our knowledge will require proactivity in the choice of future 

study systems and a serious push for inclusive research strategies that provide opportunities to 

researchers in low- and middle-income countries. 

 

When defining a strategy to mitigate problems caused by existing biases in study systems, one important 

factor to consider is the reproductive diversity of the studied taxa. For example, the large majority of 

studied viviparous mammals possess an XX/XY sex determination system with Sry as a sex determining 

gene, which has remained conserved for hundreds of millions of years (Hughes & Page, 2015). As such, it 

is less likely that exploring additional viviparous mammal systems will significantly broaden our knowledge 

of diversity and frequency of sex determination systems in eukaryotes. In contrast, based on the species 

studied so far, animals such as amphibians (Jeffries et al., 2018; Ma & Veltsos, 2021), reptiles (Gamble et 

al., 2015; Holleley et al., 2015; Krueger & Janzen, 2022; Pinto et al., 2022, 2023), fish (El Taher et al., 2021; 

Jeffries et al., 2018; Kitano et al., 2024), crustaceans (J. Li, 2022; Ye et al., 2023), insects (Blackmon et al., 

2017; Bracewell et al., 2024; Vicoso & Bachtrog, 2015), arachnids (Araujo et al., 2012; Cordellier et al., 

2020; Kořínková & Král, 2013), and potentially molluscs (Breton et al., 2018; Yusa, 2007) seem to display 

a large diversity of sex determination mechanisms, and yet they have received comparatively little 

attention in this regard. Similarly, haploid sexual systems are severely understudied, despite being found 

in many taxa including algae and bryophytes (Charlesworth, 2022; Coelho et al., 2018) and being 

important for testing predictions about sex chromosome evolution. Finally, there are many more 

fundamental gaps in our knowledge of reproduction of unicellular eukaryotes. For example, in 

microsporidia (important spore-forming unicellular fungi which parasitise all major groups of animals) all 

we know is that some form of sexual reproduction likely occurs, based on the presence of an intact multi-

gene cassette involved in mating-type determination in fungi (Lee et al., 2008), and putatively imaged 

gametes (reviewed in Khalaf et al., 2024). These taxa, which have been traditionally overlooked and show 

signs of high variability in reproductive strategies, likely hold the most potential for broadening our 

knowledge of reproductive strategy diversity and understanding the relative frequencies of the many 

systems that exist in nature. 
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We note, however, that we are not petitioning against the further study of already-well studied clades. 

Indeed, the ideal study system is defined by the question at hand, and the in-depth study of model 

systems, and those that are exceptions to clade norms can be extremely insightful for specific evolutionary 

processes, as has been the case with the few exceptional mammal species which do not share the usual 

mammalian XX/XY sex determination system (e.g., Hughes et al., 2024; Fredga, 1988; Mulugeta et al., 

2016; Ruiz-Herrera & Waters, 2022; Saunders & Veyrunes, 2021) 

Aside from taxonomic gaps, the types of data available for a given study system are also sporadic, with 

many lacking cytological (e.g., chromosome morphologies, centromere positions) or genomic data. The 

combination of high-throughput genomics with cytogenetic analyses (as in Deakin et al., 2019; Liehr, 2021) 

will undoubtedly prove to be a powerful approach to studying patterns of chromosomal rearrangements, 

such as inversions, translocations, fusions, or fissions, which can all impact reproductive processes 

including recombination in meiosis or gametogenesis, e.g., resulting in complete versus incomplete 

genome complements in gametes (Baránková et al., 2020; Deakin et al., 2019; Gil-Fernández et al., 2020; 

Vara et al., 2021), as well as speciation and hybridization. Such approaches will also be instrumental in 

describing phenomena such as programmed DNA elimination, which leads to differences in (sex) 

chromosome numbers or synteny between germline and somatic genomes. While programmed DNA 

elimination has so far been observed in multiple eukaryotic lineages (Hodson & Ross, 2021; Smith et al., 

2021; Wang & Davis, 2014), its frequency is still not well known.  

Advancements in chromosome conformation capture (“3C”) methods, such as Hi-C (Jerkovic & Cavalli, 

2021; Rao et al., 2014), are also opening new avenues for studying genome evolution across various 

timescales and cell types (Álvarez-González et al., 2022; Bista et al., 2024; Hoencamp et al., 2021; Vara et 

al., 2019). This technology has already provided insights into the chromatin structure of sex chromosomes 

in both somatic and germ cells, albeit in a limited number of organisms (Bista et al., 2024; Chen et al., 

2020; Hoencamp et al., 2021; Liu et al., 2024; Vara et al., 2019). As the accessibility of these approaches 

increases, so will our understanding of the role of chromatin architecture during meiosis and thus its role 

in the evolution of reproductive mechanisms (e.g., Álvarez-González & Ruiz-Herrera, 2025; Chen et al., 

2020).  

In summary, methodological advances like those listed above promise exciting opportunities for closing 

existing gaps in our knowledge of reproduction. The Tree of Sex consortium is thus committed to 

accommodating any such data type that could be pertinent to the interpretation of reproductive diversity 

to facilitate a holistic understanding of reproduction. 

3. Comparative analyses and their role in advancing the 

field of reproductive strategy evolution 

 

Centralising and integrating information across the field will enable large, phylogenetically deep 

comparative analyses to test for the evolutionary forces that shape diversity in reproductive strategies. 

With such analyses we can estimate the rate of reproductive trait evolution, the likelihood of transitions 

from one strategy to another, test whether trait evolution or transitions correlate with environmental, 
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ecological, physiological or genetic changes, and reconstruct the reproductive strategies in the ancestors 

of extant taxa. By compiling information as exhaustively as possible across eukaryotes, the Tree of Sex 

database will facilitate analyses at a previously unfeasible scale and resolution. Below we highlight several 

broad topics and ways in which we envisage such comparative analyses might advance our knowledge of 

reproduction.  

The evolution of sexual vs asexual reproduction, and everything in between 

Sexual reproduction, broadly viewed as a process that brings together and mixes the genetic material 

from two parental gametes, is widespread in eukaryotes. At its core, sexual reproduction involves the 

production of haploid (reduced) cells via meiosis. These cells can either be gametes (in most animals), or 

spores that will develop and produce gametes after additional mitotic cell divisions (in land plants). 

Haploid gametes then fuse (syngamy) during fertilisation to create the genome of the offspring. However, 

within this broad definition of sexual reproduction lies a large diversity of strategies (Figure 2). For 

example, sexual reproductive strategies can differ in relative time spent within individual stages of their 

cycle. In some cases, the reduced stage is dominant, in others the unreduced stage is dominant, while 

others spend large portions of their life cycle between these stages in the heterokaryotic phase. Strategies 

also differ in the types of gametes or spores that they produce. Many sexual eukaryotes are anisogamous, 

producing two gamete types which differ in size and form (e.g., eggs and sperm in many animals), while 

others are isogamous, wherein all gametes produced are of similar size and form (e.g., brewer’s yeast and 

some protists, dinoflagellates, and algae (Lehtonen et al., 2016)). A similar distinction can be made 

between spore-producing organisms which can either make spores of similar size (i.e., isospory, found in 

bryophytes; Mogensen 1985) or different sizes (anisospory, as found in most ferns; Dyer 1979). Lastly, in 

some species, syngamy occurs between the gametes from two individuals (biparental sexual 

reproduction), in others, zygotes can be made from the fusion of gametes from only one individual 

(uniparental sexual reproduction), and some species can do both. 

 

The evolution of anisogamy has received much attention in the context of species with distinct gamete 

types carried by different individuals (Parker, 1978). Anisogamy is thought to be a major cause of the 

evolution of different sex phenotypes (Schärer et al., 2012), and of sexual selection (Janicke et al., 2016). 

But why does anisogamy evolve despite its tendency to restrict mating opportunities (Otto, 2009)? And 

why is the predominant number of gamete classes two (Charlesworth, 1978)? Many models have been 

proposed to answer these questions (Billiard et al., 2011), with some receiving theoretical support 

(Constable & Kokko, 2021; Lehtonen et al., 2021; Lehtonen & Kokko, 2011; Lehtonen & Parker, 2014). 

However, conclusive empirical evidence for any of them remains rare. One type of empirical evidence that 

could prove useful in this case is the association of gamete types with other fundamental reproductive 

traits (e.g., self-compatibility, sex ratios, gamete competition/fertilisation success) though such analyses 

would require multiple phylogenetically independent taxa to provide statistical power. Thus, this topic 

could benefit greatly from the integrated knowledge of such traits across eukaryotes, and especially clades 

such as algae (Coelho et al., 2018; Krueger-Hadfield, 2024) and fungi (Billiard et al., 2011). 

 

The two distinct types of gametes of anisogamous species can be produced by different individuals or 

within a single individual. When produced by different individuals, we refer to the species as gonochoristic 

D
ow

nloaded from
 https://academ

ic.oup.com
/jeb/advance-article/doi/10.1093/jeb/voaf053/8126803 by Institute for Public H

ealth R
esearch, Salford user on 27 M

ay 2025



Acc
ep

ted
 M

an
us

cri
pt

in animals, or dioecious in plants with a diploid-dominant life cycle. While in plants with a haploid-

dominant life cycle, species in which different gamete types are produced by separate gametophytes are 

termed dioicous (Villarreal and Renner 2013) (Figure 2A). If both gamete types are produced by a single 

individual, we refer to them as hermaphroditic/monoecious/monoicous. Hermaphrodites can further be 

classified into those in which individuals can produce both types of gametes at the same time 

(simultaneous/synchronous hermaphroditism) or at different times (sequential hermaphroditism). In 

plants hermaphroditism refers to systems where individuals carry bi-sexual flowers, while the system 

where individuals generate male and female flowers is called monoecious. Hermaphroditism is the most 

common sexual system in flowering plants (Renner 2014; Käfer et al., 2017) and has been described in a 

variety of invertebrates (see initial review by Ghiselin, 1969); among vertebrates it is peculiar to teleost 

fishes (Pla et al., 2022). Hermaphrodites can also coexist with males (androdioecy), females (gynodioecy) 

or both (trioecy/trioicy), in mixed sexual systems. In animals (Sasson & Ryan, 2017; Weeks et al., 2006), 

androdioecy is known in very few taxa, for example, in Caenorhabditis nematodes (Thomas et al., 2012), 

in branchiopod crustaceans (Benvenuto & Weeks, 2020); in barnacles (Ewers-Saucedo et al., 2016) and, 

unique among vertebrates, in Kryptolebias killifishes (Costa et al., 2010). Gynodioecy is even more rare in 

animals (Weeks, 2012). In flowering plants, gynodioecy is more common than androdioecy (McCauley & 

Bailey, 2009), while trioecy is very rare in both animals (Oyarzún et al., 2020) and flowering plants (Godin, 

2022). Recent studies have investigated evolutionary transitions among all sexual systems (Goldberg et 

al., 2017; Leonard, 2019; Pannell & Jordan, 2022; Weeks, 2012). By centralising all known examples of 

sexual systems and self-compatibility in eukaryotes, the Tree of Sex database will allow us to better test 

whether the contexts of these strategies are general across Eukaryota.  

 

While sexual reproduction is often thought of as involving two individuals (biparental), in self-compatible 

simultaneous hermaphrodites the fusing gametes might be from the same parent in a process known as 

self-fertilisation, or selfing. Selfing is found in plants (Baker, 1955; Barrett, 1998; Hedrick, 1987) and 

animals (Goodwillie et al., 2005a; Jarne & Auld, 2006; Jarne & Charlesworth, 1993), in automictic fungi 

(Hood & Antonovics, 2004) and algae (Chepurnov et al., 2004; Heesch & Serrano‐Serrano, 2021; Krueger-

Hadfield et al., 2024). Uniparental sexual reproduction has been most extensively studied in the form of 

self-fertilisation in plants (Cheptou, 2018; Hartfield et al., 2017; Wright et al., 2013), which is often thought 

to evolve in response to selection for reproductive assurance when mates (or pollinators) are scarce 

(Baker, 1955; Pannell et al., 2015). Selfing in animals has been reported in a variety of invertebrates 

(Annelida, Arthropoda, Cnidaria, Echinodermata, Ectoprocta, Mollusca, Nematoda, Platyhelminthes and 

Urochordata; Jarne & Auld, 2006). Isogamous species might undergo self-fertilisation via fusion of gamete 

of the same meiotic tetrad (Billiard et al., 2011). Unfortunately, many selfing taxa, e.g., algae, still lack 

population genetic data with which to test theories for the predictors and consequences of selfing 

(Krueger-Hadfield, 2024). However, by centralising known examples of gonochorism, hermaphroditism, 

and self-fertilisation across diverse lineages, the Tree of Sex database will allow us to search for 

explanations for the distribution of selfing across eukaryotes.  

 

Uniparental reproduction might also happen without fusion of gametes (syngamy), which is known as 

parthenogenesis. These species usually have a modified meiosis or pre- or post-meiotic genome 

duplication, resulting in unreduced gametes and thus to stable ploidy levels between generations (Stöck 
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et al., 2021b). The offspring might be a genetic clone of the parent (e.g., in parthenogenetic animals using 

premeiotic endoreplication; Dedukh et al., 2024) or a mixture of parental haplotypes known in plant and 

animal literature as automixis. Finally, reproduction can occur via separation of somatic tissue such as 

vegetative propagation in plants (Schwaegerle, 2005), budding or fragmentation in cnidarians (Berzins et 

al., 2021), fissiparity in some flatworms (Zaccanti & Farne, 1986) and echinoderms (Dolmatov et al., 2018; 

Thuy et al., 2024).  

 

Though we have presented sexual and asexual reproduction above as separate modes of reproduction, in 

fact a spectrum of strategies exists, which do not neatly fall into these two discrete categories. For 

example, in sperm-dependent parthenogenesis, also known as gynogenesis, sperm is required but only to 

initiate embryo development, i.e., its DNA is not incorporated into the zygote (Beukeboom & Vrijenhoek, 

1998). This system is known, for example, in the teleost fish genera Poecilia and Poeciliopsis (Cerepaka & 

Schlupp, 2023; Lampert & Schartl, 2008; Schlupp, 2005; Schultz, 1969), Carassius (Choleva et al., 2008; 

Komen & Thorgaard, 2007; Liet al., 2018) and Cobitis (Choleva & Janko, 2013). Similarly, androgenesis 

requires two parents for fertilisation, but a zygote is formed solely with paternal nuclear genes; this is 

found in plants and animals (Schwander & Oldroyd, 2016). Some amphibians, teleosts and insects perform 

hybridogenesis, wherein DNA from both sperm and egg are incorporated into the zygote, however the 

genome of one of the parental species is consistently eliminated during meiosis in each generation 

(Neaves & Baumann, 2011).  

 

The categorisation of organisms as exclusively sexual or asexual also does not work for organisms using 

more than one reproductive strategy, as in cyclical parthenogenesis (found in aphids and water fleas) or 

arrhenotoky (a form of haplodiploidy) where males develop parthenogenetically from unfertilised eggs 

and females develop sexually from fertilised egg (for example in hymenopterans, thrips, and several other 

arthropod lineages; reviewed in de la Filia et al., 2015). Finally, many species switch between sexual and 

asexual forms of reproduction. Such strategies are used by most studied unicellular eukaryotes which 

generally reproduce asexually, with occasional sexual cycles (Green & Noakes, 1995; Hofstatter & Lahr, 

2019). 

 

Obligately asexual (or uniparental) reproduction is relatively rare, which has led to the famous question 

“why sex?” (Bell, 1981; Hartfield & Keightley, 2012; Otto, 2009, 2021). Indeed, where, how, and why 

sexual reproduction and its constituent processes (meiotic recombination, outcrossing, anisogamy, and 

sex) have evolved or been lost has received much attention. It is thought that recombination dates back 

to the ancestor of all eukaryotes (Bernstein & Bernstein, 2010; Mirzaghaderi & Hörandl, 2016; Ramesh et 

al., 2005). Yet, recombination has been lost or much reduced in the meiosis of the heterogametic sex in 

many species (Morgan, 1914; Sardell & Kirkpatrick, 2020; Satomura et al., 2019), or lost entirely in some 

asexuals employing asynaptic meiosis, like the Amazon molly (Dedukh et al., 2022) or achiasmatic meiosis, 

as in Bithynia snails (Debus, 1978) and scorpions (Shanahan & Hayman, 1990). It has been proposed that 

recombination evolved because it disrupts detrimental combinations of alleles and brings together 

beneficial alleles that arise in different individuals (Felsenstein, 1974; Hartfield & Keightley, 2012; Otto, 

2009). Furthermore, recent theoretical work points to selective interference as the main driver of the 
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evolution of sexual reproduction with recombination (Otto, 2021). Without genetic mixing and 

recombination, selection cannot act upon individual loci, as genetic variance is restricted to the level of 

the whole genome. There is substantial empirical support for selective interference (Neiman et al., 2018), 

however, so far it is restricted to individual genes and limited taxonomically. Importantly, many of these 

hypotheses have remained largely untested, primarily due to technical challenges in accurately estimating 

key parameters, such recombination rates, effective population sizes, and selection coefficients (Dapper 

& Payseur, 2017), as well as the fact that sex and meiotic recombination evolved only a small number of 

times. Thus, there is yet to be a fully satisfactory explanation for the vast prevalence of sex, which 

necessarily needs to be based on a study of a taxonomically diverse set of asexual species. 

 

The complexities of categorising reproductive strategies make comparative analyses difficult. By 

structuring the database to include nuanced characteristics of meiosis and inheritance for these species, 

the Tree of Sex will allow us to study the evolution of various components of these reproductive strategies 

in their most relevant context without forcing them into categories that could mask important patterns. 

Explaining the many ways of sex determination 

Anisogamy is more common than isogamy among multicellular eukaryotes and is often associated with 

dioecy/dioicy/gonochorism. In such species, mechanisms must exist to determine which type(s) of gamete 

an individual will produce, and individuals are classified as female (producing macrogametes) or male 

(producing microgametes). We refer to such mechanisms as sex determination (Beukeboom & Perrin, 

2014; Bull, 1983). This term is also sometimes used in isogamous clades such as algae and fungi, though, 

to avoid confusion, we refer to individuals producing different types of similarly sized gametes as mating 

types (Aanen et al., 2016).  

 

One of the main goals of the first Tree of Sex project was to synthesize the many ways in which sex is 

determined across eukaryotes and the non-random distribution of these mechanisms among eukaryotic 

clades (Bachtrog et al., 2014). For instance, to our knowledge every mammal or bird has genotypic sex 

determination (GSD), wherein the sex of an individual is determined by their genotype at one or more 

locus, or in their karyotype. In contrast, some reptiles and teleost fishes use environmental sex 

determination (ESD), wherein male or female development depends on environmental cues (e.g., 

temperature or social environment).  

 

Similarly to reproductive strategies, however, sex determination modes resist binary classification into 

GSD or ESD with sex in some species being determined by the interaction between genotype and the 

environment (Baroiller et al., 1995; Collin, 2006; Holleley et al., 2015; Mork et al., 2014; Piferrer et al., 

2005; Sarre et al., 2004; Whiteley et al., 2021). In addition, there are increasing examples of putative GSD 

systems in which the genotype at the presumed sex determination locus is less predictive of the sex 

phenotype than originally thought (Cossard & Pannell, 2019; Ehlers & Bataillon, 2007; Holleley et al., 2016; 

Nemesházi et al., 2020; Nemesházi & Bókony, 2022; Phillips et al., 2020; Rodrigues et al., 2018; Wiggins 

et al., 2020). It has been proposed (but not yet empirically tested) that such cases could arise from 
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interactions between the random noise inherent in gene expression and the required expression 

thresholds for sex development pathways (Perrin, 2016). Though, it is also possible that the occurrence 

of mismatches between genotypic and phenotypic sex could be favoured by natural selection as it can 

allow for occasional self-fertilisation, which could be beneficial in some situations (e.g. low mate 

abundance, Crossman and Charlesworth 2014; Pannell 2015) . 

 

There is also ample variation in sex determination mechanisms within GSD systems. In many cases a single 

locus acts, in a switch like fashion, to divert development to the male or female pathway. This gene is 

widely referred to as the Master Sex Determination (MSD) gene, though some suggest that it should be 

referred to as the Primary Signal (PS) gene reflecting a more polygenic view of developmental regulation 

(Kocher et al., 2024). We use the latter from hereon. Polygenic sex determination has indeed been shown 

in some species, such that multiple genes in an individual’s genome act together to determine sex 

(reviewed in Kocher et al., 2024; Schartl et al., 2023). Another form of a GSD present in several diverse 

taxa (15% of known arthropod species; de la Filia et al., 2015) is arrhenotoky, which has independently 

evolved multiple times (Normark, 2003; Ross et al., 2015) and is often associated with eusociality (da Silva, 

2022; Joshi & Wiens, 2023), inbreeding (Hamilton, 1967; Ross et al., 2015), flexible sex allocation 

(Hamilton, 1967; Normark, 2004), reproductive manipulation by infectious endosymbionts (Werren et al., 

2008) and often uses the ecologically vulnerable complementary sex determination system (Beye et al., 

2003; Leung & van der Meulen, 2022; Zayed & Packer, 2005). 

 

Despite great progress in the discovery of sex determination mechanisms across eukaryotes (Bachtrog et 

al., 2014; Beukeboom & Perrin, 2014; Blackmon et al., 2015, 2017; Goldberg et al., 2017; Iwasaki et al., 

2021; Sabath et al., 2016), this information is distributed in a very biased way across eukaryotic clades. 

For example, we currently know the PS gene of approximately 140 teleost species (Kitano et al., 2024; 

Wang et al., 2024), which has allowed us to recognise not only the high amounts of polymorphism in PS 

genes in this clade, but also the strong convergence on a few genes, implying strong evolutionary 

constraints on which genes can become PS genes in some lineages. These insights highlight how important 

and powerful it is to have good phylogenetic coverage and detailed information on reproductive 

strategies. In contrast, we currently have no knowledge of the sex determination genes in most organisms, 

including even well studied ones like guppies (Charlesworth et al., 2020) or Rumex plants (Sacchi et al., 

2024) to name but two cases. This not only precludes similar inferences in these clades but also prevents 

our understanding of whether the evolutionary patterns seen within teleosts are an exception, or whether 

they are indicative of a general pattern across eukaryotes. This issue applies not only to the study of PS 

genes, but also to mechanisms of ESD, which, to our knowledge have only been described to date in turtles 

(Ge et al., 2018; Schroeder et al., 2016; Weber et al., 2020) and Daphnia (Kato et al., 2024), though similar 

ESD mechanisms involving thermally sensitive isoforms have been implicated across distantly related 

reptiles (Deveson et al., 2017; Whiteley et al., 2022).  

 

By integrating available data on sex determination systems across eukaryotes, the Tree of Sex database 

will facilitate comparative approaches to describe, with higher resolution than before, the distribution of 
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sex determination mechanisms across eukaryotes, their association with relevant traits (e.g., life cycle, 

environmental stability), and patterns of gene use for sex determination. 

Sex chromosome evolution 

In organisms with GSD, the term sex chromosome refers to a linkage group harbouring a locus whose 

inheritance correlates with an organism’s sex. They are common among eukaryotes with separate sexes 

and have evolved many times independently across many clades (Bachtrog et al., 2011, reviewed in 

Bachtrog et al., 2014). The term “sex chromosome” refers to all ranges of sex chromosome differentiation 

(see below), including systems in which one homolog is almost completely sex linked, completely absent, 

or in which the sex-linked region containing the sex determination gene represents only a small portion 

of the chromosome, with the rest segregating autosomally (pseudoautosomal region (PAR)). In organisms 

with fixed separate sexes, in which sex is determined in the diploid phase of the life cycle, sex chromosome 

systems can be split into two major categories: (1) male heterogamety (e.g., XX/XY), where males (XY) 

can produce two different (hence “hetero”) types of haploid gametes, containing either an X or a Y 

chromosome; and (2) female heterogamety (e.g., ZZ/ZW), where it is the females that produce two 

different gamete types (e.g., with either a Z or a W chromosome). In such systems, the sex-limited 

chromosome may carry an allele which initiates development of the heterogametic sex, or sex might be 

determined by the number of X (Bridges, 1916; Meyer, 2022) or Z (Ioannidis et al., 2021) chromosomes. 

In some organisms, no sex-limited chromosome exists (e.g., XX/X0 in nematodes (Nigon, 1949), springtails 

(Núñez, 1962), and many insects (reviewed in Blackmon et al., 2017; White, 1945), or ZZ/Z0 in many moths 

(Sahara et al., 2012)). Again, in such cases, it is the number of X or Z chromosomes that determines sex. 

And finally, taxa in which only the sex-limited chromosome exists have also been found (00/Y0, or 00/W0) 

(Jonika et al., 2022), though the latter are seemingly rare. In anisogamous species in which sexes are 

determined in the haploid life phase, sex chromosomes are denoted as U/V, with only one of the two 

being present in a given haploid cell (Ahmed et al., 2014; Lipinska et al., 2024; Nieuwenhuis & James, 

2016). Finally, while isogamous species do not have sex chromosomes, their “mating-type chromosomes” 

often behave similarly to U/V chromosomes (Coelho et al., 2018). 

 

One of the most notable and consistent properties of sex chromosomes is the tendency for recombination 

to be reduced between the sex-limited chromosome (e.g., Y or W) and its gametolog (e.g., X or Z) 

(Charlesworth, 2023; reviewed in Charlesworth et al., 2005). This can either be a progressive reduction 

(as reviewed in Jay et al., 2024), or perhaps due to a sex determination gene arising in a region which 

already lacked recombination (Bergero et al., 2019; Rifkin et al., 2020, 2022). Due to the lack of genetic 

exchange between gametologs, the sex-linked region often degenerates over time, losing much of its gene 

function and content (Muller, 1964) and accumulating repetitive elements (Charlesworth et al., 1994; 

Nguyen & Bachtrog, 2021; Peona et al., 2021). However, due to differences in selection in the two sexes, 

sex chromosomes can also become specialised, e.g., Y chromosomes may become enriched in genes 

important for male reproduction (Bachtrog et al., 2019; Carvalho et al., 2001; Colaco & Modi, 2018; Okada 

et al., 2001). In contrast to XY/ZW systems, the degeneration and/or specialisation of U and V 

chromosomes is expected to be symmetrical as they are each inherited without recombination by 

gametophytes of just one sex (Bull, 1978; Carey et al., 2021; Immler & Otto, 2015).  
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The evolutionary forces driving recombination reduction on sex chromosomes have received considerable 

debate. Several theoretical models have been proposed to explain this process (reviewed in Charlesworth, 

2023; Jay et al., 2024; Käfer, 2022; Ponnikas et al., 2018; Veltsos et al., 2024). Most of these theories are 

adaptive (but see Jeffries et al., 2021; Kent et al., 2017; Rifkin et al., 2020) and invoke selection either due 

to the presence of sexually antagonistic polymorphisms, deleterious mutations, regulatory evolution, or 

meiotic drive. While debate is ongoing as to which of these models is most promising (Bergero & 

Charlesworth, 2019; Charlesworth & Olito, 2024; Jay et al., 2024; Lenormand & Roze, 2024), this 

discussion is almost entirely theoretical and rests on many untested assumptions (summarised in Jay et 

al., 2024). However, some of these assumptions can potentially be tested (Charlesworth, 2023) and the 

Tree of Sex database will facilitate this, for example by relating the rate and extent of recombination loss 

on sex chromosomes to its proposed drivers across phylogenetically distant species.  

 

Another interesting characteristic of sex chromosomes is the rate at which fusions between sex 

chromosomes and autosomes fix within some lineages (Anderson et al., 2020; Lisachov et al., 2021; 

Pennell et al., 2015; Pokorná et al., 2014; Wright et al., 2024). This is often followed again by the spread 

of recombination reduction to parts of the fused chromosome (neo-sex chromosome), further increasing 

the proportion of the genome which is sex linked. In extreme cases this can happen multiple times, as in 

the sex chromosome chains of monotremes (Rens et al., 2007). Proposed evolutionary drivers of such 

fusions overlap with those proposed above for recombination suppression. For example, a sex 

chromosome-autosome fusion may be favoured if the autosome harbours a gene under sexually 

antagonistic selection (Charlesworth & Charlesworth, 1980; Matsumoto & Kitano, 2016). However, 

additional hypotheses specific to the fixation of fusions also exist. The fragile Y hypothesis (Blackmon & 

Demuth, 2015b), for example, proposes that, as recombination is lost on a sex chromosome, opportunity 

for chiasmata is reduced along much of its length. As chiasmata are important for correct chromosomal 

segregation during meiosis, their absence can result in maladaptive or lethal aneuploidies. This could 

provide an advantage to sex chromosomes fused to an autosome, which could restore pairing. Here the 

Tree of Sex database will facilitate a more complete characterisation of the rates of various types of 

fusions across the eukaryotic phylogeny. Further, it will allow for tests of association between the rate of 

fusions and the extent of sex chromosome degeneration, size of the pseudoautosomal region, the 

integrity of centromeres, holocentricity, and many more potential predictors across a much more diverse 

set of lineages than is currently possible. 

 

Extensive degeneration via deletions, massive accumulation of repeat elements (Chalopin et al., 2015), or 

fusions can all result in heteromorphic sex chromosomes, i.e., those that show morphological differences 

that can be seen via microscopy. As such techniques were the only ones available for decades after sex 

chromosomes were first discovered in 1905 (Brush, 1978; Stevens, 1905, 1906), heteromorphic sex 

chromosomes were generally the only ones that could be detected and studied. However, the increasing 

availability of genetic and genomic techniques has enabled the discovery of many new sex chromosome 

systems that do not show morphological differences via microscopy (homomorphic). While this newly 

available data is still fragmented, it has revealed that homomorphic sex chromosomes are common 

among eukaryotes (Bachtrog et al., 2014). Further the distribution of homomorphic vs heteromorphic sex 

chromosomes across eukaryotic lineages is highly heterogeneous. For example, in mammals almost every 
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species has heteromorphic sex chromosomes (Graves, 1995), while in amphibians, between 75-96% of 

species are thought to have homomorphic sex chromosomes (Ma & Veltsos, 2021; Schmid et al., 1991). 

Assembling detailed information for sex chromosome differentiation from all data types, including 

microscopy, genetic maps and genomic data within the Tree of Sex database will help crystallise this 

picture, and give a much more accurate view of the extent and distribution of sex chromosome 

degeneration across the eukaryote phylogeny.  

 

The extent of sex chromosome degeneration observed is related to the frequency at which new sex 

chromosomes arise in each clade. Transitions from hermaphroditism to gonochorism (with GSD; Ming et 

al., 2011), ESD to GSD (Johnson Pokorná & Kratochvíl, 2016; Sabath et al., 2016), or from one GSD system 

to another (i.e., sex chromosome turnovers; El Taher et al., 2021; Gamble et al., 2015; Jeffries et al., 2018; 

Kratochvíl et al., 2021b; Vicoso, 2019) will all create new sex chromosomes. Because, in most cases, new 

sex chromosomes arise from existing autosomes (but see Fraïsse et al., 2017; Imarazene et al., 2021), and 

because sex chromosomes degenerate progressively through time, the gametologs of very young sex 

chromosome systems are generally undifferentiated. Lineages with frequent transitions in sex 

determination system thus tend to have undifferentiated sex chromosomes (Blaser et al., 2014; El Taher 

et al., 2021; Jeffries et al., 2018). However, correlations between the age of a sex chromosome system 

and levels of degeneration can be weak across divergent taxa (Renner & Müller, 2021) and there are 

several known cases of old yet homomorphic sex chromosome systems (Kuhl et al., 2021; Pan et al., 2019). 

Given the ratchet-like nature of sex chromosome degeneration, this may reflect differences in the rates 

of sex chromosome degeneration, but we currently lack the dataset to assess this. To solve this question, 

we need accurate estimates of the age of sex chromosomes (e.g., from phylogenies and neutral sequence 

divergence (dS)) along with accurate measures of their degeneration (e.g., gene loss, dNdS, repeat 

accumulation) from multiple species within multiple distant clades. Indeed, such a task is a prime 

candidate for the new Tree of Sex database and consortium. 

 

Another mystery relating to sex determination system transitions is their highly heterogeneous rates 

among taxa. For example, they are very rare in some lineages within  insects (Toups & Vicoso, 2023), 

bryophytes (Carey et al., 2021), cephalopods (Coffing et al., 2024), sturgeons (Kuhl et al., 2021), birds 

(Fridolfsson et al., 1998) and many other amniote lineages (Kratochvíl et al., 2021a), but very frequent in 

geckos (Gamble et al., 2015), true frogs (Jeffries et al., 2018), medaka fishes (Ansai et al., 2022; Myosho 

et al., 2015), and cichlids (El Taher et al., 2021; Feller et al., 2021). Why some sex chromosome systems 

are so stable, while others transition often, remains an important but unresolved question. Comparative 

analyses are essential for identifying, dating and placing transitions on a phylogeny. The Tree of Sex will 

allow us to do this on an unprecedented scale, and by relating transitions to other life history traits, we 

hope to better understand their evolutionary drivers.  
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Evolutionary and ecological consequences of reproductive strategies 

 

The reproductive strategy of a given taxon affects its ecology and evolution. For instance, dispersal to, 

and establishment in a new geographic region can be easier for self-compatible hermaphroditic or asexual 

species, especially in geographic regions where pollinators or mates are rare (Baker, 1955). This theory 

has received support in many hermaphroditic plant systems (Grossenbacher et al., 2015; Hargreaves & 

Eckert, 2014; Pannell et al., 2015; Razanajatovo et al., 2016). Similarly, in animals, simultaneous 

hermaphroditism can increase fertilisation success in unpredictable, unstable or extreme environments 

where mates are at low density (Benvenuto & Weeks, 2020), as for parasitic species, and gynogenesis 

using sperm from other species can result in increased invasion success where conspecific mates are not 

present (Fuad et al., 2021). For example, parthenogenesis has been linked to range expansion in stick 

insects (Morgan-Richards et al., 2010). Extending this test of range size to other modes of reproduction 

would give a more holistic picture of how colonisation and establishment can be impacted by reproductive 

strategy (Tilquin & Kokko, 2016). This could further be used to help predict the potential invasiveness or 

pathogenicity of species, or their potential for range shifts in response to climate change or other 

anthropogenic impacts.  

Reproductive strategies also influence the ability of taxa to adapt and thus their resilience to biotic or 

abiotic environmental change. The efficacy of selection is impacted by random associations that occur 

between alleles that increase fitness and those that decrease fitness limiting both adaptation and the 

elimination of deleterious mutations (reviewed in Otto, 2021).  This process is known as Hill-Robertson 

effect (Hill & Robertson, 1966) or “selective interference”. Sexual reproduction with recombination can 

break down these genetic associations and generate variation upon which selection can act. However, 

some reproductive strategies, such as self-fertilisation, limit the effective rate of recombination and 

therefore exacerbate selective interference (Hartfield, 2016; Hartfield et al., 2017). Similar consequences 

are predicted in parthenogenetic species, though the exact dynamics depend on the cellular mechanism 

of parthenogenesis (Engelstädter, 2017). Furthermore, the origin of parthenogenetic species is another 

factor affecting the levels of selective interference. In addition, the efficacy of selection can be reduced 

when new parthenogenetic or selfing species form, if they arise spontaneously with little genetic diversity 

(Jaron et al., 2022).  

In the absence of sexual reproduction and effective recombination in a diploid species, homologous 

haplotypes will independently accumulate mutations resulting in extreme Allelic Sequence Divergence 

(ASD) (White, 1945), often also referred to as the ‘Meselson effect’ (Birky, 1996). Consequently, 

corresponding haplotypes in different individuals and/or populations will be more closely related than 

two homologous haplotypes within an individual. Despite the elegance of this predicted effect and a large 

number of parthenogenetic species tested, support is limited (Brandt et al., 2021; Öztoprak et al., 2023; 

Weir et al., 2016) and evidence in several systems has later been reinterpreted (Freitas et al., 2023; Jaron 

et al., 2022; Mark Welch et al., 2008; Schwander et al., 2011). Hybridization of distantly related species 

can generate new parthenogenetic lineages that also show a similar genomic pattern to the Meselson 

effect (Jaron et al., 2021). Some parthenogenetic species occasionally lose heterozygosity by mitotic 

recombination between homologous parental chromosomes (Janko et al., 2021), which potentially 

contributes to mitigation of the accumulation of deleterious mutations due to selective interference (Kočí 
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et al., 2020). In general, the consequences of parthenogenesis have proven less apparent compared to 

early predictions (Normark, 2003) and are often masked by lineage specific effects (Jaron et al., 2021). It 

is of great interest to separate lineage specific effects and the consequences of the individual reproductive 

strategies. Only then can we identify the underlying causes of the observed phenomena and finally get 

closer to answering the question “why sex?”. 

In the face of escalating environmental change, determining how different reproductive strategies 

interact with the environment to influence population resilience is also key for conservation biology. Of 

the environmental stimuli that can influence organisms, temperature can affect sex determination in 

many vertebrates (Kitano et al., 2024; Nemesházi & Bókony, 2022; Valenzuela & Lance, 2004). The fast 

pace of global warming threatens temperature-sex determined vertebrates by disrupting sex ratios and 

other traits (Honeycutt et al., 2019; Jensen et al., 2018; Lockley & Eizaguirre, 2021; Valenzuela et al., 2019). 

Similar climate-driven sex-ratio distortions are expected in GSD species that are prone to thermal sex 

reversal, with complex consequences for population dynamics and microevolution (Bókony et al., 2017; 

Nemesházi et al., 2021; Schwanz et al., 2020; Whiteley et al., 2018). Further, population dynamics of 

species with multifactorial sex determination such as GSD houseflies or TSD/GSD silverside fish, where the 

distribution of sex determination variants is temperature-dependent and geographically clinal (Duffy et 

al., 2015; Feldmeyer et al., 2008; Foy et al., 2024), will also be affected by climate change. Aside from 

temperature, sex determination mechanisms may also be disrupted by pollutants that act as endocrine 

disruptors that directly affect sexual development or induce stress that renders individuals susceptible to 

thermal insults (Mizoguchi & Valenzuela, 2016). Thus, anthropogenic disruption of the chemical 

(pollution) and thermal environment (globally or locally, e.g., the urban heat island effect) may have a 

combined influence on sex determination. For instance, elevated sex-reversal frequency has been 

observed in agile frogs (Rana dalmatina) in areas where anthropogenic land use (i.e., agriculture and 

urbanisation) is high (Nemesházi et al., 2020). By centralising data for environmental effects on sex 

determination mechanisms, the Tree of Sex database will allow a comprehensive overview of species that 

are more vulnerable to unavoidable environmental changes, which could, in turn, support conservation 

actions. 

At a macroevolutionary scale, reproductive strategies play an important role in shaping species diversity. 

For instance, in the plant family Solanaceae, obligate outcrossing (self-incompatibility) is associated with 

higher net diversification rates than in species capable of self-fertilisation (Goldberg et al., 2010). Even 

though self-compatible Solanaceae species exhibit a higher speciation rate than obligate outcrossing 

species, this rate is exceeded by the much higher extinction rate of self-compatible plants. This pattern 

agrees with theoretical expectations, showing that species barriers accumulate faster in selfing than 

outcrossing species under most scenarios of speciation (Marie-Orleach et al., 2022). However, the relative 

importance of genetic (selective interference) and demographic factors in driving higher rates of 

extinction in self-compatible species remains unclear. Species with separate sexes can exhibit conflicts for 

traits that have different optima between sexes, leading to an evolutionary arms race that can ultimately 

contribute to reproductive isolation. A comparative analysis of hybridising plants supports this idea, with 

strictly dioecious species pairs exhibiting an excess of species barriers compared to species with other 

reproductive strategies (Pickup et al., 2019). Sex chromosomes are also expected to facilitate reproductive 

isolation, as evidenced by the two rules of speciation, namely Haldane's rule (Haldane, 1922) and the 

large-X effect (Charlesworth et al., 1987; Coyne, 1985, 2018; Masly & Presgraves, 2007; Turelli & Orr, 

1995; Turner & Harr, 2014). These rules have been widely validated using empirical data (reviewed in 
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Beukeboom & Perrin, 2014). Furthermore, hemizygosity of sex chromosomes appears to be a key feature 

in explaining the disproportionate role of sex chromosomes in speciation (Fraïsse & Sachdeva, 2021; Lima, 

2014), however, more work is required to understand the underlying mechanisms. It is also not known 

what impact sex chromosome turnovers have on reproductive barriers, though many potential 

mechanisms exist for them to do so. Using the Tree of Sex to relate these factors to rates of branch 

splitting on a robust phylogeny could lend valuable insights into the role of reproductive strategies in 

diversification.  

Finally, the fundamental transition between isogamy and anisogamy is likely to have had dramatic 

consequences for sexual trait evolution. It is proposed to have caused stronger sexual selection in males 

leading to female-biased parental care and male-biased sexual dimorphism (Janicke et al., 2016). Mating 

systems also influence the costs and benefits of parental care for both sexes. For example, theoretical 

models predict that males increase the level of care they provide to their offspring when the certainty of 

their paternity increases (Westneat & Craig Sargent, 1996). However, the empirical evidence for a positive 

relationship between certainty of paternity and paternal care is mixed (Alonzo, 2010), which calls for more 

theoretical work and standardised empirical approaches. 

In summary, the centralisation and integration of reproductive knowledge in the Tree of Sex will allow 

researchers to address many fundamental questions related to the evolution of reproductive strategies. 

However, there are many more questions that could be addressed than those listed above. As the 

database will be a long-standing public resource, our hope is that the wider community will eventually 

use it to address questions that we have not yet conceived.  

4. The Tree of Sex rebooted 

 

This new iteration of the Tree of Sex was established in June 2023, almost a decade after the first Tree of 

Sex project ended. Motivated by the questions and challenges above, we have two major goals: 1) to 

centralise and integrate published knowledge related to reproductive biology in a single public database; 

and 2) to provide a framework for ethical research and collaboration in which to use the database to 

address scientific questions. Below we outline our plans, current progress and the challenges we foresee 

for the Tree of Sex consortium and for the database implementation.  

The consortium 

At the time of writing (April 2025), the consortium has approx. 200 members, from 130 institutions across 

35 countries. The Tree of Sex consortium is a global community of scientists with the aim of building a 

collective knowledge base in the field of reproductive biology of eukaryotes. We are currently in the 

process of establishing the foundations for a long-term, self-sustaining initiative (Figure 3). To accomplish 

this task, the consortium is managed by a general committee and six “operations teams”, each responsible 

for specific demands of the consortium (Table 2). These demands are currently focused on setting up the 

infrastructure necessary for the development of the database in a sustainable and equitable manner.  
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Given the volume of literature, numerous subdisciplines and data types, and the great taxonomic breadth 

we aim to capture, we necessarily depend on the engagement of many experts. The Tree of Sex project is 

thus, by necessity, a community effort. The consortium is open, and we invite anyone and everyone 

interested in reproductive biology to join us via the registration form at the Tree of Sex webpage 

(treeofsex.ac.uk). We welcome and encourage researchers from all career levels, nationalities, cultures, 

genders and sexual orientations, especially those which have traditionally been minoritized in science.  

Consortium challenges 

 

Establishing a new consortium comes with several challenges, many of which are shared across projects. 

However, here we will discuss two challenges in particular that specifically concern the Tree of Sex. Firstly, 

reproduction is an extremely complex biological process but one that is always viewed through a lens of 

human bias; see de Vries and Lehtonen (2023) and references therein. Our aim within the Tree of Sex is 

to capture this complexity in a way that is as objective as possible. But how do we accomplish this when 

recognising one's own biases, or those of one’s group, is extremely difficult? We believe that the Tree of 

Sex consortium must equitably include a diversity of people from the start, so that they can co-determine 

its scope, and recognise each other’s biases. To help accomplish this, the consortium includes a team 

dedicated to Ethics and Inclusivity (Table 2) whose specific goals centre around building a diverse and 

inclusive community of scholars.  So far, the Ethics and Inclusivity team have laid the foundation for an 

inclusive and supportive environment for its members through the creation of a code of conduct for 

members of the consortium and attendees of networking events as well as an ethical vision to be used as 

a guide for ethical behaviour across all consortium activities. The team is currently working on establishing 

standard protocols for accreditation of work and systems to initiate discrete projects and allocate 

leadership and authorship opportunities in an equitable way. The future plans for this team include the 

tracking of recruitment, retainment and advancement of consortium members from different 

backgrounds in order to monitor equitable inclusion and barriers to participation. We also envisage this 

team collaborating with others in the consortium to organise activities which mitigate inequity among 

members. Such activities may include, for example, bursaries for travel and childcare, mentorship 

programmes for students and members of minority groups within the consortium, or facilitating remote 

access to computing resources required to work with the ever-increasing amounts of genomic data that 

is relevant to much of the research on reproduction. Global inclusivity is a major outstanding issue in 

science, and we are committed to working towards an equitable consortium, yet we recognise the 

challenge in doing this effectively and we will continuously update our activities to do so. 

 

The second challenge is concerning the socially charged nature of the topic of sex. Indeed, terms like sex, 

sexuality, and gender have a long history of critique from the feminist and LGBTQIA+ groups for their use 

to marginalise members of these communities (Aghi et al., 2024; Fausto-Sterling, 2008; Richardson, 2013). 

While the scientific work of the consortium will primarily focus on biological systems that have very little 

to do with the human-centric sociocultural context of sex, arguments using natural systems are frequently 

featured in public discussions. Therefore, we must put measures in place to prevent misuse of the 

collected data in pseudoscience and bigoted narratives. The exact steps we take to do this are a matter of 

ongoing debate within the consortium, and we welcome input from all members of the scientific 
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community. Interpretations of sex or sexuality can vary widely even among biologists, we are thus working 

hard to construct a consortium and an environment where multiple interpretations of sex and related 

topics can be integrated. We also hope to collaborate with social scientists to discuss how our 

understanding of reproduction from nature feeds into human societies. And lastly, we are committed to 

tracking the press arising from the outputs of the consortium, and, where needed, writing public press 

pieces to counter any erroneous arguments directly based on our work.  

The database 

The new Tree of Sex database will store the data at the level of observation (rather than species). This will 

allow for multiple observations of the same feature (e.g., chromosome numbers) for each species and will 

enable us to capture conflicting data within the literature regardless of whether they reflect erroneous 

results or biological polymorphism (e.g., in cases where individuals or populations differ in a reproduction-

related trait). The database interface will allow users to aggregate in multiple ways, including by taxon. 

For each piece of information stored in the database, the taxon will be recorded in the form of a taxon ID 

(TaxID) maintained within the International Nucleotide Sequence Database Collaboration. TaxIDs are 

unique and permanent identifiers for species that aggregate synonyms as well as accommodate species 

name changes. New identifiers will be requested following the guidelines of NCBI together with the 

Biodiversity Genomics community (Blaxter et al., 2024b). Each submitted observation will require a 

reference to its primary source (e.g., scientific article), with multiple submissions from the same reference 

possible. Finally, each record will be associated with the recorder via their ORCID (required for data 

submission), and the date of the data entry. These metadata ensure traceability of information and enable 

crediting active members of the community. 

Database challenges 

The scope and scale of this new version of the Tree of Sex database present several challenges. First, the 

volume of research on reproduction is vast. The literature search performed to create Figure 1, though 

based on a limited search prompt, resulted in over 85,000 publications, which is likely the tip of the iceberg 

for information relevant to the database. Thus, while many papers may be redundant (e.g., thousands of 

papers on humans and mice) the relevant literature is enormous and growing at a cumulative annual rate 

of over 4% (Figure 1). Synthesizing this vast and growing literature is a daunting task, even with a large 

group of volunteer researchers. However, preliminary tests show that use of Large Language Models 

(LLMs) could greatly speed up this process. LLM tools can be used to interrogate publication PDFs and, 

with well-constructed prompts, extract specific pieces of information. Our current plans involve 

integrating these tools in a data extraction pipeline, whereby LLMs produce targeted information 

summaries of each paper, which are formatted to allow for automatic import into the database if deemed 

accurate. Experts will be tasked with developing these pipelines and checking summaries against the 

original paper. The final goal is to construct a hybrid AI-human pipeline in which (ideally) most papers can 

be automatically imported via the LLM produced summary, with a proportion (e.g., 10%) being checked 

by human experts to ground truth their content and estimate error rates. All unchecked database entries 

will be flagged as such, allowing users to decide how much to trust each data point that they extract, and 

the database user interface will allow for users to validate unchecked entries if and when they are able, 

facilitating the continuous increase in proportion of the database that is human validated. In parallel we 
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will periodically implement semi-automated checks of the database contents using biological principles, 

either via automated scripts or again using AI. For instance, if a single ZW system is found in well sampled 

clade that otherwise contains a conserved XY system with a single origin, it could be flagged for manual 

checking. This is one simple example of dozens of checks which could be implemented to reduce error 

rates in the database if needed.  

 

The second challenge will be to integrate the information from the literature. This information will span 

multiple data types, a vast taxonomy, and come from sources spanning over a century. Encoding this 

information in a database in such a way that is consistent and usable will represent one of the largest 

challenges in the project. To achieve this, we are developing the Tree of Sex Ontology (TOSO 

https://github.com/Tree-of-Sex/ToS-Ontology), which will capture the hierarchy of terms within the 

database and their logical relationships. Using an ontology allows us to integrate information via a 

published and versioned logic, which will facilitate both data entry and interpretation. For example, 

consider a scenario in which a researcher wants to enter an observation of automixis for a given taxon. 

Automixis is a mode of parthenogenesis, thus the logic of TOSO allows for automatic entry of 

“parthenogenesis” for reproductive strategy. Using an ontology also allows for logical testing of the 

consistency of the submitted data as well as identification of possible discrepancies between studies. 

Finally, the ontology has the capacity to record synonyms and give them context, facilitating the resolution 

of conflicting or overlapping naming conventions between research disciplines and taxonomic specialities. 

For example, in the plant literature “apomixis” refers to asexuality via unfertilized seeds, whereas, in the 

animal literature, “apomixis” refers to a type of asexuality without meiosis and without recombination 

(mixing) between haplotypes (mitotic asexuality) (Neiman et al., 2014; Van Dijk, 2009). The ontology 

allows contextual definitions of these terms that can be used in parallel, and users will be able to both 

submit data and query the database without enforcing any of their individual community’s standards on 

others. TOSO will therefore be the tool by which we integrate all information within the Tree of Sex and 

will help us unify this currently disparate field.  

5. Outlook 

Compiling all knowledge relevant to the diversity of reproductive strategies in eukaryotes is ambitious but 

promises to advance the field of evolutionary biology. The integration of information across the taxa and 

topics will increase understanding of the patterning of reproductive strategies across the eukaryote 

phylogeny, identify gaps towards which we can direct future research, and facilitate large scale 

comparative analyses to test fundamental evolutionary questions. However, this task will require a large 

community effort thus we warmly welcome researchers from all locations and backgrounds who are 

directly or indirectly interested in reproduction to join the Tree of Sex consortium (treeofsex.ac.uk).   
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Tables 

 

Table 1: Example of existing databases containing data relevant to reproduction. The 

species numbers were derived from publications or directly by counting unique species names 

within available databases. Except for Tree of Sex v1, the databases are listed in alphabetical 

order. 
 

Database name Scope 

Taxonomic 

scope 

Species 

number Reference 

Tree Of Sex v1 

sexual systems, sex 

chromosomes 

vertebrates, 

invertebrates, 

plants 37496 

(Tree of Sex Consortium, 

2014) 

Animal Chromosome Count, ACC chromosome counts animals 14524 

(Román-Palacios et al., 

2021) 

AmphibianKaryo 

sex chromosomes, 

chromosome counts amphibians 2124 (Perkins et al., 2019) 

AndrodioecyAnimal androdioecy animal 36 (Weeks et al., 2006) 

Animal_rDNA 

chromosome counts, 

karyotypes, genome 

size animals 2800 (Sochorová et al., 2018) 

AnimalGenomeSize 

genome size (C-

values) animals 6534 (Gregory, 2024) 

ASER sex reversal animals 18 (Y. Li et al., 2021) 

B-chrom B chromosomes 

animals, plants, 

fungi 2951 

(D’Ambrosio et al., 2017; 

Gutiérrez et al., 2023) 

CCDB chromosome counts plants 77958 (Rice et al., 2015) 

ChromNematoda 

chromosome counts, 

reproductive strategy nematodes 257 (Blaxter et al., 2024a) 

ColeopteraKaryo 

sex chromosomes, 

chromosome counts beetles 4960 

(Blackmon & Demuth, 

2015a) 
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DipteraKaryo 

sex chromosomes, 

chromosome counts diptera 3443 (Morelli et al., 2022) 

DrosophilaKaryo 

sex chromosomes, 

chromosome counts drosophila 1247 (Morelli et al., 2022) 

FishBase 

reproduction mode, 

life-history traits fish 35400 

(Froese & Pauly, 2024) 

 

FISHKARYOME 

sex chromosomes, 

chromosome counts fish 1285 (Nagpure et al., 2016) 

FishSexChrom 

sex chromosomes 

(direct comparison 

with ToS v.1) fish 440 (Sember et al., 2021) 

HarvestmenCyto chromosome counts harvestmen 100 (Tsurusaki et al., 2022) 

HerpSexDet 

sex determination, 

sex reversal 

amphibians, 

reptiles 891 

(Nemesházi & Bókony, 

2023) 

HZmatingSystem mating systems 

plants (hybrid 

zones) 245 

 

(Pickup et al., 2019, 2020) 

Insect_Egg_Evolution egg size and shape insects 6700 (Church et al., 2019) 

InSexBase 

sex chromosomes, 

sex-biased genes insects 49 (X. I. Chen et al., 2021) 

KaryoBlatto chromosome counts 

termites, 

cockroaches 229 (Jankásek et al., 2021) 

Mammal_SameSexSexualBehavior 

observed same-sex 

sexual behavior mammals 322 (Gómez et al., 2023) 

MammalKaryo 

sex chromosomes, 

chromosome counts mammals 1440 (Blackmon et al., 2019) 

NESCent mating systems 
plants, life 

154 
(Goodwillie et al., 2005b, 
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history traits 2010) 

Phaeodev genome sizes, ploidy brown algae 67 

(The Phaeoexplorer 

project, 2024) 

Phycocosm genome sizes 

algae, 

heterokonts 154 (Grigoriev et al., 2021) 

Plant_DNA_C-values 

genome sizes (c-

values), chromosome 

counts plants 12273 

(Leitch et al., 2019; Pellicer 

& Leitch, 2020) 

Plant_rDNA 

chromosome counts, 

karyotypes, genome 

size plants 2770 

(Rodríguez-González et al., 

2023) 

PolyneopteraKaryo 

sex chromosomes, 

chromosome counts polyneoptera 823 (Sylvester et al., 2020) 

PseudoscorpionCyto chromosome counts pseudoscorpions 65 (Šťáhlavský, 2022) 

ReprodTraitsAlgae 

sexual systems, life-

history traits brown algae 91 (Heesch et al., 2021) 

ROSIE sex determination testudines 125 (Krueger & Janzen, 2022) 

SAGD sex-biased genes animals 21 (Shi et al., 2019) 

ScorpionCyto chromosome counts scorpions 264 (Schneider et al., 2024) 

Sex-chrom 

sex chromosomes, 

ploidy, chromosome 

counts 

land plants, 

green algae 229 

(Baránková et al., 2020; 

Garcia et al., 2023) 

SexChromAlgae sex chromosomes brown algae 10 

(Barrera-Redondo et al., 

2024) 

SexSystemCrustacea sexual systems crustaceans 334 

(Benvenuto & Weeks, 

2020) 

SexSystemFish sexual systems fish 4614 (Pla et al., 2022) 

SpermTree 

Sexual systems, 

sperm morphology animals 5675 (Fitzpatrick et al., 2022) 
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SpiderCyto chromosome counts spiders 933 (Araujo et al., 2024) 
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Table 2: Operations teams currently active in the ToS Consortium 

 

Operations team Deliverables 

Database integration - listing and describing reproductively-relevant databases 

- facilitating their integration within Tree the Sex Database  

Ethics and inclusivity - guiding and formulating shared values of the consortium towards 
building a diverse community of scholars and approaching the topics of 
sex with awareness and sensitivity to its potential societal impact 

- supporting teams with the work of building the database and 
challenging decisions that may arise with our values of justice, equity, 
and inclusion 

Funding - monitoring research funding landscape for opportunities for the 
consortium and consortium members  

- supporting individual grant applications of consortium members 

Literature search - generating a list of relevant literature to be process for the database 

- exploring opportunities of automated literature processing 

Ontology - create and maintain the Tree of Sex Ontology 

Outreach and science 
communication 

- internal communications of the consortium 

- managing social media and outreach events 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/jeb/advance-article/doi/10.1093/jeb/voaf053/8126803 by Institute for Public H

ealth R
esearch, Salford user on 27 M

ay 2025



Acc
ep

ted
 M

an
us

cri
pt

Figure legends 

 

Figure 1. Summary of reproductive strategies literature and high-quality genome assemblies across 

eukaryotes. a) Published primary literature by phylum and year. Literature libraries were searched using 

Dimensions (on 8th May 2024), with a search prompt which included 36 terms relating to topics within 

reproductive strategies research (search prompt: hermaphrodite OR monoecy OR dioecy OR gynodioecy 

OR androdioecy OR gynomonoecy OR andromonoecy OR polygamodioecy OR polygamomonoecy OR 

apomictic OR gonochorous OR parthenogenetic OR sex chromosome OR sex determination OR 

arrhenotoky OR haplodiploid OR genome elimination OR hybridogenesis OR dosage compensation OR 

self compatibility OR self incompatibility OR hermaphrodism OR monoecious OR dioecious OR 

gynodioecious OR androdioecious OR gynomonoecious OR andromonoecious OR polygamodioecious OR 

polygamomonoecious OR apomixis OR gonochoristic OR hermaphroditic OR parthenogenesis OR self 

compatible OR self incompatible). The resulting 85,533 papers were searched for taxonomic names 

taken from the NCBI taxonomy (downloaded 8th May 2024). 60,409 could be classified into phyla 

(though no manual curation was performed, so some errors may exist). We included all name categories 

(e.g., scientific, common, blast names) for all taxonomic ranks between phylum and genus. Common 

names and blast names were also included for species, but species scientific names were not used to 

reduce the total number of search terms, and because genera were already included. Inset pie chart 

shows the total proportion of all classified papers by phylum, with four model organisms also shown. For 

comparison, the black line shows a 4.1% annual increase publication rate estimated as the rate for all 

scientific publications (Bornmann et al., 2021) b) All genomes archived by the The International 

Nucleotide Sequence Database Collaboration (INSDC) by phylum and year (Created in GoaT (Challis et 

al., 2023) on 06/06/24). Only one assembly per species is counted. c) Estimate of the number of named 

species for the 15 most speciose phyla taken from the Global Biodiversity Information Facility (GBIF) as 

of 16th May 2024. d) Distribution of sex chromosome information (morphology and system of 

heterogamety) from ToS v1 database across eukaryotic phyla (Created in GoaT from data sources here).  
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Figure 2: Selected examples of diverse reproductive strategies found in eukaryotes. The 

canonical animal reproductive cycle is highlighted in blue. The prominent phase of life is indicated 

by the following taxa/silhouettes listed here clockwise starting in top-right corner: Ascomycota 

(generic hyphae), Bryophytes (sporophyte of Rosulabryum capillare), Hymenopterans (male 

Camponotus sp.), Basidiomycota (Boletus edulis), animals (Homo sapiens), vascular plants 

(Polypodium vulgare), cnidarians (budding Hydra vulgaris), vascular plants (runner of Fragaria 

sp.), aphids (generic member of Aphididae), and Caucasian rock lizards (Darevskia spp.). The 

majority of animals or vascular plants spend most of their lives in the unreduced (diploid or 

polyploid) state, while the dominant phase in bryophytes is haploid, and algae span a diversity of 

life cycles. Plants and animals fuse gametes (plasmogamy) and nuclei (karyogamy) very quickly 

within a process we jointly call syngamy, though this is not universally true. For instance, 

basidiomycete fungi live for a substantial part of their lives as large fruiting bodies of dikaryotic 

cells (with two unfused nuclei). In other cases, such in haplodiploid species, males are haploid, 

develop from unfertilised eggs and generate sperm via abortive meiosis. Some species can also 

reproduce via unfertilised gametes (parthenogenesis) or by vegetative (asexual) reproduction 

during their haploid and/or diploid phases. Parthenogenesis frequently features a modified 

meiosis, or a regular meiosis with pre- (endoreplication) or post- (gamete duplication) meiotic 

genome duplication restoring the parental ploidy. This figure includes only a small selection of the 

many paths that reproduction can take, which were chosen to highlight some of the major 

differences in reproductive strategies in eukaryotes. 

Figure 3. Time plan for the three phases of the Tree of Sex consortium. We are currently 

advancing in setting up the infrastructure to manage the consortium and create the database. The 

next phase, starting this year, will be to fill the database with records and continue to keep the 

database updated. Once the database contains an adequate number of records, we will start 

analysing the data by organised topic research teams. 
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Glossary: 

 

Below are definitions of some important terms used in this article. Where possible we have adopted 

current definitions from existing biological ontologies (see term IDs). In some cases we have slightly 

modified definitions to match our use of the term (see “Adapted from”). For terms lacking a definition in 

existing ontologies, or for which the existing definition(s) is inadequate, we have adopted new 

definitions based on our own current understanding.  

 

We acknowledge that our interpretation of some of the terms below may reflect some of our biases as 

researchers, and that some definitions may not include the full diversity of cases that exist in nature. 

Thus, the definitions below are presented to clarify our use of terms in this manuscript, and not as the 

“only” or “correct” definition for a given term.  

 

We also note that definitions of terms may change from those presented below as our biological 

understanding expands. These changes will be reflected in the ontology generated by the consortium as 

part of the ongoing work that the Tree of Sex is conducting. This ontology, will include precise and 

inclusive definitions connected by logical relationships between terms, that will eventually be used for 

the database. 

 

 

Anisogamy A characteristic of sexually reproducing organisms whereby the different 

gamete types produced by a species differ substantially in size or form.  

Arrhenotoky  

 

A sex-determination strategy in which males develop from unfertilized eggs 

and are haploid, and females develop from fertilized eggs and are diploid. 

From GSSO:000121 

Asexual reproduction A type of reproduction in which new individuals are produced from a single 

organism, either from an unfertilized egg or from a single cell or group of 

cells. From GO:0019954 

Automixis In the context of fungal reproduction, the fusing gametes might be from 

the same meiotic tetrad. In plants and animals, it refers to a form of 

parthenogenesis, where the progeny is not genetically identical to the 

parent. 
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Dioecy  

(synonym: Gonochorism) 

Sexual strategy in which anisogamous (macro or micro) gametes are 

produced in separate individuals. Dioecy is used in plants while 

gonochorism typically refers to animals. 

Dioicy When sex is determined in the haploid stage, the occurrence of 

gametophytes that produce only one type of gametes; separate sexes. 

Environmental sex 

determination (ESD) 
The determination of sex by a non-genetic cue, such as temperature, 

nutrient availability, or social context. Adapted from GSSO:000107 

Female In anisogamous organisms, a category of individual or organ (e.g., flower) 

sex which produces macrogametes (ova). Note that this simplified 

categorization may not be reflective of existing phenotypic diversity as it 

ignores the complex and often overlapping combination of other traits 

associated with sex.  

Gametes A mature sexual reproductive cell often (but not always) having a single 

set of chromosomes (haploid). Adapted from CL:0000300 

Gametolog One of a homologous set of genes in the non-recombining region on the 

sex chromosomes. Can also be used to refer to the individual sex 

chromosomes themselves (e.g., the X and Y chromosomes are the two 

gametologs of an XY system).   

Gametophyte The multicellular haploid stage of the life cycle of a (sexual) plant species in 

which gametes are produced. 

Genotypic sex 

determination (GSD) 

Determination of sex by genotypic constitution, namely by chromosomal or 

genetic factors consistently associated with each sex. Adapted from 

GSSO:000104 

Gonochorism  

(synonym: Dioecy) 

Sexual strategy in which anisogamous (macro or micro) gametes are 

produced in separate individuals. Gonochorism typically refers to 

animals, whereas dioecy is used in plants. 

Haploid Chromosomally reduced stage of the life cycle. In some species the reduced 

stage is the relatively short phase with gametes directly produced during 

meiosis; in others (fungi, mosses, ferns) meiosis produce sporophytes that 

undergo mitotic divisions to form a multicellular body before gametes are 

produced. Note that haploid is often used to specifically refer to a cell 
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containing a single set of chromosomes (i.e., monoploid), though here we 

use it only to mean reduced. 

Hermaphroditism An umbrella term for a suite of sexual reproductive strategies whereby 

individuals can produce both macro and micro gametes. In plants, 

hermaphroditism refers specifically to plants with flowers that can produce 

both male and female gametes, and is distinct from Monoecy (see below). 

See also “Sequential hermaphroditism” and “Simultaneous 

hermaphroditism”.  

Heterogametic A characteristic of an individual producing gametes that differ in sex 

chromosome constitution, such as heterogametic males in XX/XY (or 

females in ZZ/ZW systems) that produce X- or Y-containing sperm (or Z- or 

W-containing eggs).  

Heteromorphic  

sex chromosomes 

A sex chromosome system in which the sex chromosomes (e.g., X and Y) 

are morphologically different from each other when observed via 

microscopy. 

Homogametic A characteristic of an individual producing gametes with identical sex 

chromosome constitution, such as females in systems (XX/XY) (or males in 

ZZ/ZW systems), that produce exclusively X-containing eggs (or Z-

containing sperm).  

Homomorphic  

sex chromosomes 

A sex chromosome system in which the sex chromosomes (e.g., X and Y) 

are morphologically indistinguishable when observed via microscopy. 

Intragametophytic selfing A form of self-fertilisation between gametes produced within the same 

gametophyte.  

Isogamy A characteristic of sexually reproducing organisms whereby the different 

gamete types produced by a species do not differ substantially in size or 

shape.  

Male  In the context of anisogamy, a category of individual or organ (e.g., flower) 

sex which produces microgametes (sperm). Note that this simplified 

categorization may not be reflective of existing phenotypic diversity as it 

ignores the complex and often overlapping combination of other traits 

associated with sex.. 
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Mating type A characteristic of gametes or individuals of sexually-reproducing (often 

isogamous) species that controls their compatibility for genetic mixing 

(fusion or mating, respectively).  

Monoecy A reproductive strategy In plants, wherein individual plants possess both 

male and female flowers. Note that this is distinct from 

“hermaphroditism”.  

Monoicy When sex is determined in the haploid stage, the occurrence of 

gametophytes that produce both male and female gametes. 

Neo-sex chromosome A sex chromosome resulting from the fusion of either gametolog of an 

existing sex chromosome pair (e.g., X or Y  to an autosome, which 

generates a Neo-X chromosome, or a Neo-Y chromosome). 

Parthenogenesis Development of an egg into an embryo without being fertilized. 

MP:0009443 

Programmed DNA 

elimination 
A process in which genomic fragments or entire chromosomes are 

eliminated from somatic cells. GO:0031049 

Pseudoautosomal region The region(s) of a sex chromosome which still recombine(s). 

Reproductive strategy The set of traits (morphological, physiological, behavioral, etc.), that help 

an organism reproduce. 

Self-compatibility The opposite of “Self incompatibility”, i.e. gametes of different types from 

the same organism are able to fuse, resulting in reproduction.  

Self-incompatibility A self recognition mechanism reducing self-fertilisation and inbreeding. 

Adapted from TO:0000310 

Sequential 

hermaphroditism 

Sexual reproductive system of some taxa whereby individuals switch 

between producing either macro or micro gametes at some point in their 

lifetime 

Sex chromosome A chromosome harbouring a locus involved in sex determination. Sex 

linkage within a sex chromosome may be restricted to this locus, or extend, 
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via recombination suppression, across varying proportions of its length. 

Adapted from GO:0000803. 

Sex  A category of individual, tissue, genotype, or gamete in anisogamous taxa 

which undergo sexual reproduction. Applied based on primary or 

secondary sexual characteristics. Common categories for sexes include 

hermaphrodite, female, and male, although these generally represent a 

simplification of phenotypic diversity and continuous variation. Adapted 

from PATO:0000047.  Sometimes akin to mating type in isogamous 

organisms. 

Sexual reproduction A type of reproduction in anisogamous or isogamous eukaryotes that 

combines the genetic material of two gametes, from two individuals or 

from a single individual. Adapted from GO:0019953.. 

Sexual system  

 

The pattern of sex allocation and/or mating behaviour across individuals in 

a sexually-reproducing species (e.g., gonochorism, hermaphroditism, mixed 

sexual systems). Adapted from GSSO:011864 

Simultaneous 

hermaphrodites 
Sexual reproductive system of some taxa whereby an individual is capable 

of producing both macro and micro gametes at the same time.  

Syngamy The union of gametes of types to form a zygote during sexual 

reproduction. Syngamy involves the fusion of cytoplasm (plasmogamy) 

and nuclei (karyogamy). Some species live a substantial proportion of their 

lives in between these two stages (fungi). From GO:0009566 
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Figure 1 
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Figure 2 
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Figure 3 
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