
Journal Pre-proofs

A novel data-centric AI approach based on sensitivity and correlation analyses
for multi-organ plant disease classification

Muhammad Hammad Saleem, Fakhia Hammad, Muhammad Taha,
Shivakumara Palaiahnakote, Sadaqat ur Rehman, Mohamad Saraee

PII: S0957-4174(25)01984-0
DOI: https://doi.org/10.1016/j.eswa.2025.128365
Reference: ESWA 128365

To appear in: Expert Systems with Applications

Received Date: 7 December 2024
Revised Date: 5 March 2025
Accepted Date: 26 May 2025

Please cite this article as: Saleem, M.H., Hammad, F., Taha, M., Palaiahnakote, S., Rehman, S.u., Saraee, M., A
novel data-centric AI approach based on sensitivity and correlation analyses for multi-organ plant disease
classification, Expert Systems with Applications (2025), doi: https://doi.org/10.1016/j.eswa.2025.128365

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 Published by Elsevier Ltd.

https://doi.org/10.1016/j.eswa.2025.128365
https://doi.org/10.1016/j.eswa.2025.128365


Data-centric AI-based Plant Disease Classification Muhammad Hammad Saleem

1

A Novel Data-Centric AI Approach Based on Sensitivity and 
Correlation Analyses for Multi-Organ Plant Disease 

Classification
Muhammad Hammad Saleem a,b,*, Fakhia Hammad c, Muhammad Taha d, Shivakumara Palaiahnakote a,b, 

Sadaqat ur Rehman a,b, Mohamad Saraee a,b

a School of Science, Engineering, and Environment, University of Salford, Salford M5 4WT, United Kingdom. 

b Data Science and Artificial Intelligence Hub, University of Salford, Salford M5 4WT, United Kingdom; 
m.h.saleem@salford.ac.uk, S.Palaiahnakote@salford.ac.uk, s.rehman15@salford.ac.uk, m.saraee@salford.ac.uk

c Department of Biomedical Engineering, Ziauddin University, Karachi 74600, Pakistan; 
fakhia.hammad@gmail.com

d Department of Electrical Engineering, National University of Computer & Emerging Sciences, Karachi 75030, 
Pakistan; engr.muhammadtaha95@gmail.com

* Corresponding author: m.h.saleem@salford.ac.uk

Abstract: With advancements in deep learning (DL), most research on classification problems has 
focused on developing or modifying DL models, known as model-centric artificial intelligence (AI) 
approaches. However, this approach is time-consuming and overlooks the exploration of the available 
resources and expertise required to address industrial problems. This study proposes a new data-centric 
AI-based approach by thoroughly investigating dataset complexities, using multi-organ plant disease 
classification as a case study. To the best of our knowledge, this study is the first to perform 
comprehensive sensitivity and correlation analyses to evaluate the relationship between dataset 
complexity exclusion and the accuracy of DL classifier. In contrast to conventional sensitivity analyses 
which only evaluate changes in model output with respect to input changes, this study introduces a 
novel Sensitivity Correlation Score (SC-score). The SC-score combines sensitivity and correlation 
analyses into a single metric formulated as the product of the Absolute Sensitivity Function and Pearson 
Correlation Coefficient which is normalised for interpretability. This formulation rewards positive 
sensitivity and strong correlation while neutralising the effects of negative correlation. The SC-score 
successfully evaluated both the responsiveness and consistency of the performance enhancement of the 
DL model owing to the elimination of dataset complexities. To demonstrate the robustness of this study, 
the proposed data-centric DL-based approach was validated on an external testing dataset from diverse 
agricultural environments and achieved an accuracy improvement of 10.94%. This study demonstrates 
the strength of data-centric AI in solving industry-oriented problems in real-world applications.

Keywords: Model-centric AI, data-centric AI, deep learning, convolutional neural networks, plant 
disease classification.

1. Introduction

When the dataset is complex owing to diversified images with different practical scenarios, such as 
uneven illumination effects, the presence of shadows, occlusions, and complex backgrounds, a model-
centric approach is usually applied to solve it. In other words, a new/modified Deep Learning (DL) 
model is developed, hyperparameter tuning is performed, or optimisation algorithms are employed to 
improve the performance of certain tasks. However, a model-centric AI approach is not always the most 
feasible solution for addressing industry-oriented problems, where computational resources, time, and 
expertise are often limited. For instance, farmers in the agricultural sector typically operate under tight 
budgets and schedules. In this case, timely, accurate, and cost-effective solutions are required to achieve 
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maximum crop productivity and minimise crop loss. Model-centric AI is a resource-intensive approach 
that requires significant computing power, such as Graphics Processing Units (GPUs), tensor processing 
units (TPUs), and expertise in Machine Learning (ML) algorithms. Furthermore, the development of 
ML models is a time-consuming process because of several iterations of training, testing, and fine-
tuning. In contrast, this study introduces a new data-centric AI approach that focuses on thoroughly 
studying the effects of dataset complexity to improve the performance of existing DL models. By 
excluding these dataset complexities, a data-centric approach not only enhances the performance of the 
DL model but also ensures its scalability and practicality for real-world deployment. To demonstrate 
that data-centric DL is an alternative approach for achieving better performance, this study considers 
multi-organ plant disease classification as a case study. This classification problem was selected 
because of its real-world application in the agricultural industry, which is currently required to assist 
farmers in making their products profitable and enhancing crop productivity.

The classification and identification of plant diseases is not a new problem. Several methods have been 
reported in the literature. With the rapid development of artificial intelligence (AI), the scientific 
community has actively engaged in deep learning (DL) research to address agricultural problems. In 
the last decade, several studies on plant disease classification have proven the strength of DL in 
obtaining accurate and precise outcomes. At the beginning of research on AI-based plant disease 
classification, DL classifiers were applied to datasets collected in a controlled agricultural environment 
(Brahimi, et al., 2018; Mohanty, Hughes, & Salathé, 2016; Too, Yujian, Njuki, & Yingchun, 2019). A 
few studies have curated datasets in real agricultural environments and proven the effectiveness of DL 
methods under complex agricultural scenarios (Lee, Goëau, Bonnet, & Joly, 2020; Narayanan, et al., 
2022; Pandi, et al., 2022; Ravi, Acharya, & Pham, 2022). Moreover, some studies have included 
different plant organs and generated datasets to further demonstrate the efficiency of DL in detecting 
plant diseases in real-world scenarios (Saleem, Potgieter, & Arif, 2022a, 2022b). Various state-of-the-
art DL models have been trained using scratch- and transfer-learning/fine-tuning methods (Brahimi, 
Boukhalfa, & Moussaoui, 2017; J. Chen, Chen, Zhang, Sun, & Nanehkaran, 2020). Subsequently, the 
research community started focusing on the optimization and modification of DL models to improve 
the accuracy of plant disease classification (Kamal, Yin, Wu, & Wu, 2019; Kaur, Harnal, Gautam, 
Singh, & Singh, 2023; Tewari & Kumari, 2024). Later, complex and practical agricultural scenarios 
were considered, and researchers applied DL object detection and segmentation models to locate and 
segment disease spots on plants (J. Liu & Wang, 2020; K. Zhang, Wu, & Chen, 2021; S. Zhao, Liu, & 
Wu, 2022) along with their segmented pixels (Mukhopadhyay, Paul, Pal, & De, 2021; Mzoughi & 
Yahiaoui, 2023; S. Zhang & Zhang, 2023). These studies optimised the DL model to successfully 
classify and detect plant diseases and are therefore called model-centric AI.

However, some studies have demonstrated the capability of systematically evaluating and improving 
the quality of datasets to obtain accurate outcomes using a type of AI called Data-centric AI. These 
studies addressed problems such as overfitting, class imbalance, limited datasets, and dataset variability. 
In a feedback loop representation, a typical model-centric AI feeds back the output as the accuracy of 
the DL model for feature extraction to enhance the accuracy of plant disease classification. In contrast, 
the data-centric AI-based method sends the output back to the data preprocessing step. A diagrammatic 
representation is shown in Fig. 1, where one can see the difference between model-centric and data-
centric AI can be observed.
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Furthermore, studies in the literature have improved the accuracy of plant disease classification by 
applying augmentation-based methods and studying dataset quality. For example, a study considered 
individual lesions and spots of plant diseases instead of full-leaf images to classify plant diseases 
(Barbedo, 2019; Ngugi, Abdelwahab, & Abo-Zahhad, 2023; Sun, Zhang, Yang, & Liu, 2020). 
Traditional augmentation methods have been used to improve the dataset quantity for plant disease 
classification (Saleem, et al., 2022b). Various DL-based data augmentation methods have been 
developed in prior studies. For instance, a modified colour-value distribution-based data augmentation 
method was presented in a study to expand the dataset and train a DL model to identify important 
colour-based features (Abayomi‐Alli, Damaševičius, Misra, & Maskeliūnas, 2021). A study proposed 
an image-to-image translation model to address the data bias problem (Min, Kim, Shin, & Shin, 2023). 
Furthermore, prominent studies have focused on generative adversarial network (GAN)-based methods 
to augment or enhance plant disease datasets. For instance, a deep convolutional generative adversarial 
network (DCGAN) method was proposed to detect tomato leaf disease, which not only expanded the 
dataset but also added diversity to it (Wu, Chen, & Meng, 2020). A study proposed a method called 
LeafGAN, which consists of an image-to-image translation system along with its attention mechanism 
(Cap, Uga, Kagiwada, & Iyatomi, 2020). This method transformed relevant areas of the image with 
different backgrounds, and its performance was compared with that of the Vanilla CycleGAN. The 
research presented two methods of augmenting datasets, including plant canopy simulation and GANs, 
to enhance the segmentation of plant diseases (Douarre, Crispim-Junior, Gelibert, Tougne, & Rousseau, 
2019).

To achieve high accuracy, DL-based methods have been developed to address the problem of small 
plant disease datasets. For example, a study proposed a few-shot learning approach for classifying plant 
diseases by splitting the dataset into source and domain classes. The patterns of plant diseases were 
learned using Inception V3 through source classes to classify the domain classes. Siamese networks 
and triplet loss were used and compared with the traditional transfer learning method (Argüeso, et al., 
2020). A research focused on the inconsistencies in the annotations of the plant disease dataset and 
analysed their impact on the performance of the DL model (Dong, et al., 2022). The paper highlighted 
better outcomes in terms of the mean average precision. A sensitivity analysis was also performed to 
show the effects of different levels of annotation inconsistencies on average precision. Although the 
research primarily emphasized dataset inconsistencies, various aspects of data-centric AI could have 
been further explored, such as the robustness of the approach, consideration of complexities in plant 
disease in real-world circumstances, and the relationship between one dataset annotation inconsistency 
and another.

Input data
Data pre-

processing 
steps

Feature 
extraction and 
classification

Prediction

Model-centric 
AI

Input data
Data pre-

processing 
steps

Feature 
extraction 

and 
classification

Prediction

Data-centric 
AI

Fig. 1. Difference between model-centric and data-centric AI in feedback loop representation.
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The prominent literature review on data-centric AI for plant disease classification mainly consists of 
proposing noise filters (Bhujade, Sambhe, & Banerjee, 2024), using traditional data-augmentation 
methods (Arun & Umamaheswari, 2023), developing Generative Adversarial Networks (GANs) 
(Sharma, Tripathi, Daga, Nidhi, & Mittal, 2024), creating few-shot learning methods (FSL) (Rezaei, 
Diepeveen, Laga, Jones, & Sohel, 2024) and applying metaheuristic algorithms (Taji, et al., 2024). 
These methods mainly focus on removing noise, studying the effects of augmented images, generating 
synthetic dataset images, addressing the problem of limited datasets to train DL models, and selecting 
prominent features of plant diseases. In comparison to these approaches, the proposed research focuses 
on analysing the effects of eliminating dataset complexities to improve the accuracy of the DL model 
supported by comprehensive sensitivity and correlation analyses. 

To the best of the authors’ knowledge, none of the previous studies have addressed various research 
questions in the domain of data-centric AI for plant disease classification. These questions include (a) 
How does the exclusion of dataset complexities affect the accuracy of DL models in plant disease 
classification? (b) How sensitive are DL-based plant disease classification models to the rate of 
change/exclusion of dataset complexity? (c) Is there a correlation between the elimination of dataset 
complexity and the classification performance of the DL models? (d) How robust is the performance of 
the DL model after excluding dataset complexities from an external testing dataset that contains images 
collected in diverse agricultural environments?

This study aims to address these gaps by proposing a novel data-centric AI approach based on sensitivity 
and correlation analyses. The key objectives of this study are as follows:

• To investigate the impact of dataset complexity on the accuracy of the DL model.
• To examine the sensitivity and correlation between dataset complexity exclusion and the 

performance enhancement of the DL model.
• To evaluate the robustness and practical aspects of the proposed novel data-centric AI approach on 

an external dataset that includes images of agricultural conditions different from those of the selected 
plant disease dataset.

• To measure the combined effect of sensitivity and correlation analyses, identifying the most 
influential step sizes of dataset complexities exclusion.

To fulfil the research objectives, state-of-the-art DL methods were trained and tested on a plant disease 
dataset called NZDLPlantDisease-v1 and external testing datasets to select the most accurate model. A 
class-wise investigation was then performed to identify classes with low accuracy. Subsequently, 
dataset complexities in low-accuracy classes were identified in real-world scenarios based on image 
quality measures such as the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) and 
Sharpness Index (SI). Next, these complexities are excluded individually and cumulatively (if the 
exclusion of more than one complexity contributes to improving the accuracy). Sensitivity and 
correlation analyses were also conducted. For the sensitivity analyses, the absolute sensitivity function 
was applied to show how the exclusion of dataset complexities affected the classification accuracy for 
different step sizes. Correlation analysis was performed using Pearson’s correlation coefficients. This 
study proposes a novel performance score, called the sensitivity correlation score (SC-score), to analyse 
the significance of the proposed approach. Hence, this study provides new insights into DL-based plant 
disease classification and encourages a shift in the research focus to data-centric AI for agricultural and 
other real-world problems. 

To illustrate the advantage of the proposed Sensitivity Correlation Score over sensitivity and correlation 
alone, a sample of the sensitivity, correlation, and SC-score is presented in Fig. 2. It can be noted that 
some of the step sizes of dataset complexity exclusion have a negative sensitivity and positive 
correlation and vice versa, a few instances gave the SC-score value of ‘0.’ These observations indicate 
scenarios where the selection of the most affected step size of exclusion of dataset complexity would 
be crucial; hence, a new performance score would be useful based on combined sensitivity and 
correlation analysis.
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The main contributions of this study are as follows: 

• A new data-centric DL-based approach is proposed to improve the accuracy of plant disease 
classification by adding two steps based on a feedback loop representation, including the exclusion 
of dataset complexities and detailed analyses of changes in accuracy owing to dataset complexity 
elimination. 

• Sensitivity analysis was performed using the absolute sensitivity function based on the ratio of the 
change in accuracy and step size to eliminate dataset complexity. Detailed Sensitivity analyses 
demonstrated that the deep learning model is sensitive to certain complexities, both individually and 
cumulatively. Moreover, comprehensive correlation analyses were performed using the Pearson 
Correlation Coefficient to extract the relationship between the elimination of dataset complexity and 
accuracy improvement of the DL model. 

• A new performance score, named the Sensitivity Correlation Score (SC-score), is proposed to select 
the most affected step size by excluding dataset complexity. The robustness of the research was 
evaluated by testing the proposed novel approach on an external testing dataset in diverse 
agricultural conditions other than the selected plant disease dataset.

The remainder of this manuscript is organised as follows: Section 2 highlights the related work; Section 
3 describes the proposed data-centric DL-based approach; Section 4 presents the experimental results; 
and Section 5 outlines the conclusions and future directions.

2. Related works

Most of the work on data-centric AI for plant disease classification has focused on applying traditional 
data augmentation methods, using/advancing Generative Adversarial Network (GANs)-based methods, 
addressing the problem of limited datasets to achieve high accuracy, and feature selection methods. 
This section reviews research on these methods, dividing them into four categories.

2.1. Traditional Data Enhancement Methods

Some initial studies on the application of data augmentation methods to classify plant diseases used 
traditional data augmentation methods. The research used methods such as flipping, random crops, 
rotations, shifts, and a combination of these methods to augment the dataset. These methods were 
applied to improve the generalisability and robustness of the DL method; however, an intensive 
investigation of the effects of these methods has not been discussed (Kamal, et al., 2019). A study 
explored the effects of individual lesions and spots of plant disease without adding new images to the 
dataset, which improved the overall accuracy by 12% compared to that achieved by training the DL 
model using the original images (Barbedo, 2019). A few limitations of this research were pointed out 

Fig. 2. A sample of absolute sensitivity (SA), correlation (CR), and proposed SC-score after excluding 
dataset complexity (non-focused object of interest) from plant disease class (pear canker).
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in the paper, such as finding an appropriate number of images to train the features of plant diseases, 
training and testing datasets taken from the same resource/database, misclassification in the extended 
dataset owing to class imbalance problems, and the need for a flexible neural network that can be trained 
on images with variable resolutions. A research evaluated the effects of augmented datasets on the 
developed DCNN and achieved an improvement of 0.0644 in the validation accuracy. A previous study 
generated synthetic images to identify important colour features by proposing an image colour 
histogram transformation technique, resulting in an increase of 3% to 15% accuracy for reduced-quality 
images (Abayomi‐Alli, et al., 2021). An image-to-image translation and attention mechanism-based 
method was developed in a study that achieved F1 scores of 0.9995, 0.9994, and 0.999 for apple, grape, 
and potato disease classification, respectively (Min, et al., 2023). A few recent studies have used 
conventional data augmentation methods for crop disease identification, including shearing, rotation, 
width and height shifting, horizontal flipping, and zooming (Arun & Umamaheswari, 2023). An article 
applied augmentation techniques such as random resizing, horizontal flip, transpose, vertical flip, shift 
scale rotate, and normalised the mean and standard deviation for research on cassava disease (Chhetri, 
Hohenegger, Fensel, Kasali, & Adekunle, 2023).

2.2. GAN-based Models for Generating Samples

Several researchers have developed and applied various GAN-based methods to augment and enhance 
plant disease datasets to achieve better accuracy. A Deep Convolutional GAN (DCGAN) was used to 
classify diseases in tomato leaves. The model was compared with boundary equilibrium generative 
adversarial networks (BEGAN) and a combination of DCGAN and BEGAN, and a considerably higher 
accuracy with DCGAN was achieved, demonstrating its effectiveness (Wu, et al., 2020). Another study 
focused on a GAN model named LeafGAN that contained a generator with degressive channels, 
followed by the fusion of a dense connectivity strategy, instance normalisation, and deep regret gradient 
penalty method (B. Liu, Tan, Li, He, & Wang, 2020) , which outperformed DCGAN and Wasserstein 
GAN (WGAN). A Conditional GAN (CGAN) was used to classify diseases in tomato leaves. Although 
the research compared the performance of the DL model with synthetic images obtained by CGAN, it 
could have considered more variants of GAN to further improve the accuracy and robustness of the 
results (Abbas, Jain, Gour, & Vankudothu, 2021). A study presented a Wide and Deep block 
(WDBlock)-based GAN known as a Fast WDGAN (FWDGAN) (M. Li, et al., 2022) that combined the 
depth feature of ResNet and extracted global features of Inception-V1 models. This method performed 
better than DCGAN, WDGAN, and Self-Attention GAN (SAGAN) in terms of the Fréchet Inception 
Distance (FID) and ssim-test. One article used a DCGAN and added it to the dataset in different ways, 
including the original dataset and a background-removed dataset (Huang, et al., 2022). The study also 
considered an augmented dataset with rotation, noise, and brightness change methods and integrated 
them into the original dataset and DCGAN, achieving the best results on the dataset containing 
background-removed images with DCGAN-generated images. Various scenarios were considered to 
demonstrate the effectiveness of the proposed method. A generative adversarial classified network 
(GACN) was proposed for plant disease classification, and its effectiveness was compared with state-
of-the-art GAN-based methods, such as CGAN, Auxiliary Classifier GAN (ACGAN), multiple fake 
class GAN (MFC-GAN), balancing GAN (BAGAN), and ControlGAN (Wang & Cao, 2023). Another 
study used the DCGAN model and compared its performance with that of BEGAN and a combination 
of these methods; better results were attained by DCGAN only; the significance of the research was 
shown by comparing the results with those of other studies (Y. Chen & Wu, 2023). An article presented 
an improved backtracking search (IBS)-optimised GAN to classify diseases on rice leaves and 
addressed the instability and overfitting problems using a DCGAN (Stephen, Punitha, & Chandrasekar, 
2024). A recent study adopted a combination of CNN and Swin Transformer, attained a better FID score 
compared to LeafGAN and CycleGAN, and named the method SugarcaneGAN (X. Li, et al., 2024). 
Recent research proposed a crop leaf GAN (ClGAN) with an improved loss function, an encoder-
decoder network, and a dynamic correction factor. The novelty of this study was demonstrated by 
comparing the proposed method with prominent state-of-the-art GAN methods, including DCGAN, 
WGAN, Wasserstein GAN Gradient Penalty (WGANGP), Information Maximising GAN (InfoGAN), 
and LeafGAN (Sharma, et al., 2024).
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2.3.  Models use Limited Datasets

The research community has been actively involved in addressing the effects of limited dataset sizes 
and improving the diversity of plant disease datasets (Barbedo, 2018). A study used a transfer learning 
approach to address the limited dataset problem using a vision transformer (ViT), which reduced the 
computation time (Xu, Yoon, Jeong, & Park, 2022). Most research addressing the limited dataset 
problem has been resolved using few-shot learning (FSL) methods. For example, a study used ResNet-
18 to generate embeddings, which were updated by a transformer, followed by an evaluation of the 
similarity of the transformed embeddings to the embedding of the target images (Nuthalapati & Tunga, 
2021). Although the FSL-based method solved the limited dataset problem, other feature extractors 
could be trained to further enhance the results. Another FSL-based approach was presented to classify 
diseases on coffee leaves using TripleNet and ProtoNet in 5-way 1-shot and 5-way 5-shot settings on 
various feature extractors (Tassis & Krohling, 2022). An article presented a two-stage method based on 
Faster R-CNN and Siamese Network to detect diseases in strawberry leaves. In this study, various other 
object detection models were used to compare the performance of the developed method, such as 
versions of YOLO, Faster R-CNN, and an SSD model (Pan, et al., 2022). An FSL approach was 
presented in a study that used pretrained weights from the ImageNet dataset and refined them on the 
PlantCLEF2022 dataset. DenseNet was used as the baseline model, and a Support Vector Machine 
(SVM) classifier was used to classify plant diseases. Further experiments were performed using the 
PlantVillage and PDD271 datasets. The study claimed better performance than previous studies at 
PlantVillage and also achieved good accuracy on the PDD271 dataset (Uskaner Hepsağ, 2024). The 
study used other DL classifiers, such as GoogLeNet and MnasNet, could have been used, and more DL 
models could have been trained to further improve the proposed method. A study proposed a method 
called Zero-shot Transfer Learning by generating synthetic images using methods including data 
augmentation, normalisation, CNNs, loss functions, and fine-tuning; the discriminative information was 
preserved by centre-based and triplet-losses using GAN-generated images (Singh & Sanodiya, 2023). 
A supervised contrastive learning-based FSL method was presented in a recent study in two stages: 
application of a supervised contrastive learning algorithm to train an encoder with a large number of 
samples and application of the encoder as a feature extractor of plant disease and implementation of 
meta-learning training to fulfil the few-shot disease classification tasks by training a nearest-centroid 
classifier based on distance metrics (Mu, Feng, Yang, Zhang, & Yang, 2024). The novelty of this work 
was proven by comparing the method with other FSL methods with low GPU resources compared to 
traditional contrastive learning methods. An FSL method consisting of meta-learning, fine-tuning 
(PMF), and a novel feature attention (FA) module, stresses the discriminative parts in the image and 
reduces the impact of complicated backgrounds/undesired objects. ResNet50 and Vision Transformers 
(ViT) were used as feature extractors (Rezaei, et al., 2024). Another recent study proposed an FSL 
method based on multi-scale attention fusion with discriminative enhancement using a deep nearest-
neighbour neural network (Y. Zhao, Zhang, Wu, Zhang, & Xu, 2024). A bidirectional weighted feature 
fusion module was created to improve the aggregation of fine-grained features, and an episodic attention 
module was developed for scene category-relevant attention maps. An additional spacing between 
category margins was added to improve the original SoftMax loss function, reduce the intra-class 
distances, and add L2 regularisation constraint terms to stabilise the training process. The proposed 
method was evaluated one 1-shot and 5-shot tasks. 

2.4. Enhancement and Classification Methods 

Recently, the community has proposed various methods for feature selection in plant disease 
classification by proposing novel filters and metaheuristic algorithms, followed by the application of 
well-known ML and DL models. In this regard, an optimisation-assisted cascaded filtering approach 
was proposed, and a Gaussian Amended Bilateral filter was designed. The proposed method removed 
noise from soybean and cotton plant disease datasets in two stages using the Amended Pelican 
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optimisation algorithm and Extended Savitzky-Golay filter and compared the effectiveness of the 
proposed method with the filters including median, bilateral, and Gaussian filters (Bhujade, et al., 2024). 
To select the most prominent features of barley leaf disease, the grasshopper optimisation algorithm 
was used, and a backpropagation neural network was used for the classification of plant diseases 
(Dorgham, et al., 2024). Another recent study explored the significance of metaheuristic algorithms, 
including the Binary Dragonfly algorithm (BDA), ant colony optimisation algorithm (ANO), and moth 
flame optimisation algorithm (MFO), to optimise feature vectors for plant disease classification. The 
power-law transformation was used to change the intensity values of pixels, contrast-limited adaptive 
histogram equalisation (CLAHE) was used to improve image contrast, and LAB colour space 
transformation was used to improve the region of interest (Taji, et al., 2024). A feature method called 
support vector machine-recursive feature elimination was used to classify paddy leaf images (Dubey & 
Choubey, 2024). A median filter was used to remove noise, texture, and features were extracted from 
the green band of RGB, and classification was performed using adaptive bi-long short-term memory. 
A recent study used a bag-of-features to visually represent diseased leaf features and Speeded-Up 
Robust Features (SURF) to extract pertinent features of leaf diseases (Bhagat & Kumar, 2023). Salp 
Swarm Optimisation-based method was proposed in a study to classify diseases in grapes. A median 
filter was used to remove noise, and a Dilated Residual Network (DRN) and Adam optimiser were used 
to extract the distinct features of plant diseases (Alsubai, et al., 2023). A recent study used a Quantum 
Convolutional Neural Network (QCNN) for feature extraction of plant diseases (Anand, Jain, Mittal, & 
Yadav, 2025). The research optimised the extracted features using evolutionary algorithms, including 
the Genetic Algorithm (GA), particle swarm optimisation (PSO), constricted particle swarm 
optimisation (CPSO), ant colony optimisation (ANO), whale optimisation algorithm (WOA), and 
Modified GA. The optimised features were then applied to traditional ML classifiers for the final 
classification. 

In summary, none of the studies emphasised performing sensitivity and correlation analyses to 
systematically study the impact of excluding dataset complexities on the accuracy improvement of DL-
based plant disease classification. Therefore, the proposed method provides a novel way to fuse the 
strengths of data-centric AI with sensitivity and correlation analyses. This led to the proposal of a new 
performance measure called the Sensitivity Correlation Score (SC-score).

3. Proposed Data-Centric Deep Learning-based Approach

From the literature, it was noticed that previous studies did not emphasise performing detailed analyses 
on the effects of excluding dataset complexities on the accuracy improvement of the DL model for plant 
disease classification. Therefore, this study presents a novel data-centric AI-based approach for 
agricultural applications. Comprehensive sensitivity and correlation analyses were performed, and a 
novel performance score was developed based on these analyses. This study proposed the addition of 
two steps to general data-centric AI-based research on classifying plant diseases in a feedback loop 
representation, as shown in Fig. 3. The improved accuracy achieved by the proposed new steps would 
significantly contribute to the transfer of the research focus to data-centric AI for agricultural 
applications. These steps demonstrate a thorough analysis of the datasets before proposing any 
modifications to the DL models to improve feature extraction. 



Data-centric AI-based Plant Disease Classification Muhammad Hammad Saleem

9

 

Because the main objective of the proposed work is to study a data-centric approach to improve plant 
disease classification, well-known DL models were trained and tested to select the most suitable model 
based on the highest overall accuracy (OA). Classes that achieved a low score (< 90%) were considered 
for further investigation and to study the effects of different dataset complexities. The cutoff accuracy 
was determined empirically. These complexities were then excluded individually and cumulatively 
(further details on the exclusion of these complexities are provided in the subsections). Subsequently, 
detailed sensitivity and correlation analyses were performed to thoroughly understand the effectiveness 
of eliminating dataset complexities. Finally, a novel sensitivity and correlation analysis-based score was 
developed to evaluate the robustness of the proposed method.

3.1. Theoretical Background

This study on plant disease classification using data-centric AI addresses the limitations of model-
centric AI, which focuses on improving dataset quality rather than refining the model architecture and 
optimisation processes. These limitations can be highlighted mathematically (Equation (1)) using the 
cross-entropy loss function for a multiclass classification problem for dataset complexities such as 
complex backgrounds, variations in lighting, and occluded objects.  

𝐿 = ―
1
𝑁

𝑁

𝑖=1

𝐷

𝑑=1
𝑦𝑖𝑑 𝑙𝑜𝑔(𝑝𝑖𝑑)                                                                            (1)

Where L-cross entropy loss function, N-total number of plant images in the dataset, D-total number of 
classes, where each class corresponds to a specific disease (or "healthy" if there is a healthy category), 
yid-indicates if image i truly belongs to disease category d, and pid-model’s predicted probability that 
image i has disease d.

In the presence of dataset complexity, the predicted probability is likely to be less-accurate. The DL 
model may extract non-disease features from the image background or poor-quality regions instead of 
actual plant disease features. Hence, the DL model can assign probabilities based on this irrelevant 
information. This may misdirect the weights, which may disrupt the extraction of meaningful features. 
This also slows the training convergence. Therefore, the proposed data-centric AI addresses the 
limitations of model-centric AI by excluding dataset complexities. This smooths the training process 
and achieves better generalisation without making complex modifications to the DL models.

3.2. Novel Sensitivity Correlation Score

The proposed data-centric AI-based approach involves comparing DL models in terms of testing 
accuracy, identifying low-accuracy classes, identifying dataset complexities, excluding dataset 

Fig. 3. The proposed addition of detailed sensitivity correlation analyses along with an 
evaluation based on a novel SC-score.
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complexities, retraining the best-obtained DL model, performing stratified k-fold cross validation, 
selecting the most-affected dataset complexity, performing comprehensive sensitivity and correlation 
analyses, and demonstrating the effectiveness of these analyses. Based on the sensitivity and correlation 
analyses, a new performance score, the Sensitivity Correlation Score (SC-score), was derived. A step-
by-step explanation of the proposed methodology is presented in Fig. 4.

3.2.1. Identification of dataset complexities 

Dataset complexities were identified by a thorough examination of the training dataset, which could 
contribute to lowering the accuracy of the models. First, some complexities may be present in a plant 
disease dataset containing images collected in a real agricultural environment. Dataset-specific 
complexities were then identified to further enhance the dataset complexities. The general complexities 
include variable lighting, partial shadows, reflected light, and extremely complex backgrounds, whereas 
dataset-specific complexities include non-focused objects of interest, different symptom shapes, low 
spot visibility, and occluded plant organs/disease spots. Sample images for each complexity are shown 
in Fig. 5(a)–(h), where the unique effect of each dataset complexity can be observed along with the 
BRISQUE and SI index scores. The dataset complexities are defined as follows: 

 

Variable Lighting: Images with varying lighting on the object of interest (leaf and stem) were 
compared with the surrounding elements. Partial Shadow: Images showing shadows on some parts of 
the leaf, stem, and/or fruit. Reflected Light: Images with sunlight reflections. Extremely Complex 
Background: Images with various objects in the background, rather than a few objects such as part of 
an object of interest, fruits on the ground, grass, etc. Non-focused Object of Interest: Images with the 
object of interest (plant disease spot) are not focused/blurred, and the background is focused. Different 

Fig. 4. Detailed representation of the proposed data-centric AI-based approach.
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symptom shapes: Images with unique disease symptoms, such as a large patch on the leaf instead of 
spots. Spot Visibility: Images with multiple tiny spots. Occluded plant organs/disease spots: Images 
showing obstructions due to other parts of the plant. 

The motivation for choosing these complexities is that these adversarial effects are common in plant 
disease identification. These dataset complexities are identified using image quality measures such as 
BRISQUE (Blind/Referenceless Image Spatial Quality Evaluator) (Mittal, Moorthy, & Bovik, 2011), 
which measures natural scene statistics, and SI (Sharpness Index) (Blanchet & Moisan, 2012) , which 
quantifies image sharpness. The choice of BRISQUE and the SI index for identifying dataset 
complexities are summarised in Table 1. The threshold value of BRISQUE was set to above 40, 
suggesting significant distortions that could affect the performance of DL models, and below 1000 for 
the SI Index, as it indicates significant blurriness or lack of focus on the images.

Table 1. Selection of Image Quality Measures to Identify Dataset Complexities.

Dataset Complexity Image Quality Measure Reason for Choice

Variable Lighting BRISQUE Detects unnatural intensity variations caused by lighting changes.

Partial Shadow BRISQUE Quantifies distortions caused by shadows and contrast variations.

Reflected Light BRISQUE Evaluates overexposure caused by reflected light.

Complex Background BRISQUE Detects unnatural patterns or noise introduced by cluttered backgrounds.

Occluded Regions BRISQUE Identifies disruptions in natural image structure caused by occlusions.

Non-focused Object of Interest SI Measures blurriness or lack of focus in the object of interest.

Different Symptom Shapes SI Evaluates the clarity and sharpness of symptom shapes.

Spot Visibility SI Quantifies the sharpness and visibility of spots against the background.
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The next step was to exclude these complexities individually and cumulatively. The former approach 
excludes images containing the identified dataset complexities from each low-accuracy class. The best 
DL model was retrained on the dataset obtained after excluding the dataset complexities, and the 
improvement in the accuracy of the model was noted and compared. Stratified k-fold cross-validation 
was used to ensure unbiased testing of the DL model. Sensitivity and correlation analyses were then 
performed, followed by the application of the SC-score (the details of these analyses and the 
performance score are provided in the following subsections). In the case of performance/accuracy 
improvement by more than one class complexity, a new dataset was obtained based on the combined 
exclusion of the most affected dataset complexities. This cumulative exclusion of dataset complexities 
was performed in pairs of two, three, and so on. The best combination of the exclusion of these dataset 
complexities is obtained based on a higher class and overall accuracy than the individual complexity 
removal. A visual representation of the dataset exclusion is shown in Fig. 6. To perform detailed 
sensitivity and correlation analyses, a stepwise exclusion of dataset complexities was performed based 
on the number of images belonging to the complexities that should also balance the granularity and 
computational feasibility. The computational cost was an important factor in selecting the number of 
step sizes for dataset complexity exclusion, as generating more sub-datasets (due to small step size) 
proportionally increased the number of times the DL model needed to be trained and tested on each 
sub-dataset. 

             (e)                                                 (f)                                               (g)                                      (h)

              (a)                                        (b)                                              (c)                                            (d)

Fig. 5. Examples of identified dataset complexities. (a) Variable lighting (BRISQUE Score: 56.768), 
(b) Partial shadow (BRISQUE Score: 43.34), (c) Reflected light (BRISQUE Score: 54.979), (d) 

Extremely complex background (BRISQUE Score: 49.082), (e) Occluded plant organs (BRISQUE 
Score: 46.250), (f) Different symptom shape (SI Score: 917.424), (g) Spot visibility (SI Score: 

497.633) and (h) Non-focused object of interest (SI Score: 457.937)
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The selected step sizes of the dataset complexity exclusion varied from 9.09% to 25% to ensure a 
meaningful evaluation while avoiding excessive computational overhead. For example, dataset 
complexities with very few images, such as four images of spot visibility in grapevine black spots, could 
only exclude one image in each of the four steps, resulting in a step size of 25% (1/4). Similarly, the 
dataset complexity of spot visibility in kiwifruit bacterial canker had five images, and a step size of 
20% (1/5) was considered, as smaller steps would require excluding fractions of images, which was 
impractical. In the case of a larger number of images belonging to the dataset complexity, such as partial 
shadow in apple Glomerella leaf spot, which had 22 images, possible options of step sizes were 1, 2, or 
11 images. Smaller step sizes, such as one image (4.54%), would create 22 sub-datasets that would 
require retraining of the DL models 22 times, making it computationally expensive. However, larger 
step sizes, such as 50% (11/22), would make it difficult to detect changes or improvements in the DL 
model performance. Hence, a step size of 9.09% (2/22) was chosen as the most feasible option, which 
generated 11 sub-datasets.

In the case of accumulated complexities, the closest possible step size was considered for the combined 
exclusion of complexities, based on the number of images. For example, if the variable lighting for a 
class contains 20 images and an occluded object contains 10 images, then a step size of 2 is considered 
to exclude the dataset complexities. This means that ten sub-datasets were created. Interestingly, the 
last five sub-datasets would only have images of variable lighting, as all images related to the occluded 
object would have been excluded. In this case, the last five datasets would consist of the remaining 
variable lighting images, and again, two images of an occluded category would be considered randomly 
for each of the last five datasets. There are a few cases in which the two complexities have images that 
are not completely invisible to each other. For instance, variable lighting may have 10 images, whereas 
the occluded image may have only three images. Here, we need to find appropriately perform exclusion. 
Mathematically, the exclusion of the accumulated dataset complexities is performed using Equations 
(2)–(8).

𝑛𝑗 = 𝑟𝑜𝑢𝑛𝑑(𝑠 ∗ 𝑁𝑗)            (2)

𝑛𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑛𝑗,𝑛𝑘) (3)

Fig. 6. Process for excluding dataset complexities accumulatively.
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𝐾𝑗 = ⌈𝑁𝑗

𝑛𝑗 ⌉ (4)

𝐾𝑘 = ⌈𝑁𝑘

𝑛𝑘
⌉ (5)

𝑁𝑖,𝑗 = 𝑚𝑎𝑥(0,𝑁𝑖―1,𝑗 ― 𝑛𝑚𝑖𝑛) (6)

𝑁𝑖,𝑘 = 𝑚𝑎𝑥(0,𝑁𝑖―1,𝑘 ― 𝑛𝑚𝑖𝑛) (7)

𝐾𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 = ⌈min(𝑁𝑗,𝑁𝑘)
𝑛𝑗 ⌉ (8)

Where Nj-total number of images for complexity j (e.g., "variable lighting"), Nk-total number of images 
for complexity k (e.g., "occluded object"), nj-step size for complexity j, nk-step size for complexity k, s-
step size as a fraction (e.g., 10%, 20%), round-rounds the value to the nearest integer, nmin-combined 
step size for both complexities; the minimum of both nj and nk to ensure images are excluded from both 
complexities in parallel initially, Kj-number of steps to exclude all images from complexity j, and Kk-
number of steps to exclude all images from complexity k, Ni,j and Ni,k represent the remaining images 
after each exclusion step, Kremaining-number of sub-datasets that are created after one complexity is fully 
excluded.

3.2.2. Sensitivity and Correlation Analyses

One of the main contributions of this study is the performance of sensitivity and correlation analyses. 
These analyses provide insights into the effects of excluding dataset complexities on the accuracy 
improvement of the DL model for plant disease classification.

Sensitivity Analysis: Sensitivity analysis (SA) is a method used to determine how changes in the 
independent variable affect the dependent variable of a model or system. In the context of this study, 
the step sizes of the dataset complexities were independent variables, and the accuracy change was the 
dependent variable. Different types of sensitivity analysis functions were applied, including absolute 
sensitivity analysis (ASA), relative sensitivity analysis (RSA), and semi-relative sensitivity analysis 
(SRSA), as defined in Equations (9)–(11), respectively. 

The ASA measures the absolute change in accuracy relative to the change in step size of the dataset 
complexity exclusion. In contrast, the RSA scales the ASA by the ratio of the step size dataset 
complexity to the initial accuracy, and the SRSA scales the ASA by the dataset complexity step size. 
This indicates that the RSA amplifies the sensitivity values when the accuracy is low and suppresses 
them when the accuracy is high. Similarly, the SRSA produces higher sensitivity values at larger step 
sizes, irrespective of the actual step size of the dataset complexity exclusion when the highest accuracy 
improvement is observed. However, the ASA quantifies the impact of dataset complexity exclusion on 
accuracy without unnecessary scaling of the accuracy or step size of the dataset complexity exclusion.  

As shown in Fig. 7, the ASA function attained its peak value at a 25% step size of dataset complexity 
exclusion which aligns with the step size of the highest improvement in accuracy. However, the RSA 
and SRSA peaked at a 100% step size which did not correspond to the optimal performance of the DL 
model in terms of accuracy enhancement. Hence, the evaluation of sensitivity functions indicates that 



Data-centric AI-based Plant Disease Classification Muhammad Hammad Saleem

15

the ASA provides a more reliable assessment of the effectiveness of dataset complexity exclusion for 
various step sizes. Therefore, ASA was selected as the primary evaluation metric because of its ability 
to effectively obtain the optimal step size for dataset complexity exclusion.

𝐴𝑆𝐴 =
∆𝐴
∆𝐶𝑖

(9)

𝑅𝑆𝐴 =
∆𝐴
∆𝐶𝑖 ∗

𝐶
𝐴

(10)

𝑆𝑅𝑆𝐴 =
∆𝐴
∆𝐶𝑖 ∗ 𝐶 (11)

Where ASA-absolute sensitivity analysis, RSA-relative sensitivity analysis, SRSA-semi-relative 
sensitivity analysis, A-current accuracy of the DL model, C-current dataset complexity, Ci-the i-th step-
size of dataset complexity, and ∆A/∆Ci-ratio between the difference in accuracy with respect to the i-th 
step size of complexity.

Correlation analysis: Correlation analysis is a statistical method used to determine the relationship or 
correlation between two variables in a dataset. For this study, these variables are the step sizes of the 
dataset complexities and changes in the classification accuracies of the DL model owing to complexity 
exclusion. The primary focus of the correlation analysis was to evaluate the strength of the correlation 
between dataset complexity elimination and the accuracy of the DL model. Therefore, the Pearson 
Correlation Coefficient (PCC) was used in this research for the following reasons: (a) to interpret how 
changes in the dataset in terms of excluding complexities are related to changes in accuracy across 
different step sizes, and (b) to determine the strength of the relationship between dataset complexity 
elimination and accuracy improvement of the DL model. This information is crucial for understanding 
how dataset complexity affects model performance. For instance, a strong positive correlation suggests 
that excluding dataset complexities at different step sizes has a consistent and positive effect on the 
accuracy of the DL model. While the PCC meets the objectives of the correlation analyses for this 
research by evaluating whether the correlation strength is strong or weak, it has certain limitations, 
including its inability to capture non-linear relationships. Other correlation functions, such as 
Spearman's rank correlation (SRC), assess the monotonic relationship, whether linear or non-linear. 

Fig. 7. Absolute (ASA), relative (RSA), and semi-relative (SRSA) sensitivity scores with 
changes in accuracy (CA_DIFF) after combined exclusion of variable lighting and spot 

visibility complexities from Apple Black Spot.
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Therefore, the significance of the SRC should be evaluated in follow-up studies which could provide 
additional insights into determining the nonlinear relationship between dataset complexity exclusion 
and performance enhancement of the DL model.

To apply PCC, the mathematical equation is defined by Equation (12):

𝑃𝐶𝐶 =
((𝑋 ―  𝜇𝑋)(𝑌 ―  𝜇𝑌)) 

(𝜎𝑋 ∗  𝜎𝑌)                                                                    (12)

Where PCC-Pearson Correlation Coefficient between step size of complexities exclusion and difference 
in accuracies, X-dataset complexities at different percentages of step size, Y-corresponding changes in 
accuracies, μX-mean complexities step sizes, μY-mean change in accuracies, σX-standard deviation of 
complexities, and σY-standard deviation of accuracy changes.

3.2.3. Sensitivity Correlation Score

This study proposed a novel performance score to comprehensively understand the relationship between 
excluding dataset complexities and accuracy improvement for plant disease classification. An integrated 
score of ASA and PCC, named the Sensitivity Correlation Score (SC-score), was proposed in this study.

Criteria of the SC-score: The main criterion for developing the SC-score was to capture both the 
sensitivity of the DL model’s performance to the exclusion of dataset complexity and the consistency 
of this relationship. The score should indicate that positive sensitivity is more responsive to better 
classification results because of the elimination of data complexity, and strong correlations (more than 
0.5) indicate a more consistent relationship between complexity removal and accuracy enhancement. 
The formula development considered the following criteria.

• The score should reward both sensitivity and correlation; therefore, the DL model may be sensitive 
to changes in complexity (ASA) and show a strong correlation (PCC) between complexity and the 
accuracy.

• The score should guide the selection of the most affected step size for dataset complexity exclusion.
• The score should consider a positive correlation and neutralise the effect of negative correlations 

because a negative correlation would show an inverse relationship between the accuracy change and 
step sizes of the dataset complexity exclusion.

• Negative sensitivity should not be cancelled out, as it could show that the accuracy of the DL model 
decreased after the initial exclusion of the dataset complexities; it may increase after further refining 
the dataset.

• The step size with a sensitivity score of ‘0’ should not be selected because there would be no 
accuracy change/improvement or either of the sensitivity was less than 0 (reduction in DL model 
accuracy) or correlation score was less than 0.5 (weak correlation). 

Hence,

• ASA and PCC should be multiplied.
• ∣PCC∣ can be used to cancel out the effects of negative correlations and avoid penalisation of the 

sensitivity score.
• The SC score was normalised to make it more interpretable and consistent. It will also help ensure 

that both sensitivity and correlation contribute appropriately and select the most affected step size 
of the dataset complexity exclusion. The normalisation range of [0,1] was chosen to reward only 
positive correlations, as this study focuses on the strength of the accuracy improvement due to 
dataset complexity exclusion rather than linear or non-linear relationships between them. The 
normalisation process ensures that the minimum value of the SC-score is 0 which presents either 
both or one of the reasons among negative sensitivity and weak/moderate correlation. The maximum 
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value of the SC-score is 1 which indicates the highest combined effect of positive sensitivity and 
strong correlation scores.  

Based on the above discussion/criteria, the formula for the SC-score is presented in Equations (13) and 
(14).

𝑆𝐶 = 𝐴𝑆𝐴 ∗ ∣𝑃𝐶𝐶∣,  𝑖𝑓 𝐴𝑆𝐴 > 0 𝑎𝑛𝑑 ∣𝑃𝐶𝐶∣ > 0.50
0,  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (13)

    𝑆𝐶 ― 𝑠𝑐𝑜𝑟𝑒 =
𝑆𝐶 min(𝑆𝐶)

𝑚𝑎𝑥(𝑆𝐶) min(𝑆𝐶)
,  𝑖𝑓 max (𝑆𝐶) ≠ min (𝑆𝐶)

0,    𝑖𝑓 max (𝑆𝐶) = min (𝑆𝐶)
(14)

Where ASA-absolute sensitivity analysis function, PCC-Pearson Correlation Coefficient, SC-SC-score 
before normalization, SC-score-SC-score after normalization

Significance and novelty of the SC-score: The SC-score considers the results obtained from the 
sensitivity and correlation analyses as a single metric. This integration is significant because it provides 
a more comprehensive evaluation of the model performance than either analysis alone. Moreover, this 
score provides a balanced assessment of how a model responds to changes in data complexity 
(sensitivity) and how consistently it does so (correlation). The SC-score would guide researchers to 
select the best-suited step size of dataset complexity exclusion, which is both sensitive and consistent 
in performance/accuracy improvement across different step sizes without the loss of useful information 
or features. Furthermore, this score neutralises the effect of negative correlations without penalising the 
effect of the sensitivity score.

4. Results and Discussions

This section presents the results of this research, which consist of selecting the most suitable deep 
learning model, followed by studying the effects of excluding dataset complexities, an ablation study, 
and applying sensitivity and correlation analyses along with analyses based on the SC-score, 
comparative evaluation with state-of-the-art methods, deployment challenges, and limitations of the 
study. This section provides the limitations of this study.

4.1. Dataset and Evaluation 

For this study, a plant disease dataset called NDZLPlantDisease-v1 was used (Saleem, et al., 2022a) 
from the GitHub repository https://github.com/hsaleem1/NZDLPlantDisease-v1. This dataset was 
selected because it considers various aspects of a real agricultural environment. The dataset contains 
healthy and diseased plant leaves and other plant organs, including stems and fruits. The 
NZDLPlantDisease-v1 dataset comprises 20 healthy and diseased classes from five different fruits, and 
images were collected under diverse climatic conditions in New Zealand. The dataset was divided into 
training, validation, and testing sub-datasets at 70%, 20%, and 10%, respectively. 

An external testing dataset containing images from random Google searches was used to evaluate the 
robustness of the proposed method. The external dataset was completely independent of the training 
and validation datasets to ensure no data leakage. The images in the external dataset were not used 
during any phase of model training or hyperparameter tuning which confirmed an unbiased evaluation 
of the generalisation capabilities of the DL models. Successful results on an external dataset will 
demonstrate the effectiveness of the proposed method in different agricultural environments, rather than 
considering only the environment used to train the DL models (Saleem, et al., 2022a). Further details 
of the dataset used in this study are provided in Table 2.

To ensure the reliability of the training process, stratified 5-fold cross-validation was employed in this 
study because of the class imbalance problem in the selected dataset. This cross-validation technique 
partitions the data into five folds while preserving the original class distribution of each fold. This 



Data-centric AI-based Plant Disease Classification Muhammad Hammad Saleem

18

ensured an unbiased distribution of the dataset across all the five folds. The average accuracies obtained 
through these folds were reported in this study for the selection of the best DL model, assessment of the 
effects of dataset complexity elimination, and accuracy improvement due to the exclusion of 
complexities in different step sizes. This approach also guarantees unbiased testing and a robust 
estimate of the proposed approach for the unseen data.

Table 2. Details of NZDLPlantDisease-v1 and External Testing Datasets.

Plant 
Species

Plant 
Organs

Healthy and 
Diseased Classes Pathogen Number of 

Training Images
Number of 

Validation Images
Number of 

Testing Images
Number of External 

Testing Images

Black Rot Fungus 39 12 6 63

Fruit

Healthy - 132 34 17 44

Black Spot Fungus 94 20 10 15

Glomerella Leaf 
Spot Fungus 190 62 31 15

Mosaic Virus Virus 107 40 20 37

Leaf

Healthy - 152 34 17 15

Apple

Stem European Canker Fungus 115 34 17 12

Algal Leaf Spot Algae 62 16 8 11

Branch Canker Fungus 178 50 25 19Avocado Leaf

Healthy - 163 46 23 30

Black Spot Fungus 56 16 8 5

Grapevine Cane

Healthy - 115 34 17 85

Bacterial Canker Bacteria 264 64 32 14

Kiwifruit Leaf

Healthy - 186 54 27 35

Stony Pit Virus 37 14 7 13

Pear Fruit

Healthy - 155 40 20 19
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Fire Blight Bacteria 78 24 12 20

Scab Fungus 142 42 21 38Leaf

Healthy - 98 40 20 19

Stem European Canker Fungus 69 20 10 11

DL models: After selecting the plant disease dataset, the next step was to select the most suitable DL 
model. In this regard, various DL classifiers were trained and tested using their pre-trained weights on 
the ImageNet dataset. To simplify model selection, the version of each model that attained the highest 
accuracy on ImageNet was retrained on NZDLPlantDisease-v1. The DL models included Xception, 
VGG16, ResNet152V2, InceptionResNet-V2, MobileNetV2, DenseNet201, NasNetLarge, and 
EfficientNetV2L (ConvNeXtXLarge and other versions of ConvNeXt could not be trained owing to the 
memory limitation of the GPU). Their training and validation plots were drawn to ensure that there 
were no problems, such as overfitting and underfitting. These DL models were compared based on the 
testing accuracy of NZDLPlantDisease-v1 and external testing datasets to demonstrate the robustness 
and practical considerations of the proposed methodology.

Implementation Details: All DL models were trained using the TensorFlow and Keras frameworks. 
The hardware included an NVIDIA RTX 4070 GPU with the following specifications: 12GB Memory, 
2.48 GHz boost clock, and 5888 CUDA cores. The CuDNN library was imported to accelerate the DL 
model training. A Stochastic Gradient Descent (SGD) optimiser with momentum was used with the 
following specifications: learning rate = 0.001, momentum = 0.9, and decay = 0.0005. The 
hyperparameters were selected using a random search method (Bergstra & Bengio, 2012). All the DL 
models were trained using a fine-tuning technique with pretrained weights on the ImageNet dataset. 
The DL models were trained for 50 epochs with a batch size of 16 to achieve training convergence.

4.2. Experiments to Identify the Best DL Model 

This step was performed to select the best DL model that could be applied to the proposed Data-centric 
AI-based approach. Eight DL classifiers were trained using the NZDLPlantDisease-v1 dataset. These 
DL models were tested on the NZDPlantDisease-v1 and external testing datasets. To select the best-
performing DL model, various parameters and performance metrics of the models were evaluated. The 
most optimal choice of the DL model mainly depended on the highest accuracy of both testing datasets.

From the training performance of the DL models presented in Fig. 8 (a), it can be observed that VGG-
16 requires the fewest epochs to achieve training convergence. However, MobileNetV2 required the 
shortest training and testing times in seconds per epoch. The major focus of this study was to improve 
the accuracy of plant disease classification. Therefore, training time and the number of epochs should 
be the focus of follow-up studies. It can also be noted that all models achieved a training accuracy of 
approximately 0.99. However, DenseNet-201 and EfficientNetV2L achieved the highest validation 
accuracies of 0.9331 and 0.9295, respectively. Similarly, the loss plots (Fig. 8 (b)) of the DL models 
show that the training loss varies from 0.0031 to 0.0401. However, the lowest validation loss was 
achieved by DenseNet-201 (0.0660), followed by EfficientNetV2L (0.0812), compared with the 
validation loss of other DL classifiers. The testing performance of the DL models revealed that 
DenseNet-201 achieved the highest accuracy, followed by the MobileNetV2 and NasNetLarge models, 
on the testing dataset of NZDLPlantDisease-v1. However, the highest testing accuracy on the external 
testing dataset was achieved by DenseNet-201, followed by NasNetLarge and Xception models, as 
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presented in Table 3. The performance of the DenseNet-201 model was validated using the stratified k-
fold cross-validation method. The dataset images of each class were folded five times in different 
combinations of training and validation images to ensure unbiased testing of the DenseNet-201 model. 
The original class distribution was retained while creating these dataset folds. The testing accuracy on 
the testing dataset through these folds was 0.9359, 0.9416, 0.9532, 0.9596, and 0.9651, with an average 
of 0.9511. Similarly, the testing accuracy of the external dataset from the cross-validation method was 
0.8090, 0.8122, 0.8225, 0.8292, and 0.8329, with an average of 0.8217.

MobileNetV2 required the lowest GFLOPs and memory size, followed by DenseNet-201. From Table 
3 and Fig. 8, it can be concluded that either MobileNetV2 or DenseNet-201 should be selected because 
of their best performance in terms of testing accuracy, testing time, or memory requirements. As this 
study mainly focused on improving the accuracy of the DL model using the novel data-centric AI 
approach, DenseNet-201 was the most optimal choice for this study because it achieved significantly 
higher testing accuracy on both testing datasets with a bearably higher testing time, GFLOPs, and 
memory requirement than MobileNetV2. Therefore, DenseNet-201 was used in the subsequent steps of 
this study.

Table 3. Performance of Deep Learning Models on NZDLPlantDisease-v1 and External Testing Datasets 

(b) Loss plots
Fig. 8. Training and validation plots of deep learning models.
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DL models
Paramete

rs (in 
Millions)

Numb
er of 

Epoch
s

GFLOP
S

Memor
y Size 
(MB) Trainin

g Time 

Testin
g 

Time Trainin
g 

Accura
cy

Validati
on 

Accurac
y

Trainin
g Loss

Validati
on Loss

Testing 
Accuracy - 

NZDLPlantDisea
se-v1

Testing 
Accura

cy – 
Externa

l 
Testing 
dataset

VGG16 138.4M 20 30.95 512.53 34 0.003 0.9991 0.8779 0.0031 0.4571 0.8818 0.5863

Xception 22.9M 41 9.11 87.91 40 0.003 0.9917 0.9142 0.0387 0.1178 0.9116 0.7419

EfficientNetV
2L 119.0M 42 24.54 455.78 181 0.019 0.9905 0.9295 0.0401 0.0812 0.9221 0.7380

Inception 
ResNetV2 55.9M

22 12.95 214.50
43

0.004
0.9967 0.9069 0.0161 0.2334 0.9226 0.5979

ResNet152V2 60.4M 39 21.83 231.45 54 0.006 0.9983 0.9026 0.0080 0.2126 0.9259 0.7289

NASNetLarge 88.9M 35 47.68 341.40 121 0.011 0.9979 0.8997 0.0102 0.1847 0.9312 0.7434

MobileNetV2 3.5M 25 0.6 13.98 15 0.001 0.9975 0.9244 0.0135 0.1369 0.9316 0.6398

DenseNet201 20.2M 21 8.59 78.55 42 0.004 0.9979 0.9331 0.0075 0.0660 0.9511 0.8217

4.3. Experiments of Individual and Accumulative Exclusion of Dataset Complexities

In the previous step, DenseNet-201 was selected as the most suitable DL model for this study. As shown 
in Table 3, the testing accuracy of the DenseNet-201 model was significantly higher for the 
NZDLPlantDisease-v1 testing dataset (0.9511) than for the external testing dataset (0.8217). The testing 
accuracy of all individual healthy and diseased classes was noted to determine the classes that attained 
an accuracy lower than 90% for further analysis. As shown in Table 4, the accuracy of each class was 
approximately 90% in the testing dataset of NZDLPlantDisease-v1. However, some classes in the 
external testing dataset did not achieve high accuracy (less than 90%), including apple black spot 
(A_blk_spot), apple glomeralla leaf spot (A_gl_lf_spot), apple healthy leaves (A_healthy_l), avocado 
algal leaf spot (Av_alg_lf_spot), avocado bacterial canker (Av_br_canker), grapevine black spot on 
cane (G_blk_spot_c), kiwifruit bacterial canker (Kf_bac_canker), and pear canker (P_canker). The 
accuracies ranged from 40% to 78.94%. However, the remaining classes attained high accuracy (89.47 
%–100 %).

DenseNet-201 was retrained, followed by the exclusion of individual dataset complexities. Their 
improvement was observed based on the difference in default accuracy (without any change to the 
training dataset) and updated accuracy (after excluding the dataset complexities), as shown in Table 5. 
In the case of accuracy improvement owing to the removal of more than one dataset complexity, an 
accumulated exclusion of dataset complexities was considered. Because the accuracy of the testing 
dataset of NZDLPlantDisease-v1 did not significantly increase, the remaining analyses were based on 
the external testing dataset.
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Table 4. Class-wise accuracy of DenseNet-201 models on NZDLPlantDisease-v1 and External testing datasets.

Healthy and disease classes Accuracy on NZDLPlantDisease-v1 Accuracy on the External Testing Dataset

Apple black rot (A_blk_rot_f) 1 0.8964

Apply black spot (A_blk_spot) 0.9 0.75

Apply European Canker (A_e_canker) 0.9011 0.9133

Apple Glomerella Leaf Spot (A_gl_lf_spot ) 0.8967 0.5909

Apply healthy fruit (A_healthy_f) 0.9111 0.9233

Apply healthy leaves (A_healthy_l) 0.8823 0.6

Apply mosaic virus ( A_m_virus) 0.9 0.9108

Avocado Algal Leaf spot (Av_alg_lf_spot) 1 0.7272

Avocado branch canker (Av_br_canker) 1 0.7894

Avocado healthy leaf (Av_healthy_l) 0.8965 0.9

Grapevine black spot (G_blk_spot_c) 1 0.4

Grapevine healthy cane (G_healthy_c) 0.9011 1

Kiwifruit bacterial canker (Kf_bac_canker) 0.9287 0.7142

Kiwifruit healthy leaf (Kf_healthy_l) 1 0.9

Pear canker (P_canker) 1 0.7690

Pear fire blight (P_fr_blight) 1 0.93

Pear healthy fruit (P_healthy_f) 1 1

Pear healthy leaf (P_healthy_l) 1 0.8947
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Pear stony pit (P_s_pit) 1 0.898

Pear scab (P_scab) 0.9047 0.9274

Table 5. Change in accuracy due to individual and cumulative complexity exclusion from low-performing classes.

Classes Individual and Combined Dataset Complexities
Accuracy on 

NZDLPlantDisease-
v1 

Accuracy 
on 

External 
Testing 
dataset 

Change in accuracy 
on 

NZDLPlantDisease-
v1 

Change 
in 

accuracy 
on 

External 
Testing 
Dataset 

Variable lighting (Var_light) 0.9 0.8 0 0.05

Spot visibility (Spot_visibility) 0.9 0.8667 0 0.1167

Different symptom shape (Symp_shape) 0.9 0.8667 0 0.1167

Extremely Complex background (Comp_back) 0.9 0.7667 0 0.0167

Var_light_Spot_visibility 0.9 0.8667 0 0.1167

Var_light_Symp_shape 0.9 0.47 0 -0.28

Spot_visibility_Symp_shape 0.9 0.6 0 -0.15

Var_light_Spot_visibility_Symp_shape 0.9 0.47 0 -0.28

Var_light_Comp_back 0.9 0.6667 0 -0.0833

Spot_visibility_Comp_back 0.9 0.7333 0 -0.0167

Symp_shape_Comp_back 0.9 0.6667 0 -0.0833

Var_light_Spot_visibility_Comp_back 0.9 0.7333 0 -0.0167

Var_light_Symptom_shape_Comp_back 0.9 0.6667 0 -0.0833

A_blk_spot

Spot_visibility_Symptom_shape_Comp_back 0.9 0.7333 0 -0.0167
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Var_light_Spot_visibility_Symptom_shape_Comp_back 0.9 0.5333 0 -0.2167

Partial Shadow (Par_shadow) 0.935 1 0.0383 0.4091

Spot Visibility (Spot_visibility) 0.935 0.5909 0.0383 0

Variable Lighting (Var_lighting) 1 0.5909 0.1033 0

Different Symptom Shape (Symp_shape) 0.903 0.9333 0.0063 0.3424

Non-focused Object of Interest (OOI) 0.9667 0.9333 0.07 0.3424

Reflected Light (Ref_light) 1 1 0.1033 0.4091

Occluded Plant Organ/Disease Spots (Occ) 0.935 0.5909 0.0383 0

Par_Shadow_Symp_Shape 0.935 0.8667 0.0383 0.2758

Par_Shadow_OOI 0.9667 0.8667 0.07 0.2758

Par_Shadow_Ref_Light 0.9667 0.8667 0.07 0.2758

Symp_Shape_OOI 0.9667 0.9333 0.07 0.3424

Symp_Shape_Ref_Light 0.9667 0.9333 0.07 0.3424

OOI_Ref_Light 0.9667 0.8667 0.07 0.2758

Par_Shadow_Symp_Shape_OOI 0.903 0.9333 0.0063 0.3424

Par_Shadow_Symp_Shape_Ref_Light 0.935 0.8667 0.0383 0.2758

Par_Shadow_OOI_Ref_Light 0.9667 0.9333 0.07 0.3424

Symp_Shape_OOI_Ref_Light 1 0.8 0.1033 0.2091

A_gl_lf_spot

Par_Symptom_OOI_Ref_Light 0.935 0.8 0.0383 0.2091

A_healthy_l Variable Lighting (Var_light) 0.7642 0.4667 -0.1181 -0.1333
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Occluded Plant Organ/Disease Spots (Occ) 0.8823 0.6667 0 0.0667

Spot Visibility (Spot_visibility) 0.7642 0.48 -0.1181 -0.12

Different Symptom Shape (Symp_shape) 0.7642 0.7333 -0.1181 0.1333

Extremely Complex Background (Comp_back) 0.8823 0.4667 0 -0.1333

Occ_Symp_Shape 0.5882 0.4667 -0.2941 -0.1333

Spot Visibility (Spot_visibility) 1 0.8182 0 0.091

Different Symptom Shape (Symp_shape) 1 0.909 0 0.1818

Non-focused Object of Interest (OOI) 1 0.7272 0 0

Av_alg_lf_spot

Spot_Visiblity_Symp_Shape 1 0.636 0 -0.0912

Different Symptom Shape (Symp_shape) 1 0.8182 0 0.0288

Variable Lighting (Var_light) 1 0.6311 0 -0.1583

Spot Visibility (Spot_visibility) 1 0.7362 0 -0.0532

Occluded Plant Organ/Disease Spots (Occ) 1 0.8182 0 0.0288

Non-focused Object of Interest (OOI) 1 0.909 0 0.1196

Symp_Shape_Occ 1 0.578 0 -0.2114

Symp_Shape_OOI 1 0.526 0 -0.2634

Occ_OOI 1 0.736 0 -0.0534

Av_br_canker

Symp_Shape_Occ_OOI 1 0.631 0 -0.1584

Variable Lighting (Var_light) 1 0.4 0 0

G_blk_spot_c

Non-focused Object of Interest (OOI) 1 0.4 0 0
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Occluded Plant Organ/Disease Spots (Occ) 1 0.4 0 0

Spot Visibility (Spot_visibility) 1 0.6 0 0.2

Different Symptom Shape (Symp_shape) 1 0.5 0.0713 -0.2142

Partial Shadow (Par_shadow) 1 0.7421 0.0713 0.0279

Reflected Light (Ref_light) 1 0.5711 0.0713 -0.1431

Variable Lighting (Var_light) 0.968 0.7142 0.0393 0

Spot Visibility (Spot_visiblity) 0.968 0.925 0.0393 0.2108

Kf_bac_canker

Par_Shadow_Spot_Visibility 1 0.571 0.0713 -0.1432

Variable Lighting (Var_light) 1 0.4542 0 -0.3148

Spot Visibility (Spot_visibility) 1 0.3632 0 -0.4058

Extremely Complex Background (Comp_back) 1 0.6366 0 -0.1324

Occluded Plant Organ/Disease Spots (Occ) 1 0.7894 0 0.0204

Non-focused Object of Interest (OOI) 1 0.918 0 0.149

Different Symptom Shape (Symp_shape) 1 0.7272 0 -0.0418

P_canker

Occ_OOI 1 0.5454 0 -0.2236

For instance, complexities, including variable lighting, spot visibility, different symptom shapes, and 
extremely complex backgrounds, were identified for apple black spots, as shown in Table 5, based on 
the definitions of dataset complexities provided in Section 3. The exclusion of variable lighting from 
A_blk_spot improved the accuracy by 5%, whereas the performance of the DL model in the absence of 
spot visibility and different symptom shapes improved by 11.67%. However, the elimination of the 
complex background improved the accuracy of A_blk_spot by a marginal margin of 1.67%. As all the 
identified dataset complexities contributed to improving the accuracy of A_blk_spot, all four identified 
complexities must be combined in all possible ways. The combined elimination of variable lighting and 
spot visibility from the A_blk_spot class attained the highest overall accuracy of 86.3% (which was the 
average of the accuracies obtained by five folds of the stratified k-fold cross-validation method with 
87.38%, 86.84%, 86.43%, 85.55%, and 85.30%), which is an improvement of 4.13% compared with 
the overall accuracy on the default dataset. Another interesting finding was that the class accuracy (CA) 
of A_blk_spot was 0.8667, which was the same as that achieved by excluding spot visibility and 
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different symptom shapes individually. The overall accuracy was higher with the combined exclusion 
of variable lighting and spot visibility.

Another interesting finding of this step is the complexity exclusion of the A_gl_lf_spot class. Four 
dataset complexities achieved better accuracy than the default dataset: partial shadow, different 
symptom shapes, non-focused objects of interest, and reflected light. The individual elimination of 
partial shadows and reflected light resulted in an accuracy of 1.00. The combined elimination of 
different symptom shapes and non-focused objects of interest, different symptom shapes and reflected 
light, partial shadows along with different symptom shapes and non-focused objects of interest, and 
partial shadows along with non-focused objects of interest and reflected light also attained a better 
accuracy of 93.33%. To select the best individual or combined exclusion of dataset complexities, partial 
shadow was selected because of its higher overall accuracy of 0.8370 (which was the average of the 
accuracies obtained by five folds of the stratified k-fold cross-validation method with 0.8430, 0.8400, 
0.8381, 0.8340, and 0.8298) compared to other exclusions.

For A_healthy_l, only the exclusion of occluded and different symptom shapes improved the class 
accuracy, as shown in Table 5. However, their combined elimination degraded the accuracy to 0.4667. 
Different symptom shapes were considered for the next steps of the analysis owing to their highest class 
and overall accuracy improvement. Similarly, for Av_alg_lf_spot, the removal of spot visibility and 
different symptom shapes contributed to attaining high accuracies of 81.82% and 90.9%, respectively. 
However, their combined elimination reduces class accuracy. The different symptom shapes improved 
the accuracy with the largest margin; hence, they were considered for the next steps.

For Av_br_canker, the elimination of non-focused objects of interest improved the accuracy of 
DenseNet-121 by 11.96%. The exclusion of spot visibility for G_blk_spot_c attained a better result than 
all recognised dataset complexities. The exclusion of partial shadows and spot visibility improved 
Kf_bac_canker classification. However, their combined elimination did not contribute to further 
improvements in accuracy. Hence, the elimination of spot visibility was considered for the rest of the 
analysis for Kf_bac_canker because of the improvement in accuracy with the largest difference. For 
P_canker, the non-focused object of interest attained class accuracy improvement, and a small 
enhancement was observed when the occluded images were removed. However, other complexities 
degrade the accuracy of the P_canker. Moreover, the combined elimination of non-focused objects of 
interest and occlusion also downgraded the performance of the class accuracy by a large margin (22.36 
%).  

Based on the above discussion, the following observations were made for the next steps of the research: 

• The exclusion of some dataset complexities improves the classification accuracy.

• The elimination of some dataset complexities degrades the performance of the DL model.
• Although individual and accumulated/combined elimination of dataset complexities were analysed, 

individual complexities were found to be the most affected for most of the examined classes.

• Only A_blk_spot attained/retained a higher accuracy after eliminating the complexities of the 
combined dataset.

The above experimental results show that an increase in the class and overall accuracies improved the 
feature extraction capability of the DenseNet-121 model owing to the removal of certain dataset 
complexities, thereby proving the significance of the proposed data-centric AI approach. However, 
performance degradation was also observed after the exclusion of some of the other dataset 
complexities, which implies the removal of some important or distinct features of healthy or diseased 
plant organs from the training dataset. Therefore, further investigation is required to confirm the 
robustness and validity of the proposed data-centric AI approach. Further examination would also 
require unfolding the patterns and relationships of the exclusion of dataset complexities to improve the 
performance of the DL model. Therefore, comprehensive sensitivity and correlation analyses were 
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performed to extract these patterns from the data. Moreover, a new performance score, the SC-score, 
was developed to integrate the impact and correlation of accuracy improvement with step 
sizes/instances of the exclusion of the dataset complexities.

4.4. Experiments for Sensitivity and Correlation Analyses

To analyse the impact of dataset complexity on the accuracy improvement of the DL model, this study 
applied the absolute sensitivity analysis function (SA) by taking the ratio of the difference between 
class accuracies as the model output and the step sizes of dataset complexity exclusions as the model 
input. Pearson correlation coefficient was used to perform correlation analyses. Finally, combined 
sensitivity and correlation analyses were performed based on the newly developed SC-score. To 
highlight the effectiveness of the proposed SC-score, comprehensive sensitivity, correlation, and SC-
score-based analyses were performed to identify the most effective step size of the dataset complexity 
exclusion and the strength of the association between the accuracy improvement of the DL model and 
step sizes. 

4.4.1. Detailed Sensitivity Analyses: The absolute sensitivity function was applied to the most 
affected class complexities (from the previous step) for different step sizes. From Fig. 9 (a)–(h), it can 
be observed that the complexity step sizes ranged from 9.09% to 25% based on the number of images 
in the dataset. Owing to the negative change/degradation in the accuracy for different complexity step 
sizes, the sensitivity scores also decreased; however, they increased with the positive 
change/improvement in the accuracy. There were a few instances in which the class accuracy improved, 
but the overall accuracy decreased. For instance, the sensitivity score was positive for G_blk_spot after 
excluding spot visibility for class accuracy; however, the overall accuracy was reduced by 25%, 50%, 
and 100%, respectively. This implies that DenseNet-201 improved the accuracy of the G_blk_spot 
class, and the overall discrimination and classification between the classes was reduced. However, at a 
size step of 75%, both CA and OA improved. 
Some important observations can be made for different symptom shape complexities for 
Av_alg_lf_spot. The best results in terms of the highest sensitivity score were achieved with the 
exclusion of 30% and 100% of the data for class accuracy. However, the sensitivity score for overall 
accuracy was highest at 30% and 70% complexity exclusion rather than at full elimination. Another 
important point is noted for Kf_bac_canker, where there is a slight difference in CA for the 20% and 
100% complexity exclusions; the most impactful step size for OA is 100% exclusion for better OA; 
therefore, complete elimination of the identified complexity can be considered for OA.
As discussed in the previous subsection, A_blk_spot was the only class with a combination of 
complexities that achieved better accuracy. Therefore, the effects of different complexity step sizes 
were studied for both variable lighting and visibility. Subsequently, the most affected complexity was 
used to apply sensitivity analyses at different step sizes of the combined/accumulated complexity 
exclusion. This approach attained a significantly high overall accuracy of 93.11% on an external testing 
dataset.
While analysing the complexity of the non-focused object of interest for P_canker, the complete 
elimination (100%) of the complexity was found to be the most effective method for improving the CA 
and OA. For A_healthy_l, the step sizes of 28.56%, 71.40%, and 99.96% showed improvements in both 
CA and OA. The 5th step size (71.4%) was found to be the most affected in eliminating different 
symptom shapes from A_healthy_l owing to the highest sensitivity scores for CA and OA. The full 
elimination of the non-focused object of interest for Av_br_canker was found to be the most affected 
step size. The partial shadow for A_gl_lf_spot had a positive effect on all step sizes for better CA and 
was positive for the full removal of the complexity for better OA.  
4.4.2. Detailed Correlation Analyses: Correlation analysis was performed to understand the 
relationship between the accuracy changes of the class and the overall accuracy with respect to the 
exclusion of dataset complexities at different step sizes. From Fig. 9 (a)–(h), it can be seen that 
Av_br_canker has the strongest correlation between the complexity step sizes and class accuracy 
change owing to the exclusion of the images belonging to the non-focused object of interest. However, 
the strongest positive correlation was observed for the overall accuracy when spot visibility was 
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removed from G_blk_spot. P_canker also has a strong and almost same correlation in terms of CA and 
OA. 
The complexities associated with classes such as G_blk_spot, Kf_bac_canker, and A_gl_lf_spot 
showed a moderate positive correlation (10-50%) with better CA. Av_alg_lf_spot had a weak positive 
correlation (0-10), A_healthy_l had almost no correlation, and A_blk_spot showed a moderate negative 
correlation for CA. In terms of the correlation of OA with the dataset complexity step sizes, 
Av_br_canker, Kf_bac_canker, and A_gl_lf_spot had a strong positive correlation (more than 50%). 
The classes Av_alg_lf_spot and A_healthy_l have moderate correlations. Similar to the correlation for 
CA, A_blk_spot also had a strong negative correlation with OA. 
4.4.3. Detailed SC-Score-based Analyses: From the sensitivity and correlation analyses, an exact 
indication of the most sensitive and correlated step size was not obtained, and a combined score was 
required. The absolute sensitivity and correlation scores were calculated according to the proposed SC-
score presented in Section 3.2.3, and the SC-score was applied. The results presented in Fig. 9 (a)–(h) 
show the sensitivity, correlation, and SC-scores for the class and overall accuracies of all selected 
healthy and diseased classes with their most affected dataset complexity. Based on the experimental 
results, the following conclusions were drawn:
• To address the sensitivity and correlation of different portions/sections of the complexities on the 

accuracy of the DL model, different instances of the complexities are analysed. For instance, when 
the non-focused object of interest (OOI) was excluded from P_canker, an SC-score of 1.0 was 
obtained at a 100% step size for the improved CA owing to high values of sensitivity and correlation 
scores. Therefore, all training images belonging to the OOI for P_canker were removed from the 
dataset to improve the class accuracy from 0.769 to 0.918. Similarly, an SC score of 1.0 was attained 
with the full elimination of OOI for improved OA.

• Similarly, for Av_br_canker, the most affected step size of the exclusion of OOI was 100% to 
improve the class accuracy from 0.7894 to 0.909. Similarly, improved overall accuracy was 
observed at a 100% step size of dataset complexity exclusion, and an SC-score of 1 was obtained 
owing to positive sensitivity and high correlation scores. Hence, all images belonging to dataset 
complexity should be removed from Av_br_canker.

• For G_blk_spot_c, 3/4th (75%) of the spot visibility could have been removed to classify all testing 
images as the OA was improved with a small difference of 0.0064. The sensitivity score was small 
but greater than zero, and the correlation score was high. Therefore, this elimination should be 
considered at a 75% step size of the dataset complexity exclusion. 

• Similarly, for Kf_bac_cnaker and A_gl_lf_spot, a positive sensitivity and strong correlation were 
observed for improved OA of 83.4% and 83.7%, respectively, at a 100% step size of dataset 
complexity elimination. Therefore, the removal of dataset complexities should be considered.

• For the class including Av_alg_lf_spot and A_healthy_l, the sensitive step sizes of the complexities 
are 30%, 100%, and 71.4%, respectively, for class accuracies, the correlation scores are weak. 
Hence, the SC-scores are 0 for these classes which suggests avoiding dataset complexity exclusion 
from these classes. Similarly, for overall accuracies, the sensitivity scores were positive at 70% and 
71.40% step sizes, and the correlation was moderate; therefore, the SC-score was 0, and dataset 
complexity elimination should not be considered.

• The SC-score also answered how to determine which complexity steps are the most correlated and 
sensitive to better accuracy in the case of the combined exclusion of complexities. For A_blk_spot, 
when variable lighting and spot visibility were excluded, the most sensitive and correlated step size 
was 25. The SC scores at 25% and 100% step sizes were 1.0 and 0.3775, respectively, for improved 
OA. Hence, the dataset complexities should be removed at a 25% step size, as both sensitivity and 
correlation scores attained high scores when OA was considered for evaluating the SC-score.

• The overall accuracy (OA) improved from 82.17% to 93.11% (an average of accuracies in five folds 
of training-validation datasets as per the stratified k-fold cross-validation method as 93.58%, 
93.32%, 92.83%, 92.64%, and 93.18%) after removing 25% of images belonging to variable lighting 
and spot visibility from A_blk_spot. To validate that this improvement was not due to random 
variation, various statistical measures were used based on the results of the stratified 5-fold cross-
validation. The mean improvement in overall accuracy across the five folds was 10.94%, with 
individual improvements of 11.41%, 11.15%, 10.66%, 10.47%, and 11.01%. The improvement was 
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statistically significant (p < 0.001), with a 95% confidence interval of 10.64% to 11.24% in terms of 
the accuracy improvement compared with the initial accuracy of 82.17%. Additionally, the effect 
size (Cohen's d) for the accuracy improvement was 32.42 which indicates a very large effect. These 
results confirm that the improvement in accuracy is meaningful and not due to random variations. 

• To determine the implications of the SC-score, it captures both the responsiveness to changes in data 
complexity (sensitivity) and the consistency of this relationship (correlation) in a single metric. 
Therefore, the selection of the most affected step size of complexity exclusion considers not only 
the extent to which they are sensitive to changes in complexity, but also a consistent relationship 
between complexity removal and accuracy enhancement.
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              (e) Analysis for Avocado Branch Canker                                   (f) Analysis for Grapevine Black Spot

           (c) Analysis for Apple Glomeralla Leaf Spot                            (d) Analysis for Avocado Algal Leaf Spot

(a) Analysis for Apple Black Spot                                 (b) Analysis for Apple Healthy Leaves

            (g) Analysis for Kiwifruit Bacterial Canker                                    (h) Analysis for Pear Canker
Fig. 9. Absolute Sensitivity (SA_CA; SA_OA), correlation (CR_CA; CR_CA), and SC-Score (SC-

Score_CA; SC-Score_CA) plots for the eight selected healthy and disease classes for class accuracy (CA) 
and overall accuracy (OA).
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4.5. Comparative Analysis with State-of-the-art Methods

The effectiveness of the proposed data-centric AI approach was evaluated by comparing its 
performance with the latest DL approaches (Table 6). In this regard, a recently proposed DL model 
named ResdenseNet was selected which was developed using the MobileNet, DenseNet, and ResNet 
architectures for plant disease classification problems (Nagpal & Goel, 2025). Another recent study was 
considered for the comparative evaluation of the proposed approach, which was based on a 
metaheuristic algorithm for the optimal feature selection of plant diseases (Taji, et al., 2024). This 
approach was based on methods including the Binary Dragonfly algorithm (BDA), ResNet-18, Shannon 
entropy, and F-tree classifier. 

The results presented in Table 6 show that the testing accuracy of the proposed data-centric AI approach 
attained a significantly higher accuracy of 98.51% on a testing dataset of NZDLPlantDisease-v1 and 
93.11% on an external testing dataset than all other state-of-the-art approaches. Although model-centric 
AI (ResDenseNet) is a computationally inexpensive solution in terms of GLOPS, memory 
requirements, and training/testing time, the accuracy achieved by this method was considerably lower 
than that of the proposed approach. This demonstrates the effectiveness of the proposed data-centric AI 
approach compared with the latest model-centric AI approach in terms of high testing accuracy. The 
proposed approach was compared with another recent state-of-the-art approach, which focused on 
feature selection using a metaheuristic algorithm. The testing accuracy attained by the meta-heuristic-
based method was considerably good (91.10%) on the testing dataset of the NZDLPlantDisease-v1 
dataset, and it attained a low accuracy of 72.86% on an external testing dataset. Comparative evaluations 
with the latest state-of-the-art methods demonstrated the effectiveness of the proposed data-centric AI 
approach.

Table 6. Comparison of the proposed data-centric AI approach with the state-of-the-art methods

DL models
Paramete

rs (in 
Millions)

Numbe
r of 

Epochs

GFLOP
S

Memor
y Size 
(MB)

Trainin
g Time 

Testin
g 

Time 

Trainin
g 

Accurac
y

Validatio
n 

Accurac
y

Trainin
g Loss

Validatio
n Loss

Testing 
Accuracy-

NZDLPlantDisea
se-v1

Testing 
Accurac

y – 
Externa

l 
Testing 
dataset

DenseNet-
201 (best 

DL Model)
20.2M 21 8.59 78.55 42 0.0044 0.9979 0.9331 0.0075 0.0660 0.9511 0.8217

ResDenseN
et (Nagpal 
& Goel, 
2025)

0.72M 42 2.34 3.63 12 0.0015 0.9424 0.9031 0.1772 0.2981 0.8456 0.6461

Meta-
heuristic 
algorithm 

(Taji, et al., 
2024)

11.7M 24 7.73 98.37 21 0.0031 0.9979 0.9067 0.0084 0.3701 0.9110 0.7286

Proposed 
Data-

Centric AI 
Approach

20.2M 21 8.59 78.55 42 0.0044 0.9985 0.9582 0.0036 0.0432 0.9851 0.9311
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4.6. Ablation Study 

The ablation study shows that the exclusion of dataset complexities based on correlation analysis-only 
and sensitivity analysis-only was not sufficient to select the most impactful step size of the dataset 
complexity exclusion.

Analysis of dataset complexity exclusion based on sensitivity function only: In some cases, the 
impact of dataset complexity exclusion on the accuracy enhancement of the DL model was the same 
for the sensitivity analysis as that of the correlation analysis. For example, the ASA value due to the 
exclusion of different symptom shapes from Av_alg_lf_spot at 70% step size was 0.291, and the PCC 
value was 0.2451 for overall accuracy, which shows the similar behaviour of the sensitivity and 
correlation analyses. However, some cases of exclusion of dataset complexities provided a high score 
for the sensitivity function, and the correlation showed a weak strength. For example, the value of the 
ASA function was 2.3340 at a 71.40% step size of exclusion of different symptom shapes from the 
apple healthy leaves class, and the PCC was -0.0005 for class accuracy. Therefore, if sensitivity analysis 
was only considered to select the most optimal step size of the dataset complexity elimination, 71.40% 
of different symptom shapes would have been eliminated which does not show consistency in the 
performance improvement of the class.

Analysis of dataset complexity exclusion based on correlation function-only: A correlation analysis 
was performed to evaluate the strength of the accuracy improvement of the DL model based on the step 
sizes of dataset complexity exclusion. For instance, a strong correlation was observed when the non-
focused object of interest was excluded from the pear canker class which also validates the result 
obtained by the sensitivity function owing to its high value at a 100% step size for better class accuracy, 
as shown in Fig. 9. However, there were few cases in which correlation analyses provided a strong 
correlation in terms of a high value of the correlation function, indicating a significant association 
between the change in accuracy of the DL model and the elimination of dataset complexity. In contrast, 
the sensitivity function attained a low (negative) score at some instances of dataset complexity 
exclusion. For instance, the value of PCC after excluding the complexity of spot visibility from 
Kiwifruit Bacterial Canker (Kf_bac_canker) was 0.6268, but the ASA value was -0.0145 ( Fig. 9) on a 
step size of 20% with a difference of -0.0029 in overall accuracy. Hence, if the analysis of the dataset 
complexity exclusion was based solely on the correlation analysis, then the elimination of the spot 
visibility from the Kf_bac_canker would have been selected at a 20% step size, depicting an incorrect 
selection of the most impactful step size of dataset complexity exclusion due to performance 
degradation at that step size. 

Analysis of dataset complexity exclusion based on SC-Score: The SC-score was proposed to evaluate 
the combined effect of sensitivity and correlation analyses. For instance, the normalised SC-score at a 
25% step size of the accumulated exclusion of variable lighting and spot visibility from apple black 
spot was 1.00, resulting from high ASA and PCC values which indicated that the 25% elimination of 
the dataset complexity should be considered to improve the overall accuracy of the DL model.

4.7. Limitations of the Study

Deployment Challenges: This study demonstrates the strength of the data-centric AI approach in 
solving industry-oriented problems in real-world applications. However, the successful integration of 
this methodology into agricultural systems requires addressing several deployment challenges. First, 
dataset maintenance is important to ensure the long-term effectiveness of the proposed methodology 
because of the diverse nature of the agricultural environment in terms of plant species, diseases, and 
environmental conditions. Therefore, new classes and training images must be added to the dataset to 
maintain the accuracy and robustness of the proposed method. Incremental training methods can be 
used instead of training the model from scratch with each increase/change in the training dataset. In the 
case of performance degradation, new dataset images should be thoroughly investigated by identifying 
and excluding the complexities in the dataset images based on non-parametric quality measures. Once 
dataset complexities are identified and excluded from the training dataset, the proposed methodology 
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consists of sensitivity, correlation analysis, and SC-score which are post-processing steps that do not 
contribute to increasing the computation time of the proposed data-centric AI approach.

Second, the computational feasibility for end users (farmers) must be considered in the model. Although 
deep learning models are computationally intensive, deploying lightweight models can reduce the need 
for high-end hardware. Cloud-based solutions can also provide scalable and cost-effective access to 
computational resources to enable farmers to use the proposed approach without significant additional 
infrastructure investments. 

Third, adaptation to various plant species and environments is essential for proving the robustness of 
this approach. Although this study was conducted on five different plant species and agricultural 
environments to test the proposed approach, greater diversity in plant species and agricultural 
environments should be considered in follow-up studies.

Other Challenges: Although study attained high accuracy after excluding the dataset complexities in 
different step sizes, there are still a few limitations that can be addressed in follow-up research. First, 
this study considered manual identification and exclusion of dataset complexities. This process is 
exhaustive for large datasets and should be automated using DL-based methods. Next, the proposed 
data-centric AI approach was evaluated using the NZDLPlantDisease-v1 and an external testing dataset. 
Further investigations should be conducted using other datasets of plant diseases. This can be achieved 
using the weights obtained from the DL model to classify the plant diseases. Moreover, the significance 
of the proposed approach was assessed using the newly developed scores, and additional analyses were 
performed using other or advanced performance scores. 

This score was also designed to be interpreted by non-technical users in agricultural contexts. 
Interestingly, no weight factor was considered in the score, which can be added in future studies. 
Furthermore, this study is based on the classification of plant diseases, and the detection (localisation 
and classification) and segmentation of plant diseases should also be considered in future studies. These 
tasks present more challenges and enhance research on data-centric AI for plant disease recognition. 
Moreover, based on the methodology proposed in this study, sensitivity and correlation analyses were 
performed on the best DL model. This limitation can be addressed by testing the proposed approach on 
other advanced and latest DL architectures. Moreover, the analysis of linear and nonlinear relationships 
was not considered; hence, other correlation functions, such as Spearman's rank correlation, should be 
considered in the future.  

The computational cost of the proposed methodology depends on three steps: (1) quantifying the 
complexity of the dataset, (2) training the deep learning models, and (3) evaluating the performance of 
the model using the SC score. Quantification of dataset complexity involves preprocessing the images 
of training datasets using statistical measurements that are linearly scaled by the dataset size. Training 
deep learning models is the most computationally demanding step in the process, and this demand 
increases significantly as the number of training samples increases. This is because larger datasets 
require more iterations to achieve training convergence, which leads to higher memory usage, longer 
processing times, and increased costs in terms of computational resources (e.g. GPU/CPU usage and 
energy consumption). To address these issues, distributed training on GPUs or TPUs can significantly 
reduce the training time for larger datasets. Cloud-based solutions, such as AWS, Google Cloud, and 
Azure, can provide scalable infrastructure for both data storage and computation. Furthermore, efficient 
data preprocessing pipelines with parallelism can reduce the calculations required to quantify dataset 
complexity. The steps to assess the performance of the proposed approach using the SC score are 
relatively simple and cost ineffective. Future research should examine the computational requirements 
of the proposed data-centric AI approaches for larger datasets.

5. Conclusion and Future Work

This study aimed to improve the accuracy of plant disease classification using a data-centric AI 
approach based on sensitivity and correlation analysis. After the comparative analysis of the DL 
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classifiers, DenseNet-201 achieved the highest accuracy on the NZDLPlantDisease-v1 and an external 
testing dataset. The overall accuracy (OA) of the DenseNet-201 model on the testing dataset of 
NZDLPlantDisease-v1 was 95.11%. However, the OA of DenseNet-201 for the external testing dataset 
was 82.17%. The accuracy of all healthy and disease classes in the NZDLPlantDisease-v1 dataset was 
greater than 90%. However, eight classes achieved an accuracy of less than 90% when DenseNet-201 
was tested using an external dataset. Thus, an improvement in the accuracy of the DenseNet-201 model 
for these classes was aimed at performing comprehensive analyses. The complexities of the dataset for 
these eight classes were identified and excluded from the training datasets. The accuracy of some classes 
improved to more than 90%; however, some did not achieve the desired accuracy.

To address this problem, a new sensitivity-and correlation analysis-based approach is proposed in this 
study. In this regard, the dataset complexities were excluded for different step sizes, and the most 
sensitive and correlated step sizes were obtained based on the improvement in the class and overall 
accuracies. Improvements of 10.94% and 3.40% in overall accuracies were observed on the selected 
plant disease dataset (NZDLPlantDisease-v1) and an external testing dataset. Moreover, a novel 
Sensitivity Correlation Score (SC-score) was proposed to evaluate sensitivity and correlation analyses 
using a single metric. This score revealed both the responsiveness and consistency of the performance 
improvement of the DL model owing to the exclusion of the dataset complexities. Hence, a high SC-
score also confirmed that there was no loss of important information/features while removing the dataset 
complexities. 

In the future, the automation of the exclusion of dataset complexities will be focused. Moreover, DL-
based detection and segmentation models can be tested using the proposed methodology to enhance the 
localisation, identification, and segmentation of diseases in plants. In future work, we will focus on 
optimising dataset complexity exclusion strategies and extending the use of the proposed data-centric 
AI approach to other domains, such as medical image analysis for disease detection, remote sensing for 
environmental monitoring, and autonomous crop monitoring for precision agriculture. Moreover, a 
hybrid model and data-centric AI approach can be proposed by integrating DL models with the proposed 
data-centric AI approach. In addition, the proposed SC-score creates various opportunities for further 
research to improve the performance of DL models for plant disease classification, such as the automatic 
exclusion of dataset complexities by setting a threshold for excluding datasets or data points that are 
too complex or inconsistent. An value of the SC-score below a certain threshold can be automatically 
flagged for exclusion or further review.  
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