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 A B S T R A C T

In the commonly used method of bolting to secure parts of equipment and structure, the bolts must be tightened 
to an adequate preload force. Failure to do so could affect the integrity of the structure, as well as the efficient 
running of the site and, crucially, employees’ safety. In this project, we consider the use of artificial intelligence 
(AI) techniques to analyse maintenance videos and identify the unwanted loosening of bolts over time in order 
that they might be used as additional tools in a continuous maintenance plan.

We found that accuracy levels of up to 97% could be achieved in identifying bolt rotation with our proposed 
machine learning-based triplet loss architecture. The use of gradient-weighted class activation mapping (Grad-
CAM) visualisations to identify areas of the image where change had occurred enabled us to test how robust 
our model was to noise in the data. This explanation may assist users in safety-critical environments guiding 
them to the problem, and helping mitigate the black-box nature of machine learning algorithms.

Whilst the accuracy of the models varies depending on the rotational angle of the bolt, we clearly 
demonstrate that triplet loss is a good basis for performing change detection in industrial settings. Furthermore, 
Grad-CAM has shown to be a useful technique to help a user understand the decisions made by the network 
and allow them to see where unwanted rotation has occurred.
1. Introduction

In the commonly used method of bolting to secure parts of equip-
ment and structure, the bolts must be tightened to an adequate preload 
force sufficient for a rated level of mechanical security. A mechanical 
torque wrench (Wang et al., 2013) is one tool that can be used for this 
task. The correct preload force is crucial: the Piper Alpha gas platform 
explosion in 1988, which took 167 lives, was found to be the fault of 
an incorrectly installed blind flange, secured with bolts (Drysdale and 
Sylvester-Evans, 1998).

Driven largely by machine learning, artificial intelligence (AI) is 
increasingly used to accompany existing predictive maintenance tech-
niques such as visual inspection and signal processing analysis (Li 
et al., 2024). Convolutional neural networks such as Faster R-CNN (Ren 
et al., 2017) and You Only Look Once (YOLO) (Redmon et al., 2016) 
have made great advances in static object detection within images 
and video. For analysis of maintenance issues such as corrosion (Yu 
et al., 2021; Bastian et al., 2019; Nash et al., 2020) and cracking (Liu 
and Yeoh, 2021; Gopalakrishnan et al., 2017; Ji and Xiaodong, 2021), 
these technologies are proving their worth. However, for a condition 
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such as bolt rotation, we need to move towards a method of artificial 
intelligence analysis that considers the apparatus or component as it 
changes over time as a snapshot will tell us comparatively little.

Machine learning algorithms undergo training in order to learn a 
loss function and adjust internal weights such that decisions are made 
by the model with good accuracy in a particular problem space. This 
can present an issue in that the weights themselves are not human 
interpretable and, therefore, the decisions made by the model are 
unaccountable (Mansouri and Vadera, 2022; Retzlaff et al., 2024). In 
a safety critical environment, it is crucial that these decisions are re-
liable and accurate; techniques such as gradient-weighted class activa-
tion mapping (Grad-CAM) can help by offering visualisations denoting 
critical regions in the input images (Selvaraju et al., 2017).

With the wider aim of developing a system that might be able to 
detect bolt rotation in non-aligned images, and explain its decisions 
such that a user can see the regions of the image in which the change 
occurred, we ask the following research questions (RQs):
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• RQ1: using a dataset depicting bolts in various degrees of rota-
tion to train machine learning models, what level of accuracy is 
achievable in determining change in the rotational angle of bolts?

• RQ2: is it possible to use a visualisation technique to explain the 
decisions the trained network is making?

• RQ3: is any achievable visualisation sufficient to enable a user to 
see where change in the image has occurred?

Current studies on the use of machine learning to detect bolt ro-
tation use a variety of different techniques that range in complexity. 
Some are based around signal analysis (Wang and Song, 2020; Yuan 
et al., 2022; An and Sohn, 2012; Zhang et al., 2019b) which is not 
always transferable to a new bolted connection. Techniques that use 
visible threads to determine bolt looseness either have a fairly wide 
margin of minimum 4 mm visible thread (Gong et al., 2022; Ramana 
et al., 2019; Cha et al., 2016; Yuan et al., 2021; Zhang et al., 2020) or 
reduce that margin through the use of specialist 3D cameras (Pan et al., 
2023; Pan and Yang, 2023).

A system that needs only input from a 2D camera would require 
no 3D imaging or electronic sensors. It should be transferable to new 
work sites without having to replace bolts or manually mark existing 
bolts (Zhao et al., 2019; Yang et al., 2022). It should have accuracy 
comparable with the state of the art in other methods that use only 2D 
image data (Luo et al., 2024, 2023; Huynh et al., 2019).

To detect change in a bolt’s position over time we look to compar-
ative methods. Metric loss architectures, in which two or more parallel 
convolutional neural networks are used as backbones to extract features 
that are then used to learn a shared loss function, have been used to 
good effect in satellite imagery comparisons (Chen et al., 2022; Zhang 
et al., 2022), face detection (Schroff et al., 2015a), and video-based 
object tracking (He et al., 2018).

Bolted connections can be made with a variety of fasteners. Whilst a 
bolt generally comprises a long, thin cylindrical shaft that is threaded, 
the head of the bolt may take many forms such as hex (‘‘Allen’’) key, 
slotted or crosshead (‘‘Phillips’’) screw, and others besides (Mushtaq 
et al., 2023). For simplification in these experiments, we consider bolts 
that have a hexagonal head designed to be turned using a spanner or 
socket.

For detecting bolt rotation, we need to capture a time series of 
images depicting the connection that we wish to monitor. This data 
might come from a body camera worn by a maintenance engineer per-
forming regular inspections. Use of unmanned aerial vehicles (drones) 
and robots to capture image data for use in industrial maintenance is 
increasingly commonplace (Hu and Assaad, 2023). However, capturing 
the data in this way means that it could present several challenges when 
using machine learning for analysis:

• Temporal image alignment: it cannot be guaranteed that each of 
the images in a time series captured by the camera will show 
the bolted connection from the same angle or height resulting 
in unpredictable geometric noise (Bianchi et al., 2023). Likewise, 
we cannot rely on a known distance between the camera and the 
subject in any given image.

• Gaussian noise: a time series will inevitably feature images and 
video that is captured at different times of day and in dif-
ferent lighting conditions, causing variance in shadow, reflec-
tions, and contrast which may affect the accuracy of the models 
used (Rodríguez-Rodríguez et al., 2024).

• Spurious noise: it is possible that the surrounds of the bolted 
connection might change over time. Equipment left nearby during 
repair work, for example, might be captured in one of the time 
series of images.

To address these challenges, we propose a metric loss architecture 
based on the triplet loss function (Schroff et al., 2015a). This method 
negates the need for precise alignment of images captured over time, 
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and can be trained to be invariant to both geometric and radiometric 
noise. In addition, triplet loss can be trained with data having relatively 
weak annotations meaning that bounding box or pixel-level annotations 
are not necessary, saving a great deal of time and human effort.

To accompany traditional maintenance techniques, we propose a 
metric loss architecture to aid in the detection of unwanted bolt loosen-
ing. We offer a visual explanation of our architectures using Grad-CAM. 
In summary, our contributions are as follows:

• Through experimentation with selected triplet loss networks hav-
ing two different feature extraction backbones, we make a sci-
entific comparison of the accuracy achievable in detecting bolt 
rotation and find that levels of more than 90% are achievable 
without specialist camera or sensor equipment, or reliance on a 
particular bolt type or marking

• We further employ a feature extraction backbone fine-tuned 
specifically on bolts to further compare accuracy levels

• We present a visual explanation of the model’s feature extraction 
backbones, enabling us to understand the regions of the image 
that led to the model’s decision — something that is essential in 
a safety-critical environment

To the best of our knowledge, this is the first triplet loss network 
to both detect the rotation of bolts, and offer a visual explanation of 
its decisions. Our findings show that high levels of accuracy (greater 
than 90%) are achievable with our proposed model when detecting bolt 
rotation of ten degrees or more. We find that fine-tuning can increase 
accuracy levels at greater degrees of bolt rotation with an associated 
tradeoff in accuracy levels with bolt rotation angles of ten degrees or 
less.

Using Grad-CAM functionality to visualise the model offers a
human-interpretable output enabling us to see what is driving the 
networks’ decisions and enables the user to see exactly whereabouts in 
the image change has occurred. Whilst the interpretation of this output 
is qualitative, it can be seen from the results that the bolts that have 
moved are clearly and unequivocally highlighted.

With good accuracy and a usable explanation, the proposed model 
has potential applications beyond bolt rotation. Problem areas such as 
cracking and corrosion that have previously employed AI as a snap-
shot analysis are domains in which the detection of slowly-worsening 
degradation could be very useful.

The rest of this paper is organised as follows: Section 2 reviews exist-
ing research related to this article; Section 3 discusses the methodology 
used in the experiments; Section 4 notes the results of the experiments; 
Section 5 is a general discussion of these results; Section 6 concludes the 
paper and makes recommendations for future work. A CReDIT author 
statement, acknowledgements, and a glossary of abbreviations can be 
found at the end of the document.

2. Related work

Neural networks, as a branch of artificial intelligence, can trace their 
roots back to the 1940s, and – in particular – a paper by Walter Pitts and 
Warren McCulloch in which two neural mechanisms were described 
that ‘. . . exhibit recognition of forms’ (Pitts and McCulloch, 1947); the 
authors set out to use a simulation of the human nervous system to 
solve learning problems mathematically.

The current popularity of deep learning used in our experiments can 
be ascribed to several factors (Wu et al., 2019):

• The availability of large-scale annotated datasets such as Ima-
geNet (Deng et al., 2009)

• The availability of performant, affordable parallel computing in 
the form of graphical processing units (GPUs)

• Advances in network design and training strategies
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In the years since LeCun et al. proposed LeNet, one of the first 
modern convolutional neural networks (Lecun et al., 1998), research 
into vision-based feature extraction has been prolific. Newer object de-
tection algorithms such as ResNet (He et al., 2016) and MobileNet and 
its derivatives (Sinha and El-Sharkawy, 2019) perform more accurately 
on fewer data.

The training data required for models to learn niche problems 
such as bolt rotation is scarce. To help make the most use of few 
data, transfer learning can be employed ahead of the training process. 
Transfer learning is a technique by which learning in one domain is 
improved by transferring information from another domain Weiss et al. 
(2016). The 14 million-sample ImageNet is one of several publicly 
available datasets that can be used as a basis for transfer learning, 
containing hundreds of thousands of real-life images for each node of 
a set hierarchy of classifications (Deng et al., 2009).

2.1. Bolts and bolt rotation

Research into detecting bolt loosening varies in the overarching 
methodology employed — this can be loosely categorised into several 
distinct groups.

Studies have used sensor-based methods in which signals are ap-
plied to a bolted connection and read using transducers or recording 
equipment, the resulting signals often analysed using a form of machine 
learning (Wang and Song, 2020; Yuan et al., 2022; An and Sohn, 2012; 
Zhang et al., 2019b). These studies vary in the complexity of apparatus 
required, from ‘‘...an IIG measurement hardware system developed by 
integrating an arbitrary waveform generator, a digitizer, two high-speed 
multiplexers and a self-sensing circuit ’’ (An and Sohn, 2012), to a simple 
audio recorder (a smartphone) and a hammer (Yuan et al., 2022; Zhang 
et al., 2019b).

Of the studies that employ sophisticated electronic equipment, 
Wang et al. demonstrate very high accuracy of over 98%; additionally, 
the authors’ setup was able to detect a loose bolt in a multi-bolt 
join (Wang and Song, 2020). The two studies making use of percussion 
and recording are of interest not only because the apparatus required 
is minimal (a recorder and a hammer) but because this methodology 
is transferable to different bolted connections (Yuan et al., 2022; 
Zhang et al., 2019b). Negating the need for a permanent installation 
of transducers reduces cost and increases flexibility in a continuous 
maintenance plan. Moreover, a very attractive property of these studies 
is that they are able to detect different preload forces meaning that bolt 
loosening could potentially be detected early on.

The next methodology considered in the literature is that which 
uses a vision object detection model to consider different classes of 
bolt, namely ‘tight’ and ‘loose’; these studies are predicated on the bolt 
having differing lengths of visible threads (Gong et al., 2022; Ramana 
et al., 2019; Cha et al., 2016; Yuan et al., 2021; Zhang et al., 2020). 
The approaches taken in these studies differ, but one consistent factor 
remains — the minimum visible thread considered is 4 mm which 
means the bolt must be fully loose before any change is detected. 
Raman et al. report very high accuracy (over 90%) in most of their 
experimental scenarios with the exception of those using the most acute 
vertical camera angle; obfuscation in the region of interest is an issue 
for any vision approach to the problem (Ramana et al., 2019).

Research into the use of light detection and ranging (LiDAR) tech-
nology is demonstrating that the minimum 4 mm visible thread can be 
reduced to under a millimetre (Pan and Yang, 2023; Pan et al., 2023). 
The use of 3D points clouds increases accuracy but requires specialist 
cameras; ordinary footage captured by existing 2D cameras during a 
maintenance inspection would not be suitable for this approach.

The use of a known pattern on the head of a bolt is featured in 
research that first employs a vision model to calculate a bounding box 
around the head of the bolt and, separately, the pattern; corners of 
these boxes are used to calculate the relative rotational angle of the 
bolt head (Zhao et al., 2019). This method was tested with bolt rotation 
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angles as small as 10 degrees with an average error of 4.47%; it does, 
however, require the use of a particular type of bolt which cannot be 
guaranteed on an existing work site. A similar study using manually-
applied markings to bolt-nut joins uses a YOLO model to analyse images 
and demonstrates detection of rotation down to two degrees (Yang 
et al., 2022). Whilst markings would have to be manually applied, this 
is a less invasive and time-consuming task than replacing every bolt.

Finally, research into the use of a combination of naive techniques 
– Canny edge detection and Hough line transforms – coupled with 
machine learning has demonstrated detection of rotational movement 
in bolts down to ten degrees (Luo et al., 2024; Huynh et al., 2019). 
Canny edge detection can be sensitive to image lighting and contrast, 
prompting Luo et al. to propose a grey gradient method to improve 
Canny edge detection (Luo et al., 2023).

Few of these studies make mention of detecting change over time 
— many are dedicated to detecting the angle of a bolt as a snapshot. 
Where the concern lies not in tracking the angle but in determining 
that a bolt has moved, we look towards the use of change detection 
machine learning architectures.

2.2. Change detection - Metric loss architectures

The problem of object tracking in a sequence of video frames was 
studied by He et al. who devised a novel architecture SA-Siam (He et al., 
2018). The network uses, as input, a pair of patches cropped from the 
target frame and the current frame. The network SA-Siam comprises 
an appearance branch, a clone of another work (SiamFC) which is, 
itself, a metric loss architecture for object tracking. SA-Siam’s semantic 
branch is a convolutional neural network trained as an object detection 
model. The dataset used for training is large: the ILSVRC-2015 dataset 
comprises around 1.3 million frames with 2 million tracked objects. 
The authors claim results that outperform all other real-time trackers 
(at the time of writing).

A change detection model using a U-Net backbone, developed to ad-
dress traditional remote sensing algorithms’ poor performance on com-
plex change tasks, was proposed by Chen et al. (2022). Siamese_AUNet 
uses a feature attention module for spatial and channel attention on 
the deep feature layer, with atrous spatial pyramid pooling, enabling 
the capture of contextual information at multiple scales. The authors 
demonstrated F1 scores of between 86% and 93%, all of which were 
higher than the four other networks with which the authors’ architec-
ture was compared. These results are, however, predicated on access to 
readily-prepared datasets having accurate segmentation masks.

FaceNet is a metric loss architecture using three parallel convo-
lutional feature extraction backbones and a novel triplet loss func-
tion (Schroff et al., 2015b). FaceNet uses the feature extraction back-
bones with a classifier layer that reduces the feature maps to an 
embedding in Euclidean space. The loss function is learned with triplets 
of training data, each consisting of an anchor, a similar positive, and a 
dissimilar negative. The loss function is learned such that the distance 
between the anchor-positive embeddings is less than that of the anchor-
negative embeddings. It is an elegant solution that does away with the 
bottleneck layer used in previous metric loss architecture designs that 
relied on the contrastive loss function.

2.3. Explainability

In the paper outlining Meta AI’s Segment Anything Model (SAM), 
the authors consider the fairness of their algorithm’s detections (Kirillov 
et al., 2023). A section of the article explores how SAM fairs in a 
responsible AI test. The data used in training is analysed according 
to geographical and income-related distributions. The fairness of the 
model is also investigated with respect to ‘‘segmenting people across 
perceived gender presentation, age group, and skin tone’’. The results of 
this latter are enlightening — detection and segmentation underrep-
resentations are reported for females, older and younger people, and 
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darker skin tone. The authors ‘‘...acknowledge biases may arise when SAM 
is used as a component in larger systems’’. (Kirillov et al., 2023) SAM does 
remain, however, without explanation. The considerations of its bias 
came from observing its decisions — detection and segmentation. The 
weighting and inner workings of the model that led it to these decisions 
are not observable.

There are various methods for implementing explainability in a 
model — each method has its advantages and shortcomings. Retzlaff 
et al. authored a paper in which they examine various explainable 
AI (xAI) techniques and present a decision tree for data scientists 
and developers of machine learning models to guide them towards a 
suitable choice (Retzlaff et al., 2024). This is a thorough study, one 
of the main tenets of which is whether a particular xAI technique is 
post- or ante-hoc. This is an important distinction: an ante-hoc model 
is intrinsically explainable via interpretability methods built in to the 
architecture or during training. A post-hoc model, conversely, can be 
explained after the event by examining the model when a decision has 
been made.

Mansouri et al. make a similar distinction in a study that pro-
poses a novel explainable layer that the authors call Gumbel-Sigmoid 
eXplanator (GSX) (Mansouri and Vadera, 2022). GSX is an ante-hoc 
explanation method that ascribes importance to features as the model is 
trained. GSX hinges around an instance-wise feature selection layer that 
is differentiable and trainable. This layer outputs the selected features 
for each instance along with an explanation of which were important 
in the decision. Regularisation limits the number of features that are 
considered. This has great potential for use in vision problems where 
the selected features – areas of an image – could present a useful 
interpretation of the model’s workings.

The use of post-hoc xAI for change detection has been explored by 
Zhang et al. (2022). The authors firstly establish a baseline for change 
detection using bi-temporal image pairs or triplets, and an associated 
loss function — contrastive loss for pairs, and triplet loss for groups 
of three. In doing so, the authors move away from other forms of 
change detection that use classifier-based methods and towards metric 
learning. By calculating losses for changed and unchanged regions, 
we see how the authors have devised an architecture that not only 
produces similarity scores, but outputs region maps delineating where 
change has occurred.

Class Activation Mapping (CAM) describes a procedure for gener-
ating activation maps using global average pooling, thereby offering 
a visual indication of the discriminative regions used by a convo-
lutional neural network (CNN) to identify that class (Zhou et al., 
2016). Gradient-weighted Class Activation Mapping (Grad-CAM) im-
proves upon the CAM work by using the gradients of a target concept 
(a class) flowing into the final convolutional layer of a CNN to produce 
a coarse localisation map (Selvaraju et al., 2017). Grad-CAM, unlike its 
predecessor, can be used with a wide variety of CNN model families.

Further work explores the use of Grad CAM in a study that offers 
visual explanations of an embedding network (Chen et al., 2020). 
The authors used only data with segmentation and bounding box 
annotations. Livieris et al. likewise explore the use of Grad CAM 
in a contrastive loss network using data annotated at only image 
level (Livieris et al., 2023).

2.4. Research gap

From the literature it can be seen that there are gaps in current 
research in the problem domain of bolted connections.

The first is the application of a machine learning-based approach 
that considers the problem over time; several studies show us how 
we might make a snapshot appraisal of the position of a bolt, either 
rotational or from the perspective of visible threads (Zhang et al., 
2019a; Huynh et al., 2020; Wang et al., 2018). There are none that 
appear to consider how the rotational angle might change over time, 
with later images analysed and compared with earlier images. It is 
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change over time that is absolutely necessary for us to be able to 
identify a bolt that is loosening.

In addition, the use of explainable AI has yet to be considered in 
this context. Outputs from current metric loss networks are showing a 
good level of accuracy in satellite imagery and other domains (He et al., 
2018; Chen et al., 2022; Schroff et al., 2015b), but the decisions that 
the models are making have not been taken into account. In a safety-
critical environment, it is essential that the algorithms in use are able 
to demonstrate their accuracy.

3. Methodology

We constructed a triplet loss-based machine learning architecture to 
compare and analyse temporal triplets of bolt images to detect differ-
ences in bolt rotation angle. Using a novel training dataset to establish 
a baseline accuracy, the architecture can show a visual explanation of 
activations that contribute to its decision.

The use of a metric loss architecture is proposed to counter the 
problem of deviation in the camera angle. It cannot be guaranteed that 
the bolted connection will be captured from the same angle every time, 
requiring a model that is invariant to this geometric noise. However, we 
accept that a model, no matter how accurate, cannot predict deviations 
in a bolt angle that are not obvious to the human eye.

To establish any correlation in accuracy and deviation in bolt ro-
tation angle, we devised a series of experiments using a known novel 
dataset.

3.1. Dataset

For the purposes of these experiments, we required images showing 
a bolted apparatus with the bolts rotating incrementally and by known 
amounts. As there was no such data publicly available, the authors 
compiled a dataset containing 1112 images in laboratory conditions. 
The images depict a purpose-built apparatus having five bolts, three 
of which were rotated by various degrees simulating change. The 
degree of bolt rotation, camera angles, and focal length were carefully 
measured and recorded and used as annotations for each sample.

The dataset was constructed with the aim of establishing a baseline 
from which further work could be carried out. The samples introduce 
a variety of geometric noise in known quantities to simulate the var-
ious angles and focal lengths from which real-world images may be 
obtained.

During the research for this study, we were able to use a quadruped 
robot – Boston Dynamics’ ‘‘Spot’’ – to obtain images of the test ap-
paratus that was used in the image dataset. Spot was programmed to 
simulate a walkaround as might take place in a maintenance inspection, 
during which time the robot paused to capture images of the bolted ap-
paratus using an ordinary webcam with a vertical resolution of 1080p. 
Using the Python library OpenCV to extract discrete frames from the 
captured video reveals some of the issues that must be considered when 
using footage captured in an industrial setting.

Fig.  1 clearly shows the bolted apparatus; the image is of little use 
as it is significantly distorted with motion blur.

Fig.  2 shows that clear images can be captured from the video with 
no sharpening or other post-processing; this image was present in the 
video footage only a few frames after that in Fig.  1. Geometric variation 
is evident in the camera angle — the apparatus is being viewed from 
above.

Fig.  3 shows that geometric deviation – height and horizontal angle 
– as well as increased focal length can be expected in the images that 
are captured. This image, like that in Fig.  2, is clearly focussed. To 
establish a baseline, our dataset considers this geometric noise in its 
different classes.

Training a triplet loss architecture requires data arranged in tempo-
ral triplets (Schroff et al., 2015a). These consist of a ground truth image 
depicting the object of interest in a known state (the ‘anchor’), an image 
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Fig. 1. A blurred image of the bolted apparatus captured by Spot the robot dog.
Fig. 2. A clear image of the bolted apparatus captured by Spot the robot dog.
depicting the same unchanged object with some variation in geometry 
(the ‘positive’), and an image depicting the object in a changed state 
(the ‘negative’).

Fig.  4 shows a sample from the dataset depicting the bolted appa-
ratus with deviations in both camera and bolt rotation angle. In this 
image, the horizontal camera angle has moved by 40 degrees from 
perpendicular, the camera height is 1590 mm from floor level, and the 
lower three bolts have been rotated counter-clockwise from the ground 
truth position.

With these images, it was possible to construct many triplets having 
an anchor and positive image with the same bolt angle, and a negative 
in which the lower three bolts are at a different angle of rotation.

Fig.  5 shows an example triplet constructed from the bolt rotation 
dataset showing an anchor, positive, and negative:

• Anchor - Fig.  5(a): bolts rotated 10 degrees, horizontal camera 
angle deviation of 25 degrees, focal length of 50 mm
5 
• Positive - Fig.  5(b): bolts rotated 10 degrees, horizontal camera 
angle deviation of 5 degrees, focal length of 35 mm

• Negative - Fig.  5(c): bolts rotated 40 degrees, horizontal camera 
angle deviation of 35 degrees, focal length of 80 mm

Using triplets compiled in this way, we can vary the rotational 
angle of the bolts, and introduce other geometric variations such as 
camera angle and focal length. The goal is that the model will learn that 
the change in the bolts’ rotation is the region of interest and become 
invariant to other noise.

3.2. Change detection

Metric loss networks, sometimes referred to as ‘Siamese’, are used 
in a variety of similarity comparisons such as satellite imagery analy-
sis (Chen et al., 2022) and face detection (Schroff et al., 2015a). Using 
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Fig. 3. A different clear image of the bolted apparatus captured by Spot the robot dog.
Fig. 4. A sample image from the bolt rotation dataset.
Fig. 5. An example training triplet.
two or three parallel feature extraction backbones with shared weights, 
embeddings are derived from input pairs or triplets of images. These 
fixed-sized encodings can then be used to compute similarity scores. 
These networks are robust; we are using weakly-labelled training data 
having a deliberately-introduced level of geometric noise to assess the 
models’ suitability in a real-world application where we might not have 
data that is perfectly aligned.

By using an image of the bolted apparatus in a known state, with the 
bolts sufficiently tensioned, we establish an anchor. The positive image 
6 
also depicts the apparatus in a known good state but from a different 
camera angle, deliberately introducing geometric noise. Finally, the 
negative image shows the apparatus having three of its five bolts 
deliberately loosened by a known amount. The images are labelled 
according to the deviation in the bolts’ rotational angle — the camera 
angle is introduced at random.

Fig.  6 depicts the proposed architecture used in these experiments. 
Three convolutional neural network backbones are used in parallel 
to extract features from training data which is fed to the network in 
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Fig. 6. Our proposed triplet loss architecture.
triplets — anchor, positive, and negative. The backbones’ weights are 
shared; in practice, there is only one backbone into which the triplet 
images are fed using separate input layers. These features are then fed 
to a fully-connected classifier network, consisting of one or more layers. 
Finally, the resultant embeddings are passed to the triplet loss function.

Scroff et al. introduced the idea of a metric loss architecture based 
on their novel triplet loss function that they applied the idea to the 
problem of face recognition (Schroff et al., 2015a). The goal is to learn 
the loss function such that the Euclidean distance between the anchor 
embedding and the positive embedding is smaller than the distance 
between the anchor and negative embedding. 
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Per Fig.  6, Eqs. (1), (2), and (3) embed an image 𝑥 into a 𝑑-
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As visualised in Fig.  6, we want to ensure that an image 𝑥𝑖 (the
anchor) of a bolt having a specific rotational angle is closer to all other 
images 𝑥𝑖 of the bolt having that angle, and always further from any 
image 𝑥𝑖 of a bolt with a different angle of rotation (Eq.  (7)). The 
margin 𝛼 is enforced between positive and negative pairs.

𝑇  is the set of all possible triplets (anchor, positive, negative) in the 
training dataset, that has cardinality 𝑁 (Eq.  (8)). 
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The loss 𝐿 that we wish to minimise is derived in Eq.  (9) (Schroff 
et al., 2015a).

3.3. Explainability

Based on work by Livieris et al. (2023), our proposed architecture 
includes hooks for deriving visualisations of the gradients of a target 
class as sent through the last convolutional layer. This technique is 
called Grad-CAM and provides us with a class-discriminative localisa-
tion map (viewed as a heatmap) of activations in that layer which can 
then be enlarged and overlaid to fit the original image (Selvaraju et al., 
2017). 

𝛼𝑘 = 1
𝑧
∑

𝑖

∑

𝑗

𝜕𝑦
𝜕𝐴2

𝑖𝑗

(10)

The localisation map 𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀  is obtained by firstly calculating 
the neuron importance weights 𝛼𝑘 using the gradient of the model’s 
output 𝑦 with respect to the 𝑘th map activations 𝐴𝑘 of a specific 
convolutional layer — in our case, the final layer (Eq.  (10)). These 
are propagated back and global average pooled over the image’s width 
(𝑖) and height (𝑗) dimensions. Here, 𝑍 is the total number of spatial 
locations in the heatmap. 

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀 = 𝑅𝑒𝐿𝑈

(

∑

𝑘
𝑎𝑘𝐴

𝑘

)

(11)

We can then derive a weighted combination of forward activation 
maps followed by ReLU activation to calculate 𝐿  (Eq.  (11)). 
𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
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The model’s decision is visually indicated by using these gradients with 
respect to the model’s internal feature maps to generate a heatmap.

By overlaying the resultant heatmap on the image, it is possible 
to see which regions of the anchor, positive, or negative caused acti-
vations and therefore which areas of the image are most contributing 
to reducing the anchor-positive distance, and which are enlarging the 
anchor-negative distance. It is these features that are learning the triplet 
loss function and therefore influencing the trained model’s decisions; by 
ensuring that, for example, the bolts that have moved are contributing 
to the greater anchor-negative distance and not other background 
noise, we can be more certain of the model’s usefulness.

Allowing stakeholders this transparency builds greater trust when 
the models are used as part of a continuous maintenance program.

3.4. Experiments

In order to answer the research questions posed in Section 1 - 
Introduction, we devised a series of experimental scenarios.

3.4.1. Comparing architecture backbones
To answer RQ1 (‘‘Using a dataset depicting bolts in various degrees 

of rotation to train machine learning models, what level of accuracy is 
achievable in determining change in the rotational angle of bolts?’’) 
we devised a series of comparisons using a triplet loss architecture 
comprising a feature extraction backbone with three input layers, a 
fully-connected classifier, and a triplet loss function as described in 
Section 3.2 - Change Detection:

• Feature extraction backbones: ResNet-50, MobileNet - pretrained on 
ImageNet

• Classifier: fully-connected, two layer
• Hyperparameters and optimiser: batch size - 4, learning rate - 
0.0001, epochs - 30, optimiser - Adam

Datasets of triplets were compiled using randomisation. The random 
selection was specifically used to make triplets that depict bolted 
connections with varying deviations in the bolt rotation angle; the 
randomisation also introduced geometric noise by varying the camera 
angle and height, as well as the focal length. By constructing the triplets 
in this manner, the common factor in the anchor and positive images 
was the rotational angle of the bolt; the differing factor in the anchor-
negative pair was also the bolts’ rotational angle. Geometric noise – 
deviation in the camera angle, and variation in the focal length – was 
introduced at random.

Triplets were constructed with deviations in bolt angle rotation 
limited to 5, 10, 15, 20, 25, and 30 degrees. The triplets’ anchor and 
positive images had no rotation — all bolts were at the starting position. 
The negative image had the lower three bolts rotated by the given 
amount. In both positive and negative images, deviations in camera 
angle and focal length were introduced at random.

The following pseudocode gives a high-level overview of the initial-
isation and training/validation loops:

START:
Load dataset triplet file pointers from text file;
Load images into dataset;
Split into train/validation/test;

Load model architecture;

FOR number_of_epochs:
  Initialise loop and metric counters;

  # training
  FOR number_of_batches:
   Obtain embeddings of anchor, positive, negative;
8 
    Calculate euclidean distance anchor-positive and anchor-negative;

   IF (anchor-negative - anchor-negative) > margin:
    Correct predictions ++;
    Total predictions ++;
   ELSE
    Total predictions ++;

   Backpropagate error;
   Update parameters;
 NEXT batch

  # validation
  FOR number_of_batches:
   Obtain embeddings of anchor, positive, negative;
    Calculate euclidean distance anchor-positive and anchor-negative;

   IF (anchor-negative - anchor-negative) > margin:
    Correct predictions ++;
    Total predictions ++;
   ELSE
    Total predictions ++;
 NEXT batch

 IF validation accuracy improved:
  Update saved model

NEXT epoch
END

3.4.2. Fine-tuning the feature extraction backbone
We used a fine-tuned ResNet-50 backbone, trained on ImageNet 

and then fine-tuned on the NPU-Bolt dataset (Zhao et al., 2022). This 
is a dataset of 337 images of mechanical fixings, in four classes. We 
used a ResNet-50 backbone that had shown the greatest accuracy in 
bolt detection in a comparison using a Faster R-CNN object detection 
model (Bolton et al., 2023).

• Feature extraction backbone: ResNet-50, pretrained on ImageNet 
and fine-tuned on NPU-Bolt

• Classifier: fully-connected, two layer
• Hyperparameters and optimiser: batch size - 4, learning rate - 
0.0001, epochs - 30, optimiser - Adam

3.4.3. Exploring visualisation for explainability
To answer RQ2 (‘‘is it possible to use a visualisation technique 

to explain the decisions the trained network is making?’’) and RQ3 
(‘‘is any achievable visualisation sufficient to enable a user to see 
where change in the image has occurred?’’), we used Gradient-weighted 
Class Activation Maps (Grad-CAM) to obtain visual explanations of the 
activations within the last convolutional layer of the feature extraction 
backbones. The goal was to verify that the model was indeed learning 
the correct features; as we are using data that has variation in bolt 
rotation, as well as camera angle and focal length, we used Grad-CAM 
to identify coarse localisation maps showing the areas of the image that 
had led to the model’s prediction.

A new model architecture was written, adapted by work from 
Livieris et al. whose research used Grad CAM within a contrastive 
loss network (Livieris et al., 2023). We added hooks to the triplet loss 
model enabling us to extract the information from all three embedding 
paths within the ResNet during backpropagation, allowing us to see 
activations within the anchor, the positive, and the negative image.
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Table 1
Training results - triplet loss with ResNet-50 feature extractor pretrained on
ImageNet.
 Rotation angle 

deviation
Training accuracy Validation accuracy 

 ResNet-50 5 0.5919 0.2976  
 10 0.7554 0.4286  
 15 0.973 0.9286  
 20 0.9662 0.9762  
 25 0.9905 0.9405  
 30 0.9554 0.9405  

4. Results

Each of the models was implemented in code, using Python along 
with a variety of machine learning libraries. Discrete Python environ-
ments and their installed packages were managed with the Anaconda 
distribution of Python.

The following computer was used for training: a laptop equipped 
with an 11th generation Intel Core i7 CPU, 32 GB of RAM, and an 
RTX3080 GPU with 16 GB of VRAM.

4.1. Detecting bolt rotation with triplet loss

In this scenario, different triplet loss architectures with ResNet-50 
and MobileNet feature extractors and two-layer classifiers were trained 
with different datasets having deviations in the rotation angle of three 
of five bolts. Both ResNet-50 and MobileNet feature extractors were 
pretrained on the ImageNet dataset (Deng et al., 2009).

The angle deviation increased by five degrees from the initial start-
ing position. For each round of training, the dataset was shuffled before 
being split into training, validation, and test sets.

4.1.1. ResNet-50 - Pretrained on ImageNet
Six experiments were run on the training data using a triplet loss 

architecture with a ResNet-50 feature extraction backbone. Table  1 
shows the training, validation, and test accuracy which are a function 
of the correct predictions as a proportion of the total number of 
predictions. These results consider training accuracy on samples from 
which the model learns, and validation accuracy on a test set which 
has no bearing on the model’s weights. Validation accuracy increases 
broadly in line with greater deviation in bolt rotation.

The highest accuracy achieved was with a 20 degree deviation in 
the bolts’ rotation angle, the lowest was with a five degree deviation. 
30 epochs of training and validation were completed for each round, 
and took between 11 and 12 h per round.

Fig.  7 shows the test accuracy of the ResNet-50 triplet loss archi-
tecture on the test datasets across the range of bolt angle deviations. 
The graph depicts validation accuracy (y axis) for each epoch number 
(x axis). Each set of points represents validation accuracy for a given 
bolt rotation deviation. The headline accuracy given in Table  1 is the 
highest for all epochs at each bolt angle. It can be seen that, in each 
round of training, the architecture started reaching convergence at 
between five and 10 epochs, after which smaller gains were made.

4.1.2. MobileNet - Pretrained on ImageNet
Six further experiments were run on the training data using a 

triplet loss architecture with a MobileNet feature extraction backbone.
Table  2 shows the training, validation, and test accuracy which are a 
function of the correct predictions as a proportion of the total number 
of predictions. Results consider training accuracy on samples from 
which the model learns, and validation accuracy on a test set which 
has no bearing on the model’s weights. Validation accuracy increases 
broadly in line with greater deviation in bolt rotation.

The highest accuracy achieved was with a 30 degree deviation in 
the bolts’ rotation angle, the lowest was with a five degree deviation. 
9 
Table 2
Training results - triplet loss with MobileNet feature extractor pretrained on
ImageNet.
 Bolt angle deviation Training accuracy Validation accuracy 
 5 0.6503 0.3949  
 10 0.8142 0.6087  
 15 0.8265 0.6775  
 20 0.8128 0.7065  
 25 0.8333 0.6902  
 30 0.8661 0.8098  

Table 3
Training results - triplet loss with ResNet-50 feature extractor pretrained on ImageNet 
and then fine-tuned with NPU-Bolt (Zhao et al., 2022).
 Rotation angle deviation Training accuracy Validation accuracy 
 5 0.6093 0.2681  
 10 0.7254 0.4384  
 15 0.9781 0.8261  
 20 0.9918 0.9620  
 25 0.9536 0.8043  
 30 0.9918 0.9293  

30 epochs of training and validation were completed for each round, 
and took between 11 and 12 h per round.

Fig.  8 shows the test accuracy of the ResNet-50 triplet loss archi-
tecture on the test datasets across the range of bolt angle deviations. 
The graph depicts validation accuracy (y axis) for each epoch number 
(x axis). Each set of points represents validation accuracy for a given 
bolt rotation deviation. The headline accuracy given in Table  2 is the 
highest for all epochs at each bolt angle. It can be seen that, in each 
round of training, the architecture started reaching convergence after 
eight epochs, after which smaller gains were made.

4.2. Fine-tuning the feature extraction backbone

In this scenario, a triplet loss architecture with a ResNet-50 feature 
extractor and two-layer classifiers was trained with different datasets 
having deviations in the rotation angle of three of five bolts. The 
ResNet-50 feature extraction backbone was pretrained on the ImageNet 
dataset (Deng et al., 2009). The ResNet was then fine-tuned on the NPU-
Bolt dataset, a collection of images of bolts and other fixings (Zhao 
et al., 2022). The feature extractor was trained within a Faster R-
CNN model as part of a series of experiments to determine optimal 
hyperparameter settings for bolt detection (Bolton et al., 2023).

The angle deviation increased by five degrees from the initial start-
ing position. For each round of training, the dataset was shuffled before 
being split into training, validation, and test sets.

Six further experiments were run on the training data using a triplet 
loss architecture with a fine-tuned ResNet feature extraction backbone. 
Table  3 shows the training, validation, and test accuracy which are a 
function of the correct predictions as a proportion of the total number 
of predictions. Above 10 degrees, the validation accuracy shows no 
discernible pattern with respect to deviation in bolt rotation.

The highest accuracy achieved was with a 20 degree deviation in 
the bolts’ rotation angle, the lowest was with a five degree deviation. 
30 epochs of training and validation were completed for each round, 
and took between 11 and 12 h per round.

Fig.  9 shows the test accuracy of the ResNet-50 triplet loss archi-
tecture on the test datasets across the range of bolt angle deviations. 
The graph depicts validation accuracy (y axis) for each epoch number 
(x axis). Each set of points represents validation accuracy for a given 
bolt rotation deviation. The headline accuracy given in Table  3 is the 
highest for all epochs at each bolt angle. It can be seen that, in each 
round of training, the architecture started reaching convergence after 
between seven and 10 epochs, after which smaller gains were made.
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Fig. 7. Results - triplet loss with ResNet-50 feature extractor.
Fig. 8. Results - MobileNet.
4.3. Analysing triplet loss with Grad-CAM

Using our proposed framework, we can examine visualisations gen-
erated by the trained models.

4.3.1. ResNet and MobileNet
For each of these architectures, we present the Grad-CAM visualisa-

tions for the most and least accurate models.
In six experiments using a ResNet-50 feature extractor pretrained on 

ImageNet, the model reached its highest accuracy level on bolts with 
20 degrees deviation.
10 
The sample images on which the model made predictions are over-
laid with a heatmap. The heatmap is a coarse localisation depicting 
areas of importance in the final convolutional layer of the feature 
extraction backbone, and tells us the features that the model has 
learned to prioritise. It is generated by the gradients of our desired 
target concept flowing into that convolutional layer. It can be seen 
from Fig.  10a (anchor) and (c) (negative) that the model has clearly 
delineated the regions of interest in the anchor and, in the negative, 
the three bolts that have moved.

This model was least accurate with bolts at five degrees deviation.
In Fig.  11, it can be seen that there are no useful areas delineated by 

the heatmaps overlaying any of the three images. Again, the heatmap 
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Fig. 9. Results - ResNet-50 (fine-tuned).
Fig. 10. ImageNet Grad-CAM output for 20 degrees bolt angle deviation.
Fig. 11. ImageNet Grad-CAM output for 5 degrees bolt angle deviation.
is a coarse localisation depicting areas of importance in the final 
convolutional layer of the feature extraction backbone.

In our six experiments with a MobileNet feature extractor, we found 
that the triplet loss architecture was most accurate when trained with 
bolts having a 30 degree deviation in rotation angle; it was – as 
hypothesised – least accurate when trained with data showing bolts 
with the smallest 5 degree deviation in rotation angle.
11 
The MobileNet network trained on 30 degree rotation deviations, 
whose accuracy was 81%, is shown in Fig.  9; the Grad-CAM visual-
isations from the last convolutional layer of the extraction backbone 
for each of the anchor, positive, and negative inputs are overlaid. We 
can interpret areas of the heatmap tending towards blue in colour as 
representing stronger activations in the convolutional layer.
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Fig. 12. MobileNet Grad-CAM output for 30 degrees bolt angle deviation.
Fig. 13. MobileNet Grad-CAM output for 5 degrees bolt angle deviation.
Fig. 14. Fine-tuned ResNet-50 Grad-CAM output for 20 degrees bolt angle deviation.
Fig.  12(a) and (b) depict the anchor and positive inputs; the acti-
vations are focused around the horizontal edges of the apparatus. Fig. 
12(c) depicts the negative, the image in which we are keen to see if the 
model has learned the change in the bolts’ rotational angle; there are 
three strong areas of activation around the lower three bolts suggesting 
that this is the case.

The MobileNet-based architecture was least accurate with data 
depicting a five degree deviation, reaching 39%.

Fig.  13 depicts the visualisations for this network. There is little 
definition in the heatmaps for any of the images; crucially, Fig.  13(c) 
– the negative in which we would expect to see activations centred on 
the lower three bolts – shows little, if anything that could be construed 
as such.

4.3.2. Fine-tuned ResNet
Of the six experiments that used a ResNet-50 feature extraction 

backbone, the model trained with data showing 20 degrees deviation 
was most accurate, and the model trained on five degrees deviation 
least accurate.

Firstly, the model trained on 20 degrees data that reached 96% 
accuracy:
12 
Fig.  14 depicts the Grad-CAM activations for this model. It can be 
seen that Fig.  14(a) and (b) – the anchor and positive – are showing 
very clearly areas of activation in the images that were learned as a 
result of the triplet loss function penalising the network if the anchor-
positive distance was large. In both of these images, all five bolts are 
clearly showing a concentration of activations.

Conversely, we can see in Fig.  14(c) - the negative - a very clear 
concentration around the lower three bolts showing fairly conclusively 
the regions of the image where bolt rotation has occurred.

In contrast to the high accuracy of the 20 degree model, the five 
degree model reached a poor accuracy level of 27%.

Fig.  15 shows the three outputs from this five degree model. The 
results are less conclusive; the anchor (Fig.  15(a)) and positive (Fig. 
15(b)) show activations suggesting the learned similarities were not 
necessarily the bolts. The negative (Fig.  15(C)) does show some activa-
tions around the lower three bolts, however these are not concentrated 
solely on the lower three bolts as we would like. Rather, the top-right 
bolt has caused some activations which are, for this purpose, incorrect.
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Fig. 15. Fine-tuned ResNet-50 Grad-CAM output for 5 degrees bolt angle deviation.
Table 4
A comparison of our proposed network and other published work
 Studies Key ideas Minimum rotation Extra equipment Manual correction  
 Wang and Song (2020), Yuan 
et al. (2022), An and Sohn 
(2012) and Zhang et al. 
(2019b)

Signal applied to bolted 
connection and result analysed

Can detect change in 
preload force with no 
visible rotation

Yes - waveform 
generators, 
digitizers, hammer

No  

 Gong et al. (2022), Ramana 
et al. (2019), Cha et al. 
(2016), Yuan et al. (2021) 
and Zhang et al. (2020)

A model is trained to recognise 
two classes — loose bolt and 
tight bolt. The difference lies in 
the amount of visible thread.

4mm visible thread (630 
degrees)

None No  

 Pan and Yang (2023) and Pan 
et al. (2023)

LiDAR cameras are used to 
analyse bolted connections and 
detect differences in the Z-plane

Less than 1 mm visible 
thread (225 degrees)

Yes - specialist 
LiDAR cameras

No  

 Zhao et al. (2019) A model is trained to recognise 
patterns on a bolt head relative 
to the bolt head itself. The 
relationship is analysed to derive 
rotational angle

10 degrees Yes - a specific type 
of bolt with a 
known pattern

No  

 Luo et al. (2024), Huynh et al. 
(2019) and Luo et al. (2023)

Canny edge detection and hough 
line transforms are used to derive 
angles of a bolt head relative to 
the horizontal

10 degrees In one study, a 
square gasket for 
each bolt

Yes - bolts must be 
pictured from directly in 
front, and any deviation 
must be corrected

 

 Ours A triplet loss architecture is 
trained to recognise bolt rotation 
with respect to a known ground 
truth

10 degrees None No  
5. Discussion

Having trained a series of models on a dataset that showed progres-
sive amounts of bolt rotation, from five degrees to 30 degrees, we find 
that our initial hypotheses have, to a certain extent, been validated:

• Excessive deviation in the camera angle makes the bolts’ rota-
tional angle harder to estimate

• When the camera angle’s deviation reaches 90 degrees, the appa-
ratus is side-on to the camera and it is very difficult to identify 
any deviation in the bolts’ rotational angle

• The most obvious deviation in the bolts’ rotational angle is 30 
degrees; the least obvious is 5 degrees

Training models using data having variations in camera angle, 
from straight-on to the apparatus to a side view, we find that those 
models showing greater degrees of accuracy are invariant to this noise. 
Likewise, the deviation in the bolts’ rotational angle would seem to be 
not only more obvious to a human the greater it becomes, but also to 
a neural network.

In line with one of our study’s aims – that the method should involve 
no specialist apparatus, and be useable on any site – our proposed 
architecture demonstrates advantages over the state of the art. Table 
4 details the studies and overarching methodologies that were grouped 
in Section 2 - Related Work. We can compare these methods by the 
13 
minimum bolt rotation in degrees they can detect, whether they require 
any specialist equipment besides a standard video camera, and whether 
any human intervention is required to manipulate the images.

Our method requires no apparatus other than a camera to capture 
images; sensor-based methods need often complicated equipment to 
transmit and capture signals for analysis, something that is not neces-
sarily transferable to new worksites (Wang and Song, 2020; Yuan et al., 
2022; An and Sohn, 2012; Zhang et al., 2019b). Our method requires 
no particular type of bolt or any markings to be made upon existing 
bolts (Yang et al., 2022; Zhao et al., 2019). Finally, we require no 
specialist cameras for capturing 3D points clouds (Pan et al., 2023; Pan 
and Yang, 2023). Of the studies that use image data, we have shown 
results comparable to those that can detect bolt rotations as low as ten 
degrees with good accuracy (Luo et al., 2024; Huynh et al., 2019).

Safety-critical industrial environments are, by their nature, dan-
gerous; access to such sites is necessarily limited. By using a robot – 
Spot the quadruped dog – we have gone some way towards simulating 
a maintenance inspection. In doing so, we found that whilst clear, 
non-blurry frames were obtainable from the video, geometric noise in 
the form of variations in camera angle and focal length were always 
present. Our dataset focussed on these geometric aberrations.

One aspect that should be discussed is the amount of time required 
to train these models; between 11 and 12 h were required to complete 
the 30 epochs used in our experiments. It is likely that a dedicated 
server-based GPU would be more powerful and free of any thermal 
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throttling, thereby considerably reduce training times. Even so, this 
does indicate that the computational load required indicates that this 
task is not suitable for edge computing on – for example – low-powered, 
low-cost Arm devices such as Android tablets.

5.1. RQ1: using a dataset depicting bolts in various degrees of rotation 
to train machine learning models, what level of accuracy is achievable in 
determining change in the rotational angle of bolts?

We found that good levels of accuracy were achievable — headline 
figures of more than 98% do not, however, tell the full story. The 
accuracy was dependent on the rotational angle of the bolts. Perhaps 
not surprisingly, all of the architectures tested did struggle with data 
showing little deviation.

Achievable accuracy rose approximately with increasing bolt angle 
deviation, although there was no strict correlation with this hypothesis 
throughout the three model architectures. Models using an ImageNet-
pretrained extraction backbone, both ResNet-50 and MobileNet, strug-
gled with data showing only five degrees of deviation. Whilst show-
ing higher accuracy at greater rotation degrees, the ImageNet-trained 
ResNet-50 backbone also struggled to delineate bolt rotation at 10 
degrees.

The architecture with a ResNet-50 backbone that we fine-tuned 
using a static bolt detection dataset did not result in greater accuracy 
levels. In fact, accuracy levels for both the five degree data and the 10 
degree data performed poorly (27% and 44% respectively). Moving to 
the 15 degree data, there was a large jump to 83% and, after that, no 
discernible pattern as the bolt angle widened.

Taken at face value, these results are promising — the instinct in 
a production scenario would be to choose the models showing the 
greatest accuracy. However, we have used feature extraction backbones 
that have been pretrained on a dataset containing millions of images 
covering 1000 classes. Furthermore, we introduced known deviations 
in camera angle and focal length to simulate the sort of geometric noise 
that might be found in an industrial setting.

In short, we do not know for certain that the models have learned 
the features of the data we would like, whether they are invariant to 
the features we are not interested in, and how much has been skewed 
by the pretraining on many classes and shapes of object. This highlights 
the need for a degree of explainability — safety in maintenance is 
crucial and AI making black-box decisions, however high the reported 
accuracy, cannot be trusted until it has been at least visualised if not 
explained.

5.2. RQ2: is it possible to use a visualisation technique to explain the 
decisions the trained network is making?

We introduced Grad-CAM to a triplet loss architecture in order to 
show the activations relating to the images that have been learned to 
force the anchor-positive distance smaller than the anchor-negative. We 
could see that, in the models displaying good test accuracy, the negative 
visualisations were indeed clustered on the bolts that had moved, and 
not on the geometric noise. At this point it appears that the reported 
accuracy of the models in scenario one – where we were essentially 
‘driving blind’ – can be visually tested by the Grad CAM interpretation.

There is an inherent degree of interpretation in assessing a heatmap; 
qualitatively assessing whether or not change has occurred – the bolt 
has rotated – becomes harder where the model’s accuracy was low 
and the visual output is less clear. This is, perhaps, where the extra 
fine-tuning of the ResNet backbone has helped; even with very poor 
accuracy, the five degree fine-tuned model showed more promise in 
the visualisation. Three of the rotated bolts showed activations, with 
an added false positive in a fourth bolt that had not moved.

In comparison, as the training accuracy of the MobileNet-based 
architecture fell, the visual output became of little use despite showing 
39% accuracy compared with the fine-tuned ResNet’s 27% at five 
degrees. We find that this proves the requirement for explanation of 
machine learning — without this insight, instinct would be to select 
the more accurate model.
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5.3. RQ3: is any achievable visualisation sufficient to enable a user to see 
where change in the image has occurred?

The visualisations that we were able to extract from our triplet loss 
network showed very clearly where change in the image has occurred. 
This is, again, contingent on the accuracy of the model in the first 
instance. This is not necessarily a shortcoming with the Grad-CAM 
technique itself as any explanation technique would simply report the 
inherent uncertainty in a model whose training accuracy was poor.

6. Conclusion and future work

We have demonstrated that good levels of accuracy are achievable 
using our proposed triplet loss architecture to analyse image data 
and detect bolt rotation. The accuracy of the models was, perhaps 
unsurprisingly, poorer when asked to learn data showing only minimal 
differences. We further demonstrated that it is possible to use Grad-
CAM to visualise a triplet loss network, and see straight away where 
similarities and differences in the temporal triplets have been learned 
by the feature extraction backbone.

Whilst accuracy levels were good for detecting bolt deviation of 
more than 10 degrees, it would benefit the work to develop a more fine-
tunable apparatus to determine the point below which the proposed 
model was no longer able to accurately detect rotation. The five degree 
increments used in these experiments reflect the fact that the apparatus 
was constructed from wood, and accuracy when setting the rotational 
angle of the bolts could not be guaranteed to a single degree. An 
apparatus machined from metal, perhaps with CNC, would enable us 
to take these measurements.

The amount of data is, as discussed, problematic. There are ways in 
which the data could be augmented, and more random triplets gener-
ated. Use of a generative adversarial network (GAN) is tempting, but 
the images generated could not be guaranteed to represent their class 
label. Simply put, more data is needed. In constructing our dataset, 
we used laboratory conditions to establish baseline data with known 
geometric noise. Further work is required to simulate further real-
world conditions and should introduce gaussian noise and lighting and 
contrast variations.

A potential source of training data is through the use of newer vision 
foundation models such as Segment Anything Model (SAM) (Kirillov 
et al., 2023). These models are capable of multi-modal prompting – 
text, image – and are trained on enormous amounts of data. The output 
of such a model could generate annotation boxes or masks for data 
scraped from the internet which could, in turn, be used to train the 
feature extractors within our triplet loss architecture. This would likely 
increase the overall computational load requirement which would have 
to be taken into consideration within a production environment.

Finally, there is potential for more informative explainability. Grad-
CAM has worked with some degree of success here, but offers only 
a post-hoc explanation of an already-trained model. A means of ex-
plaining not only these decisions, but the features that were extracted, 
could be of use. Mansouri et al. propose Gumbel-Sigmoid eXplanator 
(GSX) which demonstrates a quantitative evaluation of features that 
contribute to a model’s decision during training (Mansouri and Vadera, 
2022). This could be adapted for use in a vision model, bringing an 
ante-hoc explainability layer which would strengthen our xAI metrics.

7. Abbreviations

• AI - Artificial Intelligence
• CNC - Computer Numerically Controlled
• CNN - Convolutional Neural Network
• CPU - Central Processing Unit
• GAN - Generative Adversarial Network
• GPU - Graphical Processing Unit
• Grad-CAM - Gradient-weighted Class Activation Mapping
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• GSX - Gumbel-Sigmoid eXplanator
• LiDAR - Light Detection And Ranging
• RAM - Random Access Memory
• R-CNN - Region-based Convolutional Neural Network
• ResNet - Residual Neural Network
• SAM - Segment Anything Model
• SA-Siam - Semantic and Appearance Features in Siamese network
• VRAM - Video-reserved Random Access Memory
• xAI - eXplainable Artificial Intelligence
• YOLO - You Only Look Once
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