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Abstract. The scattering of time-harmonic electromagnetic fields by perfectly-conducting
plane screens is a fundamental problem in physics. A standard approach to computing the
scattered wave is to deploy Rayleigh-Sommerfeld diffraction integrals in conjunction with
the ad hoc St. Venant hypothesis to enforce on-screen boundary conditions. These formula-
tions are best suited to high-frequency regimes, where the characteristic aperture size a is
typically much larger than the wavelength λ = 2π/k such that ka≫ 1. They are also desir-
able because the well-known Fresnel (near field) and Fraunhofer (far field) integrals follow
straightforwardly from Taylor expansions within the Rayleigh-Sommerfeld kernel. However,
diffraction integrals must be used with caution when the screen has some kind of fractal
(or self-similar) structure—for example, those based on a finite number of stages in the
Cantor set or Sierpinski triangle. In such cases, the low-frequency regime ka ≪ 1 may be
encountered as a matter of course.
A more rigorous approach is to consider scattering as a formal boundary-value problem

for the underlying Helmholtz equation. One constructs a boundary integral equation with
reference to the free Green’s function, then discretizes the domain of the screen to arrive
at a corresponding boundary element formulation. In this way, boundary conditions (typ-
ically either Dirichlet or Neumann) are accommodated as a natural part of the numerical
scheme. The key advantage over diffraction integrals is that low-frequency regimes can
be accessed without difficulty. Our presentation will survey earlier results obtained from
a Rayleigh-Sommerfeld prescription, providing background and context. A new boundary
element formulation will then be detailed along with some preliminary results.
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1.1 Introduction

Formulations of wave diffraction problems in terms of Rayleigh-Sommerfeld integrals, while not
mathematically rigorous, remain legitimate theoretical approaches [1, 2]. Supporting evidence
for their validity can be found in laser optics experiments, where measurements are often
in excellent agreement with theory (especially in the far field) [3]. While the assumptions
underpinning diffraction integrals should always be borne in mind, particular care must be
taken when scatterers are pre-fractal or fractal in nature [4, 5, 6]. In the context of transparent
apertures made in otherwise opaque plane screens, diffraction integrals tend to work best when
the largest characteristic size a of the constituent apertures is much greater than the wavelength
λ = 2π/k of the incident wave. This scenario is the high-frequency regime, as defined by ka≫ 1.

Continuing earlier research [7, 8], we consider electromagnetic waves illuminating one side
of a perfectly-conducting plane screen comprising a set of slit apertures whose construction is
mimicked by finitely many stages of a Cantor initiator-generator scheme. Since aperture domain
intervals shrink exponentially, it does not always require many iterations until the condition
ka ≪ 1 dominates. The key physical issue to respect is that scattering from such irregular or
finely-detailed structures can often constitute a low-frequency regime.

1.2 Fractal screens: the Cantor set

As a model for a fundamental fractal, we begin with the classic Cantor set [9]. The initiator
stage (labelled by index n = 0) is simply the closed interval C0 := [0, 1] on the real line such that
C0 ⊂ R. At the first stage (n = 1), the open middle third is removed to leave two subintervals and
a new set C1 := C0\(1/3, 2/3) = [0, 1/3]∪ [2/3, 1]. At the second stage (n = 2), the open middle
third of both subintervals is removed so that C2 = [0, 1/9]∪ [2/9, 3/9]∪ [6/9, 7/9]∪ [8/9, 9/9], and
so on [see Fig. 1.1(a)]. After n = 1, 2, 3, ... applications of this iterative process, one is left with
Nn = 2n subintervals of finite length ln = 1/3n. In an intuitive Euclidean sense, one might define
the ‘length’ of a particular set Cn by Ln := Nnln = (2/3)n implying that L∞ := limn→∞ Ln = 0.
More formally, one says that the the Cantor set C∞ := limn→∞Cn has a Lebesque measure of
zero; such a feature has implications for subsequent wave scattering problems.

The capacity dimension of C∞ is given by

dimcap(C∞) = lim
n→∞

log(Nn)

log(1/ln)
= lim

n→∞

log(2n)

log(3n)
=

log 2

log 3
≈ 0.631. (1.1)

In a topological sense, then, the Cantor set has a tendency to fill space more efficiently than
a point (whose Euclidean dimension is zero) but less efficiently than a regular line (Euclidean
dimension one). A defining feature of any fractal set on the real line is that its capacity dimension
falls within (0, 1]. Moreover, the Cantor set C∞ possesses two striking properties: it is totally
disconnected (like the integers) but also uncountable (like the reals).

Inspiration is now taken from the middle-third Cantor set to develop a model for pre-fractal
plane screens [see Fig. 1.1(b)]. From R, we remove the open interval (−a0, a0) so that what
remains is our initiator, Γ0 := R\(−a0, a0) = (−∞,−a0] ∪ [a0,∞). Physically, the set Γ0 may
be interpreted as the screen in an idealized single-slit diffraction experiment [1, 3]. Now fill-in
the closed middle third of the [−a0, a0] interval to arrive at a set Γ1 := Γ0 ∪ [−a0/3, a0/3] =
(−∞,−a0] ∪ [−a0/3, a0/3] ∪ [a0,∞). This time, Γ1 denotes the domain of the screen for a
symmetric double-slit experiment wherein the two apertures have equal width and separation,
namely 2a0/3.
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Figure 1.1: (a) Initiator (n = 0) and first three iterations (n = 1, 2, 3) of the classic middle-third
Cantor set defined on the unit interval [0, 1] of the real number line R. (b) Iterative development
of a pre-fractal Cantor screen. The domain of the opaque screen is Γn (black bars) while the
domain of the transparent apertures (white bars) is Γ ⊂ (−a0, a0).

The iterative filling-in procedure may be repeated indefinitely to yield a set Γn that represents
the domain of a screen comprising 2n open apertures with width 2a0/3

n, where n ∈ Z≥0. The
distribution of these apertures is contained within the (−a0, a0) interval, and we denote that
domain by Γn. In the limit n → ∞, the set Γ∞ prescribes a plane Cantor fractal screen with
uncountably many apertures of zero width.

The geometry of our scattering problem is shown in Fig. 1.2. The screen is translationally
invariant along the z direction (out-of-page) and the electric field E(x, t) everywhere in the
surrounding space Ω is taken to be linearly polarized along z. We now introduce the standard
decomposition for time-harmonic fields E(x, t) = êz[Ez(x) exp(−iωt)+ c.c.], where êz denotes a
unit vector in the z direction and ω is the angular frequency. Moreover, from Gauss’s law and
translational symmetry, we see that E cannot depend explicitly upon z. Position vectors are
henceforth denoted by x = (x, y) so that (nominally) we may write Ω := R2\Γn.

Dropping all reference to the z coordinate as an argument, the complex total field Ez : R2 →
C is now governed by the two-dimensional scalar Helmholtz equation

(∇2 + k2)Ez(x) = 0 ∀ x ∈ Ω, (1.2a)

where ∇2 = ∂2/∂x2+∂2/∂y2 is the Laplacian, k = ω/c is the wavenumber, and c is the vacuum
speed of light. On the domain of a stage-n perfectly-conducting Cantor screen Γn, the boundary
condition is of the homogeneous Dirichlet type [10],

Ez(x) = 0 ∀ x ∈ Γn, (1.2b)

guaranteeing that the total electric field on the screen must vanish. To complete the picture, a
plane wave Einc

z (x) = E∞ exp(iky) with amplitude E∞ and wavevector kinc = êyk is incident in
the region y < 0, where k = 2π/λ.

1.3 A diffraction integral formulation

Our first objective is to calculate Ez(x) in the region behind the screen, y > 0. That field will
be referred to as the diffracted wave and labelled with the “diff” superscript. The free Green’s
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Figure 1.2: Geometry for normal-incidence wave scattering at a pre-fractal Cantor screen Γn

(whose edges extend outwards toward ∞ and −∞). For Eq. (1.4a), the boundary ∂Ω+ of region
Ω+ defined on the half-plane behind the screen is traversed in an anti-clockwise sense.

function for Eq. (1.2a), denoted by G0(x|x′), satisfies the inhomogeneous equation [10]

(∇2 + k2)G0(x|x′) = −δ(x− x′). (1.3a)

The fundamental solution representing an outgoing cylindrical wave pertinent to our choice of
decomposition for E(x, t) must therefore be

G0(x|x′) =
i

4
H

(1)
0 (k|x− x′|), (1.3b)

where H
(1)
0 denotes the zero-order Hankel function of the first kind and we note the following

symmetries for later use: G0(x|x′) = G0(|x− x′|) = G0(x
′|x).

To facilitate analysis, consider a finite semicircular domain Ω+ with boundary ∂Ω+ that is
defined on y > 0 (see Fig. 1.2). We next follow Barton [11] to construct the Dirichlet Green’s
function GD(x|x′) := G0(x|x′) + χ(x|x′) for a plane screen. If GD is to also satisfy Eq. (1.3a),
then the desired function χ should be a solution of (∇2 + k2)χ(x|x′) = 0. From the method of
images, χ is determined to be χ(x|x′) = −G0(x|x̃′) and where x̃′ is a reflection of the source
point x′ about the line y = 0. Note that χ(x|x′) is nowhere singular within the region of interest
because x̃′ /∈ Ω+.

Interchanging primed and unprimed variables, we proceed in the usual way to formulate an
integral equation with reference to Green’s second identity:

¨
Ω+

dΩ′
[
GD(x

′|x)∇′2Ediff
z (x′)− Ediff

z (x′)∇′2GD(x
′|x)

]
=

˛
∂Ω+

d∂Ω′
[
GD(x

′|x)∂E
diff
z

∂n′
(x′)− Ediff

z (x′)
∂GD

∂n′
(x′|x)

]
, (1.4a)

where n′ denotes the outward-normal direction to Ω+. Substituting from Eqs. (1.2a) and (1.3a),
the domain integration on the left-hand side of Eq. (1.4a) becomes

¨
Ω+

dΩ′ δ(x′ − x)Ediff
z (x′) =

{
Ediff

z (x) x ∈ Ω+,

0 x /∈ Ω+.
(1.4b)

The boundary integration on the right-hand side of Eq. (1.4a) may be evaluated at any field
point x ∈ Ω+ once the input data Ediff

z (x′) and (∂/∂n′)Ediff
z (x′) are specified on ∂Ω+. Since the
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diffracted wave must respect the Sommerfeld radiation condition [11], falling off as

lim
r→∞

r1/2
(
∂Ediff

z

∂r
− ikEdiff

z

)
= 0, (1.5)

the contribution to Ediff
z (x) from the semicircular portion of ∂Ω+ tends to zero as that boundary

is taken out to infinity. Moreover, condition (1.5) guarantees there are no waves travelling inward
from the far field. The remaining part of the boundary integration is along the straight-line base
of the now-infinite semicircle, namely x′ ∈ (−∞,∞) and y′ = 0. On that interval, the Dirichlet
Green’s function GD = 0 (by construction) and its normal derivative has the properties

∂GD

∂n′
(x′|x) = 2

∂G0

∂n′
(x′|x) = −2

∂G0

∂y′
(x′|x). (1.6)

Assembling all these results leads to the Rayleigh-Sommerfeld formula [1],

Ediff
z (x, y) = i

ky

2

ˆ ∞
−∞

dx′Ediff
z (x′, 0)

1

R
H

(1)
1 (kR), where R := [(x− x′)2 + y2]1/2 (1.7a)

on y > 0. In the last step, we apply the St. Venant hypothesis [11] to enforce, in a ‘weak’ sense,
input data for Eq. (1.7a) according to the prescription

Ediff
z (x′, 0) =

{
0 x′ ∈ Γn,

E∞ x′ ∈ Γn.
(1.7b)

In essence, condition (1.7b) anticipates that Ediff
z (x′, 0) adopts values identical to those of the

incident plane wave Einc
z (x′, y′ = 0) = E∞ over each of the constituent aperture regions (a

simplification routinely made in scalar diffraction theories [1, 2, 3]). Accommodating a stage-n
Cantor screen, Eq. (1.7a) for the diffracted wave becomes

Ediff
z (x, y) = iE∞

ky

2

2n∑
j=1

ˆ x0j+a0/3n

x0j−a0/3n
dx′

1

R
H

(1)
1 (kR), (1.8)

where x0j corresponds to the midpoint of aperture j in domain Γn. We note, in passing, that
exactly the same formula can be arrived at by Fourier-decomposing the diffracted wave on the
y > 0 half-space and deploying the convolution theorem [1, 7]. The remaining two Cartesian
components of the diffracted electric-field vector are rigorously zero so that Ediff

x (x, y) = 0 =
Ediff

y (x, y) and hence Ediff(x, y) = (0, 0, Ediff
z (x, y)).

The corresponding diffraction integral from Fresnel optics [3] can be recovered from an
asymptotic expansion of the kernel in Eq. (1.8) for large arguments kR ≫ 1 [12]. By making
the small-angle approximation within the phase factor kR and anticipating that the amplitude
factor 1/R is constant across the region of integration, we obtain

Ediff
z (x, y) ≈ E∞

(
k

i2πy

)1/2

exp(iky)
2n∑
j=1

ˆ x0j+a0/3n

x0j−a0/3n
dx′ exp

[
i
k

2y
(x− x′)2

]
. (1.9a)

For a stage-n Cantor screen, Eq. (1.9a) might be expected to hold (at least in a high-frequency
regime) for distances that satisfy y ≫ [(ka40/8)/81

n]1/3. Each constituent integral may be
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couched in terms of a pair of Young’s edge waves [3]. After defining the change-of-variables
s := (k/πy)1/2(x− x′), and without making further approximation, Eq. (1.9a) is recast as

Ediff
z (x, y) ≈ E∞

(
1

i2

)1/2

exp(iky)
2n∑
j=1

ˆ sj(x,y;n+)

sj(x,y;n−)
ds exp

(
i
π

2
s2
)
,

= E∞ exp(iky)
2n∑
j=1

[
ψ(sj(x, y;n+))− ψ(sj(x, y;n−))

]
, (1.9b)

where we have introduced sj(x, y;n±) = (k/πy)1/2(x− x0j ± a0/3
n) for the limits of integration

followed by the edge wave ψ(χ) = −(i/2)1/2ϕ∗(χ) exp[i(π/2)χ2]. Here, ϕ : R → C is a complex
linear combination of the auxiliary Fresnel functions which themselves can be computed quickly
and efficiently by deploying suitable rational approximations [13, 14].

In the far field, wavefront curvature is neglected in the x′ coordinate of Eq. (1.9a) and the
Fourier integrals that result may be evaluated exactly to yield

Ediff
z (x, y) ≈ E∞

(
k

i2πy

)1/2

exp

[
i

(
ky +

kx2

2y

)]
2a0
3n

sinc

(
Ka0
3n

) 2n∑
j=1

exp(−iKx0j), (1.10)

where K := kx/y. The far-field solution thus comprises a linear superposition of 2n single-slit
patterns, and where the strength of the diffracted wave can be expected to decay with n such
that Ediff

z (x, y) → 0 as n→ ∞ (since the interval being integrated over in x′ approaches zero).
Formally, the diffracted magnetic flux density vector Bdiff(x, y) is obtained from Maxwell’s

equations via Faraday’s law, Bdiff(x, y) = (ick)−1∇×Ediff(x, y). In component form,

Bdiff
x (x, y) =

1

ick

∂Ediff
z

∂y
(x, y), Bdiff

y (x, y) = − 1

ick

∂Ediff
z

∂x
(x, y), and Bdiff

z (x, y) = 0 (1.11a)

so that, upon differentiation, we obtain [7]

Bdiff
x (x, y) =

B∞
2

2n∑
j=1

ˆ x0j+a0/3n

x0j−a0/3n
dx′

1

R

[
H

(1)
1 (kR)− ky

(
ky

R

)
H

(1)
2 (kR)

]
, (1.11b)

Bdiff
y (x, y) = B∞

ky

2

2n∑
j=1

ˆ x0j+a0/3n

x0j−a0/3n
dx′

1

R2
(x− x′)H

(1)
2 (kR), (1.11c)

where B∞ := E∞/c. Having derived all the electric and magnetic components of the diffracted
wave, it is a straightforward exercise to establish that the vector fields Ediff(x, y) and Bdiff(x, y)
are divergence-free, as should be the case. That is, ∇ · Ediff(x, y) = 0 and ∇ · Bdiff(x, y) =
0 ∀ x, y ∈ Ω+.

Examples of electromagnetic waves scattered by pre-fractal Cantor screens, as predicted by
Eqs. (1.7a), (1.11b), and (1.11c) are given in Fig. 1.3 for the case of 2a0 = 20λ. At n = 0, one
has ka0 = 20π ≈ 62.83 and so the Rayleigh-Sommerfeld solution is arguably valid. Diffraction
is fairly weak since, in the region close behind the screen, the wave spreads out hardly at
all. For n = 4, one instead has ka4 = ka0/3

4 ≈ 0.78. Diffraction is evidently stronger in
this much lower-frequency regime. Here, one must be mindful that predictions made by a
Rayleigh-Sommerfeld formulation are likely not faithful to the true (physical) solutions otherwise
obtained from Maxwell’s equations.
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Figure 1.3: Snapshot at time t = 0 of diffracted electromagnetic waves for a set of pre-fractal
Cantor screens as predicted by Eqs. (1.8), (1.11b), and (1.11c). The initiator aperture is chosen
to be 2a0 = 20λ. Note that Bdiff

x (x, y) is the dominant component of the magnetic flux density.

To reconstruct the total electromagnetic field within the entire space Ω, symmetries inherent
to the plane-screen class of problem may be exploited [10]. Behind the screen, where y > 0,
only the diffracted wave exists: one has simply E(x, y) = Ediff(x, y) and B(x, y) = Bdiff(x, y).
In front of the screen, where y < 0, account must be taken of the incident and reflected waves.
Recalling that Einc(x) = êzE∞ exp(iky) =⇒ Binc(x) = êxB∞ exp(iky), we have

Ez(x,−y) = E∞ exp(iky)− E∞ exp(−iky) + Ediff
z (x, y), (1.12a)

Bx(x,−y) = B∞ exp(iky) +B∞ exp(−iky)−Bdiff
x (x, y), (1.12b)

By(x,−y) = Bdiff
y (x, y). (1.12c)

In this way, diffraction integral equation (1.7a) in conjunction with the St. Venant hypothesis
(1.7b) has been used to compute the electromagnetic field in the entire space surrounding a
plane pre-fractal Cantor screen. Note the appearance of the standing wave in front of the screen,
arising from the interference between incident and reflected waves as captured by Eqs. (1.12a)
and (1.12b). This feature has been included a posteriori for the diffraction-integral solution,
but we will see shortly that it appears naturally as part of the boundary element method.
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Figure 1.4: Domain decomposition for formulating boundary integral equation (1.14a). Left:
The boundary ∂Σ is constructed according to ∂Σ = ∂Σ∞ ∪ ∂Σ← ∪ ∂σδ ∪ ∂Σ→. Right: The
region σ enclosing the strip Γ has a boundary ∂σ on which the outward normal is nσ = −nΣ.

1.4 Towards a boundary element method

We now turn our attention to formulating a boundary element description of a related scattering
problem. There are some basic similarities with the diffraction integral approach, but the focus
is naturally on respecting full Dirichlet boundary conditions. To proceed, the total electric field
Ez(x) is decomposed into a linear superposition of the incident wave and the scattered wave
according to

Ez(x) = Einc
z (y) + Esc

z (x) ∀ x ∈ Ω. (1.13a)

Compare this situation to the Rayleigh-Sommerfeld approach, where the incident wave exists
only on the half-space y < 0 and the diffracted wave only on y > 0. Both contributions to
decomposition (1.13a) satisfy Eq. (1.2a) independently. Also, since the total electric field on
the Cantor screen Γn must still vanish [as per Eq. (1.2b)], the scattered wave Esc

z (x) is instead
subject to the inhomogeneous Dirichlet boundary condition

Esc
z (x) = −E∞ ∀ x ∈ Γn. (1.13b)

Moreover, Esc
z is also constrained by the Sommerfeld radiation condition [akin to Eq. (1.5)].

As a starting point, we will consider only the scattering from an arbitrary finite interval Γ
(no subscript index) that forms part of a given stage-n Cantor screen Γn. Physically, Γ may
be interpreted as a perfectly-conducting thin strip aligned along the z axis [15, 16]. For an
arbitrary surrounding domain Σ with simple closed boundary ∂Σ and outward normal nΣ, a
Green’s integral equation involving Esc

z (x) and G0(x|x′) may be derived such that

a(x)Esc
z (x) =

˛
∂Σ

d∂Σ′
[
G0(x

′|x)∂E
sc
z

∂n′Σ
(x′)− Esc

z (x′)
∂G0

∂n′Σ
(x′|x)

]
. (1.14a)

The factor a(x), which originates in an integration across a Dirac delta function, is given by
a(x) = 1 for x ∈ Σ, 1/2 for x ∈ ∂Σ (smooth boundary), and 0 for x /∈ Σ.

Equation (1.14a) holds for arbitrary Σ, which may be freely deformed into any desired shape.
Choosing Σ as shown in Fig. 1.4 has a two-fold purpose. First, as the outer circular boundary
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∂Σ∞ tends to infinity, the Sommerfeld condition guarantees that there is no contribution to
Esc

z (x). Second, as the gap size δ → 0, contributions from the incoming and outgoing paths
cancel (since the outward normals along ∂Σ← and ∂Σ→ point in opposite directions). The only
surviving contribution to the circulation in Eq. (1.14a) is from the inner boundary ∂σ := ∂σδ|δ→0,
which has an outer normal nσ := −nΣ. As ϵ → 0, the contribution from the two semicircular
end-caps vanishes to leave an integration out (over the upper surface: ∂/∂n′σ = ∂/∂y′) and back
(over the lower surface: ∂/∂n′σ = −∂/∂y′) along Γ:

a(x)Esc
z (x) =

ˆ b

−b
dx′

[
Esc

z (x′, 0)
∂G0

∂y′
(êxx

′|x)−G0(êxx
′|x)∂E

sc
z

∂y′
(x′, 0)]

]
. (1.14b)

Domain σ|ϵ→0 coincides with strip Γ, taken here to have a width 2b centred on the origin of the
x′ coordinate.

Boundary integral equation (1.14b) represents the scattered field Esc
z (x) at any point x ∈

R2\Γ as arising from a distribution of free Green’s-function sources over domain Γ. For the
inhomogeneous Dirichlet problem, condition (1.13b) implies that Esc

z (x′, 0) = −E∞ ∀ x′ ∈
[−b, b]. The goal is thus to obtain an approximation for the remaining input data, namely
(∂/∂y′)Esc

z (x′, 0), by devising a boundary element scheme.
The discretization procedure represents Γ by N equally-spaced nodes and the strip thus

comprises N − 1 elements of finite size l = L/(N − 1). On Γ, we make the replacements

Esc
z (x′, 0) →

N∑
q=1

EqNq(x
′) and

∂Esc
z

∂y′
(x′, 0) →

N∑
q=1

FqNq(x
′), (1.15)

where Eq and Fq with q = 1, 2, 3, ..., N are two sets of constants specifying the input data. For
simplicity, Nq(x

′) is taken as a standard piecewise-linear shape function. Qualitatively, Nq(x
′)

resembles a unit-height isosceles triangle whose base spans the element either side of node q,
and is equal to zero otherwise [17].

Equation (1.14b) may be evaluated on the strip by setting the field point x = (x, y) → (ξ, 0),
where ξ ∈ [−b, b]. In point collocation, the role of a weighting function such as

wp(ξ) = δ(ξ − ξp) (1.16)

is to place a Green’s-function source at the position ξp of node p = 1, 2, 3, ..., N . Evaluating on
Γ, we multiply Eq. (1.14b) throughout by wp(ξ) and integrate over the domain so that

ˆ b

−b
dξ wp(ξ)

 N∑
q=1

Eqa(ξ)Nq(ξ)

 =

ˆ b

−b
dξ wp(ξ)

 N∑
q=1

Eq

ˆ b

−b
dx′Nq(x

′)
∂G0

∂y′
(x′|ξ)


−
ˆ b

−b
dξ wp(ξ)

 N∑
q=1

Fq

ˆ b

−b
dx′Nq(x

′)G0(x
′|ξ)

 . (1.17a)

Interchanging the summations and integrations gives

N∑
q=1

Eq

[ˆ b

−b
dξ δ(ξ − ξp)a(ξ)Nq(ξ)

]
=

N∑
q=1

Eq

ˆ b

−b
dx′Nq(x

′)

[ˆ b

−b
dξ δ(ξ − ξp)

∂G0

∂y′
(x′|ξ)

]

−
N∑
q=1

Fq

ˆ b

−b
dx′Nq(x

′)

[ˆ b

−b
dξ δ(ξ − ξp)G0(x

′|ξ)
]
, (1.17b)
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Figure 1.5: Numerical computation from our boundary element method on a square grid (x, y) ∈
[−9λ, 9λ] × [−9λ, 9λ] for a strip 2b = 6λ. Left: Scattered wave Re[Esc

z (x, y)]. Right: Physical
electric field Ez(x, y, t) reconstructed from Eq. (1.13a) at time t = T/4, where T = 2π/ω.

and subsequently evaluating the ξ integrals (with recourse to the sifting property of Dirac delta
functions) leaves

N∑
q=1

Eqa(ξp)Nq(ξp) =
N∑
q=1

Eq

ˆ b

−b
dx′Nq(x

′)
∂G0

∂y′
(x′|ξp)−

N∑
q=1

Fq

ˆ b

−b
dx′Nq(x

′)G0(x
′|ξp). (1.17c)

From inspection, we see that there can be no contribution from the first term on the right-hand
side of Eq. (1.17c) because the normal derivative of G0 is necessarily zero on the domain:

∂G0

∂y′
= êy · ∇′G0(x

′|x) = −ik
4
H

(1)
1 (k|x′ − x|) êy · (x

′ − x)

|x′ − x|
= 0 on Γ (1.17d)

since x′ − x = êx(x
′ − ξ) + êy0 =⇒ êy · (x′ − x) = 0 ∀ x′,x ∈ Γ. For the second term, it is

instructive to introduce the set of entries for a dense matrix A ∈ CN×N according to

Apq :=

ˆ b

−b
dx′Nq(x

′)G0(x
′|ξp) =

i

4

ˆ l

0
dl′

l′

l
H

(1)
0 (k|l′ + ξq−1 − ξp|)

+
i

4

ˆ l

0
dl′

(
1− l′

l

)
H

(1)
0 (k|l′ + ξq − ξp|). (1.18a)

For each index combination (p, q), the integration typically extends over a pair of consecutive
boundary elements (we forego a discussion of the endpoints here).

This formulation is quite general in that no boundary condition has yet been imposed. For the
scattering-from-a-strip scenario, and with reference to Eq. (1.13b), we stipulate Eq = −E∞ ∀ q
and set a(ξp) = 1/2 ∀ p. The remaining unknowns are the Fq’s, and they can be determined by
first formulating the set of N linear algebraic equations

N∑
q=1

ApqFq = Yp, where Yp :=
E∞
2

N∑
q=1

Nq(ξp) (1.18b)

defines the entries of a column vector Y = col(Y1, Y2, Y3, ..., YN ) ∈ CN×1. One computes the
desired column vector comprising the boundary data, F = col(F1, F2, F3, ..., FN ) ∈ CN×1, by
solving numerically the matrix inversion problem F = A−1Y (with recourse to the Moore-Penrose
pseudo-inverse). Once F has been obtained, it is straightforward to reconstruct Esc

z (x) ∀ x ∈
R2\Γ by discretizing Eq. (1.14b). A result is shown in Fig. 1.5 for the case of 2b = 6λ.
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Figure 1.6: Rayleigh-Sommerfeld calculations [1, 8] (in the near field) of the diffracted wave
from pre-fractal screens based on iterations of the Sierpinski triangle [9].

1.5 Discussion

Our research is focusing on boundary element formulations to describe electromagnetic waves
scattering from perfectly-conducting pre-fractal plane screens. This more powerful approach
avoids the approximations inherent to the diffraction integrals traditionally encountered in laser
optics [3]. The starting point has been an analysis of the infinitely-long perfectly-conducting
thin strip with finite width. When the incident electric-field vector is linearly polarized along
the length of the strip, the corresponding boundary-value problem is of the (inhomogeneous)
Dirichlet type. The strip can be regarded as a ‘building block’ for decomposing the domain of
a pre-fractal screen based on the Cantor set. It is also of interest in its own right (e.g., in the
context of Babinet’s principle and scattering by complementary screens [10, 18]).

Our preliminary work in the realm of electromagnetic scattering has connections to much
further developed research by Chandler-Wilde et al. [19, 20, 21], where rigorous functional
analysis and boundary integral methods have been applied to acoustic scattering on pre-fractal
and fractal screens.

Topics to be addressed in our future research include: (i) incorporation of infinite boundary
elements [17], (ii) a detailed comparison with the corresponding Rayleigh-Sommerfeld predictions,
(iii) full exploration of how boundary conditions determine details of the scattered wave [e.g.,
transverse-electric Dirichlet and transverse-magnetic Neumann problems], (iv) an analysis of
Babinet’s principle in a full electromagnetic context, and (v) application to pre-fractal screens
with two non-trivial transverse dimensions; typical examples include von Koch snowflake-type
shapes, Sierpinski (see Fig. 1.6) and Apollonian gaskets, and Cantor dusts [7, 8].
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