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Abstract In this conference paper, we assess the progress in post-disaster recovery by analysing 4349 tweets
posted between 4th and 10th April 2019 that we collected around the 10th anniversary of the earthquake in
L’Aquila. Text data collected from social media is unstructured; therefore, we need to use natural language
processing techniques such as topic and sentiment analysis to extract meaningful information to assess
recovery. Sentiment Analysis (SA), or opinion mining, classifies people's opinions, expressed in written text,
into a specific polarity, i.e. positive, negative or neutral. Topic Analysis (TA) classifies data into recurrent
themes or topics users address in their posts. These analyses can be done at the tweet or sentence level, and
the classification into polarities and topics can be done manually or automated. We analysed a sample of 10%
of tweets covering 24 hours daily. The SA and TA were performed at both levels, and the classification was
done manually. The SA at the tweet level indicates that most of the posts were classified into neutral polarity,
followed closely by positive and negative. Similar results were obtained from the SA analysis at the sentence
level, only with variation in percentages of the sentence classified into each polarity. The TA at the tweet and
sentence levels indicate that the most frequently addressed topics by users at both levels were
commemoration actions, restoration, reconstruction, governance, and distress. The SA per topics at the tweet
level indicates that the topics with neutral polarity are critical infrastructure, commemoration actions, and
seismic information. Topics with positive polarity are cultural heritage, early recovery, emergency response,
lifelines, preparedness, restoration, solidarity messages/actions and urban facilities, which are considered
successful aspects of the recovery process in this methodology. Topics with negative polarity are building
damages, construction practices, depopulation and displacement, distress, governance, injuries and
casualties, intensity, prevention, and reconstruction, considered the failures of the process. We also conducted
a two-tailed Pearson correlation analysis between polarity and topics of tweets for each day, which confirmed,
in most cases, the results of the SA for each topic at the tweet level. According to the methodology applied,
we can conclude that the perception of the recovery of L’Aquila by the 10th anniversary is mainly neutral.

1. Introduction

The use of social media data extracted from platforms such as Twitter/X and Facebook in the field of disaster
management (Radianti et al. 2016)) has increased (Xiao et al. 2015); however, its research potential has not
yet been fully explored (Ogie et al. 2022). The memorial days of disasters represent a window of opportunity
not only to remind us of the human and material losses (Rossetto et al. 2014) but also to evaluate the progress
of the post-disaster recovery process (Contreras et al. 2021).
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On April 6th, 2019, the first author collected tweets about the 10t anniversary of the L'’Aquila earthquake (a
trending topic on Twitter at that time). Those tweets reflected user perception relating to the recovery process
of L’Aquila after the earthquake, and here we test if those impressions could be used to evaluate the progress
of the recovery process in this city and any other area affected by a major earthquake (Contreras et al. 2020).

Psychological and physical rehabilitation processes are part of post-disaster recovery. Perceptions and
people's sentiments regarding post-disaster recovery have been addressed by a few studies. Mixed methods
combining sentiment analysis (SA) and topic modelling were used by Yang et al. (2020). These authors
analysed tweets posted by nonlocal Twitter users after the 2018 earthquakes about frustration with the housing
reconstruction, living conditions and post-disaster tourism recovery in Lombok and Bali, Indonesia.

In 2024, it will already be 15 years since the 2009 L’Aquila earthquake, which means a new opportunity to
assess the recovery process having the progress reported on the tweets for the 10t anniversary as a base
line, combining SA and TA for the post-disaster recovery assessment. This is the main contribution of this
conference paper considering that empirical studies regarding the use of social media to formulate or evaluate
post-disaster recovery strategies have been undertaken by very few authors so far (Yang et al. 2020).

2. Methods

To assess the progress in the recovery, the first and last author collected 4,349 tweets with the hashtags
#L'Aquila, #lLaquila, #laquila, #LAquila10annidopo, #terremoto, #6aprile, #PortamiDoveSeiNata, among
others posted between April 4th and 10th in 2019. Text data collected from social media platforms like Twitter
is unstructured; therefore, we need to use natural language processing (NLP) techniques (Rold6s 2021), such
as sentiment and topic analysis, to extract meaningful information to assess recovery. Sentiment analysis, or
opinion mining (Shibuya 2020), classifies people's opinions, expressed in written text, into a specific polarity,
i.e. positive, negative or neutral. Topic Analysis (TA) classifies data into recurrent themes or topics users
address in their posts (MonkeyLearn 2022). SA and TA can be done at document, sentence or aspect level
(Liu 2015), and the classification into polarities and topics can be done manually or automated. However, it is
necessary to count with curated datasets labelled by human annotators to train language models (Wolf et al.
2020), which are further finetuned for automated SA and TA (Antypas et al. 2022).

In this conference paper, we analysed a sample of 10% (436) of tweets posted during the mentioned period,
covering 24 hours. The SA and TA were performed at tweet and sentence level, and the classification was
done manually jointly by authors who are Italian experts in human geography, architecture and urbanism, data
and knowledge engineering, and the first and last author with expertise in earthquake reconnaissance and
post-disaster recovery after earthquakes. Besides their expertise, all authors are familiar with the recovery
process of L’Aquila, ensuring their knowledge of the case study and their competence in the classification of
the text data for the SA and TA. The flow chart with the methodology is presented in Figure 1.

2.1. Sentiment analysis

Rules for classifying tweets into a specific polarity were agreed upon among the authors, and the SA was
applied at the document or tweet level and the sentence level. These rules are listed in Table 1. The authors
analysed changes in polarity for each day in the sample during the observation period.

2.2. Topic analysis

Rules for classifying tweets into a specific topic were agreed upon among the authors and applied the TA (also
at the tweet and sentence level). These rules are listed in Table 2. The authors analysed changes in topics
addressed each day in the sample during the observation period.

2.3. Polarity for each topic

The results of the SA and TA are combined to determine the polarities for each topic to identify the successes
and failures of the recovery process based on the highest polarity for each topic, e.g. if the highest polarity in
the topic ‘reconstruction’ is negative, then we will assume that reconstruction has been one of the failures in
the recovery process.
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Table 1. Classification rules set for sentiment analysis. Adapted from Contreras et al. (2021)

Polarity Rules

Positive e Announcements of opening of new business and job opportunities.
e Calls to not forget what happened.
e Comments of people moving to L’Aquila after the earthquake.
¢ Mentions of buildings already reconstructed.
e Learning the lessons from the event.
e Praises to the value of the renaissance architecture and monuments in the city.
e Promotion of products of the region and sports events e.g. rugby and football.
e Solidarity messages.
e Stories of survivors and rescue teams.

Negative e Comments about depopulation in the city centre despite the reconstruction efforts.
e Complains about the delay in the reconstruction.
e Complains about the lack of urban facilities in the city centre.
e Complains about the mismanagement of the financial resources for the reconstruction.
e Expressions of inability to forget the impact of the earthquake.
e Mentions of the existence of cordoned houses, rubble, and barriers.
e References to victims.
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Table 2. Classification rules set for topic analysis. Adapted from Contreras et al. (2023)
Topic Rules
Building damages Report of additional damages in buildings or buildings still damaged.
Construction practices Housing quality after the earthquake.
Commemoration actions Interviews with survivors, torchlight processions, minutes of silence, etc.
Critical infrastructure (CI) Facilities needed to respond to the emergency, e.g. Health care posts.

Depopulation & Displacement Reduction in the number of inhabitants after the earthquake.

Distress

Expressions of sorrow and pain about the earthquake.

Early recovery

Actions taken to return to normality e.g. cleaning debris.

Funding Sources and management of money allocated for the recovery.
Geotechnical effects E.g. landslides, rockfalls and cracks on the soil.

Governance Role assumed by the government during the post-disaster phase.
Hate Expressed prejudice against protected characteristics.

Injuries & casualties Mentions of casualties or injured population due to the earthquake.
Intensity Severity of ground shaking without mentioning a magnitude.
Lifelines E.g. Water, electricity, gas, communication and roads.
Preparedness Anticipated actions to respond to an emergency.

Prevention Actions to avoid potential adverse impacts of hazards.

Reconstruction

Rebuilding of houses, infrastructure and/or monuments.

Restoration

Restoring sustainable living conditions in the socio-economic dimension.

Seismic information

Date, magnitude, epicentre, and depth of the earthquake.

Urban Facilities Facilities different to Cl, e.g. Schools, temples, post offices, etc.

2.4. Correlation analysis

In addition to classifying tweets into a polarity and a topic, we have also conducted a two-tailed Pearson
correlation analysis of polarity for each topic for each day. We argue that this analysis will confirm the
relationship between polarities and topics at tweet level, previously identified in the analysis of SA for each
topic.

3. Results

3.1. Sentiment analysis

We present the results of the SA in Figure 2 at a) tweet level and b) sentence level for the entire set of tweets.
From the figure, it can be observed that there is not a substantial difference in the results of the SA at the tweet
and sentence level; in both cases, the highest polarity identified is neutral, followed by positive, negative and
unrelated tweets, as observed in Figure 2. The results of the SA at the tweet level for each day are presented
in Figure 3. The plot of the polarity analysis on each day indicates that, on most days, the highest polarity is
positive, except for the exact day of the anniversary when the highest polarity is neutral, followed closely by
negative polarity, and the last day of the observation period when again the most frequent polarity is neutral.

3.2. Topic analysis

We present the results of the topic analysis at the tweet level in Figure 4. On the one hand, the most frequent
topics addressed at the tweet level in the sample were commemoration actions, followed by solidarity
messages/actions, restoration, reconstruction, unrelated tweets, governance, distress, and others. On the
other hand, the most frequent topics addressed at the sentence level in the sample were seismic information,
commemoration actions, restoration, injuries and casualties, reconstruction, governance, and distress,
followed by others, as indicated in Figure 5. In both cases, topics such as commemoration actions, restoration,
reconstruction, governance, and distress are included in the most frequent topics addressed by users on
tweets about the 10th anniversary of the L'Aquila earthquake. Geotechnical effects and hate are not the main
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topics in any tweet and are the less frequently addressed topics by the TA at the sentence level. The topic of
seismic information is the most frequent at the sentence level but one of the less mentioned at the tweet level.
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Figure 2. Sentiment analysis result at a) tweet level and b) sentence level.
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Figure 3. Sentiment analysis result at tweet level for each day.
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Figure 4. Topic analysis result at tweet level.
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Since restoration is the most frequently addressed topic at the tweet and sentence levels, we produced a cloud
word to highlight the key aspects identified by Twitter users as contributing to the restoration of sustainable
living conditions in the socio-economic dimension. Those words are highlighted in Figure 6. The font size and
the colour tone represent the frequency of the phrase mentioned in the tweets related to the anniversary of
the earthquake.
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Figure 6. Key words extraction from tweets addressing the topic of restoration at tweet and sentence level.

Results of the TA for each day indicate that commemoration actions were the most frequent topic at the tweet
level during most days of the observation period, including the exact day of the 10th anniversary, except for
the fourth day, 7t April 2019, when the most frequent topic of tweets changed to restoration. On 8" April 2019,
there was a tie between commemoration actions and reconstruction as the most frequent topics; the same
happened on April 9th with a tie between commemoration actions and restoration.

We present the TA results at tweet level for each day in Figure 7 (and for clarity in Table 3). Restoration is the
second most frequent topic at the tweet level during the first two days of the observation period. This changes
for the date of the anniversary when the second most frequent topic is solidarity messages/actions and
continues for April 7th with a tie with commemoration actions. On April 8th, several topics appeared as the
second most frequent: restoration, solidarity messages/actions, governance, and unrelated tweets. On April
9th, there was a tie again as the second most important topics, reconstruction and unrelated, and the same
happened on April 10th with the topics of urban facilities and unrelated tweets.

3.3. Sentiment analysis for each topic

The SA for each day at the tweet level indicates that the topics with neutral polarity as the highest polarity are
critical infrastructure (Cl), commemoration actions, and seismic information. The same analysis at the tweet
level indicates that the topics with positive polarity as the highest polarity are cultural heritage, early recovery,
emergency response, lifelines, preparedness, restoration, solidarity messages/actions and urban facilities,
considered successful aspects of the recovery process in this methodology. The SA for each day at the tweet



WCEE2024 Contreras et al.

level shows that the topics with negative polarity as the highest polarity are building damages, construction
practices, depopulation and displacement, distress, governance, injuries and casualties, intensity, prevention
and reconstruction, considered the failures of the process. The numbers of tweets classified into a specific
polarity for each topic are listed in Table 4.
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Figure 7. Topic analysis result at tweet level for each day.

Table 3. Topics addressed for each day between April 4" and 10th 2019.

Topic 4th 5th 6th 7th 8th 9th | 10th | Total
Building damages 0 4 2 0 0 0 0 6
Commemoration actions 9 36 44 7 5 5 3 109
Construction practices 0 0 1 0 0 0 0 1
Critical Infrastructure 0 0 1 0 0 0 0 1
Cultural heritage 0 0 0 1 0 0 0 1
Depopulation & displacement 1 4 5 0 1 0 0 11
Distress 2 3 15 4 0 0 0 24
Early recovery 1 0 0 1 0 0 0 2
Emergency response 1 3 2 1 0 0 0 7
Funding 0 1 0 0 0 0 0 1
Governance 0 7 17 2 3 1 0 30
Injuries & casualties 1 3 6 1 1 0 0 12
Intensity 0 0 2 1 0 0 0 3
Lifelines 0 1 0 0 0 0 0 1
Prevention 0 3 2 0 0 0 1 6
Preparedness 1 1 0 0 1 0 0 3
Reconstruction 0 13 20 3 5 4 1 46
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Topic 4th 5th 6th 7th 8th 9th | 10th | Total
Restoration 4 21 14 10 3 5 0 57
Seismic information 0 1 0 0 0 0 0 1
Solidarity messages/actions 3 15 36 7 3 3 1 68
Urban Facilities 1 5 3 3 2 0 2 16
Unrelated 0 8 9 4 3 4 2 30
Total 24 129 179 45 27 22 10 436

Table 4. Sentiment analysis for each topic at tweet level.

Topics Positive Negative Neutral Unrelated Total
Building damages 0 5 1 0 6
Critical infrastructure 0 0 1 0 1
Commemoration actions 19 10 80 0 109
Construction practices 0 1 0 0 1
Cultural heritage 1 0 0 0 1
Depopulation-Displacement 3 8 0 0 11
Distress 1 18 5 0 24
Early recovery 2 0 0 0 2
Emergency response 3 2 2 0 7
Funding 1 0 0 0 1
Governance 3 21 6 0 30
Injuries-casualties 0 6 6 0 12
Intensity 0 2 1 0
Lifelines 1 0 0 0
Preparedness 2 0 1 0
Prevention 1 3 2 0 6
Reconstruction 8 27 11 0 46
Restoration 42 10 5 0 57
Seismic information 0 0 1 0 1
Solidarity messages/actions 34 4 30 0 68
Urban facilities 12 3 1 0 16
Unrelated 0 0 0 30 30
Total 436

3.4. Correlation analysis

We present the two-tailed Pearson correlation analysis between polarities and topics in Table 5. The
correlation analysis between polarities and topics at tweet level for each day indicates that the number of
tweets classified into the topic of building damage is highly correlated with tweets classified into the topic of
positive polarity (.908**) and with tweets with neutral polarity (.768*) to a lesser degree. The number of tweets
classified into the topic of commemoration action is highly correlated with the number of tweets classified into
all the polarities, but mainly with the neutral polarity (.982*). The number of tweets classified into construction
practices and CI are correlated with the number of tweets with neutral (.843*) but mainly with the number of
tweets classified into the negative polarity (.860*) in both cases. The number of tweets classified into the topic
of depopulation and displacement is highly correlated with the number of tweets classified into negative
(.958**), neutral (.955**) and positive polarity (.920**). The number of tweets classified into the topic of distress
is highly correlated with the number of tweets classified into negative (.914**) and neutral (.899**) polarities.
The number of tweets classified into the topic of emergency response actions is highly correlated with the
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number of tweets with positive (.912**) polarity and, to a lesser degree, with tweets classified into neutral
(.802%) and negative polarities (.781*). The number of tweets classified into the topic of governance is highly
correlated with the number of tweets with negative (.976**) and neutral (.964**) polarity and, to a lesser degree,
with the number of tweets classified into positive polarity (.848*). The number of tweets classified into the topic
of injuries and casualties is highly correlated with the number of tweets for each day classified into all the
polarities; however, this number is mainly correlated with the number of tweets classified into the negative
polarity (.994**) followed by those classified into the neutral (979**) and positive polarity (.876**). The number
of tweets classified into the topic of intensity of the earthquake are correlated with the number of tweets
classified into the negative polarity (.757*). The number of tweets classified into the topic of prevention is
correlated with the number of tweets classified into positive (.844*) polarity, and neutral (.778*) polarity but to
a lesser degree. The number of tweets classified into the topic of reconstruction is highly correlated with the
number of tweets classified into all the polarities: neutral (.964**) and negative (.962**), and positive polarity
(.919*%). The number of tweets classified into the topic of restoration is highly correlated with the number of
tweets classified into positive polarity (.949**) and the number of tweets classified into the neutral (.784*) and
negative (.755*) polarity to a lesser degree. The number of tweets classified into the topic of solidarity
messages and actions is highly correlated with the number of tweets classified into negative (.983**) and
neutral (.978**) polarities and also correlated with tweets classified into positive (.851*) polarity to a lesser
degree. The number of tweets classified into the topic of urban facilities is correlated with the number of tweets
classified into positive (.790*) polarity. The number of tweets for each day classified into cultural heritage, early
recovery, lifelines, preparedness and seismic information is not correlated with the number of tweets classified
into any polarity. The results of the correlation analysis are presented in Table 5.

4. Discussion

Itis necessary to remember that the results presented in this conference paper are based on a dataset sample
and, therefore, must be considered preliminary results. While the sample covered all the hours on daily in the
observation period, it still does not represent the entire dataset. We argue that similar results in SA mean that,
in this case, further analysis at the sentence level is not necessary, but we do not assert that this will generally
be true. The increase in the negative polarity of tweets on the exact day of the anniversary of the earthquake
can be explained by the high number of tweets classified into the topics of reconstruction, governance and
distress posted on April 6th, 2019. Understandably, being the anniversary of the earthquake, tweets classified
into the topic of commemoration actions appear as the majority in the TA at the tweet and sentence level.
However, we decided to elaborate on the word cloud using the text data classified into the topic of restoration,
because we consider it more relevant for the recovery assessment. We found the SA for each topic at the
tweet level useful to visualise the topics on which the recovery process has been successful and the topics
that had failed and, therefore, have delayed the recovery process. We expected to confirm the result of this
analysis with the correlation analysis between polarity and topics addressed for each day during the
observation period. On the one hand, the high correlation between tweets classified into the topics of
construction practices, depopulation and displacement, distress, governance, injuries and casualties, intensity
and the number of tweets classified into negative polarity was expected. Equally, it was expected between the
number of tweets classified into the topic of emergency response, prevention, restoration and urban facilities
and tweets classified into positive polarity, according to the results presented in Table 4. On the other hand,
we also found inconsistencies in the correlation analysis: the number of tweets classified into the topic of
building damage resulted highly correlated with the number of tweets classified into positive polarity, which
was not expected. The number of tweets classified into reconstruction was slightly more correlated with the
number of tweets classified into neutral than with tweets with negative polarity. The number of tweets classified
into solidarity messages and actions was highly correlated with the number of tweets classified into negative
polarity and barely correlated with the number of tweets classified into positive polarity, as was expected.

5. Conclusion

According to the methodology applied, we can conclude that the perception of the recovery of L’Aquila after
the earthquake by the 10th anniversary is mainly neutral. Twitter users recognize the quick and effective
emergency response after the earthquake as well as the efforts done by the government during the early
recovery, but are frustrated with the slow reconstruction, the poor quality of the temporary houses and the fact
that there are still buildings damages after a decade, which produce stress among the population and have

10
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encouraged the depopulation of the city. The same users consider that lessons have been learned regarding
construction practices, emergency response and preparedness. It is demonstrated in the word cloud the role
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Table 5. Two tailed Pearson correlation analysis between polarities and topics.
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t at the 0.01 level (2-tailed)
t at the 0.05 level (2-tailed).
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