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ABSTRACT Listening to music can be an issue for those with a hearing impairment, and hearing aids are
not a universal solution. This paper details the first use of an open challenge methodology to improve the
audio quality of music for those with hearing loss through machine learning. The first challenge (CAD1) had
9 participants. The second was a 2024 ICASSP grand challenge (ICASSP24), which attracted 17 entrants.
The challenge tasks concerned demixing and remixing pop/rock music to allow a personalized rebalancing
of the instruments in the mix, along with amplification to correct for raised hearing thresholds. The software
baselines provided for entrants to build upon used two state-of-the-art demix algorithms: Hybrid Demucs
and Open-Unmix. Objective evaluation used HAAQI, the Hearing-Aid Audio Quality Index. No entries
improved on the best baseline in CAD1. It is suggested that this arose because demixing algorithms are
relatively mature, and recent work has shown that access to large (private) datasets is needed to further
improve performance. Learning from this, for ICASSP24 the scenario was made more difficult by using
loudspeaker reproduction and specifying gains to be applied before remixing. This also made the scenario
more useful for listening through hearing aids. Nine entrants scored better than the best ICASSP24 baseline.
Most of the entrants used a refined version of Hybrid Demucs and NAL-R amplification. The highest scoring
system combined the outputs of several demixing algorithms in an ensemble approach. These challenges are
now open benchmarks for future research with freely available software and data.

INDEX TERMS Music, challenge, hearing aids, hearing impairment, hearing loss, machine learning.

I. INTRODUCTION
Most, if not all, human cultures have music [3]. Music brings
people together, shapes society, and offers significant benefits
to health and well-being [4]. Hearing loss can detract from
the listening experience, however. The World Health Organi-
zation [5] estimates that by 2050 2.5 billion people will have
some form of hearing loss, with at least 700 million requiring
treatment. Hearing loss can lead to challenges with music such
as: inaudibility of quieter passages, poor or anomalous pitch
perception, and difficulty in identifying and distinguishing

lyrics and instruments [6], [7], [8]. Therefore, it is essential to
improve the processing of music in hearing aids and consumer
devices, enabling those with hearing loss to continue enjoying
and benefiting from music.

The most common intervention for mild to moderately
severe hearing loss is hearing aids. Many of these devices
have music programs but efficacy is mixed [9], [10], [11],
[12]. For example, Greasley et al. [9] found that 68% of
users report difficulties listening to music using their hear-
ing aids. The issue is complicated because hearing aids are
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typically frequency-dependent, nonlinear amplifiers to com-
pensate for an individual’s elevated hearing thresholds. In
addition, they must allow for the rapid growth in loudness with
low-intensity sound (loudness recruitment) and the potential
discomfort from over-amplifying louder sounds. These wide
dynamic range compression systems (WDRC) should make
sound audible and comfortable. WDRCs alter the temporal
envelope of the signal, however, with the degree of change
dependent on how quickly they react to dynamic fluctuations.
For example, they can introduce audible artifacts such as
‘pumping’. Hearing aids also have features such as speech
enhancement, feedback management, wind-noise reduction
and scene analysis. The settings of hearing aids, from the
frequency-dependent gain to how quickly the compressor re-
acts to additional features, are predominantly optimized for
speech, and this means they may harm music, which has
different spectral and temporal characteristics [10].

Research into hearing aid processing and music percep-
tion has indicated some approaches to improve audio quality,
although the results are often mixed. Uys et al. [13] found
that frequency compression that shifts the spectrum and/or
envelope of high-frequency information in the signal to more
audible lower frequencies, improved the self-reported quality
across music genres for hearing-aid users with moderate to
severe hearing loss. A later study found no statistically signif-
icant differences with frequency compression, however [14].
Croghan et al. [15] found that the quality of rock and classical
music could be improved by using slow-acting rather than
fast-acting WDRC. In contrast, Madsen et al. [16] found no
significant overall effect of WDRC compression speed on
a listeners’ ability to hear individual instruments, although
some participants found that slow-acting WDRC improved
subjective clarity. These studies were based around tradi-
tional signal processing approaches, however, and nowadays,
machine learning is the dominant paradigm in new audio pro-
cessing algorithms. While machine-learning techniques have
shown improvements in speech intelligibility for hearing-aid
algorithms, e.g. [17] and [18], there is a gap in knowledge
about how machine learning can improve the perceived audio
quality of music for those with a hearing loss.

The above work also did not consider what could be done
beyond amplification and compression. Sound engineering
approaches, such changing the balance between instruments,
have potential to improve audio quality for those with a hear-
ing loss. Benjamin and Siedenburg [19] explored how listener
preference was changed for pop music by altering lead-to-
accompaniment level ratio, low-to-high frequency spectral
balance and transformed equalization – i.e. equalization ap-
plied in a transformed domain, such as the power spectrum,
rather than directly in the time or frequency domain. Elevated
lead-to-accompaniment level ratio and music that was spec-
trally sparser was preferred by those with hearing loss.

In signal processing, many advances have been driven by
open machine learning challenges (competitions), e.g. [20],
[21], [22]. By providing a challenge infrastructure, including
open databases for machine learning and specialized software

tools, challenge organizers can significantly lower barriers
that prevent out-of-field researchers from engaging in a topic.
Challenges have also been shown to foster collaboration
across disciplines, attracting a wider and more diverse range
of researchers who contribute novel approaches to the field.
Challenges also create a legacy through open benchmarks for
future research. For the Cadenza project, both challenges were
free to enter, with all the materials being provided at no cost
to encourage as many entrants as possible.

The first application of a challenge methodology to the
problem of improving audio quality of music for listeners
with hearing loss is presented below. Two challenges are
reported, the primary difference being that the first Cadenza
Challenge (CAD1) [23] from 2023 was for listening over
headphones, and the second, the 2024 ICASSP Grand Chal-
lenge (ICASSP24) [24], was for listening over loudspeakers.
The tasks targeted demixing of stereo music signals followed
by remixing. This was done because it allows sound engi-
neering approaches to address issues. For example, people
with hearing loss can struggle with lyric intelligibility [9],
and this might be addressed by amplify the vocals between
demix and remix [19]. Demixing was also chosen because
there was an existing research community to tap into. Previous
challenges in demixing are the Signal Separation Evaluation
Campaigns (SiSEC) 2015-18 [25], [26], [27] and the Music
Demixing Challenges MDX2021 and SDX2023 [22], [28],
although none considered listeners with hearing loss. Building
on these previous challenges, the demixing was into vocal,
drums, bass and other instrument stems (VDBO). In both
challenges, the objective metric was the Hearing Aid Audio
Quality Index (HAAQI) [29].

The paper details the materials and methods developed for
the two challenges, outlining the reasoning behind the scenar-
ios, rules, baselines and data. This is followed by an evaluation
and analysis of the entries. The paper finishes with a critique
of the challenges and how this is informing future work.

II. MATERIAL AND METHODS
A. OVERVIEW
For CAD1, the scenario was listening to music over head-
phones without hearing aids, and entrants were given the left
and right headphone input signals to process - see Fig. 1. For
ICASSP24, music was reproduced via stereo loudspeakers
with listeners wearing hearing aids. Thus, the left and right
signals to be processed by entrants were from the hearing aid
microphones. In both challenges, entrants were were asked to
create a system that could rebalance the levels of the vocal,
drums, bass and other instruments (VDBO). This would then
allow for personalized mixes for people with a hearing loss.
The VDBO representation was chosen because of its use in
previous demixing research.

Fig. 2 shows the general structure of the challenge. Entrants
were presented with scenes (blue box) containing a music
extract to process and metadata giving the rendering require-
ments for the sample. For example, in ICASSP24 the metadata
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FIGURE 1. The scenarios for (a) CAD1 headphone listening and (b)
ICASSP24 loudspeaker listening via hearing aids. HRTF, Head-Related
Transfer Function.

FIGURE 2. General structure of the challenges.

specified gains that should be applied to the VDBO signals
before remixing. Additionally, a random listener (white oval)
was selected from a database using a uniform probability
distribution; this gave a pair of left and right ear audiograms
to allow personalization of the signal processing and evalua-
tion. It was hypothesized that hearing loss could be allowed
for in the source separation algorithms. For instance, ensur-
ing that separation artifacts were below the elevated hearing
thresholds. A challenge rule specified that entrants were only
allowed to modify the Music Enhancer (green box). The Eval-
uation Processor (lilac box) prepared the samples for either
objective evaluation using HAAQI or perceptual testing via
listeners with hearing loss.

Table 1 compares the CAD1 and ICASSP24 challenges. In
CAD1, the music to be processed was the stereo signals being
fed to a pair of headphones. In contrast for ICASSP24, the mu-
sic came from left and right hearing aid signals when listening
over a stereo loudspeaker pair. This meant that for ICASSP24,
the music to be processed was a mixture of the right and left
loudspeaker signals – see Fig. 1(b). The sound propagation

TABLE 1. Differences Between CAD1 and ICASSP24 Challenges

from the loudspeakers to the hearing aid microphones were
modeled using head-related transfer functions (HRTFs). How
the left and right signals from the loudspeakers combine at the
ears is frequency dependent due to diffraction, reflection and
interference around the head and hearing aids. This created
additional complexities for ICASSP24 systems, compared to
CAD1 and previous demixing challenges.

For CAD1, there was both objective and perceptual evalu-
ation. Whereas, for ICASSP24 only objective evaluation was
done because of time contraints in ICASSP Grand Challenges.
In this paper, space-constraints mean only the objective eval-
uation for the two challenges are given. The CAD1 listening
panel experimental design and results will be presented in a
companion paper.

A final difference between the two challenges was that
in CAD1 the separated VDBO signals were simply remixed
back to stereo, whereas in ICASSP24 there were specified
gains to be applied to the VDBO signals before remixing.
The gains were added to test whether the systems submitted
to ICASSP24 were capable of rebalancing the mix. Changing
the levels between the VDBO components also makes arti-
facts created in the processing less likely to be masked and
highlight cases where separation is imperfect. For example,
in CAD1 if some of the drums was wrongly put into the
bass track, then when the VDBO were summed together to
give the stereo remix, the demix failure would be hidden. In
ICASSP24, when there were different gains for the drums and
bass tracks, this demix failure would result in the stereo remix
being wrong.

CAD1 and ICASSP24 challenges did not have monetary
prizes. CAD1 participants were invited to present their work
in an online workshop. For ICASSP24, the top five entrants
were invited to submit a two-page paper to the ICASSP 2024
conference.

B. OVERVIEW OF DATABASES
The data were split into training, validation and evaluation
sets. Both the training and validation datasets were provided
when the challenge launched, and were used by the teams to
develop their signal processing systems. Training data is used
to update the machine learning algorithm, whereas validation
data is used to monitor the progress of the training and check
for overfitting. The evaluation set tested generalization of sys-
tems to different music and listeners. The evaluation data did
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not include the ground-truth, and was only made available
a few weeks before the submission deadline. The challenge
rules stated that teams should not use the evaluation data to
improve their system.

Having access to large private datasets can give teams an
unfair advantage when applying machine learning. For this
reason, the challenge rules specified that teams could only
use datasets and pre-trained models available in the public
domain. However, entrants were allowed to augment the data
using simple processing to create more robust systems. For
example, they could randomize the VDBO stems, flip the right
and left channels, apply SpecAugmentation [30] – a technique
involving feature warping, frequency channel masking, or
time-step masking – and pitch shifting.

C. LISTENER DATABASES
Each music extract needed to be personalized to allow for the
hearing acuity of a target listener. The hearing was charac-
terized by bilateral pure-tone audiograms at the standardized
frequencies of 250, 500, 1000, 2000, 3000, 4000, 6000,
8000 Hz. The bandwidth of music is wider than this, but we
were limited by the available datasets of audiograms. The data
were anonymous audiograms from bilateral hearing aid users.
Hearing loss levels at each frequency were limited to 80 dB
to be consistent with the training dataset from the Clarity
Project [31] that we were using. This limit was applied in
Clarity because (i) the hearing loss model they used produces
unrealistic signals for large impairments, and (ii) the headsets
they used in listening tests could not reproduce high enough
levels to compensate for large impairments.

Hearing loss severities were based on the mean, better-ear
4-frequency (500, 1000, 2000 and 4000 Hz) hearing loss cri-
teria [32]. These were no loss (0–19 dB), mild (20–34 dB),
moderate (35–49 dB), moderately severe (50–64 dB), severe
(65–79 dB) and profound ( >= 80dB). The datasets were as
follows:
� Training: 83 audiograms from the Clarity Project [31].

These correspond to real, anonymized audiograms
drawn from the participant database of the Scottish
Section of Hearing Sciences at the University of Not-
tingham. There were no people with no loss, 17 people
with mild, 44 with moderate, 22 with moderately severe,
and none with severe.

� Validation: 50 audiograms drawn from von Gablenz
et al. [33]. The audiograms were randomly selected to
have the same distribution as the training set. First, au-
diograms were filtered using the better-ear 4-frequency
hearing loss criteria, with thresholds between 20 and
75 dB. Then, the audiograms were randomly chosen to
maintain the same distribution per band as in the training
set. This set had an equal male-female distribution. The
distribution was no people with no loss, 24 with mild,
22 with moderate, 4 with moderately severe and 0 with
severe.

� Evaluation: 53 audiograms; 52 listeners with a hearing
loss were recruited for the Cadenza listening panel by

FIGURE 3. Baseline architecture for CAD1 and ICASSP24. The gains were
only applied in ICASSP24.

the University of Leeds, U.K. An additional listener with
an audiogram with 0 dB loss at all frequencies was in-
cluded. The distribution was 3 listeners with no loss, 13
with mild, 17 with moderate, 19 with moderately severe
and 1 with severe.

D. MUSIC DATABASES
There are established public datasets that are benchmarks
for demixing challenges. These were used for CAD1 and
ICASSP24 for comparability with previous work. The music
for training, validation and evaluation used the standard splits
for MUSDB18-HQ [34], giving 86, 14 and 50 stereo tracks
respectively. MUSDB18-HQ contains isolated stems for vo-
cals, drums, bass and other (VDBO), as well as stereo mixes.
The music is mostly Western pop/rock with a small amount of
reggae, rap, heavy metal, and electronic.

An independent validation set was constructed by randomly
selecting 50 tracks from the MoisesDB dataset [35], while
maintaining the same genre distribution as the evaluation
split of MUSDB18-HQ. This new validation set was included
because many pretrained models that use MUSDB18-HQ,
incorporate the MUSDB18-HQ validation split as part of their
training.

E. BASELINE SOFTWARE TOOLS
The baseline is a complete software system that can run
the task. It includes a solution to the problem in the music
enhancer. Fig. 3 shows the architecture. The problem was pre-
sented as a demix/remix task, with a view to allowing listeners
to rebalance and personalize a mix. Systems needed to take
stereo pop/rock music and demix it into VBDO signals. In
ICASSP24, gains would then be applied to these four signals
before they were remixed back to stereo. This is similar to pre-
vious demix challenges [22], [27], [28], except that entrants
could allow each listener’s hearing loss in the demixing. An
additional novelty compared to previous demix challenges,
was that the evaluation metric was tailored for listeners with
hearing loss and hearing aids. HAAQI, the Hearing-Aid Audio
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Quality Index was used [29]. While the baseline did demixing,
the challenge rules allowed entrants to submit stereo audio
from an end-to-end system without an explicit demixing stage.
However, no entrant chose to do this.

Two baseline demix algorithms were given to entrants.
These were out-of-the-box pretrained audio source separation
algorithms with no retraining. One used the Hybrid Demucs
model [36] (HDemucs), which employs a U-Net architec-
ture to combine both time-domain and spectrogram-based
audio source separation. The other used the Open-Unmix
model [37], which just uses spectrograms. HDemucs is prob-
ably the most commonly used demixing algorithm, whereas
Open-Unmix is simpler to implement and train.

The music enhancer also needed a frequency-dependent
amplification stage to correct for the raised auditory thresh-
olds due to hearing loss. NAL-R [38] was used to match the
default amplification applied to the reference signal during
the HAAQI evaluation (see below). As HAAQI compares the
processed signal with a reference, the frequency-dependent
amplification stage needs to be the same for the two to maxi-
mize HAAQI scores.

F. LATENCY, CAUSALITY AND MODEL SIZE
For a signal processing system to be used with live mu-
sic on a hearing aid, it needs to operate with low latency.
This restricts what machine learning approaches can be used.
However, listening to recorded music is also very common,
so there are scenarios where latency is not a concern. For
these reasons, the rules allowed both causal and non-causal
entries. HDemucs and Open-Unmix are non-causal demixing
models, which means they have access to future samples to
inform processing. In contrast, causal models rely only on
current and past information, and this harms performance.
This can be illustrated using Convolutional TasNet models ap-
plied to source separation, as causal and non-causal versions
are available [39]. The casual version has better performance
for speaker separation, achieving 10.6 dB signal-to-distortion
ratio (SDR), compared to it’s non-causal implementation, that
has an SDR of 15.6 dB SDR. Similarly, for classical music
separation, the causal model achieves 5.10 dB SDR, whereas
the non-causal model achieves 6.12 dB SDR.

For causal processing, the challenge rules restricted sys-
tems to only use input samples less than 5 ms in the future.
The tolerability of delays can depend on numerous factors,
from the type of stimulus (e.g. speech vs. music), availability
of visual cues as well as different aspects of the impairment
– gain based on severity of loss, loudness recruitment and
temporal fine structure resolution [40]. Numerous studies have
shown deleterious effects of delay beginning as early as 5 ms
(e.g. [40], [41]), hence this delay was chosen as the upper limit
in the Cadenza rules.

Hearing aids cannot currently host the huge deep neural
networks that are common in audio processing. However, the
challenges did not place a limit on the model size or comput-
ing resources being used by systems. The reason for this is
that a common route to innovation is to first produce solutions

that are computationally expensive and then apply methods
such as knowledge distillation [42] to reduce the resources
required while maintaining performance.

G. RENDERING AND REMIX METADATA FOR ICASSP24
For the ICASSP24 challenge, the scene generator had to
simulate loudspeaker reproduction. This was done by apply-
ing Head Related Transfer Functions (HRTFs) measured in
anechoic conditions - see Fig. 1(b). The scene generator ran-
domly selected one of the 16 measured human heads from
the OlHeaD-HRTF dataset [43], the azimuth angle of the lis-
tener’s head, and then extracted the appropriate HRTFs from
the dataset. These HRTFs were for Behind-The-Ear (BTE)
hearing aids with three microphones on each side to allow for
beam forming to improve signal to noise ratio for speech in
noise. But for the Cadenza music challenges just the front left
and right microphones of the hearing aids were used.

Listeners were modeled to have a variety of head orien-
tations around the azimuth range for standard stereo loud-
speaker reproduction (i.e., around ±30°). This was to simulate
non-perfect stereo reproduction. Angles were all nine combi-
nations from ±22.5°, ±30° and ±37.5°.

Each music track was divided into several consecutive
10-second excerpts, ensuring that no silent portions were se-
lected. Then an HRTF pair was applied to each excerpt. This
means that two excerpts from the same track had different
pairs of HRTFs applied, thus requiring separation models to
be robust under varying HRTF conditions and for different
songs.

For ICASSP24, the generator also randomly set the gains
to be applied to each VDBO stem before the remix to stereo.
Unfortunately, there was little prior knowledge to guide what
might be the preferred gains, and furthermore these would
vary with listener preference and the music. Consequently,
random gains were used to bracket significant changes in the
stereo remix to create systems that could enable any remix a
listener might ask for. First, the number of VDBO stems that
had their gain altered was randomly chosen using a uniform
probability distribution (i.e., 1, 2 or 3). Then the gains were
chosen for each of these tracks from ±10 dB, ±6 dB and
±3 dB. Again, a uniform probability random distribution was
used.

H. EVALUATION
The objective evaluation was done using HAAQI [29].
HAAQI was used as it is the only published metric for audio
quality of music for listeners with a hearing loss listening
through hearing aids. HAAQI was developed based on percep-
tual ratings from 34 listeners auditioning three music excepts
that passed through 100 different signal processes. One lim-
itation is that the signal processes used to develop HAAQI
will differ from those created by machine learning. However,
the use of the relatively sophisticated auditory model within
the calculation of HAAQI adds robustness compared to a
purely empirical model. Nevertheless, HAAQI is only based
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on thresholds and does not consider supra-threshold infor-
mation or the effects of the age of the listener. As with all
objective metrics, HAAQI can only approximate perception.
For example, it is a monaural measure and therefore does not
model effects such as binaural unmasking. In the challenge,
the metric was an average of the HAAQI scores calculated
for the left and right ears separately. A final issue, is that
the music samples used during the development of HAAQI
did not include pop/rock. However, others have subsequently
used it on different genres. One study on adaptive feedback
cancellation algorithms found a correlation coefficient of 0.81
between HAAQI scores and sound quality ratings for 8 pieces
of music [44]. Another study into codecs found correlation
coefficients between 0.68 and 0.92 for HAAQI and perceptual
ratings for solo and ensemble music with various genres [45].
A final study found a correlation coefficient of 0.68 between
HAAQI and audio quality ratings [46] for genres including
pop/rock. These three studies only considered listeners with
normal hearing, however.

HAAQI is an intrusive metric that requires a reference sig-
nal to assess the audio quality of a processed signal. HAAQI
incorporates an auditory model that accounts for hearing loss
through the listener’s audiogram and prescriptive gain. It eval-
uates the temporal fine structure (basilar membrane vibration)
and the envelope of the reference and processed signals,
measuring differences via correlation and spectral analysis.
HAAQI combines linear and nonlinear terms to predict per-
ceived quality. HAAQI effectively predicts quality changes
due to additive noise, nonlinearities, and spectral shifts.

For the VDBO evaluation, HAAQI was calculated for the
8 stems (VDBO signals for left and right sides) and then
an average taken. The reference signals corresponded to the
ground-truth VDBO. For evaluating the remix stereo, HAAQI
was calculated for the left and right signals, and an average
taken. For the CAD1 remix, the ground-truth mixtures were
used as the reference signal. For the ICASSP24 remix, the
reference signal corresponded to a remix of the ground-truth
VDBO signals using the specified HRTF and gains.

HAAQI was developed as a perceptual model and so is rel-
atively slow to compute and non-differentiable. These factors
make it hard to incorporate into machine learning efficiently.
Furthermore, it is an intrusive metric and therefore requires a
reference signal. This reference needs a frequency-dependent
amplification to correct for raised hearing thresholds. What-
ever amplification scheme is chosen must be replicated in
the music enhancer, otherwise the HAAQI value decreases.
In both CAD1 and ICASSP24, a linear FIR filter was used
based on the NAL-R prescription method [47], based on
a public-domain implementation. While most hearing aids
use dynamic range compressors operating over different
frequency ranges, the best settings for these compressors are
disputed (see Introduction).

For CAD1, 49 out of the 50 music tracks in the MUSDB18
-HQ evaluation split were used. Because of the subjec-
tive evaluation by listeners, one track was excluded due to

offensive words in the lyrics. To keep the submission size
within reasonable bounds (around 23 GB; 4 VDBOs for
the left channel, 4 VDBOs for the right channel, and 1
remix for each listener), entrants were required to submit
30-second extracts for the VDBO and 15-second extracts
for the remixed. These extracts were selected randomly, en-
suring that all VDBO stems were active at some point.
Each extract was processed for all 53 listeners, obtaining
N = 2,597 processed extracts per system. For ICASSP24,
all 50 evaluation tracks from MUSDB18-HQ were used. The
tracks were segmented into consecutive 10-second extracts,
resulting in 960 audio segments. For each of these 960 ex-
tracts, the music was paired with a random HRTF and a
random gain. To keep the submission package around 20 GB,
each of these were processed for 20 random listeners from the
pool of 53 listeners, giving N = 19,200 audio examples tested
per system.

III. RESULTS
A. CAD1 CHALLENGE
Seven entries, two baselines and a do-nothing system were
evaluated. Table 2 summarizes the different approaches of the
systems for CAD1 and the average HAAQI scores.

Eight systems used either the HDemucs or OpenUn-
mix models for source separation. One of those (E05) re-
fined OpenUnmix by using a sliced Constant-Q Transform
(sliCQT) [49] with the Bark scale; a neural network ar-
chitecture that used a convolutional denoising autoencoder
(CDAE) [49], [50], and all targets were trained together
with combined loss functions like CrossNet-Open-Unmix (X-
UMX) [51].

Six systems did not alter the remix from the baseline, mean-
ing the demixed VDBO stems were simply added together
to get the stereo output. Those who did alter the balance
between the VDBO stems included E17. This system applied
a mid-side equalization, a technique that separates the stereo
signal into mid (center) and side (stereo width) components.
By independently processing the mid and side signals, one
can enhance the tonal balance of centrally placed elements,
such as vocals or bass, while also adjusting the stereo width to
improve spatial characteristics. In the mid-side equalization,
the new left signal L’ and new right signal R’ are given by:

L′ = G(M ) + H (S)
R′ = G(M ) − H (S)

(1)

where M is the mid signal and S the side signal given by:

M = (L + R)/2
S = (L − R)/2

(2)

The function G() was two parallel filters that reduced the mid
signal below 2 kHz by 2 dB, to attenuate frequencies that were
not part of the lead vocals. The function H() was three parallel
filters to increase the side signal between 2 and 6 kHz by 3 dB
to help with binaural unmasking. E17 also applied a single
compressor to the amplified remixed signal.
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TABLE 2. Overview of System Approaches and Scores for the CAD1 Challenge.

Another two systems that changed the balance in the remix
were E22 and E12. Both used methods to increase the promi-
nence of the vocal track. For example, E22 used gains of +7.6,
−8.0, −4.4, and −4.4 dB for the VDBO stems when all were
not silent. E12 decreased the level of the non-vocal tracks for
people with moderate or severe hearing loss. Since the Other
stem may include instruments like guitar and piano, E12 used
a multiband compressor to reduce the dynamics of the Other
stem, giving more space for the vocals. The compression
thresholds were set based on the levels of the vocals.

Changes to the EQ or VDBO balance would decrease
HAAQI scores. This arises because HAAQI is intrusive and
compares the processed signal to a reference. HAAQI is an
approximate model of perception, however, and changes to
EQ or balance could improve scores in the listening tests.

Four systems used the NAL-R amplification provided in
the baseline. The exceptions were: (1) E12, which used a
multiband compressor. (2) E14 and E15, which used a linear
filter like NAL-R but decreased the low-frequency attenuation
relative to the original NAL-R algorithm. The 250 and 500 Hz
bands were increased by 16 and 7 dB, respectively. This was
intended to increase the bass, but it had the unintentional con-
sequence of limiting the high-frequency amplification where
hearing loss is usually most significant. This limitation arose
because the broadband signals were peak normalized in the
time domain to prevent clipping. (3) E16 applied a But-
terworth bandpass filter with −3 dB points at 250 Hz and
18.5 kHz. For all of these systems, the departure from NAL-R
decreases the HAAQI score but has potential to improve lis-
tening test scores.

The HAAQI scores averaged for the VDBO stems in
Table 2. These need to be read with some caution because
applying HAAQI to individual stems is untested. The objec-
tive scores for the VDBO signals show that Baseline 1, which
used HDemucs, scored highest. In setting up the challenge,
it was thought that allowing for hearing loss in the demix
processing might improve performance. For instance, artifacts

FIGURE 4. HAAQI scores for remix for each system for CAD1. Baseline
systems are shown in pink.

created during source separation might fall below the elevated
hearing threshold. But no system exploited this possibility.
There have been many demixing challenges, which means that
the state-of-the-art approaches used in the baseline were hard
to beat.

The HAAQI scores for the remix stereo are shown in
Table 2 and a box-plot is shown in Fig. 4. The data did
not meet the assumptions needed to use an ANOVA. For
example, the dependent samples were not drawn from a nor-
mally distributed population with evidence of a ceiling effect
where HAAQI=1 for some teams. Consequently, the fol-
lowing is an analysis of main effects using non-parametric
approaches.

A one-way Kruskal-Wallis test with HAAQI values as the
dependent variable and systems as the independent variable
was carried out. This showed that the differences between
the scores for the ten systems were significant (N = 25,970,
df=9, H=12,824, p < 0.001, η2=0.49), with a very large
effect size. Pairwise comparisons using the Mann-Whitney
U test, showed that most systems were significantly different
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from each other (p < 0.001 for pairs with significant differ-
ence, except E05-E01 where p=0.02. Bonferroni correction
for multiple tests applied). The three pairs of systems with
no significance difference were: E16 and E17 (p=1); E05 and
E12 (p=1); and E12 and E01 (p=0.1).

Whether system performance varied with hearing loss
severity was examined. The listener audiograms were coded
into a 5-value ordinal variable: no loss, mild, moderate, mod-
erately severe and severe. For this calculation, the average
of the left and right audiograms was used rather than the
better ear. This was done because the HAAQI metric were an
average of the HAAQI values for the left and right signals. The
Spearman rho between HAAQI and hearing loss severity was
−0.540 (N = 25,970; p < 0.001). This means the HAAQI
scores were lower for those with worse hearing loss, a trend
seen for all systems. This trend explains 29% of the rank
variance.

Overall, for the remix HAAQI scores, the HDemucs Base-
line (E01) had the highest score. As noted above, the 5
systems that applied different remix or amplification systems
were bound to score lower on HAAQI. These entrants used
different amplification approaches to improve scores in the
listening panel evaluation.

The lack of HAAQI improvement over the baseline, indi-
cated a need for a scenario with more chance of bettering the
baseline. This led to the ICASSP24 challenge. Specifically,
the use of loudspeaker reproduction in ICASSP24 meant that
out-of-the-box demix algorithms would perform worse be-
cause of the frequency-dependent mixing of the left and right
music signals. Furthemore, the specified gains for the VDBO
would highlight bleed between demixed components. This
also motivated a push for causal systems because non-causal
approaches would not work on hearing aids.

B. ICASSP24 CHALLENGE
There were 17 systems entered from 11 teams. Table 3 sum-
marizes the average HAAQI scores for the different systems.
Nearly all differences between the system scores in the ta-
ble were statistically significant, but some had very small
effect sizes (see later for statistical analysis). The table also
summarizes the approaches for the different systems. Nine
systems beat the best baseline, and the discussions below of
the non-causal systems will concentrate on these.

The baselines were trained on the original stereo music and
not on the hearing aid signals. Consequently, it was expected
that retraining an established source separation system on the
hearing aid signals would be sufficient to improve scores.
Examples of teams doing this were T11 and T46.

The highest scoring system, T47, took an ensemble ap-
proach, with the output of the separation algorithm being an
average of three systems. These were pretrained versions of
Dual-Path TFC-TDF UNet [58], HDemucs, and a version of
MDX-Net [59] only trained on the MUSDB18-HQ dataset.
These were then fine tuned on the ICASSP24 dataset. T22
took a similar ensemble approach, but one of the two pre-
trained models used the label noise dataset from the Sound

TABLE 3. Overview of the Approaches for ICASSP Challenge.

Demixing Challenge 2023 [22], which was outside the rules
of the ICASSP24 challenge.

There were some refinements for systems that built on
established architectures. T03 and the version trained on sup-
plementary data (T03-S) added 15% of the original stereo
into the final mix using a skip connection that bypassed the
demix/remix. The intention was to restore components that get
lost in the demix/remix process. T11 introduced a modified
logit function intended to create a larger gradient for hard-
to-learn examples. This used self-knowledge distillation with
progressive refinement of target (PS-KD) [60]. An ablation
study showed that this modified logit produced a very small
improvement in HAAQI of 0.009. T46 replaced the original
complex ratio mask in HDemucs with a deep filter [57].

There were also some refinements on how the training
data was used to improve learning. Audio data augmentation
techniques achieved a very small improvement in HAAQI of
0.006 for T11-A vs T11. This team also explored curriculum
learning where initial training used easier examples, before
moving onto the harder cases after a set number of epochs.
This produced only a very small improvement in HAAQI of
0.002, however.

Only T25 attempted to improve the amplification stage of
the processing by applying a single compressor to the remixed
signal and changing tuning the number of filter orders of
NAL-R. As the reference signal in the objective evaluation
involved amplification using NAL-R, this could only reduce
the HAAQI scores. However, it is worth noting that NAL-R
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FIGURE 5. HAAQI scores vs system for ICASSP24. Baselines shown in pink.

does not account for all the non-linear level-dependencies
typical with hearing loss, such as loudness recruitment, and
so the approach of T25 might result in improved scores in
listening tests, but that remains untested.

The causal system T16 did not score as well as the non-
causal approaches. Previous demixing research has mostly
focused on non-causal approaches, so there were preexisting,
refined approaches to build upon for the Cadenza challenge.
Furthermore, it would be expected that a causal method
would score lower because any machine learning algorithm
has less input information to work from compared to non-
causal techniques. T16 used a k-means clustering based on
39-dimensional Mel-frequency cepstral coefficients (MFCC)
features for the VDBO stems. MFCCs are features that es-
timate the shape of the smoothed spectrum to infer the
configuration of the vocal tract. Then for the mixture, for
every 5 ms frame, the system tried to identify which of the
VDBO stems was dominant via the MFCC features, and then
allocate the frame to the appropriate VDBO signal. However,
such an approach struggles when more than one VDBO stem
is prominent in a frame.

A statistical analysis of the ICASSP24 results was per-
formed. First, T16 was removed as an outlier as its mean
and standard deviation were both much smaller than for all
other systems. The systems using supplementary data or data
augmentation were also removed to ensure that scores from
each system were statistically independent (e.g. T31 was an-
alyzed but not T31-A). This left 13 systems. As with CAD1,
the data did not meet the normality assumption needed to use
an ANOVA, and therefore an analysis of main effects using
nonparametric approaches was used.

Fig. 5 shows a box-plot of the HAAQI scores for each
system. A one-way Kruskal-Wallis test with HAAQI as the
dependent variable and system as the independent variable
was significant (N = 249,600, df = 12, H = 13,682, p <

0.001, η2=0.05). The effect size was small, however. Pair-
wise comparisons using the Mann-Whitney U test, showed
that most systems were significantly different from each other
(p < 0.001 for pairs with significant difference, except T25-
T46 and T11-T18 where p = 0.03; Bonferroni correction for
multiple tests was applied). The exceptions where there was
no significant difference were: T01 and T12 (p = 1); T01 and

T046 (p = 1); T01 and T25 (p = 0.2); T11 and T12 (p = 0.2);
and T03 and T18 (p = 0.2).

It was hypothesized that the greater the differences in gains
applied to the VDBO stems before remixing, the poorer the
performance would be. The thinking here was that any bleed
or artifacts created during demixing would be more evident
in the remix. To test this, the HAAQI scores were corre-
lated with the standard deviation of the gains applied to the
VDBO stems. The Spearman’s rho was −0.318 (N=249,600;
p < 0.001). This indicates that HAAQI scores were indeed
lower when there were larger differences in gains between the
VDBO stems. This explained about 10% of the rank variance.

HAAQI scores were analyzed to determine whether they
varied with hearing loss severity. This analysis used the same
hearing severity classifications as for CAD1. The Spearman’s
rho between HAAQI and hearing loss severity was −0.454
(N=249,600; p < 0.001). This means that the more severe
the hearing loss, the lower the HAAQI scores. This explains
20% of the rank variance. System T09 was the only one that
did not have a linear relationship for hearing loss severity. For
that system, the best scores were for moderate loss.

Greater hearing loss means that the NAL-R amplification
would have been larger, especially at high frequencies. One
possibility is that errors or artifacts in the demix are greater
at higher frequencies, and hence the HAAQI score decreases
for larger hearing loss. Another possible cause is the greater
amplification created more clipping in some music extracts
with larger hearing loss severity, which would then decrease
the HAAQI score.

Exploring how the HAAQI scores varied with the angle
between the listener and the left and right loudspeakers in the
stereo reproduction yielded a result that was significant but
had tiny effect sizes. Significance occurred because of the very
large number of examples (N=249,600) but the differences in
HAAQI scores were too small to be important.

IV. DISCUSSION
The Cadenza project created a series of machine-learning
challenges to increase the number of music processing re-
searchers considering hearing loss. We developed baseline
software and curated open source datasets. The aim was to
catalyze a cultural shift in the audio machine learning commu-
nity, so more research includes the range of hearing abilities
seen in the general population, rather than the default assump-
tion of young ‘normal hearing’ [61].

Nowadays, one difficulty with using a challenge method-
ology is that the number of signal processing competitions
makes it harder to get entrants. The increase in the number
of entrants from CAD1 to ICASSP24 shows that Cadenza is
beginning to grow the community. This has been achieved
by engaging with researchers who work on music demixing.
Using gatekeepers to raise awareness of challenges is helpful,
which is why we ran a challenge as part of ICASSP. Contin-
uing this, the next Cadenza Challenge, CAD2, is an official
challenge of the IEEE Signal Processing Society. It will also
have some modest cash prizes to encourage entrants.
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Choosing appropriate tasks, rules and evaluation methods
for a new series is difficult because what teams might be able
to achieve can be hard to predict. In the CAD1 challenge,
the baselines were based on state-of-the-art demixing models,
which with the benefit of hindsight were difficult to beat.
Learning from this, the ICASSP24 challenge made the prob-
lem more difficult by introducing loudspeaker reproduction
and specified gains to be applied to the VDBO stems before
the remix. The lower scores for the top systems in ICASSP24
compared to the best in CAD1, indicate that there is still scope
for further research into the ICASSP24 scenario.

All but one entrant used non-causal signal processing,
which means the methods could only be applied to recorded
music or broadcast situations where a delay in processing is
not an issue. For hearing aids and live music, low latency and
causal methods are required. In future, more work is needed to
encourage causal systems. Hence, the second Cadenza chal-
lenge CAD2, features a causal baseline. Future challenges
may also consider limiting the size of the deep learning mod-
els, so they can be implemented at low latency on hearing
devices.

The objective metrics currently available for machine learn-
ers need improving. HAAQI was used because it is the only
audio quality metric that accounts for hearing loss and hearing
aid processing. However, it is not ideal for machine learning
because it is slow to compute and non-differentiable. Fur-
thermore, as discussed above, the amplification stage used in
HAAQI sets the gold-standard for entrants to try and achieve.
In CAD1, some teams chose to create systems that deviated
from NAL-R to improve scores in the listening tests, despite
this reducing HAAQI. For this reason, CAD2 will move away
from NAL-R to use non-linear amplification with parameter
settings similar to those used in current hearing aids and
the frequency-specific gains determined by each individual’s
pure-tone thresholds. Future work could go further, however,
and consider how deep learning models might be used to
overcome the limitations of classical signal processing of non-
linear amplification.

A non-intrusive metric might overcome some of these is-
sues. The audio created in CAD1 has been used in listening
tests and work is ongoing to create a metric based on those
results. For CAD2, one of the tasks is improving lyric in-
telligibility. For intelligibility assessment, we are using the
Whisper model [62] to transcribe lyrics and compute word
correct rates. Whisper does not require a reference signal.

Objective evaluation is always limited by the metric avail-
able, because this can only ever be an approximation to human
listening. A true test of a system requires listening tests. These
have been carried out on the audio submitted to the CAD1
challenge. The design of these experiments and results will be
presented in a companion paper, including highlighting where
HAAQI models the perception of Basic Audio Quality well,
and where it does not.

The availability of public domain databases limits the tasks
that can be set in music challenges. CAD1/ICASSP24 was
limited to mostly pop/rock music because of this. However,

hearing loss is much more prevalent in older people and our
listening panel has a preference for classical music. For this
reason, CAD2 will extend the demix/remix task to include
classical music for small string and woodwind ensembles.
This has required the synthesis of new training data for wood-
wind quartets [63].

V. CONCLUSION
For the first time, a challenge methodology was applied to
improve music for those with a hearing loss. The tasks focused
on demixing and then remixing pop/rock music to allow a re-
balancing of the instruments within a recording. We provided
entrants with a common set of baseline tools, databases, an
evaluation metric and challenge rules. While the design of
the challenge built on previous demixing challenges, the ad-
dition of listeners with different hearing characteristics added
complexity to the data, software baseline and the evaluation
metric. A further innovation in the ICASSP24 challenge was
the addition of loudspeaker listening and specified gains being
applied to the separated stems before remixing. Loudspeaker
reproduction made the separation of instruments more chal-
lenging due to frequency-dependent mixing of left and right
signals. The gains applied to the tracks before remixing also
highlighted poorer separation. The machine learning meth-
ods used to demix the signals were nearly all refinements of
current state-of-the art algorithms, either HDemucs or Ope-
nUnmix.

The Cadenza challenge series was established to grow a
community that includes hearing difference in their audio
machine learning. It was pleasing to see that the number of
systems entered roughly doubled between the two challenges.
This has been achieved by tapping into the community of
researchers already working on sound demixing. The next
challenge, CAD2, includes a task on lyric intelligibility. The
hope is that researchers working on speech enhancement will
adapt their algorithms to lyrics in music.
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