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Abstract

A large part of our current understanding of gene regulation in Gram-positive bacteria is based on Bacillus subtilis, as it is one 
of the most well studied bacterial model systems. The rapid growth in data concerning its molecular and genomic biology is 
distributed across multiple annotation resources. Consequently, the interpretation of data from further B. subtilis experiments 
becomes increasingly challenging in both low- and large-scale analyses. Additionally, B. subtilis annotation of structured RNA 
and non-coding RNA (ncRNA), as well as the operon structure, is still lagging behind the annotation of the coding sequences. 
To address these challenges, we created the B. subtilis genome atlas, BSGatlas, which integrates and unifies multiple exist-
ing annotation resources. Compared to any of the individual resources, the BSGatlas contains twice as many ncRNAs, while 
improving the positional annotation for 70 % of the ncRNAs. Furthermore, we combined known transcription start and termina-
tion sites with lists of known co-transcribed gene sets to create a comprehensive transcript map. The combination with tran-
scription start/termination site annotations resulted in 717 new sets of co-transcribed genes and 5335 untranslated regions 
(UTRs). In comparison to existing resources, the number of 5′ and 3′ UTRs increased nearly fivefold, and the number of internal 
UTRs doubled. The transcript map is organized in 2266 operons, which provides transcriptional annotation for 92 % of all genes 
in the genome compared to the at most 82 % by previous resources. We predicted an off-target-aware genome-wide library 
of CRISPR–Cas9 guide RNAs, which we also linked to polycistronic operons. We provide the BSGatlas in multiple forms: as 
a website (https://​rth.​dk/​resources/​bsgatlas/), an annotation hub for display in the UCSC genome browser, supplementary 
tables and standardized GFF3 format, which can be used in large scale -omics studies. By complementing existing resources, 
the BSGatlas supports analyses of the B. subtilis genome and its molecular biology with respect to not only non-coding genes 
but also genome-wide transcriptional relationships of all genes.

DATA SUMMARY
The provided genome annotation BSGatlas is relative to the 
RefSeq reference assembly of Bacillus subtilis 168 (accession 
no. ASM904v1). All utilized external data, the resulting 
annotation and the BSGatlas generating scripts are perma-
nently stored at https://​doi.​org/​10.​5281/​zenodo.​4305872. 
The BSGatlas is available for download in the standardized 
GFF3 format (https://​doi.​org/​10.​5281/​zenodo.​4305869) or 
as a UCSC genome browser hub at https://​rth.​dk/​resources/​

bsgatlas/. The genomic coordinates of all BSGatlas annota-
tions in the form of supplementary tables are also available 
with the online version of this article.

INTRODUCTION
Bacillus subtilis (Firmicutes, Bacilli) is a Gram-positive 
soil micro-organism that is central for multiple research 
fields. It is widely used as a model system for the study of 
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gene regulation and it is probably the best-studied bacterial 
species apart from Escherichia coli. In industrial applications, 
it is used as a host organism for the production of enzymes 
and other proteins [1]. B. subtilis is actively studied with 
modern high-throughput -omics methods, such as RNA-seq 
[2, 3], which already provided important novel insights into 
gene regulation and demonstrated that bacterial transcrip-
tion is even more complex than previously expected [4, 5]. 
However, high-throughput analyses of gene expression data 
and interpretation with respect to biological function are 
highly dependent on the quality of genome annotations. The 
B. subtilis genome annotation is, as for many other genomes, 
subject of ongoing, manual expert curation [6], which requires 
substantial and non-trivial efforts [6, 7]. However, the current 
annotations of B. subtilis focus on protein coding sequences 
(CDSs) [8], insofar that although many genome coordinate 
annotations exist for structured RNA elements, non-coding 
RNA (ncRNA) genes and untranslated regions (UTRs) 
of mRNAs, these annotations are challenging to access; in 
particular for high-throughput access. Consequently, full 
mRNA transcripts are rarely annotated, which constrains the 
study of post-transcriptional regulation.

Bacterial genomes contain operons, such that multiple genes 
are transcribed from one promoter region in a single RNA 
molecule [9, 10]. Besides the 5′ and 3′ UTRs, the mRNAs 
also have internal UTRs [9]. The lengths of transcribed 
UTRs can differ, depending on the isoform, and an isoform 
can, therefore, have alternative regulatory mechanisms. An 
example is an alternative promoter that allows transcription 
of the threonyl-tRNA synthetase thrS without a preceding 
T-box riboswitch [8, 11], and without the upstream genes 
of the operon (dnaB, dnaI, ytxB and ytxC) [4, 8]. To our 
knowledge, there is no B. subtilis annotation resource that 
contains a comprehensive collection of isoforms and UTRs. 
The lack of UTR annotation imposes a limitation on anno-
tating and subsequently studying the function of structured 
RNA elements and ncRNA.

Likewise, the annotation of structured RNA elements and 
ncRNAs is as important as CDSs to understanding the biology 
of B. subtilis. As indicated above, structured RNA, such as 
riboswitches, can regulate gene expression through ligand-
dependent rearrangements of their RNA structure, leading 
to a decreased access of the ribosome to the Shine–Dalgarno 
sequence [12] or to termination before transcription of 
the CDS. An example is the flavin mononucleotide (FMN) 
detecting riboswitch structure, which regulates expression 
of riboflavin (vitamin B2) biosynthesizing genes depending 
on riboflavin levels [13, 14]. More complex ncRNA regula-
tory interactions involve small RNAs (sRNAs) and other 
independently transcribed RNA structures. Some sRNAs 
regulate specific biological functions: for instance, the sRNA 
fsrA controls iron-metabolism [15], and the toxin–anti-toxin 
system of bsrG and bsrE are regulated by sRNA [16, 17]. In 
contrast, the 6S sRNA regulates the global transcription levels 
of every single gene in the genome via interaction with RNA 
polymerase [18–20]. Most sRNAs function by directly hybrid-
izing to mRNA and, thereby, impact translational efficiency 

or mRNA stability [21]. Some ncRNAs, known as antisense 
RNAs (asRNAs), are expressed antisense to mRNAs and may 
influence the expression of the gene in the sense direction 
[22]. For instance, the antitoxin ratA regulates as asRNA the 
expression of txpA [23].

As is evident from the existing B. subtilis genome annotation 
and other relevant resources, summarized in Table 1, that the 
available information of ncRNAs is widely distributed and 
in part complementary. The genome annotation resources 
contain information ranging from high-quality curated anno-
tations, over experimental data, to computational predic-
tions. All the resources differ in their content, some provide 
genomic coordinates for genes, operons, UTRs and other 
genomic elements, while other resources contain the annota-
tion of biological functions, gene interactions and additional 
meta-information. The RefSeq reference genome sequence of 
B. subtilis strain 168 [24, 25] is the standard genome relative to 
which most experimental studies state their gene coordinates 
[4, 6, 26]. This reference is also the basis for many databases 
and online analysis resources that use either the identical or a 
very similar annotation [8, 27–30]. In addition, a few ncRNA 
focused databases also use the RefSeq genome as reference 
[31–34]. Currently, a user would not only have to consult 
multiple of the available resources for a comprehensive 
annotation – which also requires the removal of redundant 
information – but also need user consideration of inconsistent 
annotation. The common use of RefSeq’s reference genome, 
however, makes it possible to combine the information of all 
these resources in a single annotation.

Impact Statement

Current annotation efforts of the Bacillus subtilis genome 
are predominately focused on coding sequences; 
however, non-coding genes and structured RNA 
elements fulfil essential functions in the organism. 
However, access to the non-coding annotation is chal-
lenging. In order to find such elements and their regu-
latory partners, transcript annotations that include the 
untranslated regions (UTRs) are needed. Unfortunately, 
information about transcription start/termination sites 
(which give rise to UTRs) is found in different databases 
than those that contain information about structured 
RNA. Here, we integrate multiple databases and annota-
tion resources of different annotation types to address 
the multiple databases access problem. We provide the 
resulting annotation in multiple formats to increase its 
utility. This large-scale integration provided new UTR 
annotations, which resulted in a substantial increase 
in number. We further inspected isoform transcripts 
and investigated the complex operon architecture of  
B. subtilis. To make the integration process transparent, 
we show the information from the individual databases 
in a genome browser.
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At the outset for the resources listed in Table 1, we present a 
combined annotation, where we focus on a set of the highest 
quality resources available for B. subtilis. These resources 
differ slightly in annotation terminology, but more critically 
they also differ in content. The database of transcriptional 

regulation in B. subtilis (DBTBS) [27] contains annotation 
of transcription factor binding sites, transcription start sites 
(TSSs), transcription termination sites (TTSs) and operons 
that have been extracted from hundreds of literature refer-
ences. The operon annotations in DBTBS comprise the 

Table 1. An overview of relevant B. subtilis annotation resources.

The first column provides the resource name. Resources marked with * were considered for integration into the BSGatlas. The remaining resources 
were already fully contained in at least one of the utilized resources. (Based on a trivial coordinate comparison, not shown). The second column gives 
a short description and the third the kind of annotations it provides.

Resource General description Provided annotation

RefSeq* [24] Large collection of reference sequences including annotations
Contains B. subtilis 168 standard annotation
Most commonly used B. subtilis annotation resource

Coding genes
All rRNAs, tRNAs of B. subtilis
Only few other ncRNAs
No mRNA transcripts

DBTBS* [27] Collection of transcriptional binding factors
Literature curated database

Operons
TSSs/TTSs

BsubCyc* [35] B. subtilis specific database
Encyclopaedia of metabolism and pathways

Coding genes
All rRNAs, tRNAs
Only few other ncRNAs
Few transcripts with TSSs and TTSs

SubtiWiki* [8] B. subtilis specific database
Active community annotation effort
Functional annotation driven
Does not provide coordinates

Coding genes
All rRNAs, tRNAs
Many additional ncRNAs
TUs

Nicolas et al.* [4] Tilling-array study in B. subtilis
Transcriptome in over >100 conditions
Large number of predictions
Technical resolution limitation

Many predicted ncRNAs
Many predicted TSSs/TTSs
Explicitly annotates UTRs

Dar et al.* [26] Term-seq study in B. subtilis Riboswitches

Rfam* [38] Database of RNA structure families
We scanned B. subtilis genome with most recent Rfam version
Database of RNA structure families

All rRNAs, tRNAs
Riboswitches
sRNAs and other structured RNAs

Ensembl [85] B. subtilis specific database
Active community annotation effort
Functional annotation driven
Does not provide coordinates

Coding genes
All rRNAs, tRNAs
Only few other ncRNAs
No mRNA transcripts

PARTIC [29] Integrative database of bacterial genomes
Analysis tools to support biomedical research
Uses different genome sequence than RefSeq
But nearly identical on annotated gene set

Coding genes
All rRNAs, tRNAs
Only few other ncRNAs
No mRNA transcripts

IMG/M [30] Integrative database of Archaea, Bacteria and Eukarya
Tools for comparative genome analysis
Uses RefSeq as reference

Coding genes
All rRNAs, tRNAs
Only few other ncRNAs
No mRNA transcripts

BSRD [33] Single ncRNA type specific database
Already included in other resources

sRNA

SRPDB [31] Single ncRNA type specific database
Already included in other resources

SRP

tmRDB [31] Single ncRNA type specific database
Already included in other resources

tmRNA

tmRNA [34] Single ncRNA type specific database
Already included in other resources

tmRNA

tRNAdb [32] Single ncRNA type specific database
Already included in other resources

tRNA
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full regions of co-transcribed genes, including the possibly 
shorter isoforms. The annotation of DBTBS is partially 
contained in the high-quality curated databases BsubCyc 
[35], which focuses more on gene annotation, and contains 
an impressive amount of meta-information. However, 
BsubCyc provides both explicit TSSs and TTSs for only 60 % 
of its transcriptional annotations. Additionally, BsubCyc 
provides gene function in the form of Gene Ontology (GO) 
terms [36, 37], and transcriptional regulatory relationships, 
and a fine-grained, stoichiometric annotation of enzymatic 
reactions and molecular interactions, which are relevant for 
metabolomic studies. However, both DBTBS and BsubCyc are 
discontinued projects. In contrast, SubtiWiki [8] is a popular, 
active community-driven project focused on B. subtilis anno-
tation [6]. SubtiWiki provides abundant meta-information, 
including lists of organism-specific gene categorizations, 
transcriptional regulations and interactions. SubtiWiki also 
provides a list of transcriptional annotations, but without any 
TSS or TTS indication, such that they only express that there 
exists at least one transcript that co-transcribes the genes 
listed in SubtiWiki’s operons. Recently, SubtiWiki included 
the expert gene annotation by Borriss et al. [6]. SubtiWiki 
also contains annotations of ncRNAs and UTRs, which are 
based on a large-scale study investigating the transcriptome 
of B. subtilis in over a hundred different environmental condi-
tions using tiling-arrays [4]. The main strength of SubtiWiki 
is abundant meta-information. Unfortunately, SubtiWiki 
does not provide direct access to what genome coordinates 
that meta-information belongs to. Moreover, the above-listed 
resources remain protein-centric [6, 8], and predominately 
contain annotations of CDSs and their functions. All of these 
resources annotate the tRNAs and rRNAs of B. subtilis. Yet, 
these resources do not reflect the state-of-the-art information 
for structured RNA elements and ncRNA that can be drawn 
from Rfam [38]. These RNA annotations can be made avail-
able for the B. subtilis genome by similarity searches [39]. 
As demonstrated in recent work [40, 41], there is still strong 
potential to discover new ncRNA types and structures in 
bacterial genomes. An improved ncRNA annotation will lead 
to improved interpretation of, for example, RNA-seq data, 
as the ncRNA aspect is ignored in most bacterial expression 
analyses [3, 42, 43].

CRISPR technology is a powerful genome-editing tool and 
its applications are becoming fundamental also within the  
B. subtilis community [44, 45]. The CRISPR–Cas9 system 
forms a riboprotein complex together with a guide RNA 
(gRNA) molecule, which binds the first 20 nt of the gRNA 
to complementary DNA when the binding site is followed by 
the PAM sequence (for SpCas9 the PAM sequence is NGG). 
Several methods exist to predict the sequence-based on-target 
efficiency and specificity/off-targeting potential of a gRNA, 
such as Azimuth score [46] for efficiency and CRISPRspec 
score for specificity [47]. In order to achieve an intended 
editing, it is advised to use a gRNA sequence with high effi-
ciency. On top of this, it is important to select the gRNAs with 
high specificity to minimize the potential off-targets, even 
though the B. subtilis genome is only ~4.3 million bp long.

Here, we describe the B. subtilis genome atlas BSGatlas, 
which is a coordinate-based annotation of genomic elements 
covering coding and non-coding genes, structured RNA, 
UTRs, riboswitches, TSSs, TTSs, transcripts and operons 
by integrating existing resources and novel genome-wide in 
silico predictions of ncRNAs. BsubCyc [35], SubtiWiki [4, 8], 
RefSeq [24], literature references [4, 26] and our Rfam scan 
[38, 39] provide a non-redundant genome annotation set, 
which integrates the information found in the resources listed 
in Table 1. Through the integration of the information from 
the different resources, we provide a more complete annota-
tion of the B. subtilis genome, its genes, including ncRNAs, 
and resolve inconsistencies between the available annotations. 
To facilitate the use of our annotation, we furthermore provide 
a UCSC genome browser-based interface for convenient 
visualization and data download. Finally, we leveraged the 
operon annotations computed in this study to compute a 
genome-wide list of CRISPR–Cas9 gRNA that also considers 
applications with co-transcriptional relationships [48].

METHODS
Computational workflow
All analyses, if not otherwise indicated, were performed 
in R 3.5.2 [49]. We utilized a multitude of Bioconductor 
packages [50] and the tidyverse collection (1.2.1) [51]. The 
predominately utilized packages were rtracklayer (1.42.1) 
[52], the annotation packages GenomicRanges (1.34.0) [53] 
and plyranges (1.2.0) [54], the parser genbankr (1.10.0) [55], 
the colour palette ggsci (2.9) [56], the library for nucleotide 
sequence handling Biostrings (2.50.2) [57], the graph analysis 
tool tidygraph (1.1.0) [58], and the table creation package 
kableExtra (1.1.0) [59]. For improved reproducibility of 
the annotation construction, all steps were conducted in 
an Anaconda environment. Thus, the exact list of versions 
for these packages and all their dependencies at each step 
of the annotation creation is explicitly stated. The Anaconda 
environment and the scripts including intermediate computa-
tional results are available at https://​doi.​org/​10.​5281/​zenodo.​
3478329.

Gene annotation resources
We collected annotations according to the latest RefSeq 
reference assembly (accession no. ASM904v1) [24, 60], 
which contained the major gene annotation refinement from 
February 2018 [6]. We used this annotation as described in 
the GenBank file. Based on the provided human-readable 
gene description text, we were able to determine the specific 
ncRNA type for 92 % of the 212 non-coding genes. The 
BsubCyc database [35] version 38 (released August 9 2017) 
has a systems view representation. We built a custom parser 
to extract for BsubCyc’s database, which contains 4188 coding 
and 184 non-coding genes and RNA structures. Also, Bsub-
Cyc’s curation contained experimentally verified information 
about 574 TSSs with nucleotide resolution and 1246 TTSs. 
These provide clear transcribed boundaries for some of the 
1602 transcriptional units (TUs) from BsubCyc, yet explicit 

https://doi.org/10.5281/zenodo.3478329
https://doi.org/10.5281/zenodo.3478329
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UTR elements were not annotated. As meta-information, 
BsubCyc provides GO terms and indication of transcriptional 
regulatory relationships. In addition, BsubCyc gives a detailed 
metabolic and enzymatic reaction and pathway overview, 
which will not be considered here.

We included the annotations by Nicolas et al. [4] of 3242 TSSs, 
2126 TTSs, 1430 UTRs and 153 novel ncRNA. Dar et al. [26] 
found a set of 82 riboswitches that they found by investigating 
transcription termination patterns in a Term-seq experiment. 
The other annotation resources required more dedicated pre-
processing, see below.

Parsing DBTBS
Upon request, the authors of DBTBS [27] kindly provided 
us with their latest annotation in an XML format (version 
2008). We added coordinates to their information with an 
exact sequence lookup to find coordinates for 98 % of the 
1262 annotated transcription factor binding sites and for 
90 % of the 1031 annotated TTSs. To reduce erroneous or 
ambiguous annotations, we used unique matches without 
allowed mismatches. From the sigma factor binding sites that 
have the relative position to the TSS provided, we were able to 
infer a set of 644 high-resolution TSS positions. DBTBS had 
a curated annotation of operons for 2201 genes. For 98.9 % of 
these genes, we were able to find the corresponding gene in 
our merged set by comparing the gene names and keeping 
only unambiguous matches. Due to the high matching success 
rate of the genes, we were able to fully restore coordinates for 
almost all (98.6 %) of the annotated 1123 operons.

Parsing SubtiWiki
SubtiWiki provided a magnitude of meta-information, such as 
its gene categorization and lists of transcriptional regulations 
and interactions [8]. In the most recent version (downloaded 
November 9 2020) SubtiWiki included some parts of BsubCyc 
[8, 35], yet the curated list of TSSs, TTSs and functional 
annotation via GO terms were not included. Unfortunately, 
SubtiWiki does not provide the export of gene coordinates, 
such that we restored these from our merged gene set via 
comparison of loci, gene names and synonyms. We were able 
to infer positions for 99.7 % of the 5999 coding/non-coding 
genes, structures and UTRs described in SubtiWiki; for 99.6 % 
of the 2267 provided SubtiWiki TUs.

Rfam scan
The genome sequence was scanned for the 3016 families 
of Rfam 14.1 [38] using Infernal’s cmsearch version 1.1.1 
[39]. The scan was conducted with an E value cut-off of 10–3, 
which in most cases is more relaxed than the family-specific 
so-called gathering score (the 16 families where the gath-
ering score cut-off would have been a more relaxed cut-off 
are not expected to be present in bacteria). The hits from 
the scan are reported here at three confidence levels [1]. At 
the conservative level, an E value cut-off at 10–6 and a match 
score of at least the gathering score was applied [2]; at the 
medium level, only the E value cut-off at 10–6 was used; and 

[3] at the relaxed confidence level, the E value requirement 
was relaxed to 10–3. The results were post-filtered using an 
updated version of the RNAnnotator pipeline [61]. Within 
each level of confidence, all hits overlapping at least 40 bp 
were merged and the best hit by E value was chosen (or by 
score if E values were tied). At the respective confidence 
levels, the scan identified 214, 230 and 285 non-coding 
candidate genes and structures, respectively. We did not 
filter the Rfam collection before the scan, such that apparent 
false-positive cases are included. After inspection of the 
scans, these false-positives indicated that the most relaxed 
level of Rfam should be excluded due to the erroneous 
prediction of matches to ncRNA families not expected in 
bacteria. The results of the relaxed scan are still shown in 
the browser as they could prove interesting after manual 
curation.

Merging of gene annotations
First, for each overlapping pair of gene annotations, we 
computed the ratio of lengths of the intersection and the 
union, which can also be recognized as the Jaccard index (JI) 
[62]. Then, we determined a cut-off in JI to identify annota-
tions corresponding to each other by first considering their 
identifiers (name or locus tag). For corresponding coding 
genes, we observed that the JI was at least 0.80, while for 
ncRNAs it was at least 0.5, except when one ncRNA annota-
tion was fully contained within another. Using these JI cut-
offs, we inferred correspondence in the remaining pairs of 
overlapping annotations of coding genes, de novo ncRNAs 
and structured RNAs. Overlaps between coding genes and 
riboswitches are, however, excluded. Accordingly, we merged 
overlapping annotations into a single annotation with the 
coordinates of the highest priority resource (if there were 
multiple highest priority annotations, the union of the coor-
dinates was used; Fig. S1a, available with the online version 
of this article). For the prioritization of the resources see 
Table S1. The pseudo-code of the merging is outlined in Fig. 
S2. The merged annotations were assigned the most specific 
biotype (e.g. sRNA instead of putative non-coding) from the 
individual resources. In a few cases, we resolved ambiguities 
by preferring the biotype asRNA over sRNA, and sRNA over 
riboswitch. The latter ambiguity is caused by the Term-seq 
resource [26].

Transcriptional Units
Here, and in contrast to others, for simplicity we use the 
term transcriptional unit (TU) as a set of genes that can be 
transcribed together, without precise indication of transcript 
boundaries. Hence, the TU can refer to one or more tran-
scripts covering an operon. Due to more complex operons, 
multiple transcripts can refer to the same TU (see Operon 
architecture). We collected a set of 1602 TUs from BsubCyc 
[35], 2483 TUs from SubtiWiki [8] and 1123 TUs that are 
implied by operons from DBTBS [27]. We complemented 
these TUs with the merged genes if (a) a gene was fully 
contained by the TU, (b) if it contained the TU or (c) the 
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overlap relative to the length of the gene was at least 70 %. 
Overall, we added genes to 46 TUs from BsubCyc, 753 TUs of 
DBTBS and 1968 TUs from SubtiWiki. We removed two TUs, 
one from DBTBS and SubtiWiki each, which were erroneous 
as they would span more than a quarter of the whole genome. 
The resulting set of unified TUs totalled 2483 TUs.

Transcription start and terminaton sites
We unified existing annotations of promoters and their TSSs 
and TTSs. We followed, for each type separately, an approach 
similar to the gene merging step. We first compared the 
distances and overlaps between the annotation to determine 
their resolution limits (Fig. S3). We determined for each data 
type the resolution limits (see Results). Assuming single-
nucleotide resolution for BsubCyc and DBTBS, and ±22 bp 
limits for Nicolas et al. predictions (two times the tiling-array 
interval), we merged the TSSs and TTSs separately in an 
approach similar to the gene merging. Instead of a resource 
priority, we resolved each overlapping group by keeping those 
annotations with the best resolutions. For each merged set 
of TSSs, we collected the information on which sigma factor 
promotes the transcription from the entry with the lowest 
resolution limit.

Untranslated regions
Within a distance cut-off of 2000 bp, we created a TSS and 
TTS map by associating TSS to the gene with the closest 
5′ end and TTS to the one with the closest 3′ end (Figs S4 
and S1b). We lowered the cut-off to 200 bp for the Nicolas 
et al. [4] annotations that had no previously associated 
transcriptional region. If there was a gap between a TTS 
and the associated gene of at least 15 bp (due to the resolu-
tion limits), we created a 3′ UTR in its place. We similarly 
created 5′ UTRs based on TSSs. However, we extended the 
length of 5′ UTRs up to the next coding gene if the first 
direct association is a ncRNA structure. We filled gaps 
longer than 15 bp between the genes listed in the TU with 
internal UTRs. The only exception is that we did not add 
an internal UTR for the sigK TU, because the over 10 000 
region within it is not actually transcribed due to its unique 
regulatory mechanism [63].

Operon architecture
The genes of one TU can be transcribed by one or multiple 
transcripts (see Transcriptional units). Due to isoform 
transcripts, the computation of operons needs to consider 
transcripts/TU that do not contain all genes, similar to how 
DBTBS annotates operons. We compute operons based on 
the TSS, TTS, UTR, and gene annotations. We also inferred 
novel TUs and the full transcripts by detecting paths in a 
directed graph (Fig. S1c). The nodes are TSSs, TTSs, UTRs 
and genes. We added dummy TSSs and TTSs for TUs whose 
genes had none associated. We connected the nodes with 
directed edges in the direction of transcription (Fig. S1c), 
e.g. a TSS is connected to the 5′ UTR it is associated with 
and from there to a coding gene. Each path that connects 
TSS and TTS represents a transcript that contains the genes 

and UTRs along each path, and TUs when only considering 
genes. Subsequently, we computed the operon architecture 
of the transcripts and genes in a second graph, which had 
genes and transcripts as nodes and edges between tran-
scripts and the associated genes. The operons are repre-
sented by the connected components in the graph (Fig. 
S1d). Due to the particularity of the sigK transcriptional 
regulation [63], we excluded the associated TU both from 
the transcript and operon inference.

Browser hub
We generated the browser hub according to the official 
UCSC genome browser documentation and converted 
the tracks into the custom binary format with the UCSC 
tools. The individual tracks were organized according to 
the track definition (https://​genome.​ucsc.​edu/​goldenPath/​
help/​trackDb/​trackDbHub.​html) and the search function-
ality was provided as a Trix index (https://​genome.​ucsc.​
edu/​goldenPath/​help/​trix.​html). We created a color-blind 
friendly color scheme to indicate the biotype in the browser 
(Fig. S5).

Inclusion of tiling array signals
The tiling-array was designed for an older reference genome 
sequence (accession no. NC_000964.2). We transferred 
the information to the most recent reference sequence 
(NC_000964.3) with UCSC genome browser tool liftOver 
(version 377) based on a pairwise genome alignment gener-
ated with lastz (version 1.04.00) [64, 65]. We extracted the 
log2 transformed foreground signals for the entire dataset 
(GSE27219). Instead of a single-nucleotide probe position, 
we show in the browser the coverage signal extended up 
to the starting position of the next probe (~22 nt). We 
also added information for the full probe oligonucleotides 
(45–65 nt). In the liftOver, we only allowed transfer for 
exact matches (minMatch=1). We discarded probes that 
would have changed the strand after lifting. In total, 2419 of 
383 143 (0.6 %) probes could not be lifted over. Yet, the tiling 
intervals after lifting were still 22 nt for 99.7 % of probes. 
Nicolas et al. [4] conducted an additional normalization 
step of the signals; however, the tool they used is no longer 
available. Given that the study that designed the array 
suggested that no extra normalization might be needed 
[66], we did not conduct a normalization of the signals.

CRISPR guide predictions
We predicted gRNAs binding to the B. subtilis genome 
and scored their specificity as CRISPR–Cas9 guides with 
CRISPRoff pipeline (v1.1) and RIsearch2 (v2.1) [47, 67]. 
For the computations, we used the default setting for 
both tools as recommended. Potential off-targets with up 
to six mismatches were considered for the estimation of 
specificity. For all identified on-targets, their efficiency 
was estimated e.g. with the Azimuth (v2.0) score [46]. The 
predicted cut-positions of all on-/off-targets were checked 
for overlaps with BSGatlas with the tools listed under 
‘Computational workflow’.

https://genome.ucsc.edu/goldenPath/help/trackDb/trackDbHub.html
https://genome.ucsc.edu/goldenPath/help/trackDb/trackDbHub.html
https://genome.ucsc.edu/goldenPath/help/trix.html
https://genome.ucsc.edu/goldenPath/help/trix.html
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RESULTS AND DISCUSSION
Enhanced annotation of coding genes, and non-
coding and structured RNAs
To obtain an enhanced annotation of the genomic coor-
dinates of coding and non-coding genes, we collected 
resource-specific gene annotations for B. subtilis strain 168 
from BsubCyc [35], RefSeq [6, 24, 60], SubtiWiki, the tiling-
array based predictions by Nicolas et al. [4, 8] and the ribos-
witches identified by Dar et al. [26] (Table 1). In addition to 
these resources, we included our computational screen (see 
Methods) of the B. subtilis genome for non-coding and struc-
tured RNAs using Infernal and Rfam version 14.1 [38, 39]. 
We generated a combined gene annotation set that addresses 
both redundancies and discrepancies between and within 
the resources. We first prioritized the resources according to 
prior knowledge about their reliability, e.g. manually curated 
resources are more trustworthy than computational predic-
tions (Table S1). Afterward, we found and inspected all pairs 
of gene annotations with overlaps in gene coordinates and 
employed tailored strategies for how these should be resolved. 
In general, the annotation of a higher prioritized resource will 
replace an overlapping annotation of lower priority if they 
fulfil the criterion for matching gene pairs, as described below, 
to prevent mixing of annotations, e.g. of coding genes and 
RNA structures. Finally, we integrated the meta-information 
from the individual resources into the merged gene set.

Rfam screen. We scanned the B. subtilis genome with the 
entire Rfam model collection, including models for non-
bacterial RNAs, as a control to tune the prediction param-
eters, Infernal’s scores and E values according to our chosen 
annotation confidence levels: conservative, medium and 
relaxed (see Methods). Seven non-bacterial hits were found 
for the relaxed confidence level (E value <10−3, no score cut-
off): four miRNA families (MIR159, MIR167_1, mir-580 
and mir-598), RUF1 from eukaryotes and two families from 
archaea (sRNA162 and the CD-box snoRNA sR2). These are 
more hits than the single hit that would be expected by chance 
(1066 non-bacterial families and E value cut-off of 10−3). In 
contrast, less than one random hit should be expected for an 
E value cut-off of 10−6, which was used for the conservative 
and medium confidence levels. And indeed, all hits from 
the conservative and medium confidence levels were from 
bacterial families only. The conservative confidence level 
had 214 Rfam in the B. subtilis genome of which 17 (8 %) 
were not in any previous annotation resource dedicated to B. 
subtilis (as determined after gene merging). These 17 annota-
tions were 8 Bacillaceae-1 structures, 1 T-box riboswitch, 1 
cspA thermoregulator, 3 presumed cis-regulatory structures 
(yjdF, epsC and PyrG-leader), the asRNA structure dicF, a 
sRNA described in some bacterial ureB 5′ UTRs (although 
our Rfam scan located the structure anti-sense downstream 
of B. subtilis ureB), an additional toxin–anti-toxin sRNA 
bsrC (between the coding genes cspC and ydeB), and a sRNA 
structure usually associated with bacterial plasmids (between 
nicK and ydcS). An additional 16 matches were obtained at 
the medium confidence level, 8 of these were not annotated 

by any previous annotation resource (see below). These eight 
ncRNA hits were two cspA RNA thermometers structures 
[68], the asRNAs rliD [69] and AsrC [70], the sRNA bsrG 
[16], rli54 [71], Ysr141 [72] and an additional self-splicing 
intron [73] within the ribonucleoside-diphosphate reductase 
gene nrdFB. The relaxed level adds 48 more candidates than 
the medium confidence level (excluding the 7 non-bacterial 
hits). Given the non-bacterial hits, we excluded the relaxed 
scan from the merging, yet we provide it as supplementary 
information for more putative ncRNA candidates.

Gene annotation resources and prioritization. The BsubCyc 
annotation contains 4188 coding, and 183 non-coding genes 
and structured RNA annotations. RefSeq contains a similar 
number (4325 coding and 212 non-coding genes). SubtiWiki 
provides meta-information for the genes listed by RefSeq and 
for the 153 transcribed regions predicted to be non-coding by 
Nicolas et al. (excluding predicted UTR regions) [4]. Dar et 
al. predict 82 regions as potential riboswitches [26]. In Table 
S1, we list the individual priorities of the resources we used 
in the merging procedure. Instead of an iterative merging 
procedure that might depend on the order of merging, we 
use a single step merging (Fig. S2, cut-offs derived in the next 
paragraph). We prioritize RefSeq over BsubCyc, because it 
contains the most recent expert curation of the B. subtilis 
genome coordinates [6]. To prevent that ncRNA annotation 
from RefSeq conflict with coding annotations from BsubCyc, 
we furthermore split protein-encoding genes and ncRNAs 
into separate sub-resources and prioritized them separately. 
Following the distribution of annotation similarities (Fig. 
S6), we consider ncRNA information from the Rfam screen 
to be of equal quality as those from RefSeq and BsubCyc 
(due to highly similar annotations; Fig. S6). Thus, we ranked 
Rfam and RefSeq equally; however, to allow RefSeq as the 
newer reference annotation to overwrite BsubCyc, we ranked 
BsubCyc lower. The riboswitch predictions by Dar et al. are 
based on Term-seq experiments, such that these should be 
more accurate than tiling-array-based annotations. Therefore, 
we rank these higher than the Nicolas et al. predictions [4]. 
Given the proposed high-resolution potential of the Dar et al. 
predictions, we prioritized them equally with the non-coding 
part of BsubCyc. We ranked the medium confidence Rfam 
scan equally with the Nicolas et al. predictions. In short, we 
prioritized according to the principle of coding over non-
coding resources, manually curated annotations over in silico 
generated annotations and high over low resolution.

Matching of overlapping gene pairs from two resources. To 
decide when overlapping annotation pairs from two different 
resources should be merged, we calculated the ratio of lengths 
of the intersection and the union, which can also be recognized 
as the JIs, and inspected the distributions of JIs both between 
and within resources (Fig. S6). These showed that nearly all 
overlapping CDS annotations were either very similar (JI 
>0.98) or very dissimilar (JI <0.1). The dissimilar cases were 
at least in part due to the on-going curation efforts [6]. In 
general, CDSs do not overlap ncRNAs with the exception of 
riboswitches and a single overlap with a predicted ncRNA from 
a low confidence resource (S1078). For the overlaps between 



8

Geissler et al., Microbial Genomics 2021

ncRNAs, the JI distributions depend on the resource. In 
particular the ncRNA predictions from the tilling-array study 
[4] tended to be less similar to the annotations from manually 
curated resources (predominately JI >0.8, but even as low as JI 
~0.5 when comparing to manually curated resources), which 
is due to the constrained resolution of the underlying tech-
nology employed by Nicolas et al. The instances of very low 
JIs of some non-coding annotations in comparison to coding 
annotations was due to their short length (see also subsection 
‘Improvements in gene coordinates’). For example, Dar et al. 
[26] predicted a 182 bp long riboswitch upstream of yxjH that 
overlaps (107 bp, JI 0.59) with a SAM riboswitch annotation 
from RefSeq (BSU_misc_RNA_61). We also investigated the 
distribution of JI for gene pairs that corresponded to each 
other by matching gene names and matching locus tags. We 
found that all such corresponding genes, both coding and 
non-coding, had a JI above 0.8, with the exceptions of two 
different annotations for the spore coat protein cotT (JI=0.77), 
yoyG (JI=0.49), yqjU (JI=0.53) and yrzH (JI=0.45). Therefore, 
we decided to keep both annotations for these four genes as 
separate entries. These gene annotation differences cannot 
be resolved by homology, according to their BsuCyc entries.

Gene merging. In conclusion of the last paragraph, we merged 
overlapping genes if one of the following criteria was met: (i) 
their JI was at least 0.8, (ii) both annotations were non-coding 
and their JI was at least 0.5, or (iii) a ncRNA annotation was 
fully contained within another. However, riboswitches were 
not merged with overlapping coding genes. For the merged 
annotation, we used the coordinates from the resource with 
the highest priority, or the union of the overlapping coordi-
nates if multiple resources had the highest priority (Fig. S1a). 
In practice, the latter only applied to the ncRNA resources. 
The merging procedure is outlined as pseudo-code in Fig. 
S2. In total, the merging generated a non-redundant set of 
4332 coding genes and 441 ncRNAs, which included 103 
cis-regulatory RNA structure elements. We assigned each 
merged gene the most specific biotype found in the group 
(e.g. sRNA instead of putative predicted ncRNA). Finally, we 
checked locus tags and gene names and found that there were 
no erroneously merged genes or missed gene pairs. Note that 
in this approach we merged across all priority levels and at the 
same time merged annotations within the same level, possibly 
even within the same resource (Fig. S1a).

Association of meta-information. By traversing the merging 
steps backward, a comprehensive set of meta-information can 
be associated with the merged gene annotations. This includes 
general descriptive texts, synonyms, molecular masses of 
translated proteins and literature references. By using the 
locus tags provided from the individual resources, we looked 
up the corresponding entry SubtiWiki and included its meta-
information. We preferentially used the primary naming used 
in SubtiWiki. In addition, we added BsubCyc’s functional 
annotation with GO terms [36, 37] for 71 % of all genes and 
enzyme classifications from SubtiWiki (14.5 % of all genes), 
RefSeq (19.5 %) and BsubCyc (15.7 %), which in combina-
tion covers nearly 22 % of all genes. We recoded these enzyme 
classifications into a human-readable format according to the 

definitions in the BRENDA database [74]. Finally, we added 
the information available in SubtiWiki’s B. subtilis specific 
category system, which contained information about 91.9 % 
of genes. We also associated KEGG pathway information with 
28.6 % of genes via using KEGG’s REST interface [75]. From 
the Nicolas et al. tilling-array study [4], we listed experimental 
conditions with the highest and lowest expression and genes 
with a correlated expression as they provided. We did not 
further filter the meta-information, but for each piece of 
information, we indicated its origin.

Improvements in the number of ncRNA annotations. In 
comparison to the latest RefSeq assembly, our merged gene 
annotation contained 196 additional ncRNA genes and struc-
tured RNA elements (Table 2), of which 64 ncRNAs have a 
clear annotation of the ncRNA biotype (e.g. sRNA instead 
of putative ncRNA). A total of 27 of these 64 ncRNA were 
exclusively based on Dar et al. [26] riboswitches and 25 were 
exclusively from Rfam hits. Only one of the remaining 12 had 
no overlap with an Rfam hit; it originated from BsubCyc and 
a Nicolas et al. prediction. Seven were Nicolas et al. predic-
tions [4] (with Rfam hit). The rest were Dar et al. detected 
riboswitches, of which two had an overlapping Nicolas et al. 
prediction. The remaining 132 ncRNAs of less specific non-
coding biotype originated from the Nicolas et al. predictions. 
In total, the number of annotated known sRNAs, asRNAs and 
riboswitches doubled in the merged gene set in comparison 
to the RefSeq annotation.

Improvements in gene coordinates. We inspected refinements 
in coordinates by the difference in the number of bp (Table 
S2). Unless explicitly mentioned otherwise, we use bp in the 
context of genomic coordinates. Not surprisingly, we find that 
the ncRNAs show a lower JI for a given bp difference simply 
because in general they are shorter than the protein-encoding 
genes (Fig. S7). Because RefSeq’s coding genes are assigned the 
highest priority in the merging step, no coordinates changed 
for them with the exception of an artefact, a predicted ORF 
(RefSeq entry BSU36079, comment ‘doubtful CDS’), which 
was merged into the larger coding gene cotG containing it. 
We observe that 49 coding genes annotated in BsubCyc has 
coordinate changes between 10 and 250 bp, although, due to 
the lengths of the genes, the overall JI, between the respec-
tive original annotations and the merged gene annotations, 
was barely reduced. In the comparison of overlaps between 
resources, we mentioned four highly divergently annotated 
CDSs with low JI between RefSeq and BsubCyc. Besides these, 
BsubCyc only uniquely annotated three more hypothetical 
proteins (yfmA, ypzE and ytzK). Otherwise, all coding genes 
of BsubCyc were found in RefSeq. Thus, our merging had a 
limited effect on CDS coordinates, likely reflecting the high 
quality of the protein annotation. In contrast, the coordinates 
of 68 % of RefSeq’s and 79 % of BsubCyc’s annotated non-
coding genes and structured RNA elements were refined 
up to 500 bp, although even smaller changes of 50 to 100 bp 
reduced the JI down to 0.6. These changes of BsubCyc’s 
and RefSeq’s non-coding annotation were the result of the 
merging with higher confidence resources from the literature-
based resources. Moreover, two putative ncRNA from the 
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Nicolas et al. [4] tiling-array study were reannotated as part 
of the three-component toxin–antitoxin-antitoxin system 
SpoIISABC (BSU12815, S458) and as a separate hypothetical 
short peptide (BSU28509, S1078).

Promoter map and complex operon architecture
From the annotation resources stated above, only BsubCyc 
[35] explicitly annotates a few complete transcripts. More 
commonly, the transcript boundaries are not indicated 
(Table 1). Using our definition of TUs (see Transcriptional 
Units), we refer to an operon as a region of one or more 
genes covered by at least one common transcript or multiple 
transcripts covering at least one full gene sequence (both 
CDS and non-coding). The full boundary relative to a TU 
is given by an upstream TSS and a downstream TTS. In the 
case of isoforms of varying 5′ or 3′ UTR lengths, a TU might 
have multiple TSSs/TTSs. The annotations of TUs, TSSs and 
TTSs are stored in multiple resources, and these resources 
have varying accuracies in the annotations (see below); thus, 
the task of first combining the individual resources and after-
ward inferring transcripts is not straight forward. Here, we 
addressed this by (i) combining known TU annotations, (ii) 

creating a single promoter map from existing TSS annota-
tions, (iii) integrating known TTS positions, (iv) identifying 
UTR elements from the location of TSS/TTS relative to TUs, 
and finally (v) computing individual transcripts, including 
isoforms of bacterial operons. However, two complicating 
factors needed to be considered. First, the resources do not 
annotate the TUs relative to the same genome sequence or 
might have potentially ambiguous gene names. Thus, we 
transferred them to the same, above merged, gene set, and 
complemented them accordingly with new annotations. 
Second, TSSs and TTSs could give rise to novel TU annota-
tions when a TSS/TTS is located inside the region implied 
by a TU without an additional adjacently located upstream/
downstream TU (Fig. S1c). At the end of this section, we also 
verified the consistency of our annotations, those of the UTRs 
in particular, by (i) comparing the biotypes with overlapping 
Nicolas et al. predictions [4], and (ii) checking if the anno-
tations are reliable with the transcription signals from the 
tiling-array study.

Known TUs. BsubCyc’s transcript annotations were based 
on 1602 TUs, SubtiWiki stated 2267 TUs [8] and DBTBS’s 

Table 2. Comparison in number of annotations after merging.

The number of annotations are shown for the individual resources (columns 3–7) in comparison to the merged results (column 2). For purposes of 
readability, the conservative and medium Rfam confidence levels have been aggregated, as well as the coding/non-coding parts of RefSeq and BsubCyc. 
The full, unaggregated table is shown in Table S1. The table below is subdivided into coding (first four rows of data) and non-coding annotations 
(remaining rows of data). Both the coding and the non-coding parts start with a row showing the total number of annotations. The lines below these 
rows further qualify these with respect to potential putative annotation status or a specific non-coding biotype. The percentages are relative to the 
number in each block.

Gene annotation Merged result Individual resources

 �   �  RefSeq  �  BsubCyc Dar et al. riboswitches [26]  �  Rfam Nicolas et al.
predictions [4]

Protein-encoding genes 4332 4324 4188 – – –

Putative/predictions 79 (2 %) 88 (2 %) 1210 (29 %) – – –

Hypothetical status removed – 9 (0.2 %) 1204 (29 %) – – –

Resource specific genes – 144 (3 %) 8 (0.2 %) – – –

ncRNAs 408 212 183 82 230 153

rRNA 30 (7 %) 30 (14 %) 30 (16 %) 0 (0 %) 30 (13 %) 0 (0 %)

tRNA 86 (21 %) 86 (41 %) 86 (47 %) 0 (0 %) 86 (38 %) 0 (0 %)

Small regulatory RNA 37 (9 %) 14 (7 %) 9 (5 %) 0 (0 %) 31 (13 %) 0 (0 %)

Regulatory asRNA 8 (2 %) 3 (1 %) 2 (1 %) 0 (0 %) 4 (1 %) 0 (0 %)

Riboswitch 104 (25 %) 55 (26 %) 26 (14 %) 82 (100 %) 73 (32 %) 0 (0 %)

Self-splicing intron 3 (1 %) 0 (0 %) 0 (0 %) 0 (0 %) 3 (1 %) 0 (0 %)

Ribozyme, SRP, tmRNA 3 (1 %) 2 (1 %) 2 (1 %) 0 (0 %) 3 (1 %) 0 (0 %)

Putative/predictions 137 (34 %) 22 (10 %) 28 (15 %) 0 (0 %) 0 (0 %) 153 (100 %)

Hypothetical status removed – 17 (8 %) 29 (16 %) 0 (0 %) 0 (0 %) 19 (12 %)

Reclassified as coding – – – – – 1 (0.7 %)

Resource-specific genes – 10 (5 %) – 27 (33 %) 25 (11 %) 133 (87 %)
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operons implied 1123 TUs [27]. We investigated the over-
laps of these TUs with the merged gene set and found two 
main overlap scenarios: either genes were fully contained by 
a TU, or a gene or structure had a large overlap with a TU, 
possibly to the extent that it fully contained it. The latter was 
the case for a small peptide sequence of unknown function 
(BSU32719) that was fully contained in a known small regula-
tory RNA (bsrI). Thus, we decided to complement a TU by 
a gene or structure if (a) the gene was fully contained by the 
TU, (b) if it contained the TU or (c) the overlap relative to the 
length of the gene was at least 70 %. The complemented, non-
redundant union of these sets described 2473 TUs. Following 
this, we excluded the sigK-related TU. Its full 10 000 bp region 
is, due to its unique regulatory DNA excision mechanism, not 
actually transcribed [63].

Promoter and termination map. We collected the TSS and 
TTS annotations from the external resources. In accordance 
with experimental verification stated in the descriptions, we 
take the BsubCyc and DBTBS TSSs as the gold standard. 
Indeed, these TSSs/TTSs had nucleotide resolution (Fig. 
S3a), which is given by the minimal distance between two 
separate annotations within a single resource (similar to 
the spatial resolution of an eye to distinguish two points). 
In contrast, the TSS/TTS annotations of Nicolas et al. had 
at least 45 bp between them, which is given by a window of 
the annotation position ±22 bp. The 22 bp is due to the tiling 
intervals of the tiling-array design [4, 66]. Although Nicolas 
et al. reported that 85 % of a reference set they created was 

within 12 bp distance to their predicted TSSs, our observa-
tions suggest that the distance to the actual curated TSS 
is about twice that (Fig. S3b). That increase in observed 
distance is due to the nature of the reference set. Nicolas et 
al. used the promoter binding sites from DBTBS, which are 
intervals that stretch −50 to +15 relative to the TSS. More-
over, the TSS/TTS positions of Nicolas et al. were predicted 
from a mean signal from multiple probes. Therefore, we 
assumed in the following that the Nicolas et al. TSS/TTS 
annotations have a resolution in a 45 bp window, in which 
the biological true position should be expected. Similar to 
the gene merging procedure, we first identified groups of 
TSSs (and TTSs separately) that overlapped within their 
resolution limits, and afterward retrieved a unified TSS and 
TTS map by taking per group the TSS/TTS annotations that 
had a resolution equal to the minimal resolution within 
each group. The unified map contained 3390 TSSs and 2566 
TTSs (Fig. 1). The underlying annotation resources only 
shared a set of 12.4 % of the TSSs and 24.3 % of the TTSs. The 
largest quantity of annotation originated from the Nicolas 
et al. tiling-array study [4]. In the combined set, 79.2 % of 
the TSSs and 56.2 % of the TTSs were solely provided by 
the tiling-array data. In contrast, the union of the higher 
resolution resources BsubCyc and DBTBS provided unique 
annotations for 3.6 % of TSSs and 18.1 % of TTSs. Overall, 
a total of 20.8 % of the TSSs and 43.8 % of TTSs had both 
single-nucleotide resolution and an expert curation origin. 
In comparison, the distribution of sigma factor binding 

Fig. 1. Comparing BSGatlas to the individual resources. (a) Number of TSSs and (b) TTSs. (c) Shared TSSs and (d) TTSs between the 
resources. (e) Distributions of sigma factor binding sites.
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sites associated with the TSSs remained similar between 
the resources, although not as many promoters had an 
unknown sigma factor as in BsubCyc. Rapid amplification 
of cDNA ends (RACE) experiments might be able to add 
additional high-resolution TSS annotations; however, we 
are unaware of any studies that provide such whole-genome 
information for B. subtilis [76]. However, a small-scale 
RACE experiment that found five TSSs was conducted in 
the study that designed the array used by Nicolas et al. [66]. 
Four of these five TSSs are also contained in the TSS map 
computed here. The fifth (near S953) had no TSS annotation 
from any of our used resources. Given the small scale of 
the RACE experiments, we did not include them in our 
annotation generation; however, the comparison with that 
one study should illustrate that our TSS unification step 
does indeed provide reliable TSS annotations, in particular 
because only prior annotation has been used.

UTR annotations. The UTRs annotated by Nicolas et al. [4] 
are divided into non-overlapping pieces. Thus, these anno-
tations only reflect the entire biological UTR regions when 
strung together. The total lengths of these biological 5′ and 3′ 
UTRs in B. subtilis are at most 2000 bp long, and indeed most 
(>95 %) of TSSs/TTSs are within that distance to the 5′/3′ 
end of gene annotations (Table S3, Fig. S4b). (These lengths 
also include potentially overlapping regulatory structures.) 
Moreover, 85 % of TSS annotations are located within 500 bp 
upstream of a gene (Fig. S4a). Although only 60 % of TTSs 
are clearly located downstream of a gene, the proportion is 
also >85 % when considering a small 25 bp overlap to account 
for resolution limitations and the fact that terminators are 
regions that fold to a hairpin structure. However, Nicolas et 
al. predicted 242 TSSs and 1125 TTSs that were not associated 
with a transcribed region. These were considerably further 
away >200 bp from gene annotations (45 % of TSSs and 25 % 
of TTSs; Fig. S4b). Therefore, we predicted the regions from 
TSSs to downstream genes and TTSs to upstream genes, 
within the 2000 bp distance cut-off, represent 5′ UTRs and 
3′ UTRs, respectively. For those TSSs/TTSs without detected 
transcribed regions, we lowered the cut-off to 200 bp. After 
filtering for a minimum of 15 nt long UTRs, we derived a map 
of 2761 5′ UTRs and 1449 3′ UTRs. This approach associated 
103 TSSs to downstream cis-regulatory RNA structures. In 
order to fully represent the UTR, we extended the predicted 
5′ UTR annotation to the following coding gene. Finally, we 
inferred 1125 internal UTRs from the regions between genes 
that are known to be co-transcribed according to the above-
described combined TU list. Although some of these internal 
UTRs overlap with what Nicolas et al. described as intergenic 
regions (Table S3), we find them ambiguous: the definition 
of an intergenic region is only the region between two genes; 
as defined by the term SO:0000605 of the sequence ontology 
[9]. However, intergenic regions do not distinguish 5′, 3′ 
or internal UTR. For all UTRs longer than 46 bp (shortest 
UTR in the work of Nicolas et al.), the distribution of our 
in silico obtained UTRs lengths were similar to those of the 
ones obtained by Nicolas et al. (pi <1.2×10–7, two-sample 
Kolmogorov–Smirnov test for all UTR types i) (Fig. S4b). We 

found 2216 short UTRs between 15 and 45 bp. Overall, our 
combination of TSS/TTS allowed for annotation of nearly five 
times more 5′ and 3′ UTRs than Nicolas et al. (4210 vs 925) 
and more than twice as many internal UTRs (1125 vs 505, 
including their intergenic regions).

Identification of transcripts and operons. We used the 
associations found between TSSs, TTSs, UTRs and genes 
with respect to TUs to compute transcripts (Fig. S1c). By 
considering TSSs or TTSs that were inside of annotated 
TUs, we inferred 717 novel TUs. In total, we found 4517 
transcripts. The number of transcripts is larger than those 
of TUs, because a TU can have multiple transcripts with 
varying UTR lengths. In comparison, BsubCyc annotated 
1602 transcripts. Under the assumption that two transcripts 
that share the full sequence of at least one gene are isoforms 
from the same operon, we found a set of 2266 operons (Fig. 
S1d). In accordance with the expectation, almost all of these 
operons (99.7 %) had a transcript containing all of the oper-
on’s genes. Afterward, we looked up for each transcript which 
TU annotation it was based on, and from which resource the 
TU originated. Subsequently, we computed the proportion 
of genes for which each resource provided transcriptional 
annotation. The combined set of TUs explained transcripts 
for 85 % of the genes, which is 3 % more than the largest 
individual resource. When including our novel TUs, 92 % of 
all genes had a transcript annotation.

Operon architecture. Of the 2266 operons, 1396 were 
monocistronic and 865 polycistronic. We also considered 
the evolutionary context to related micro-organisms. It 
was of interest to compare operons we obtained to those of 
related micro-organisms; however, to our knowledge, only 
a few comprehensive genome-wide annotations are avail-
able based on high-resolution RNA-seq data. Therefore, we 
compared the operons to operon annotations in Strepto-
coccus pneumoniae [77] and E. coli [10] (Fig. 2). BSGatlas 
annotates operons without alternative isoforms as simple, 
monocistronic operons in 45.5 % of all cases, and only 13.2 % 
as traditional, polycistronic. A total of 41.3 % are annotated 
as complex operons, meaning that they have alternative 
isoforms due to alternative TSSs and TTSs. In comparison, 
E. coli has 45 % simple, 19 % traditional and 36 % complex 
operons. S. pneumoniae has 47 % simple, 10 % traditional and 
43 % complex operons. We computed the distribution of the 
number of genes, internal TSSs and internal TTSs per operon, 
and visually observed similar distributions between BSGatlas’ 
B. subtilis and S. pneumoniae (Fig. S compared to Warrier et 
al.’s figure 3b), although BSGatlas annotated more monocis-
tronic operons without known TSSs or TTSs. Given that our 
inference is based on already curated TUs, we claim that our 
operon annotations are biologically reliable. We showed that 
the distribution of operon classes was comparable to other 
micro-organisms, which further supports that statement. A 
homology-based comparison of the annotations between the 
organisms would be needed for a definite statement about the 
phylogenetic conservation, but this would be outside of the 
scope of this annotation effort.
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Verification of UTR biotypes. The 5′ and 3′ UTR annota-
tions computed here resulted from matching TSS/TTS to 
the nearest downstream/upstream gene with a cut-off. We 
verified the approach and the resulting annotations by first 
confirming that the UTR annotations by Nicolas et al. [4] were 
still contained within (both in coordinates and type). Given 
that the number of our annotations was not only substan-
tially larger but also solely based on a distance cut-off, we also 
checked for evidence of expression for the entire annotated 
region in the tiling-arrays signal (see next subsection). For the 
initial confirmation step, we identified pairs of annotations 
between the annotations computed here and those of Nicolas 
et al. that overlapped and checked for consistency in biotypes 
(Table S4). Overall, 95.6 % of all Nicolas et al. predicted 5′ 
UTRs (646 of 676) overlapped and agreed in biotype with 
our computed UTRs, although there were a few additional 
overlaps with other UTR types in the case of isoforms. The 
Nicolas et al. predicted 3′ UTRs are distinguished into UTRs 
with and without clear termination information. The agree-
ment for 3′ UTRs with clear signals was 84.8 % (106 of 125). 
Non-surprisingly, only 46 % (57 of 124) of 3′ UTRs without 
clear termination information overlapped. These 57 3′ UTRs 
are predominately not annotated in the BSGatlas, because of 
the missing termination information. Nicolas et al. also anno-
tated intergenic/intragenic regions of which 69.7 % (352 out of 
505) had overlaps with our UTR annotations. Because these 
overlaps were relative to all UTR types (5′/3′/internal), we 

argue that the terminology intergenic/intragenic is unsuitable 
to fully annotate UTRs. Overall, 46 Nicolas et al. annotations 
overlap both a 5′ and a 3′ UTR in the BSGatlas (Table S4). We 
suspect two main reasons for this. On the one hand, the tilling-
array study had a resolution limitation, which leads to difficul-
ties in identifying separate UTR elements, such as described 
above. On the other hand, the TU annotation sources – that 
we used – were not available at the time-point of the Nicolas 
et al. milestone study. Yet, even with the availability of higher-
resolution RNA-seq data, the lack of TU annotation hinders 
the prediction of internal UTRs and makes it a non-trivial 
endeavour to clearly distinguish them from two overlapping 
5′/3′ UTRs of two separate operons/TUs [78]. The overlap 
comparison showed that 26.6 % (1421) of our 5335 obtained 
UTRs were not present in other resources and, thus, these 
might be new UTR annotations instead of refinements. In 
total, we annotated nearly four times more UTRs than the 
Nicolas et al. annotations.

Transcription signal evidence. In order to assess the reliability 
of the large number of novel UTR annotations and the 
BSGatlas in general, we checked to what extent these annota-
tions had evidence of transcription. This was done by loading 
the transcription signals of the entire tiling-array signals of 
Nicolas et al. [4] Unfortunately, the normalization method 
used by Nicolas et al. is no longer available, yet it has been 
suggested that normalization for that specific array design 

Fig. 2. Comparing the different resources with respect to the number of (a) operons, (b) TUs and (c) the proportion of the merged gene set 
they cover. Here, the numbers in the ‘combined’ case (orange bars) refer to the annotation before computing novel TUs. (d) Comparison 
of the operon classes for our computed operons in B. subtilis with those found in S. pneumoniae and E. coli [10, 77].
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might not be needed [66]. We computed the mean max log2 
tiling-array signal coverages for each bp position across all 
conditions (ML2) of the BSGatlas annotations and those of 
Nicolas et al. For control purposes, we also included the ML2 
for regions that were annotated neither in the BSGatlas nor in 
the work of Nicolas et al. (annotation gaps). The coding genes 
had the highest transcription signal where 90 % of coding 
annotations had ML2 >11.5 and 50 % had ML2 >14 (see ML2 
distribution in Fig. S9). The 90 and 50 % ML2 percentiles 
for non-coding genes were 11.5 and 13.5, which are slightly 
lower than those of the coding genes. Furthermore, the level 
of overall transcription signals for the 5′ and internal UTR 
annotations proposed in the BSGatlas were about on the same 
coverage levels as the 5′ UTR annotations of Nicolas et al. 
and the non-coding genes according to the ML2 measure. 
Given the decrease of sequencing signal towards the 3′ end 
of transcripts, which are particular for all types of DNA-array 
chips [79], it is not surprising that the 3′ UTR annotations 
had an overall weaker signal strength: 90 % of the Nicolas et 
al. 3′ UTRs had ML2 >11.5 and 50 % had ML2 >12. The ML2 
percentiles for the 3′ UTRs proposed in this study were 11 
(90 %) and 13 (50 %). The ML2 coverages of Nicolas et al.’s 
intergenic/intragenic regions were between the ML2 values of 
3′ and 5′ UTRs, which further emphasizes that these regions 
should be classified as separate types. However, 95 % of all 
annotations (from both BSGatlas and Nicolas et al.) have an 
ML2 far above 10.5. In comparison, 55 % of annotation gaps 
had an ML2 <10.5 and 85 % ML2 <11. Therefore, we suggest 
that the annotation proposed in this study has clear evidence 
of transcriptional activity. Surprisingly few annotation gaps 
(<5 %) had potential evidence of transcription (ML2 >12), 
which indicates potential for future annotation efforts; 
however, a more in-depth analysis of these regions and the 
individual tiling-array experiments is out of scope of this 
paper.

Genome browser hub with enhanced information 
access
The UCSC genome browser provides the framework to 
easily visualize and share track information from sequencing 
experiments and annotation sources [80]. There is a B. subtilis 
genome browser in UCSC’s archaeal genome section [81], 
yet this hub has the same protein-centric focus as discussed 
earlier and a limited set of data tracks. Thus, we compiled our 
BSGatlas annotation as an assembly hub (Fig. 3d), thereby 
allowing users to investigate their data side by side with our 
annotation, without the need to install dedicated software 
on their machines. We set up the hub to allow searches for 
all genes by their names, synonyms and loci identifiers, 
including the alternatives and spelling variants available from 
all used resources. For each annotated gene, transcript, TSS, 
etc., we provide a detailed summary page that contains all 
meta-information that we retrieved from externally available 
resources (Fig. 3c). For each piece of meta-information, we 
indicate from which of the external resources it originated, 
and we link back to the external resources. Moreover, our 
hub contains the tracks for the resources used to create 

BSGatlas, meaning that users can compare the original 
annotation themselves. The genome browser also includes 
a table browser and a blat search option (which we enable 
through our server infrastructure) [82], which facilitates the 
easy download of data sets and identification of B. subtilis 
genomic sequences, respectively. To ease the navigation of the 
large number of annotation-tracks the BSGatlas provides, we 
grouped them. A user can interactively activate the display of 
groups in the genome browser, and they can select for each 
group individually their tracks of interest. On each detailed 
description page, we include a lightweight browser (based 
on the ​igv.​js library [83]) (Fig. 3e), which allows a user to 
get a fast overview of the genomic context of an annotation. 
We also provide the annotation as a GFF3 download option 
(Fig. S1e) to facilitate offline visualization of the BSGatlas with 
programs such as IGV or IGB [83, 84]. We use a unified colour 
scheme across the different visualization options. The colour 
scheme indicates the gene types (protein, tRNA, rRNA, etc.) 
and the strand location. Additionally, we provide gene record 
information for the various gene types and gene sets; these 
are at the moment enzyme classifications, functional annota-
tion with GO terms and SubtiWiki’s category system (Fig. 3a, 
b). Thus, the BSGatlas now offers access to gene records in a 
single combined resource, and users can compare the meta-
information between the resources more easily. The BSGatlas 
can be accessed at: https://​rth.​dk/​resources/​bsgatlas/.

We included the tiling-array signals of the over a hundred 
conditions from the work by Nicolas et al. [4] for visualization 
in the genome browser. Given the large number of conditions 
and replicates (>250 tracks), we added a composite track that 
allows enabling/disabling individual experiments by users. 
The tracks are coloured according to the experiments, and 
replicates were kept separate. To improve readability, the 
browser shows the signals with a ‘smoothing window’ by 
default. A user can disable that smoothing in the browser.

CRISPR gRNA design with polycistronic off-targets
Currently, no genome-wide gRNA libraries exist for B. subtilis 
that could tell the predicted efficiency or specificity of the 
different gRNA designs. When multiple target regions/gRNAs 
are possible for desired genome-edit purposes, computational 
assessment of alternative gRNAs could maximize the success 
rates prior to unnecessary experimental efforts. In the UCSC 
genome browser hub, we present all on-target regions in the B. 
subtilis genome that could be targeted with the CRISPR–Cas9 
system. Each on-target (gRNA) is evaluated for its on-target 
efficiency and off-target potential (see Methods). In addi-
tion to these scores, for every gRNA, we list the potential 
off-target genomic regions for up to four mismatches 
(although up to six is used for the score computation). We 
also extended the list of putative gene off-targets by using 
the BSGatlas operon annotations of polycistronic operons, 
because the CRISPR complex has a demonstrated impact on 
the entire operon [48]. To our knowledge, no previous large 
scale gRNA predictions for the B. subtilis genome exist, in 
particular because of the lack of easy accessibility to operon 
annotations as are now possible with the BSGatlas. Overall, 

https://rth.dk/resources/bsgatlas/
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our CRISPRspec pipeline identified 378 050 guide sequences 
of 23 nt lengths (including PAM sequences). We only predict 
guides with NGG PAMs, but also consider off-targets with 
other PAMs (NGG, NAG and NGA). The specificity predic-
tion indicates that 1792 gRNA have multiple on-target regions  

(exact sequence match). These potential multiple on-target 
positions are also listed in the browser. By default, the browser 
shows only guides with specificity CRISPRspec ≥7, a cut-off 
found to identify the specific guides in the CRISPRoff pipeline 
[47]. A user can choose to show all guides. All this information 

Fig. 3. Illustration of the BSGatlas and its features. (a) The BSGatlas start page provides the main groups of navigational entries that lead 
to either the gene records, the search function or the various visualization options. (b) The gene record pages have the same structure 
across each classification system, these are gene types, enzyme classes or functional classification as listed in SubtiWiki or GO terms 
(a subset is shown in the figure). Each group is shown as a clickable entry, which list its associated genes. The gene names are shown 
as links to (c) detailed description pages. These show all meta-information we found for all genes and all other annotated entries, such 
as transcripts and operons. (d) UCSC genome browser. The user has the option to directly show the BSGatlas annotation as an assembly 
hub in the UCSC browser. Thus, they can also show their data, e.g. an RNA-seq experiment, right next to the annotation. Underneath the 
UCSC browser panel, a user can control details of what parts of the BSGatlas are shown. In addition, this includes the gene coordinates 
as they were originally annotated, which allows a closer investigation of the gene merging process. Here, a user can also opt-in to show 
the predicted CRISPR–Cas9 gRNAs and the signals from the tiling-array study. A click on the individual tracks shows more in-depth 
information on the guides and the tiling array colouration. (e) Quick browser. We provide a fast visualization directly on the BSGatlas 
main page, which allows a user to get a quick overview of the annotation without the need to leave the webpage. A click on any BSGatlas 
annotation redirects to the corresponding description page. (The browser is available at http://rth.dk/resources/bsgatlas/).

http://rth.dk/resources/bsgatlas/
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is highly beneficial to the community that is interested in 
CRISPR–Cas9 applications in B. subtilis, to minimize errors 
in genome-editing.

Conclusion
Bacillus species are important for cell-based protein 
production and B. subtilis is probably the most studied 
Gram-positive bacteria. Although B. subtilis was sequenced 
for the first time more than 20 years ago [60], its full annota-
tion has been lacking substantial information. In this study, 
we have made a significant step towards a far more complete 
annotation. We carefully merged the existing annotations 
from BsubCyc [35], SubtiWiki [4, 8], RefSeq [24], our 
Rfam scan [38, 39], and from a tiling-array and Term-seq 
study (Table 1). Besides the annotations for coding and 
non-coding genes and structured RNA, we integrated TSS, 
TTS and TU annotations. Taken together, these annota-
tions implied novel UTR and transcript annotations. The 
combined effort resulted in a single atlas annotation for  
B. subtilis that comprises genes, transcripts and operons.

Despite that Nicolas et al. [4] annotated over 1500 non-
coding annotations (both UTRs and ncRNA), the atlas led 
to an increase in the number of structured RNA elements 
and non-coding genes by 196, which are based on the 
Nicolas et al. tilling-array study (113), the Rfam screen [25] 
and riboswitches detected by the Term-seq experiment of 
Dar et al. [26]; 31 annotations were from a combination 
of these resources (see ‘Improvements in the number of 
ncRNA annotations’ sub-section). Moreover, we inferred 
a unified set of 3390 TSSs and 2566 TTSs, for which the 
external resources indicate a high curation level and resolu-
tion confidence in 43.8 % of all TTSs. The annotation of 
TSSs still lags substantially behind, as existing curations 
provide a high-resolution for only 20.8 % of TSSs. We 
combined information from TSSs and TTSs with known 
TUs to infer novel TUs and deduce full transcript annota-
tions, which increased by nearly fivefold the number of 5′ 
and 3′ UTR annotations and doubled internal UTRs. These 
transcript annotations do not only provide transcriptional 
information for an unprecedented proportion of genes, 
they also give insight into the complex operon architecture 
of the genome. The gene annotations were generated by 
merging annotation from multiple annotation resources 
of different levels of confidence. Although our automized 
merging procedure should be sufficient for most users, we 
still show in the browser (optional tracks) the annotations 
as they were in the individual resources. These original 
annotations are important for being aware of specific use-
cases in which a user needs to consider potential alternative 
annotations for a gene of interest. A comparison with the 
comprehensive study of transcription signals by Nicolas et 
al. further showed that our annotation, including the UTR 
annotations inferred by deduction from TSS/TTS informa-
tion, are plausibly transcribed. However, such a comparison 
cannot substitute curated investigation, as those that have 
been summarized in DBTBS or BsubCyc.

In summary, we integrated the information currently available 
for B. subtilis, to our knowledge making the BSGatlas the most 
comprehensive genome and transcriptome annotation of its 
kind. In particular, our annotation contains more ncRNAs 
than existing resources and provides transcriptional annota-
tion for nearly 93 % of all genes. Moreover, we have all the 
information easily accessible via the UCSC genome browser 
framework, allowing researchers to easily access, download 
and visualize the data. Thus, we anticipate that the BSGatlas 
will complement existing resources. The BSGatlas should also 
be useful in studying the function of the Bacillus genome; in 
particular for the investigation of non-coding genes and tran-
scriptional relationships of genes in transcriptomic studies.

When generating the BSGatlas, we adhered to current stand-
ards on computational reproducibility. Thus, the method-
ology and their code implementation are re-usable not only 
for future versions of BSGatlas, but also for potential similar 
annotations of other bacteria. We also provide all computa-
tional results in public repositories for long-term availability. 
That availability is a requirement to allow it to be used in for 
instance RNA-seq studies, but it also allows programmatic 
access to the annotation. For instance, a researcher could 
easily set-up an own browser copy, or the information can be 
integrated into other databases.
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