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ABSTRACT: 

A mathematical model is developed for 2-D laminar, incompressible, electrically conducting 

non-Newtonian (Power-law) fluid boundary layer flow along an exponentially stretching 

sheet with power-law slip velocity conditions in the presence of Hall currents, transverse 

magnetic field and radiative flux. The secondary flow has been induced with appliance of 

Hall current. The distinguish features of Joule heating and viscous dissipation are included in 

the model since they are known to arise in thermal magnetic polymeric processing. 

Rosseland’s diffusion model is employed for radiation heat transfer. The non-linear partial 

differential equations describing the flow (mass, primary momentum, secondary momentum 

and energy conservation) are transformed into non-linear ordinary differential equations by 

employing local similarity transformations. The non-dimensional nonlinear formulated set of 

equations is numerically evaluated with famous shooting algorithm by using MATLAB 

software. The validation of simulated numerical results has been completed with generalized 

differential quadrature (GDQ). Extensive visualization of primary and secondary velocities 

and temperature distributions for the effects of the emerging parameters is presented for both 

pseudo-plastic fluids (n=0.8) and dilatant fluids (n=1.2). The study is relevant to the 

manufacturing transport phenomena in electro-conductive polymers (ECPs). 
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1. INTRODUCTION  

Electro-conductive polymers (ECPs), also known as magnetic responsive materials, ECPs [1-

5] becomes great topic of interest because of their prestigious involvement and applications 

in many technologies including surfacialcoatings, microfluidics, biomedical encapsulation 

etc. By merging magnetic and polymer materials composites can be produced with 

exceptional magnetic responsive features. Magnetic actuation provides unique capabilities as 

it can be spatially and temporally controlled, and can additionally be operated externally to 

the system, providing a non-invasive approach to remote control. Being diverse classes and 

types of magnetic responsive composite materials, which are deformed with utilization of 

magnetic impact, and are therefore ideal for next generation “smart” coatings for anti-

corrosion properties. Numerous types of ECP have been developed in recent years including 

biosensor liquids [5], polyaniline-polyacrylamide magnetic hydrogels [6], thermo-responsive 

shape memory magnetic polymers [7], programmable magnetic liquids [8], magneto-

responsive magnetorheological (MR) polymers [9] and ferromagnetic nanofluids [10].  

 

The manufacture of these materials frequently utilizes stretching processes and heat transfer. 

Furthermore, the simulation of these fabrication processes fuses several branches of fluid 

dynamics including thermal convection, viscous magnetohydrodynamics and boundary layer 

theory. Precise calculations of the synthesis process can greatly assist in designing 

customized materials for different applications e.g. electroconductive smart coatings for 

aerospace and marine engineering components. Many researchers have therefore developed a 

variety of mathematical models for magnetic material transport phenomena from stretching 

sheets. These models have also featured a rich variety of non-Newtonian models and also 

diverse electromagnetic effects. Lawrence and Rao [11] studied non-similar two-dimensional 

viscous hydromagnetic flow of a short memory viscoelastic fluid from a linearly stretching 

sheet with heat source and viscous heating effects using the Chuang three-point backward 

finite difference scheme and a fourth order Runge-Kutta-Nachtsheim-Swigert shooting 

method. The Ostwald-DeWaele power-law model has also proved very popular in magnetic 

non-Newtonian fluid dynamics. Gorla et al. [12] derived closed-form similarity solutions for 

the steady three‐dimensional power law fluid stretching boundary flow, evaluating in detail 

the momentum characteristics for powerlaw index and stretching ratio effects. Further studies 

of power-law dynamics include Andersson and Kumaran [13], Mehta and Rao [14] 

(including non-isothermal convection in porous media), Jumah and Mujumdar [15] (on 

thermo-solutal convection power law fluids under buoyancy forces in porous media) and 

Ariel [16] (on multiple numerical solutions of extending sheets). Andersson et al. [17] 

analyzed studied hydromagnetic power-law fluid over a stretching sheet, deriving exact 

similarity transformation, although they incorrectly computed flow acceleration with stronger 

magnetic field effect. Aneja and co-workers [18] employed the variational finite element 

method to compute the gyrotactic bioconvection in power-law magnetic flow from a tilted 

stretching sheet. They computed the correct response of increasing magnetic field, namely 

that it reduces momentum boundary layer thickness and decelerates the flow. Further studies 

deploying the power-law model include Chaube et al. [19] who simulated the propulsion of 

biorheological liquids in tapered deformable channels. 

 

The above studies neglected Hall currents. Modern electromagnetic materials processing is 

increasingly deploying strong magnetic fields, which mobilize larger electromagnetic force 

and Hall currents. These modify the magnitude and direction of the current density and 

consequently. The involvement of Hall feature is associated with the current nature in 

conductor. In fact, the current is the tiny charges movement, typically holes, ions, electrons, 
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etc. The Hall effect is generated via the lateral magnetic force acting on the drifting free 

charges. In parallel with experimental investigations, extensive theoretical and computational 

studies of hall current magnetofluid dynamics in materials manufacturing (among other 

applications) are specified in current decade. The Hall current initiates a secondary flow in 

such problems and this has been considered carefully in these studies. Representative works 

in this regard include El-Aziz [20] (who also considered thermal convection heat transfer in 

nanofluid stretching flow) and Ramesh et al. [21] (who analyzed magnetic viscoelastic two-

phase liquid pumping in Hall micropumps). Kamran et al. [22] employed the Optimal 

Homotopy Analysis Method (OHAM) to compute the collective impact of Hall current, 

Newtonian heating and second-order hydrodynamic slip on convective micropolar flow from 

a permeable stretching/shrinking sheet. Bhatti et al. [23] used the modified Zhou differential 

transform method to analyze the radiative-convective viscoplastic in aqueous 

electroconductive polymers (ECPs) from a stretching sheet with convective heating, Hall and 

Ion slip effects. Their results revealed that a lower profile of wall shear force is results with 

larger magnetic field features, where it is enhanced with higher values of Hall and ion-slip 

parameters and that the flow is secondary accelerated with higher values of rheological 

(Casson) fluid parameter. Other analyses of Hall current hydromagnetic flows include Béget 

al. [24] (on rotating channel-bound plasma flows), Sheri et al. [25] (on double diffusive 

convection in reactive inclined MHD Hall generators with Dufour cross diffusion effects) and  

very recently, Béget al. [24] (on non-isothermal micropolar heat fluctuation in a biomimetic 

Faraday-Hall current hybrid generator system). 

 

By utilizing the magnetic impact in Newtonian fluid flows can also generate Ohmic 

dissipation. Also known as Joule thermoelectric heating, this effect can be exploited in many 

materials production systems with direct current (DC). These include silicate glass melt 

fabrication with electrode-dependent Joule dissipation which achieves more homogenous 

material constitution [25], electrochemical machining with electrolytic solutions [26] and 

magnetically responsive composite materials manufacturing [27]. Béget al. [28] developed 

one of the first mathematical models for combined Hall current, viscous features, ion-slip and 

Joule heating consequences in parallel plate time-dependent rheometry for magnetic liquids 

using an electrothermal network simulation code. Haldur and Lagoudas [31] investigated the 

deformation and flow in shape memory alloy melts with eddy current and Joule dissipation 

effects. Tripathi et al. [32] presented the first model for electro-osmotic nanofluid pumping in 

finite microfluidic channels with Joule dissipation effects. Abdel-Wahed [33] studied the 

thermo-convective ferromagnetic nanofluid flow from a rotating surface with Hall current 

and Joule heating. Mishraet al. [34] used the variation of parameter method (VPM) to obtain 

analytical power series solutions for non-Fourier MHD squeezing thermo-solutal flow 

between Riga plates (parallel electromagnetic sensor surfaces) with Joule and viscous heating 

effects.Babu and Narayana [35] used shooting quadrature to compute the hydromagnetic 

viscoelastic convection flow from a permeable stretching sheet with power law heat flux, heat 

source and Joule dissipation effects. Further studies include Shamshuddin et al. [36] (on 

time-dependent micropolar reactive thermo-solutal magnetic polymer processing from a tilted 

plane with Joule heating) and Amin [37] (on enrobing forced convection axisymmetric 

boundary layer flow along a cylinder in porous media with Joule and viscous heating). 

 

High-temperature magnetic materials synthesis features radiative heat transfer in addition to 

conductive and convective heat transfer. This allows improved manipulation of material 

structure via energization of the flow field and is popular in other areas also including laser-

treatment of ceramics, glass, liquid metals and optical materials. Some excellent works in this 

area include Mansour and Viskanta [38] and Rozzi et al. [39].  Lee and Viskanta [40] 
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analysed the unsteady conductive-radiative cooling of an optical glass disk. The complexity 

of radiative heat transfer simulations in the presence of other effects (magnetic field, viscous 

flow, rheology etc.) requires simplification of the integro-differential radiative equation to 

simpler algebraic flux models. These flux approximations simultaneously reduce the 

dimensionality of the problem and make significant physical assumptions. A popular model 

for coupled radiative-convection in materials processing is the Rosseland diffusion flux 

model which applies to a “grey” fluid without scattering and can be derived via the 

exponential approximation of the kernel of the radiative integro-differential equation. 

Although generally limited to optically thick media, it provides satisfactory results. Mishra et 

al. [41] simulated thermal magnetic polymer processing flows by deploying the Rosseland 

flux model and Adomian decomposition method (ADM). They considered laminar, 

incompressible, reactive hydromagnetic flow of an electrically conducting non-Newtonian 

(Sisko) fluid from a bi-directional stretching sheet in a porous medium, showing that 

temperature is suppressed with increasing stretching sheet ratio whereas it is strongly 

enhanced with greater radiative parameter. They further observed that larger sheet stretching 

ratio weakly accelerates the primary flow throughout the boundary layer whereas it more 

dramatically accelerates the secondary flow and that both homogenous and heterogenous 

chemical reaction parameters weakly and more strongly, respectively, deplete concentration 

magnitudes. Imtiaz and Hayat [42] derived homotopy solutions for radiative magneto-

convective nanofluid flow on an exponentially stretching surface with dissipation. Béget al. 

[43] used Lie group algebra, Rosseland’s model and MAPLE 13 shooting quadrature to 

analyzethermo-solutal radiative mixed magneto-convection slip boundary layer flow from a 

translating vertical surface with thermal convective boundary conditions. They focused on the 

“thermally thick” scenario (Biot number >0.1) and it is emphasized that with dominant of 

thermal radiation features improve the thickness of thermal boundary similar to the magnetic 

field impact. Numerous other multi-physical models for radiative convection flows in 

materials processing have been communicated based on some form of the Rosseland 

diffusion approximation and include Khan et al. [44] (on second law thermodynamic analysis 

of radiative viscoplastic nanofluid squeezing flow between radially extending disks), Cotrell 

[45] (on dissipative power-law fluids), Uddin et al. [46] (on nanofluid slip from 

extending/contracting sheets), Bég et al.[47] (on unsteady hydromagnetic reactive dissipative 

thermo-diffusive boundary layers), Uddin et al. [48] (on conjugate conduction, magneto-

convection, thermal radiation from a non-linearly stretching sheet) and Murthy et al. [49] (on 

second law analysis of radiative-convective Stokes polar duct flows). 

 

Many key studies in rheology have established that polymers experience substantial 

hydrodynamic slip i.e. non-adherence to a boundary. The molten polymer slip appeared near 

the surface of solids when wall shear force is higher as compared to critical value.A seminal 

review of the many manifestations of this phenomenon has been given by Denn [50] who has 

highlighted the inter-dependence of extrusion instability and shear layer structures on slip 

effects. He has further noted that wall effects extending over lengths of the order of 

molecular dimensions or fractions of a micrometer may exert quantifiable modifications in 

polymeric material flows. Hatzikiriakos [51] has elaborated at great length that the classical 

no-slip boundary condition of fluid mechanics fails to be accurate for many molten polymer 

flows. He has also identified that in case of linear polymers, second critical wall shear stress 

value can arise wherein there is progression from weak to strong slip flow. Weak slip is 

associated with flow-induced chain detachment/desorption at the polymer interface. Strong 

slip is connected to chain disentanglement of the polymer chains in the bulk from a 

monolayer of polymer chains adsorbed at the interface. Both non-magnetic Newtonian and 

magnetohydrodynamic non-Newtonian slip flows have received some attention in the 
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preceding decade. Bég et al. [52] used PSPICE network software to compute the Von 

Karman swirling magnetohydrodynamic slip flow from a permeable disk with significant 

radiative heat transfer and thermal conductivity variation. El Aziz and Afify [53] computed 

the Hiemenz magnetic slip flow of a viscoplastic fluid from a stretching surface with 

induction effects. Sahoo et al. [54] investigated the slip heat transfer of an electromagnetic 

third-grade fluid from a stretching sheet. They observed that increasing hydrodynamic slip 

decreases the momentum boundary layer thickness and increases the thermal boundary layer 

thickness, whereas higher rheological parameter has the contrary effect. Further studies of 

slip stretching surface flows include Wang [55] (Newtonian fluids), Halim et al. [56] 

(Maxwell viscoelastic nanofluid stagnation point stretching flow), Norouzi et al. [57] 

(Oldroyd-B curved tube slip flow), Noor et al. [58] (micropolar nanofluid stagnation slip 

flow and Shukla et al. [59] (magnetic nanofluid slip flow external to a curved body with 

entropy generation). 

 

In the present article, as a simulation of thermal magnetic sheet polymeric processing, a 

mathematical model is developed for laminar, incompressible, magnetohydrodynamic 

(MHD) non-Newtonian (power-law) fluid flow from an  exponentially stretching sheet with 

power-law slip velocity conditions in the presence of Hall currents, transverse magnetic field, 

radiative heat flux, viscous and Joule electro thermal dissipation effects. The boundary layer 

equations for mass, primary momentum, secondary momentum and energy conservation are 

transformed into non-linear ordinary differential equations using local similarity 

transformations. The non-dimensional nonlinear flow equations are numerically evaluated 

with employment of shooting technique. The results are also validated by employing 

generalized differential quadrature (GDQ), a modification of Bellman-Kalaba differential 

quadrature, is conducted. Extensive visualization of primary and secondary velocities and 

temperature distributions for the effects of key parameters is presented for both pseudo-

plastic fluids (n=0.8) and dilatant fluids (n=1.2). The novel and interesting aspects of current 

analysis is the utilization of Hall current and Joule dissipation consequences in addition to 

full verification with an alternative numerical method. This study therefore generalizes the 

work of Saleem and El Aziz [60] to consider both primary and secondary velocity fields. 

 

2. MATHEMATICAL MODEL   

Two-dimensional, incompressible, steady state, magnetohydrodynamic (MHD) flow of a 

magnetic non-Newtonian polymer over an exponentially stretching sheet subject to transverse 

magnetic field, Hall current, viscous and Joule heating is examined. The power-law model is 

adopted for rheological characteristics and Rosseland’s diffusion approximation for radiative 

heat transfer. The non-uniform velocity of the exponentially stretching sheet (stretching is 

only in the x-direction)  is assumed as /

0( )
x L

wu x U e=  where 0U is the reference velocity, L  a 

characteristic length, keeping origin fixed in the fluid of the ambient temperature T . The 

positive x -axis is measured along the direction of the motion, the positive y-axis is taken 

normal to the surface of the sheet which lies in the x-z plane as depicted in Figure 1. An 

external non-uniform magnetic field / 2

0

x L
B e is imposed perpendicular to the surface of the 

sheet and 0B is the reference magnetic field. The Cauchy stress tensor for a power-law fluid 

can be written as follows- see Chaube et al. [19]: 
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( )

1

1
. ,

2

n

i j K

−

= −             (1) 

 

The flow consistency index, symmetrical rate of deformation tensor and rheological power-

law index are represented respectively as , ,K n . Pseudoplastic fluids are described by  

0 1n   and apparent viscosity decreases with increasing shear rate, 1n   describes dilatant 

fluids in which the apparent viscosity increases with increasing shear rate. 1n =  corresponds 

to Newtonian fluids. The power-law fluid model has the following form of shear stress 

component along the x  and z −direction respectively[61]: 

 
1 1

, ,

n n

yx yz

u u w w
K K

y y y y
 

− −

   
= =

   
       (2) 

 

The generalized Ohm’s law which is modified to include Hall current is given by [24]: 

 

( ) ( ) ,J J B E V B
B

e e 
+  = +                                                                      (3) 

 

Where 0( , 0, ), (0, , 0), ( , , ), ( , , ), ,V B E Jx y z x y z eu w B E E E J J J       and e denote respectively 

the velocity vector components, magnetic field vector components, electric field vector 

components, current density vector components, electric conductivity of the magnetic 

polymer, cyclotron frequency and electron collision time. In general, for an electrically 

conducting fluid, Hall currents are mobilized in the presence of strong magnetic field. The 

Hall effect is a direct consequence of Lorentz force, .Bj Hall current induces a secondary 

(cross) flow and the flow regime becomes two-dimensional. The conservation of electric 

current . 0j = results in yj = constant. Since the surface of the magnetic polymer sheet is 

electrically insulating, 0yj = everywhere in the flow. Also, an absence of applied voltage 

implies that electric field vanishes, i.e. . The appropriate current density components 

(primary and secondary) are: 

 

0 0, ,x z z xj m j w B j m j u B − = − + =       (4) 

 

where e em  = is the Hall parameter which represents Hall current. Solving xj and zj form 

above, we have: 

 

0 0

2 2
( ), ( ),

1 1
x z

B B
j mu w j u mw

m m

 
= − = +

+ +
     (5) 
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Figure 1: Geometrical model of magnetic polymer stretching flow with Hall current 

 

The governing equations for the optically dense stretching regime can be shown to take the 

form: 

 

0,
u v

x y

 
+ =

 
           (6) 

( )
( )

( )
1 2

0

2
,

1

n

T

Bu u K u u
u v g T T u mw

x y y y y m




 

−



     
 + = + − − +
      + 

                 (7) 

( )
( )

1 2

0

2
,

1

n

Bw w K w w
u v mu w

x y y y y m



 

−     
 + = + −
      + 

                     (8) 

122
20

2

1
,

n

rad

p p p

q BT T T K u
u v u

x y y c y c c y




  

+

   
+ = − + +

    
     (9) 

In Eqns. (6)-(9) u and v designate the component of the velocities,T  is temperature, 

k signifies the thermal conductivity,   is the coefficient of thermal expansion, pc signifies 

specific heat at constant pressure and radq  radiative heat flux. The appropriate boundary 

conditions for regime are: 
1 1

2 /

1 0( ) , 0, , 0,

0, 0, , ,

n n

x L

w

u u w w
u u x v w T T T e at y

y y y y

u w T T as y

 

− −







      
   = + = = = + =
      
   

→ → → →

  (10) 

Further, 1, 
are primary and secondary hydrodynamic slip coefficients. The radiative heat 

flux is simplified by employing the Rosseland approximation, following Bég et al. [47] for an 

optically thick fluid with the following expression: 
4

3

* *

4 16

3 3
rad

T T
q T

k y k y y

      
= − = −  

   
                    (11)  
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Similarity transformations of Eqns. (6)-(11) of the following form are proposed [60]: 
( )

( ) ( )

( )

( ) ( )

( )
( )

1/ 1 2 12 1

10
0

1/ 1 2 12 1

10

1/ 1 22

10
0

2
, ,

2 2 1 2
,

1 1

, ,
2

n n x xn

n L L

n n xn

n L

n

n n xx n

n LL

w

K L U
e f u U e f

K U n n
v e f f

L n n

UT T
w U e g y e

T T K L

  


  



  

+ − −
 

+ 

+ − −
 

+ 

+ − −
 

+  



 
= = 

 

  − − 
= − +   + +  

 −
= = =  

−  

                                            (12) 

where stream function ( )  successfully satisfies the continuity equation with 

relation /u y=    and /v x= −  . Substitution of Eqns. (11) - (12) in Eqns. (6)-(10), 

leads to the following self-similar boundary layer equations: 

 

Primary  

( )
1 2

2

2 1
0,

2 1 1

nn n M
f f f f f f mg

n m
 

− − 
    + − − + + = 

+ + 
              (13) 

 

Secondary  

( )
1

2

2 1
0,

2 1 1

nn n M
g g f g mf g f g

n m

− − 
    + + − − = 

+ + 
               (14) 

 

Energy  

124 2 1 1
1 Pr 2 Pr Pr 0,

3 1 2

nn
R f f Ec M f f

n
  

+−     
    + + − + + =     +     

                             (15) 

 

The boundary conditions at the wall and in the freestream are: 

 

( ) ( ) ( )
1 1

(0) 0, (0) 1 0 (0), (0) 0 0 , (0) 1,

( ) 0, ( ) 0, ( ) 0,

n n

f f f f g g g

f g

  



− −
    = = + = =

  →  →  →
                    (16) 

 

Here primes denote differentiation with respect to . The non-dimensional parameters 

featuring in Eqns. (13)- (16) are the magnetic body force parameter M , mixed convection 

parameter, (a function of local Grashof number xGr and Reynolds number Re), thermal 

radiation parameter, R, generalized Prandtl number, Pr (a function of local Reynolds number, 

Rex), thermal diffusivity , Eckert number Ec  and generalized slip parameter  are defined 

as follows: 

( )

2 3 2
2 /0 0 0

2 2 2 2

0 0

2
2 23

1

1
2 1 1

( )
, , , Re ,

Re

Re4
, Pr , Re , , ,

2

2

x Lx w
x

n n
n

w x w w
x

p w p

n n
w

B L Gr g L T g T L Lu x
M Gr e

U U K K

u L u L uT k
R Ec

kk K c T T c

u

K L

    







 


 

 
−  −

+ 






− +


= = = = =

 
= = = = = 

− 

 
=  

 

            (17) 



9 

Now the physical quantities from the engineering point of view are primary skin friction 

coefficient and Nusselt number which can be estimated by the following expressions: 
1

1
1 1

0

1

1 1

2

Re
(0) (0),

2

2 Re
(0) (0)

2

n n
n nw x

w n

y

n nw x
x

w

K uu u
K f f

y y L

Cf f f
u







−
+ −

=

−
+ −

    
  = =       

 
 = =  

 

                                                       (18) 

1
3

1

0

Re16 4
1 1 (0)

3 2 3

n
x

x

w y

TL T
Nu

T T kk y R





+





 =

      
= − + = − +     

−                                          

(19) 

 

 

3. MATLAB QUADRATURE NUMERICAL SOLUTIONS  

Since the boundary conditions for the formulated problem i.e. Eqns. (13)-(16) are 

complicated and owing to very high nonlinearity, purely analytical solutionsare not possible. 

Therefore, an efficient shooting technique is implemented to achieve numerical solutions. 

The transformed nonlinear boundary value problem features 8 parameters - magnetic 

parameter, M, mixed convection parameter,  , thermal radiation parameter, R, Prandtl 

number Pr, Hall current constant m, Eckert number Ec, generalized slip parameter,   and 

power-law index, n. The higher order system is converted into a system of multiple first oder 

equations by via following assumptions: 

 

1 2 3 4 5 6 7, ', '', , ', , ,y f y f y f y g y g y y = = = = = = =                (20) 

( )2

1 3 2 2 4 62
'

3
1

3

2 1

1 1
,

2

n

n M
y y y y my y

n m
y

n
y



−

 −  
− + + + −  + +  

=                (21) 

( )1 5 2 4 2 42
'

5
1

5

2 1

1 1
,

2

n

n M
y y my y y y

n m
y

n
y

−

 −  
− − − +  + +  

=                 (22) 
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1 2 6 2 3
'

7

2 1 1
Pr 2Pr Pr

1 2
,

4
1

3

nn
y y y Ec My y

n
y

R


+−   

− + − +   +   =
 
+ 

 

             (23) 

The boundary conditions assume the form: 

( ) ( ) ( )
1 1

1 2 3 3 4 5 5 6

2 4 6

(0) 0, (0) 1 0 (0), (0) 0 0 , (0) 1,

( ) 0, ( ) 0, ( ) 0,

n n

y y y y y y y y

y y y

 
− −

= = + = =

 →  →  →
          (24) 

An iterative process has been utilized and the accuracy of solution is examined up to a 

tolerance of 10-6. 
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4. VALIDATION WITH GENERALIZED DIFFERENTIAL QUADRATURE (GDQ) 

After formulating the novel flow problem equations, aim here to report the numerical solution 

which has not been presented in the literature yet. It is remarked that no such solution is 

computed by researchers to validate the shooting method numerical values. On this end, the 

Eqs. (13-15) are tackled with generalized differential quadrature (GDQ). The basic idea of 

this scheme is based on differentiation of involved function w.r.t. space variable on given 

points is approximated as a weighted linear sum at the selected points in the variable domain. 

The fundamental work on GDQ procedure was followed by Shu et al. [61]to modify the 

Bellman differential quadrature (DQM) method which is associated to integral quadrature 

and was established in 1972.It generally approximates the differentiation of function with 

respect to space variables at a sample grid point as a weighted linear summation of all the 

values of function at all grid points in the domain. The weight coefficients for GDQ are 

computed with appliance of higher order polynomial approximation and linear vector space. 

For first order derivates, the weight coefficients are computed with help of algebraic 

formulation while recurrence relationship is used to simulate the weight coefficients for 

second order derivates. According to Shu et al. [61], both GDQ approach and higher order 

finite difference approximations are almost similar tasks. This technique has been employed 

in viscoelastic flows [62], natural convection flows [63], viscous magnetohydrodynamics 

[64] and nanofluid dynamics [65].In order to present the simulation procedure in GDQ, we 

assume a general function f () in given domain 0 < a. According to this method, function f 

() is approximated via following relations: 

( )
( )( ) ( )

1 1
,

, 1,2,......, .

i

N Nr

r r

im m ij mr
m m

f
A f A f i N

 



  




 = =
=


= = =


 

              

(25) 

Therefore, the weight coefficients for first order derivates in i  direction can be depicted 

with help of formula ([64]). 

( )

( ) ( )

( ) ( )
1,

1,

, ,

, 1,2,... ,
1

, ,

N

ij N
j i j

ij i i j

j i ji

i j i

A i j

A i j N M
M

i j
a M





   


  

= 

= 


− =


= = = −
 
 −



  (26) 

Moreover, for higher order derivatives, the weight coefficients are developed by using 

following relations: 
( ) ( 1) ( 1)r r r

ij ij ij ij ijA A A A A− −        = =                                                                                           (27) 

The Chebyshev-Gauss-Lobatto grid distribution formula is 

1 1
1 cos 1,2,....., ,

2 1

i i
i N

a N







  −
= − =   −   

                                                  (28) 

Following to GDQ procedure, one can successfully obtained the discretized governing 

equations and boundary conditions which are being not presented here for brevity. During the 

formulation procedure, parameter B (second order weighting coefficients) and C (third order 
weighting coefficients) arises. The similarity flow variables  ,  values at various 

nodes can be resulted. These relations are effective to compute the relations for wall shear 

stress and local Nusselt number. Comparisons of the MATLAB shooting solutions and the 

GDQ code (which is executed on an SGI Octane desk workstation and takes about 110 

seconds to converge) are shown in Tables 1 and 2 for primary skin friction and local Nusselt 

number. 
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Table 1: Variation in primaryskin friction coefficient when 0.5,Pr 0.5, 0.3R Ec= = =  

Parameters

 ( )
1

1
1Re / 2 (0) (0)

n
n

x f f
−−

+    

    M  m  0.8n = (MATLAB) 0.8n = (GDQ) 1.2n = (MATLAB) 1.2n = (GDQ) 

0.0 

0.2 

0.4 

0.2 0.5 0.2 0.66295 

0.638456 

0.51484 

0.66288 

0.63849 

0.51481 

0.51544 

0.48680 

0.42622 

0.51549 

0.48674 

0.42619 

0.1 0.0 

0.3 

0.5 

  0.64465 

0.668690 

0.69328 

0.64462 

0.66868 

0.69331 

0.50542 

0.54309 

0.58733 

0.50538 

0.54311 

0.58740 

  0.0 

0.4 

0.6 

 0.66497 

0.628335 

0.61178 

0.66486 

0.62834 

0.61172 

0.54235 

0.52489 

0.50387 

0.54234 

0.52481 

0.50379 

   0.1 

0.4 

0.6 

0.65210 

0.66678 

0.68765 

0.65204 

0.66671 

0.68763 

0.53087 

0.55678 

0.57986 

0.53078 

0.55673 

0.57981 

 

 

Table 2: Variation in local Nusselt number 

Parameters

 
( ) ( )

1

1 1 (4 / 3 ) (0)Re / 2 n
x xNu R + = − +  

Pr      M  R  Ec  m  0.8n =  

MATLAB 

0.8n =  

GDQ 

1.2n =  

MATLAB 

1.2n =  

GDQ 

0.1 

0.5 

0.1 0.2 0.5 0.3 0.4 0.3 0.72658 

0.78207 

0.82507 

0.72651 

0.78202 

0.82511 

0.64567 

0.67778 

0.69409 

0.64561 

0.67771 

0.69412 

0.5 0.0 

0.2 

0.4 

     0.68637 

0.71974 

0.73629 

0.68642 

0.71982 

0.73627 

0.51573 

0.55582 

0.59743 

0.51577 

0.55584 

0.59748 

 0.1 0.0 

0.3 

0.5 

    0.66518 

0.6281222 

0.60038 

0.66516 

0.62812 

0.60032 

0.51758 

0.49436 

0.46892 

0.51752 

0.49438 

0.46886 

   0.0    0.70549 0.70543 0.59398 0.59402 
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0.4 

0.6 

0.68478 

0.65048 

0.68472 

0.65044 

0.55758 

0.53873 

0.55771 

0.53877 

    0.2 

0.4 

0.6 

  0.70642 

0.68643 

0.66865 

0.70647 

0.68649 

0.66861 

0.60642 

0.57463 

0.53875 

0.60646 

0.57458 

0.53868 

     0.1 

0.5 

0.7 

 0.66975 

0.64765 

0.63539 

0.66971 

0.64762 

0.63544 

0.57609 

0.55766 

0.54808 

0.57597 

0.55772 

0.54814 

      0.2 

0.4 

0.6 

0.6565 

0.68853 

0.70534 

0.6561 

0.68858 

0.70538 

0.50765 

0.54790 

0.57054 

0.50757 

0.54784 

0.57059 

 

Novel correlation are reported for specified numerical values of parameters like 

, , , Pr, , ,M R Ec m   and n . The careful scrutiny of Table 1 shows that consistently higher 

skin friction values are computed with pseudoplastic fluids (n = 0.8) compared with dilatant 

fluids (n = 1.2), at any combination of the other 7 parameters. Similarly, Table 2 reveals that 

local Nusselt numbers are also consistently higher for pseudoplastic fluids (n = 0.8) compared 

with dilatant fluids (n = 1.2), at any combination of the other 7 parameters. These trends are 

due to the reduced viscosity effect in pseudoplastic (shear-thinning) magnetic polymers 

compared with dilatant (shear thickening) polymers. Primary skin friction is consistently 

decreased with greater generalized slip parameter,  , for both pseudoplastic and dilatant 

polymers. Hydrodynamic slip therefore decelerates the primary flow. Maximum primary skin 

friction is therefore computed for the no-slip case ( 0 = ) implying that neglection of slip in 

the model leads to an over-prediction in skin friction. However, an increase in mixed 

convection parameter,  generates the opposite effect and enhances primary skin friction for 

both pseudoplastic and dilatant fluids. Increasing magnetic field parameter, M , clearly 

extensively slows down the primary flow (i.e. declines skin friction) for both power-law 

cases; however, it never induces flow reversal. The contrary behavior is induced with 

increasing Hall current parameter, m  i.e. strong flow acceleration is induced. The destruction 

in momentum due to the Lorentzian force is compensated with a boost in momentum in the 

secondary (cross) flow which results in an acceleration and a thinner primary momentum 

boundary layer. This effect has been computed by many other investigators including El Aziz 

[20] and Kamran et al. [22]. Table 2 shows that with leading variation in Pr , which 

corresponds to a reduction in magnetic polymer thermal conductivity, induces a significant 

elevation transportation of heat from the boundary layer regime to the wall i.e. boosts local 

Nusselt number. Since thermal conductivity is lower, heat cannot conduct as efficiently in the 

body of the magnetic polymer and as such is drained to the boundary. This pattern is 

computed for both pseudoplastic ( 0.8)n = and dilatant ( 1.2)n = cases. A similar result has 

been reported by Mehta and Rao [14]. A consistent elevation in local Nusselt number is also 

observed with greater values of generalized slip parameter,  . Evidently hydrodynamic slip 

at the sheet surface inhibits the transport of heat within the boundary layer and encourages 

heat migration to the wall. Conversely greater values of mixed convection parameter, 

 serve to suppress the local Nusselt number since this parameter induces heating of the 
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thermal boundary layer and a thicker structure. A marked depletion in local Nusselt number 

also accompanies an increase in magnetic parameter, M . The kinetic energy expended by the 

dragging the polymer against the action of the axial magnetic field is dissipated as heat. This 

energizes the boundary layer and elevates temperatures leading to a decrease in heat transfer 

from the wall to the fluid. With increasing radiation parameter, R , there is also a substantial 

suppression in local Nusselt number. Increasing radiative flux augments thermal diffusion 

and energizes the regime. Temperature and thermal boundary layer thickness are enhanced. 

However, this concurrently produces a decrease in thermal diffusion to the wall resulting in 

lower local Nusselt number magnitudes. As with variation in other parameters, both 

pseudoplastic and dilatant fluids respond in the same fashion to a change in a particular 

parameter i.e. they both increase or decrease. A significant decrease in local Nusselt number 

is also observed with an increase in Eckert number, Ec . This parameter features in both the 

Joule dissipation, 2Pr ( )Ec M f +  and viscous heating and terms, i.e. 
1

Pr 1/ 2
n

Ec f
+

+    in 

the energy conservation Eqn. (15). The former corresponds to the thermal energy dissipated 

via resistance of the magnetic field. The latter is the conversion of kinetic energy via internal 

friction in the magnetic polymer. Both are characterized by the Eckert 

number 2 / ( )w p wEc u c T T= − which quantifies the mechanical energy dissipated relative to the 

enthalpy difference across the boundary layer. Clearly significant heating is induced by both 

viscous and Joule dissipation which will thicken the thermal boundary layer and inhibit heat 

transfer to the wall. Local Nusselt numbers will therefore be reduced. These trends agree with 

many other studies e.g. Abdel-Wahed [33] and Babu and Narayana [34]. Indeed, this 

behavior is also confirmed in many standard engineering MHD reference books including 

Cramer and Pai [66], Hughes and Young [67] and Sutton and Shercliff [68]. An increase in 

Hall parameter, m, results in the opposite response to increasing magnetic field, M. It 

enhances local Nusselt number i.e. accentuates heat transfer to the wall and simultaneously 

decreases temperature field and thickness of thermal boundary layer in the magnetic polymer. 

Cross flow as mobilized by Hall current therefore produces excessive cooling in the polymer 

whereas stronger magnetic field generates heating.  

 

5. PRIMARY, SECONDARY VELOCITY, TEMPERATURE RESULTS AND DISCUSSION 

Although secondary skin friction was not considered in the previous section, here a detailed 

appraisal of the control parameters on primary and secondary velocity, in addition to 

temperature distributions is presented. The results are depicted in Figs. 2-14. Default values 

prescribed are as follows: 0.5, 0.2, 0.4,Pr 0.5, 0.2M R Ec= = = = = and 0.3 = the low 

Prandtl number of 0.5 is associated with liquid metal polymers (ECPs) which possess higher 

Prandtl numbers than pure liquid metals but much lower than aqueous solutions [69, 70]. The 

momentum diffusivity is therefore half the thermal diffusivity. As in Tables 1, 2, here in all 

figures we present results for both cases of pseudoplastic ( 0.8)n = and dilatant magnetic 

polymers ( 1.2)n = . 
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Fig.2: Effects of M  on 'f with m=0.2, 0.2, 0.4,Pr 0.5, 0.2, 0.3.R Ec = = = = =  

 

 
 

Fig.3: Effects of   on 'f  with 0.2, 0.2, 0.4,Pr 0.5, 0.2, 0.3.M m R Ec = = = = = =  

 

 
 

Fig.4: Effects of m  on 'f  with 0.5, 0.2, 0.4,Pr 0.5, 0.2, 0.3.M R Ec = = = = = =  
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Fig.5: Effects of   on 'f 0.2, 0.2, 0.4,Pr 0.5, 0.2, 0.3.M m R Ec = = = = = =  

 

Fig.6: Effects of   on g 0.2, 0.2, 0.4,Pr 0.5, 0.2, 0.3.M m R Ec = = = = = =  

 

Fig.7: Effects of   on g with 0.2, 0.2, 0.4,Pr 0.5, 0.2, 0.3.M m R Ec = = = = = =  
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Fig.8: Effects of M  on g 0.3, 0.2, 0.4,Pr 0.5, 0.2, 0.3.m R Ec = = = = = =  

 

 

Fig.9: Effects of  on g 0.2, 0.3, 0.4,Pr 0.5, 0.2, 0.3.M R Ec = = = = = =  

 

 
Fig.10: Effects of Pr  on   with 0.2, 0.2, 0.4, 0.3, 0.2, 0.3.M m R Ec = = = = = =  
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Fig.11: Effects of R  on   with 0.2, 0.2,Pr 0.5, 0.3, 0.2, 0.3.M m Ec = = = = = =  

 

 
Fig.12: Effects of Ec  on  with 0.2, 0.2, 0.4, 0.3,Pr 0.5, 0.3.M m R  = = = = = =  

 

 
Fig.13: Effects of   on  with 0.2, 0.2, 0.4, 0.3, 0.2,Pr 0.5.M m R Ec= = = = = =  
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Fig.14: Effects of  on  with 0.2,Pr 0.5, 0.4, 0.3, 0.2, 0.3.M R Ec = = = = = =  

 

Fig. 2illustrates the impact of Hartmann number M  on primary velocity distribution ( ).f  A 

declining pattern is observed for both cases from the wall to the free stream. However, the 

declining variation is more dominant for dilatants fluids. The Hartmann number is physically 

related to the Lorentz force which inhibits the flow and induces deceleration in both 

pseudoplastic and dilatant cases. It appears in the augmented magnetic body force term, 

( )( )( )2/ 1M m f mg+ + in the primary momentum eqn. (13) which is coupled also to the 

secondary velocity field by virtue of the Hall parameter, m . Maximum primary velocity for 

either pseudoplastic or dilatant fluid cases clearly corresponds to the weakest magnetic field 

( 0.5)M = for which the primary momentum boundary layer thickness is minimized. The 

converse situation applies to the strongest magnetic field, 2M = for which primary boundary 

layer thickness is a maximum. Evidently increasing magnetic field significantly regulates the 

primary boundary layer behavior. Although retardation is successfully induced i.e. strong 

damping of the primary field, no flow reversal is computed indicating the boundary layer is 

attached and no separation arises.  

 

Fig. 3. depicts the influence of mixed convection parameter, on  primary velocity, f  . An 

enhancement in velocity is observed since larger values of  augment the thermal buoyancy 

force appearing in the primary momentum eqn. (13), viz + . Since mixed convection 

parameter is a function of local Grashof number (it equals 2/x eGr R ) thermal buoyancy will 

significantly increase relative to viscous hydrodynamic force and this will decrease primary 

momentum boundary layer thickness. Once again higher primary velocity magnitudes are 

computed for the pseudoplastic case as compared with the dilatant case. 

 

Fig. 4shows the evolution in primary velocity, ( )f  with variation in Hall parameter m . As 

noted earlier this parameter is connected to the magnetic body force term. Clearly increasng 

m values result in a notable enhancement in primary velocity, with a greater increase for the 

dilatant case over the same increment in Hall parameter. However overall the maximum 

primary velocity magnitudes are associated as before with the pseudoplastic case.  The nature 

of the ( )( ) ( )2/ 1M m f mg− + + body force term is that the secondary flow ( )g increasingly 

contributes to momentum development in the primary flow field with progessive increase in 
m . The cross flow effect therefore assists primary velocity development and manifests in 
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significant acceleration throughout the boundary layer. In the absence of Hall current ( 0)m = , 

minimal primary velocity is computed for both pseudoplastic and dilatant cases. The 

implicaiton is that negelction of this important parameter consdierably under-predicts the 

actual primary velocity leading to erroneous results in magnetic polymer processing 

simulations. It is also noteworthy that no cross-over of profiles is computed at any location 

transverse to the wall i.e. the correct behaviour is reflected in all values of transverse 

coordinate, and asymptotically smooth convergence into the free stream is achieved with the 

MATLAB code. Similar trends have been reported earlier for other non-Newtonian fluids e.g. 

micropolar [22], viscoplastic [23] and and also Newtonian liquids [25]. The overall effect of 

Hall current would therefore appear to be largely independent  of the rheological model 

adopted for the magnetic polymer although significantly different velocity magnitudes will 

arise due to the different shear stress-strain characteristics associated with these different 

models. 

 

Fig. 5visualizes the primary velocity distribution, ( )f  response to a change in generalized 

hydrodynamic slip parameter . It is apparent that primary velocity is substantially depleted 

with larger values of  .This parameter features in the wall boundary condition, 
1

(0) 1 (0) (0),
n

f f f
−

  = + in eqn. (16). The presence of slip is therefore inhibitive to 

momentum diffusion and results in a thicker primary momentum boundary layer. As 

anticipated, higher primary velocity magnitudes are achieved with the pseudoplastic fluid 

compared with dilatant fluid owing to much higher viscosity in the latter. 

 

Fig. 6 presents the secondary (cross) flow velocity profiles ( )g  versus transverse coordinate 

with different values of mixed convection parameter, . Relative to the primary velocity, 

significantly lower magnitudes of secondary velocity are observed, in particular at the wall 

(where there is also a greater spread of magnitudes for the different profiles over the same 

range of power-law index, n, and mixed convection parameter, , values).As with primary 

velocity, a strong increase in secondary flow is induced with greater thermal buoyancy effect 

(higher  values). Although  does not feature in the secondary momentum eqn. (14), the 

strong coupling terms i.e. ( )2

2 1
, ,

1 1

n M
f g mf g f g

n m

− 
  + − − 

+ + 
result in the primary field 

strongly affecting the secondary field. Secondary momentum boundary layer thickness is 

considerably reduced with greater mixed convection parameter. Again, smooth convergence 

of profiles into the free stream vanishing value is achieved with the MATLAB solutions. The 

later profile of g due to specified values of slip parameter  is depicted in Fig. 7. As with the 

primary field topologies, there is a significant retardation in secondary flow with greater slip 

effect, although the wall magnitudes are consistently lower than the primary velocity ones. 

Pseudoplastic fluids achieve higher secondary velocity magnitudes at any slip parameter 

relative to dilatant fluids. Maximum secondary flow acceleration therefore corresponds to 

weak slip ( 0.2) = and maximum secondary flow deceleration to strongest slip ( 0.8) = . 

Evidently the inclusion of wall slip effect in the magnetic polymer stretching model predicts 

secondary velocity values which are much lower than would be computed for the classical no 

slip case. The slip model therefore is more realistic and conservative for practical materials 

processing operations flow analysis and predicts a thicker secondary boundary layer. 

 

Fig. 8 displays the secondary velocity profiles for various magnetic parameter ( )M values. 

Strong secondary flow deceleration is caused by increasing magnetic field strength. 
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Effectively in the stretching flow regime, both primary and secondary components are 

retarded by the axial magnetic field (y-direction) which is applied normal to the x-z plane and 

generates mutually perpendicular inhibiting Lorentz forces in both the primary and secondary 

directions. This also results in an increase in secondary boundary layer thickness.  

 

Fig 9. illustrates the secondary velocity distributions with Hall current parameter, m.The Hall 

current-modified  magnetic drag force term, ( )( ) ( )2/ 1M m mf g+ + − in Eqn. (14) results in 

an effective negative term for the secondary velocity component i.e. ( )( ) ( )2/ 1M m mg− +  

which has a similar effect to the corresponding term in the primary momentum eqn. (13) 

i.e. ( )( ) ( )2/ 1M m mg− + . However the primary velocity component in each is different- in 

eqn. (13) it is negative i.e. ( )( )2/ 1M m f − + whereas in eqn. (14) it is positive 

i.e. ( )( )2/ 1M m mf + + .The latter is found to contribute significantly to assisting secondary 

momentum development i.e. accelerates the secondary flow and as noted before greater 

acceleration corresponds to pseudoplastic fluids comapred with dilatant fluids (the 

rheological index n features in multiple terms in both the primary and secondary momentum 

equations). 

 

Figs. 10-14visualize the temperature distribution  for variation in Prandtl number Pr  

radiation parameter R  Eckert number Ec wall slip parameter  and Hall parameter m , 

respectively. Increasing Prandtl number clearly suppresses temperatures throughout the 

magnetic polymer regime. Higher temperatures are produced for pseudoplastic rather than 

dialatant fluids. Prandtl number is inversely proportional to thermal conductivity for fixed 

values of the dynamic viscosity and specific heat capacity. Higher Prandtl number implies 

lower thermal conductivity of the magnetic polymer and vice versa. Thermal diffusivity 

exceeds momentum diffusivity for Pr 1 and is less than momentum diffusivity it for Pr 1 ; 

they are equal only when Pr 1=  for which thermal and momentum boundary layer 

thicknesses are the same in the regime. Lower Prandtl numbers therefore result in heating of 

the regime and higher values induce cooling i.e. decrease in thermal boundary layer 

thickness. The results concur with many other studies on thermofluid magnetic flows 

including Babu and Narayan [35].Fig. 11 displays the impact of thermal radiative heat 

transfer parameter, R , on the temperature evolution ( ) in the boundary layer regime. 

Featured solely in eqn. (15) since a separate equation is not required with the Rosseland flux 

model, as with other flux models (e.g. Schuster-Schwartzchild 2-flux model), 34 /R T kk  

=  

expresses the  relative contribution of thermal radiative transfer to thermal conductive heat 

transfer. When 0R =  radiative effects are negated and when 1R = they are equivalent to 

conduction. Distinct enhancment in temperatures is caused with greater R values since the 

regime is energized with radiative flux. Thermal boundary layer thickness is also accentuated 

for both pseudoplastic and dilatant fluids, although thicker thermal boundary layers are 

produced for shear-thinning polymers (pseudoplastic). Aagin it is pertinent to note that with 

radiative contribution neglected, temperatures are under-predicted in magnetic polymer flow 

simulations.  The thermal diffusion term in eqn. (15) is significantly modified with the 

inclusion of radiative flux effect i.e. ( )1 (4 / 3)R + Of course the present computations are 

limited to optically thick polymers. More refined insight into the variation of temperatures 

with optical thickness and refractive index requires more sophisticated flux models, which 
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are presently under investigation.Fig. 12 visualizes the temperature distribution () with 

Eckert number, Ec, As noted earlier, Ec is featured in both viscous heating and Joule 
dissipation (Ohmic heating) terms in the energy eqn. (15), 

viz, ( )2Pr Ec Mf + and ( )1
Pr (1/ 2)

n
Ec f

+
+ , respectively. Since these terms have higher 

degree they exert a strong influence on thermal diffusion in the regime. They signifiy the 

conversion of electrical energy to heat via magnetic resistance and mechanical energy to heat 

via internal fluid friction, respectively.Temperatures are strongly boosted with Ec therefore 

and thermal boundary layer thickness is elevated; again the enhancment is greater for 

pseudoplastic rather than dilatant polymers (rheological power-index, n, appears inseveral 

terms in the energy eqn. (15), viz, ( )Pr 2 1/ 1n n f− +  and the viscous heating term, 

( )
1

1/ 2
n

f
+

+ . Again it is noteworthy that an absence of these terms in many thermomagnetic 

materials flow simulation will lead to a significant under-prediction in temperatures (and a 

simultaneous over-prediction in local Nusselt numbers). These issues have been emphasized 

in a number of other studies including El-Amin [37] who has also computed similar results, 

albeit for Newtonian fluids in the absence of thermal buoyancy effect (forced 

convection).Fig. 13displays the evolution in temperatures ( )  with hydrodynamic wall slip 

parameter, A strong suppression in temperatures is generated with greater  values, 

although again pseudoplastic polymers attain higher magnitudes than diltant polymers. 

Thermal boundary layer thickness is therefore reduced susbtantially with greatre wall slip. As 

elaborated earlier, the exclusion of an appropriate momentum wall slip boundary condition 

would therefore markdely over-predict actual temperatures in the regime. The classical no-

slip condition adopted in numerous other works is therefore demonstrably inappropriate.  

Hatzikiriakos [51] has indicated at length that the slip velocity of molten polymers is a 

complex function and will inevitably depend on a multitude of different factors including 

wall shear and normal stresses, wall temperature, in addition to molecular characteristics of 

polymers (molecular weight and distribution). Further studies are therefore warranted with 

possible more elegant slip models to explore in more detail the exact modification to the 

momentum and thermal boundary layer structures induced by polymeric wall slip and these 

are also under consideration by the authors.Finally Fig. 14 shows the response in temperature 

distribution to a change in the Hall current parameter, m. Although absent in the thermal 

boundary layer eqn. (15), the effect of Hall current is imparted to the temperature field via 

multiple coupled terms in this equation in addition to those appearing in the primary and 

secondary momenta equations. These include the 

terms, ( )Pr 2 1/ 1 , 2Prn n f f  − + − coupling the energy eqn. (15) to the primary 

momentum eqn. (13), and the thermal buoyancy force coupling term in eqn. (13), viz + . 

The Hall current terms in eqns. (13) and (14) also couple the two velocity fields to each other, 

and in turn this then impacts on the temperature field via the primary velocity coupling terms 

explained earlier. The overall effect is that temperatures are depleted with stronger Hall 

current effect and thermal boundary layer thickness is therefore also reduced. Maximum 

temperatures are produced in the absence of Hall current (m = 0) for which thermal boundary 

layers are thickest. The implication again is that negation of Hall current effect in magnetic 

polymer flows not only removes the crossflow phenomenon (secondary velocity field) but 

also influences temperature distribution in the polymer. As observed in all other plots, 

pseudoplastic polymers are found to achieve higher temperatures (thicker thermal boundary 

layers) than dilatant polymers.  
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6. CONCLUDING REMARKS 

A theoretical model for radiative mixed convective slip flow of power law non-Newtonian 

magnetic polymer from a convectively heated uni-directionally exponentially stretching 

surface under a transverse static magnetic field has been developed, as a simulation of 

magnetic polymer (ECP) and liquid metal polymer fabrication processes. The novel features 

of the model are the inclusion of Hall current, Joule heating (Ohmic electromagnetic 

dissipation) and viscous dissipation all of which are known to characterize actual magnetic 

polymeric fabrication systems. An algebraic flux model has been deployed to model radiative 

heat transfer contributions. Hall current induces across flow necessitating the inclusion of 

both primary and secondary momentum conservation equations. Local similarity 

transformations have been implemented to render the coupled, nonlinear multi-degree 

ordinary differential boundary value problem as dimensionless. With physically realistic data 

employed, numerical solutions have been developed using MATLAB shooting quadrature 

and verified with a generalized differential quadrature (GDQ) technique. The key findings of 

the present simulations may be summarized as follows: 

➢ Increasing mixed convection parameter and Hall current parameter both accelerate the 

primary and secondary flows and decrease hydrodynamic boundary layer thicknesses. 

➢ Greater primary and secondary velocity and also temperature are consistently computed 

for pseudoplastic fluids as compared with dilatant fluids. 

➢ Secondary velocity is decreased substantially with increasing hydrodynamic wall slip 

parameter and magnetic body force number (Hartmann number). 

➢ Temperatures are elevated markedly (as are thermal boundary layer thicknesses) with 

increasing radiation parameter and Eckert number (i.e. greater viscous and Joule heating). 

➢ Temperatures are suppressed (and thermal boundary layer thicknesses reduced) with 

greater wall slip and Hall current parameter. 

➢ Primary wall shear stress is depleted with increasing magnetic field parameter (Hartmann 

number) and wall slip parameter i.e. strong deceleration is induced in the primary flow. 

➢ An increase in Hall parameter, strongly elevates local Nusselt number i.e. accentuates 

heat transfer to the wall.  

➢ Cross (secondary) flow as mobilized by Hall current produces excessive cooling in the 

electroconductive polymer whereas stronger magnetic field generates heating.  

 

The present study has been restricted to a simple flux approximation for radiative heat 

transfer. Future studies may consider alternative models e.g. Traugott P1 differential 

approximation, and this will permit greater scrutiny of radiative properties of the magnetic 

polymer. Furthermore, more complex magnetic phenomena may also be addressed in future 

studies including ferro-magnetics, magnetic leakage, relaxation etc. 
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NOTATION 

B magnetic field vector 

B0 constant magnetic field  

Ec Eckert number  

cp specific heat at constant pressure  

Cfx local skin friction coefficient  

E electrical field vector 

Ec Eckert number 

f  dimensionless primary stream function  

g dimensionless secondary (crossflow) velocity 

Grx local Grashof number  

K  consistency coefficient  

k  thermal conductivity of fluid  

L  characteristic length  

m Hall current parameter 

M  magnetic parameter  

n  rheological power-law exponent  

Nux local Nusselt number  

Pr  generalized Prandtl number  

radq  radiative heat flux 

R  radiation parameter  

Re  local Reynolds number  

Rex generalized local Reynolds number  

T  fluid temperature  

Tw temperature at the wall  

T∞ ambient temperature of the fluid 

u velocity component in the x-direction 

U0 characteristic velocity 

uw stretching sheet velocity 

v  velocity component in the y-direction 

w  velocity component in the z-direction 

x  streamwise coordinate 

y  cross-stream (transverse) coordinate 

Greek symbols 

α thermal diffusivity 

β volumetric coefficient of the thermal expansion 
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  mixed convection parameter 

θ  dimensionless temperature 

ρ  fluid density 

η  similarity independent variable 

 generalized slip parameter 

λ*  primary hydrodynamic slip coefficient 

λ1 secondary hydrodynamic slip coefficient 

ξ  mixed convection parameter 

τw primary wall shear stress 

ψ  stream function 

Ω  dimensionless temperature difference 

 

Subscripts 

w quantities at wall 

∞ quantities far away from the surface 


