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Abstract 
 

Fluvial science is in particular need of surveying tools which can rapidly and accurately 

capture topographic data. The use of low-cost, consumer grade UAV (unmanned aerial 

vehicle) systems and Structure from Motion (SfM) processing methods has seen 

successful adoption by many other earth surface processes sub-fields however their use 

for monitoring within the field of fluvial geomorphology remains limited. This study tests 

the applicability of UAV photogrammetry to fluvial surveying, capturing centimetric 

resolution data across kilometric scales, providing an ideal perspective for geomorphic 

process interpretation. For a historically modified UK case study, four series of very high 

resolution DEMs (digital elevation model) and orthomosaic imagery are produced for a 

2km reach of quasi-wandering gravel-bed river. Comparative analyses of DEMs between 

2016 and 2018 reveals widening of the incised margin and significant geomorphic 

evolution characteristic of re-naturalization following the termination of gravel mining, 

channelization, and resultant aggressive incision. Whole reach volumetric analysis 

reveals a negative sediment budget approximating a net loss of 250m3/year. Budgetary 

segregation shows 22% of eroded material is sourced from the banks of the inset 

wandering margin and is a possible cause of a general fining (30% reduction in mean b 

axis) of bed material within active channels, detectable by grain scale analysis of high-

resolution orthomosaic imagery. Vertical scour is seen to be prevented, even under 

extreme flows (~100 m3/s-1), by a bed armouring effect which is sustained by liberation 

of coarse clasts from the floodplain via lateral erosion and bank collapse. Woody debris 

dynamics, gravel bar creation and migration are intricately modelled throughout the site, 

their presence seen to be affecting flow-prioritization of sub-channels inside the incised 

margin. UAV surveying workflows and processing protocols are also developed for fluvial 

science: A means to neutralize and filter out surface error caused by vegetation occlusion 

in the SfM workflow, and a method to correct for geo-referencing error in large DEMs. 

Geomorphic findings at this UK case study hold valuable and transferable insights to river 

re-naturalization in the context of gravel extraction and channelization.
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Chapter 1: Introduction 
1.1. Research Context 

The three-dimensional recording of landscapes and features is one of the foundations of 

geomorphological study. Reliable and accurate capture and later reconstruction of spatial 

data is central to interpretation of landscape processes. The scale of feature of study is 

important to consider when selecting a suitable method for capture of such data. This 

naturally leads to a degree of constraint when approaching larger scale features (+1km) 

if specialist equipment is not available to the researcher. Since features at the kilometric 

scale and above cannot be measured by contact measurement (by hand), remote sensing 

equipment must be employed. The main limitation when using such sensors is the 

associated relatively high cost and loss of spatial resolution. The capability to survey large 

scale features is a huge advantage however. LiDAR systems have to an extent closed the 

scale gap between traditional contact measurement and less resolved, but wider scope 

remote sensing instruments over the past decade. Cost remains a significant barrier to 

widespread use of LiDAR for geomorphology studies however (Hummel et al., 2011). 

The suitability of data collection systems to certain scales, subjects and applications 

makes selection of the appropriate sensor critical if end data products are to be fit for 

purpose. Lack of options in this respect, whether due to constrained capital and support 

equipment or technical expertise and personnel, can dictate a reduction in the survey 

coverage, resolution or overall quality. Ideally, the subject of study should always control 

which type of sensors are employed, never the other way around. Access to a wide choice 

of suitable surveying tools is conducive to production of high-quality geomorphology 

studies.  Systems and sensors which remain competitive at a wider variety of scales thus 
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provide increased options to the user, permitting greater methodological flexibility and 

ultimately studies of higher quality. Access to extra data collection methods promises 

most advantage to smaller working groups or individuals who might not otherwise have 

the capability to perform landscape research at the scales relevant to their specific sub-

field of study. 

1.2. Research Motive 

Management of rivers, in terms of the hazards they present, resources they provide, and 

how they affect the surrounding physical and human environment is becoming of 

increasing importance, both in the UK and worldwide. Enabling and informing protection 

of people, property, and infrastructure from flooding and erosion is central to academic 

study of fluvial systems. This paradigm is unlikely to change as multiple climate models 

predict an increase in extreme rainfall events resulting in shorter return periods for large 

floods, particularly in the North-West of the UK in the coming decades (Huntingford et al., 

2003; Ekström et al., 2005; Kay et al., 2006). Monitoring and prediction of flood events 

and other river dynamics is facilitated by numerous tools and methods. Stream gauge and 

precipitation data allow for effective interpretation of the status of fluvial systems. Used 

in conjunction with spatial interpolation and the use of numerical modelling, prediction 

of possible discharge values and subsequent implementation of appropriate mitigation 

strategies is possible. The capture and digital reconstruction of river landscapes in a 

modelling capacity similarly allows for more detailed interpretation and forecasting of 

potential flood heights and geomorphic changes (Cobby et al., 2001). 

Tools for collection of geospatial data in the physical environment have seen considerable 

evolution and improvement concerning the information density such systems are able to 

deliver. Contact methods including manual logging of elevation points with highly 
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accurate differential GPS (dGPS) require relatively advanced equipment, are labour 

intensive, and may present operational risks to fieldworkers. Whilst interpolative 

processing methods can render a good degree of spatial information from such surveys, 

remote sensing methods are safer and offer greatly increased data collection rates 

(Brasington et al., 2000). LiDAR and Structure from Motion (SfM) interpreted 

photogrammetry each have their own advantages and drawbacks when executing and 

analysing surveys of fluvial landscapes, however in terms of equipment accessibility, 

image based remote sensing methods are currently more desirable 

Unmanned aerial vehicle (UAV) based photogrammetric surveying provides a relatively 

cheap yet very effective means for rapid collection of spatial data. As such, UAV surveying 

methods hold enormous potential for capturing geomorphic change, expedited by their 

ease of deployment and operation. Variations to channel and floodplain morphologies 

because of high discharge events, both subtle and dramatic, influence the surrounding 

population and may facilitate more fluvial evolution upstream or downstream. Induced 

fluctuations to sediment dynamics and flow regime may compromise existing flood 

defences and proximal infrastructure, however foresight of such variability can enable 

more informed planning or mitigation implementation. This project intends to predict, 

detect, and assess the wider impact of geomorphic readjustment for a UK case study. Data 

used will be primarily collected with UAV based photogrammetric surveying. Openly 

available LiDAR data will secondarily be utilized for dataset validation and to provide 

context to data collected by the UAV method. It is expected that such research will benefit 

local infrastructure planning additionally developing the understanding of fluvial 

dynamism and analysis using UAVs as a universal tool. 
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Modern UAV systems are capable of carrying suites of highly specialised sensors and 

equipment, including multi-spectral and hyper-spectral imagers and even compact 

LiDAR systems (Chisholm et al., 2013). The flexibility and agility afforded by the UAV 

platform complements the high data quality these sensors provide. Access and 

employment of these sensors is often prohibitively costly to the majority of workers; 

however, consumer grade systems below £1000 have become widespread. 

Contemporary camera sensors have reached a sufficiently high level of pixel density that 

extremely capable systems are compact and light enough to be mated to similarly 

lightweight aerial platforms. This has broadened the scales at which geomorphological 

research can be carried out whilst not sacrificing survey resolution. 

Different remote sensing platforms have an associated optimal scale of operation. Sensor 

and platform selection are usually dictated by the size of the subject of study. For 

geomorphology, this can be highly variable, between the order of centimetres and 

kilometres. For workers with limited access to expensive high-end remote sensing 

Figure 1.1 – Scales of application for various remote sensing platforms. 
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equipment this may prevent their desired study. Accessibility to sensors and platforms 

which broaden the spectrum of study available to a user has the potential to expedite 

research in the field of geomorphology and environmental science. Figure 1.1 illustrates 

the approximate coverage and resolution footprints of the most common remote sensing 

methods in use today, as well as UAV photogrammetry. When temporal sampling rate and 

cost are considered, the type of end-users are identifiable, with the highest coverage 

systems being exclusive to government and space agencies. The intermediate platforms 

traditionally utilised by larger institutions, and the lower end by sub-institutions and 

individuals. 

One of this study’s aims is to test the applicability of UAV photogrammetry data collection 

and analysis at the centimetric and kilometric scales utilising a single dataset; the ability 

to capture data over a kilometric scale at the centimetric resolution. Fluvial systems 

present the ideal case study. Rivers are subject to rapid geomorphic changes at a wide 

variety of scales (Richards, 1987). Repetition and comparison of multiple surveys under 

variable conditions will permit detection of changes to the bed, banks and floodplain of 

the river. In parallel to this aim, the project will employ novel data processing techniques 

to further improve topographic reconstructions provided by the UAV. Surveying of fluvial 

settings presents its own unique set of challenges and drawbacks inherent to UAV 

photogrammetry. Original circumventions and solutions to these problems are presented 

in tandem. 

This project’s field campaign will utilize Wooler Water, Northumberland, UK as its 

primary case study. This gravel-bed river is a good but rare example of a quasi-stable 

channel in the British Isles. Previous examinations of this site include that by Sear and 

Archer, (1998), who record incision of up to 9m following intensive gravel extraction 

which ceased in 1970.  The work identifies high-discharge flood pulses and sequencing 
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of gravel extraction sites as the main catalyst for vertical scour within the channel. This 

was characterised by metamorphosis from multi-threaded sinuous to single-threaded. 

Vertical instability is geologically inherent to a limited degree (Tipping, 1994) at Wooler 

Water, however it is clearly exacerbated by and proportional to the intensity of local 

gravel extraction.  Over twenty years on, the channel’s morphology remains in flux, most 

notably with very large avulsion events during 2013 and the “Boxing Day Floods” of 2015. 

The presence of some management structures, some abandoned, some maintained, adds 

further complexity to the local geomorphology. Wooler Water is at an important phase of 

its physical history. This study will effectively record and analyse the ongoing shifts 

within this system, at the reach, sub-reach, feature, and clast scale, with the UAV platform 

at its core. 

1.3. Thesis Structure 

This project combines two highly prolific disciplines of environmental science; fluvial 

geomorphology and remote sensing. It is intended that by doing so, each respective field 

will benefit from the tools developed and insights they provide. A degree of segregation 

between each will exist when discussing the respective backgrounds, methods and 

challenges specific to each field. This will be most visible within the Thesis’ literature 

review and methodology sections. The Thesis includes a comprehensive literature 

review, encompassing the backgrounds and contemporary research into remote sensing 

systems and fluvial geomorphology. This will be followed by laying out of the Project’s 

research aims in the form of three research questions intended to discreetly illustrate the 

investigative path. An increasingly focused approach will be taken when describing of the 

UAV field campaign. This will include general UAV operation and pre-flight planning, as 

well as the detailed recounting of each survey performed within the course of this PhD. 
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Data processing and analysis descriptions will be comprehensive throughout but will 

however be split into their respective relevant sections (namely according to their scale). 

Finally, the project’s three research questions will be considered with the data, each 

receiving their own summary.
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Chapter 2: Literature Review 
2.1. Introduction 

Technological developments during the twenty-first century have allowed for an 

expedited growth in the field of Earth observation and subsequent monitoring 

applications. Remote sensing systems have become far more capable, as have processing 

methodologies. The variety of platforms available on which to base such technologies 

have allowed workers to study a wider range of environments, in more detail, at reduced 

cost. The use of unmanned aerial vehicles (UAVs) has seen considerable development in 

academic and industrial research within the last decade due to technological advances in 

onboard global position system (GPS) technology and associated ease of post-processing 

using photogrammetric software. In addition, the use of UAV photography to generate 3D 

models of objects and landscapes at high resolutions has proved an easily accessible 

alternative to expensive, cumbersome laser scanning systems. Spatial coverage and 

resolution can be easily adapted to suit survey parameters. The recent explosion in the 

use of unmanned aerial platforms within a research capacity has been supplemented by 

developments in camera sensors and mounting systems, as well as computing and post-

processing power. According to UAV Global’s listings there are 241 standalone 

commercial UAV manufacturers, as of May 2016 (UAVGLOBAL, 2016). The market itself 

has an estimated worth of $10 billion with projected 20% growth in the civilian sector 

(Business Insider, 2015). As such it is becoming increasingly hard to deny the 

accessibility afforded to consumer grade drone platforms. Their use in remote sensing 

and environmental science has found them to outperform more traditional platforms 

such as LiDAR, especially in terms of cost and ease of deployment. 
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The need for an inexpensive means to collect data about river environments is high, 

particularly in less developed nations, where reliance upon, and hazards posed by rivers 

are more prevalent. Rapid and accurate data collection is essential for water resource 

management and environmental monitoring. Small UAV systems suit this role well due to 

their low cost and ability to deploy quickly. The information provided by aerial imaging 

can find application in a multitude of modelling and analysis suites, aiming to inform risk 

managers and developers. A concise review of literature encompassing developments in 

remote sensing systems, associated platforms, and data processing is presented here 

alongside examples of studies which have employed such technologies.  

2.2. Remote Sensing  

2.2.1. Background 

Earth observation has seen the much of its development in military or surveillance 

applications. Initially used to effect during World War I, aerial photography, 

reconnaissance and intelligence gathering have become central to strategic decision 

making.  As cameras became more compact and ruggedized, imaging systems were 

mounted onto smaller, faster aircraft during the Second World War and improvements in 

developing methods allowed for more ease of processing, resulting in an improved 

information output rate. Smaller cameras also opened up the availability of other 

platforms other than manned aircraft, including rockets, balloons, and kites. The majority 

of the early development of earth observation systems took place during the Cold War, 

driven by generous funding. Advanced rocketry and aerospace development additionally 

saw an increase in the number and variety of sensing systems and platforms on which to 

mount them. 
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The U-2 high altitude imaging aircraft was possessed extreme imagery coverage and 

resolving power. Vulnerabilities in the system however led to the need for the 

development of a space-borne platform, resulting in the CORONA satellite programme. 

With global coverage at good resolution, the platform was highly capable. Spaceborne 

imaging systems of the time, whilst capable of data collection at extreme coverages with 

acceptable resolutions, were severely limited by the lack of an information transmission 

system, necessitating the physical recovery of film canisters from satellites. These 

technologies soon found application in civil research and laid the groundwork for a new 

generation of remote sensing systems. The U-2 aircraft platform continues to see service 

under NASA for meteorological research (Goldhagen et al., 2003). CORONA satellites also 

saw non-military application for resource exploration (McDonald, 1995). 

2.2.2. Remote sensing platforms 

Improvements in data return methods enabled civilian use of remote sensing platforms 

for routine collection of data. Platforms such as Landsat providing regular data collection 

for previously unmapped areas. Digitally available data encouraged development of 

processing and analysis methodologies. Having been previously only accessible to large 

institutions with the necessary capital and equipment, the standardization and increasing 

availability of digital datasets positively impacted the field of environmental science by 

attracting more researchers and developers. Operating since 1972 a total of eight Landsat 

satellites have been produced. The principle instrumentation aboard Landsat missions 1-

5 (1972-1984) consisted of a multispectral scanning system (MSS) capable of providing 

imagery to a ground resolution of approximately 80m (Mika, 1997). Whilst missions 1-4 

carried the return beam vidicon (RBV) to accompany the MSS, Landsats 4 and 5 utilized 

a thematic mapping (TM) instrument. The RBV was capable of capturing imagery across 

a 185 km by 170 km area in three spectral bands (green, red and near infrared). The MSS 
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could provide multispectral data, however in four bands and at higher detail (with less 

regard for positional accuracy) (Campbell, 2011). Despite the relatively advanced 

abilities of satellite remote sensing, routine application was recognised to be difficult. 

Four of the seven Landsat missions (pre-1999) failed or malfunctioned in some way 

(Campbell, 2011) the reliability of spaceborne remote sensing platforms could be 

questioned. Some studies openly recognise the limitations of the data provided by such 

systems, naming noise and a lack of pre-processing as two distinct disadvantages of the 

Landsat platforms (Maxwell, 1976). 

On the other hand, the repetitive provision and extensive coverage of the data provided 

by the first Landsat missions expedited not only extension in the quantity of studies 

utilizing remote sensing to develop understanding of earth surface processes, but also 

the diversity of environments now available for remote exploration. Alpine and glacial 

systems, previously difficult to study due to equipment access limitations became of 

particular interest, especially in the advent of initial glacial retreat studies around the 

sixties and seventies (Terasmae and Hughes, 1960; Edwards, 1975; Dreimanis, 1977). 

Studies involving mass balance and inventories (Rundquist et al., 1980; Scambos et al., 

1992) as well as reflectance and albedo (Hall et al., 1987, 1989; Dozier, 1989) were well 

explored during this period. Contemporary Landsat missions are aimed toward 

continuity of data collection by preceding operations (Zanter, 2016). 

As more applications were found for the updated technologies, technical limitations were 

uncovered. Perhaps the most basic and persistent problem associated with spaceborne 

optical sensors is the need for cloud free imagery if ground features are of interest. Whist 

cloud screening algorithms utilizing a variety of methodologies have existed since the 

eighties (Ebert, 1987; Gutman et al., 1987; Saunders and Kriebel, 1988; Derrien et al., 

1993) cloud cover often restricted the abilities of spaceborne remote sensing systems to 
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detect and monitor short-term or temporally acute events (Moran et al., 1997). Cloud 

obscuration frequently hinders observations of tropical environments (Wright and Van 

Schaik, 1994; Mulkey et al., 2012). Snow detection algorithms such as SNOMAP (Hall et 

al., 1995) are also made problematic by some cloud obscuration due to the similar 

reflectance values of snow and ice-containing clouds (Dozier, 1984; Marshall et al., 1993). 

The abilities of some contemporary satellite systems to provide ground resolutions down 

to 0.4 cm (Fraser and Ravanbakhsh, 2009) and to correct for atmospheric effects (Richter, 

1996) make them extremely powerful platforms for provision of remote sensing data, 

however the issue of cloud obscuration remains un-circumvented without use of 

synthetic aperture radar sensors, which are not competitive in terms of resolution. 

Manned aircraft have not seen a considerable amount of evolution geared towards 

improving aerial photography since the cold war era. Development of cameras and 

sensors which are universally mountable to such platforms has taken precedence. With 

the first patents for the digital camera emerging in 1970s (Lopes and Thomas, 1973; 

Barrett, 1978) progression in the field of optics and image analysis has arguably led to 

the evolution of modern photogrammetry. 
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2.3. UAV Systems 

2.3.1. System types 

The concept of a pilotless, self-propelled aerial vehicle was conceived, as a result of 

wartime innovation. An “aerial torpedo”, the Hewitt-Sperry Automatic Airplane (1918) 

may be considered autonomous to a degree, containing a gyroscope flight stabilization 

system. Radio control technologies had been demonstrated (Tesla, 1905) before the 

Automatic Airplane’s development. The first radio controllable and reusable aircraft was 

developed in 1935 by the British Royal Navy; the DH.82B Queen Bee training target. A 

modified version of the US Air Force Ryan Firebee supersonic aerial target drone, 

outfitted with a film camera and recovery parachute, was utilized for reconnaissance over 

during the 1960s and 70s. Further iterations on reconnaissance systems such as the 

Israeli “Scout” drones saw improved digital sensors and greatly reduced operational 

costs (Edwards Jr, 1990). These were used in the 1986 Yom Kippur War for gathering 

intelligence. (Miller, 1988; Cai et al., 2010). Further improved versions of the Scout 

(Pioneer) were also employed with during the Gulf War (Polmar, 2013). 

Methods of controlling and directing UAV platforms is central to their usefulness. 

Guidance for the first reusable drones was based upon inertial guidance systems alone 

(Shima et al., 2006). The most significant improvement to this area is however the use of 

the global positioning system (Campa et al., 2004). Combined with on-board inertial 

measurement units (IMU) and accelerometers, algorithmic implementation of GPS can 

allow for precise and reliable manoeuvring and positional feedback (Kaminer et al., 1998; 

Kim et al., 2006). Additionally, vision-based guidance systems exist for situations where 

GPS may be denied (Ahrens et al., 2009; Cesetti et al., 2009; Lange et al., 2009). Such 

guidance systems are vital to operation of rotary-wing UAVs, especially multi-rotors, 
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where a lack of control surfaces necessitates attitude control through differential thrust 

and torque balancing alone. Certain advantages exist for rotary systems however, 

perhaps most explicitly their vertical take-off and landing (VTOL) abilities. Conversely, 

the increased speed, range and payload capabilities of fixed-wing platforms are an 

advantage. 

Small-form computers, rapid manufacturing, and improved materials have boosted 

availability of technology to consumers (Hopkinson et al., 2006). Concurrently, the 

proliferation of UAV systems within military, commercial, and domestic applications has 

seen the new manufacturers and development groups. In the USA alone over 90 such 

companies have been in operation since 2015 (Canis, 2015). Aided by the relative ease of 

manufacturing, requiring few components and using well proven techniques, the cost of 

UAV production can be kept down. Furthermore, the integration of ubiquitously available 

technologies including smartphones, tablet computers, WiFi receivers, and GPS 

integration has permitted elevated levels of control and consumer accessibility. 

2.4. Photogrammetry 

2.4.1. Computer Vision and Image Processing 

In an earth observation context, the role of digital image processing has developed in 

tandem with the development of sensors and platforms. Applications were found in the 

form of weather observation, initiating in the 1970s. Caveats of equipment expense and 

availability remained into the 1980s however (Kümmerlen et al., 1999). Continued 

computer miniaturisation and cost reduction eventually allowed the public to access such 

technologies. Today, digital image processing is important within industry and research, 

for a diverse range of applications. Optical systems and associated postprocessing have 

multiple applications within assembly line quality control for a plethora of industries, 
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including food (Gunasekaran, 1996), automotive and aerospace (Vernon, 1991). 

Critically, such practices enable low-cost, non-contact methods for consistent quality 

control. Computerised image processing is also used for medical applications (Tavares et 

al., 2009). Aerially captured images are automatically interpreted by McKeown, Harvey, 

& Wixson (1989), who use rudimentary object based image analysis (OBIA) to classify 

variable land use and features; differentiating roads, houses and airport taxiways and 

hangars. OBIA is well used within environmental sciences literature, where rapid 

classification of large datasets is made easy and quick (McKeown et al., 1989; Yu et al., 

2006; Blaschke, 2010; Myint et al., 2011; Arvor et al., 2013; Hussain et al., 2013). 

For DEM generation, images must be captured with a degree of coverage overlap, the 

extent of which may be defined by the application. Registration is achieved through 

identification of pixels in multiple images which correspond to a common point on the 

ground. Assignment of an absolute spatial reference for each image should be sought, 

however interpretation can be achieved with relative or arbitrary coordinates only, 

provided location can be identified through context (Schowengerdt, 2007). 

2.4.2. Structure from Motion (SfM) 

Image registration forms the initial step of the Structure from Motion (SfM) workflow. A 

multitude of computational methods exist, some more suited to certain applications than 

others. Brown, (1992) discusses several of these, identifying those best suited to multi-

sensor and multi-temporal data, as well as the applications of three-dimensional 

information extraction and model-based object recognition. For spatial reconstruction, 

point-mapping may be considered the primary approach for image registration. First, 

spatial features are computed or manually chosen for each image. These features, control 

points or tie-points, are then corresponded to common images across the data set. Finally, 

an image transformation is applied according to a function to best overlay common 
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control points, such as least squares regression. Tie points may be assigned manually, i.e. 

by reference of landmark or another static feature, or automatically through computer 

vision. Successful processing is however subject to all tie points being assigned a relative 

spatial reference so that image transformation may be applied. Collinearity equations 

rendezvous the 2D coordinates in the sensor plane to the 3D coordinate in the real world 

(Schenk, 1994; Schindler, 2015). These equations form the basis of the algorithms 

utilized by processing packages (Maas, 1995; Schenk, 2005). Further matching 

algorithms such as the Lucas-Kanade tracker (Lucas and Kanade, 1981) give additional 

means for initial tie-point generation. Modern processing packages include means for 

distortion compensation through camera calibration models, ultimately improving data 

densities and reducing error. 

For the purpose of forwarding the field of environmental science, the abilities of aerial 

platforms to provide parametric values coupled with detailed imagery make them ideal 

instruments for reconstruction of landscapes and their physical characteristics. This 

allows workers to go beyond image interpretation alone, enabling a wide scope of 

modelling techniques. This in turn facilitates analysis of processes within the 

environment. Systems such as the CORONA satellite imaging platform, operating with 

dual cameras, were capable of producing stereo-photographic images, permitting 

interpreters to perceive depth (Barnard and Fischler, 1982). More recent studies have 

been able to reconstruct digital surface models from CORONA imagery (Schmidt et al., 

2001; Altmaier and Kany, 2002; Casana and Cothren, 2008). The principle is easily 

transferable to aerial photography and best suited to urban environments, where straight 

edges and predictable geometries ease interpretation (Baillard and Maıtre, 1999). Stereo- 

photogrammetry is a means for three dimensional interpretations to be made through 

combination of individual images, which by themselves, cannot convey true 3D structure. 
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LiDAR provides further means for constructing three dimensional models from land 

based (TLS) or air based (ALS) platforms. By utilizing the time of flight principle, the 

instrument detects points with relative coordinates in the environment. The system 

captures many millions of points from an environment to create a point cloud which with 

further processing can be used to produce a polygonal mesh and DEMs. The resolution of 

such systems is effectively controlled by the specified field of view and scanning time. 

Whilst laser range finding systems had existed for a time before their mapping 

applications (Stickley and Gingrande, 1967; Hamilton, 1969) their use as a means for 

capturing feature morphology was initiated around the 1980s (Krabill et al., 1984). Its 

application to the physical environment was particularly noted in forests at the beginning 

of the millennium and many contemporary studies favour the use of LiDAR based 

methodologies (Dubayah and Drake, 2000; Lim et al., 2003; Popescu et al., 2003). LiDAR 

scanning systems may often be used from a terrestrial base, particularly suited for 

capturing vertical features, such as cliffs and outcrops (Bellian et al., 2005; Lato et al., 

2010; Young et al., 2010). The instrument can also operate in an aerial capacity (Verma 

et al., 2006), however the bulk of LiDAR devices often limits accessibility to such 

platforms. 
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2.5. Fluvial Geomorphology 

2.5.1. River Forms and Controls 

The relationship between form and flow in river systems gives rise to numerous and 

varied feature types. The field of fluvial geomorphology aims to quantify, categorise and 

monitor these features to learn how they might be formed and maintained. This could 

inform artificial modification of the physical world. The introduction of human actions 

may disturb the equilibrium that exists to maintain the geomorphic “status-quo”, leading 

to removal, alteration or creation of new features within the main river channel or 

floodplain. Long understood in Europe, the Middle and Far East  (Burke, 2009) this fact 

has aided hydraulic engineering throughout history. Observing changes in river systems 

and identifying the underlying causes for such evolution form the basis of many studies. 

Schumm & Lichty (1963) rationalise ongoing channel widening and floodplain accretion 

through accounting the effects of variable precipitation and its subsequent effect upon 

peak flows and the affinity for vegetation to stabilize features within the system; channel 

widening is associated with low-precipitation periods which produce higher peak flows 

due to the intermittent nature of rainfall. Conversely, floodplain accretion is associated 

with more consistent rainfall, making for lower peak discharges and permitting 

vegetation to grow within the channel margins, arresting the flow and allowing for 

deposition. Channel response may alternatively be due to alterations in a river’s sediment 

load as in Smith & Smith (1984) who identify similar channel widening to Schumm & 

Lichty (1963), but by different mechanisms. The former work finding that the channel 

widening could be explained by the influx of extra bedload material by aeolian processes 

upstream. The additional sediment decreases channel depth, therefore flow the river 
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increases in channel width to accommodate the same flow. This study classically 

highlights the relationship between river load and form. 

Alluvial systems provide the most diverse array of river forms, centrally dependent upon 

sediment type and quantity. According to Leopold & Wolman, (1957) planform channel 

patterns may be generally classified to be either (relatively) straight, meandering or 

braided, with increasing sediment load and lateral instability respectively. Sub (or super) 

classification is afforded by other works which account for additional effects such as 

variable flow regime, vegetation and geology (Schumm, 1985; Rosgen, 1994; Nanson and 

Knighton, 1996). These works serve to categorise river form in a spectral manner, where 

sediment size and quantity along with water velocity and stream power fundamentally 

shape a river channel’s final form. The distinctness of different channel types is afforded 

by the existence of intrinsic and extrinsic geomorphic thresholds, whereby if exceeded, a 

new mechanic process arises. An extrinsic threshold may be identified as one which 

requires forcing by an external variable for exceedance to occur. For example, the 

stripping of vegetation leading to river-bed scour. An intrinsic threshold however does 

not require forcing by an external variable to be exceeded. An example of an intrinsic 

threshold exceedance might be slope failure under gravity following steepening by 

sediment accretion. 

Basic forms are identified by Leopold & Wolman, (1957), naturally maintained straight 

channels are very rare under fully natural condition since any lateral asymmetry will 

inevitably lead to flow deflection and creation of more variable roughness downstream. 

This lateral instability forms the basis for meandering channels whereby pools and riffle 

sequences provide the embryonic disturbance for sinuosity to increase. The meandering 

pattern is synonymous with a higher ratio of fine sediment (suspended) to coarse (bed 

load) and exists at a quasi-stable level. Meandering systems can additionally be identified 
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when the ratio of a sinuous channel’s wavelength to its width is maintained between 5 

and 7 (Whiting & Dietrich, 1993). Braided systems are found when sedimentary load is 

higher (Murray & Paola, 1994), the splitting and reconnection of sub-channels becoming 

more common when sediment load is coarser (Doeglas, 1962). Structural processes that 

give rise to the braids are fundamentally similar to those which aim to increase sinuosity 

in straight channels, albeit with more verticality due to increased sediment load. 

Additional mechanics exist where channels bifurcate and converge; bars are subject to 

migrate downstream through erosion at their head and deposition at the tail within the 

pool caused by flow confluence (Bristow & Best, 1993). Sediment bars are laterally 

unstable since any minor shift in flow direction, power or load can lead to flow deflection, 

actioning geomorphic processes to occur upon the flanks of any bar (Ferguson, 1993). 

Anabranching river systems are recognisable by the presence of channel splitting and 

reconnection around bars or islands which are more stable than their braided system 

counterparts (Tooth & Nanson, 1999). Such stability is afforded by a relatively low stream 

power despite these rivers often carrying a relatively coarse sediment load (Latrubesse, 

2008). 

Despite large number of categorized river forms, the classification of system types should 

be considered to exist on a spectrum, where a continuum of morphologies exists. System 

type is, at the most basic level, defined by the interaction between flow and sediment 

load/type, any change (beyond extrinsic threshold levels) in such inputs should lead to a 

lateral or vertical modification to the river’s general profile. This is the basis for river 

metamorphosis; whereby the complete morphology of a river is altered (Schumm, 1969). 

Natural variability in precipitation and sediment loading processes are well documented 

to affect channel dimensions and sinuosity under human timescales  (Erskine & White, 

1996; Erskine, 1986; S. Schumm & Lichty, 1963). Channel metamorphosis has been 
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observed to occur even under very slight environmental forcing (Brizga & Finlayson, 

1990), usually when the systems exists in a pseudo-stable state. That is, a river may flip 

flow regime under some circumstances, for example where paleo-channels are available 

for reactivation or geology serves to deflect flows or alter sediment load/type. The 

fragility of stasis to mild environmental forcing within fluvial systems follows that 

artificial influences will affect river planform and channel dimensions.  

2.5.2. Artificial Influences on River Form 

The role of human actions which alter flow regime along with sediment quantity and type 

should be slated to have an equivalent effect as natural analogues, however artificial 

influences are not so limited. Conversion of natural landscapes for industry or settlement 

inevitably will affect drainage, if not the riparian margin directly. Development within the 

catchment is associated with rivers transitioning to more stable types often through 

reduction in sediment supply. Marston et al. (1995) establish a strong link between 

increasing floodplain clearance for industry and settlement which served to lower the 

water table leading to channel incision. The metamorphosis from braided to single 

channel system is further fulfilled by stasis of abandoned channels by vegetation. 

Artificial changes to the equilibrium that exists to maintain the present form are the 

fundamental driver of river metamorphosis. A qualitative summary of such changes is 

well summarised by Chang (1986): 
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Table 2.1 – Summary of the effects of modification of discharge (Q) and sediment load (Qs) Note: * 
= indirect effect 

 Channel 
Width 

Channel 
Depth 

Width/Depth 
Ratio 

Meander 
Wavelength 

Channel 
Slope 

Sinuosity 

𝑄+ + + + + - * 
𝑄− - - - - + * 
𝑄𝑠

+ + - + + + - 
𝑄𝑠

− - + - - - + 
𝑄+ 𝑄𝑠

+  + * + + * - 
𝑄− 𝑄𝑠

− - * - - * + 
𝑄+ 𝑄𝑠

− * + - * - + 
𝑄− 𝑄𝑠

+ * - + * + - 
 

Each scenario described by Table 2.1 can be caused by natural variation, however 

artificial analogues exist. An increase in discharge along with bedload is characteristic of 

deforestation, conversely a decrease in each may be attributable to dam or weir 

construction. A rise in discharge and decrease in bedload is symptomatic of flow 

diversion from elsewhere by canals, irrigation and potentially climate change. Vice-versa, 

a decrease in discharge and increased sediment loading might be caused by over 

exploitation of water resources. 

Gregory, Davis and Downs (1992) link ongoing urbanisation within the margins of a UK 

floodplain to localised channel widening by more than double with an associated slight 

increase in depth (0.4m). Channel enlargement is similarly observed by Brookes, (1987) 

who documents channel incision and widening to variable degrees at 14 sites 

downstream of channelization works. The effects investigated by these works are linked 

by the symptomatic increase in peak discharge and thus stream power due to increased 

hydraulic input within an unchanged given period, by landscape impermeability and flow 

acceleration respectively. The control and relationship between flow and channel 

dimensions is known to vary between case examples. Proportionality between change in 



Chapter 2: Literature Review 

23 
 

peak flow and associated channel expansion is seen to be inconsistent by Booth (1990). 

Some cases exhibit modest channel adjustment in response to alterations in peak 

discharge, whereas some channels are observed to “catastrophically” incise out of 

proportion to the change in discharge that has occurred. Examination of this non-linearity 

is undertaken through prioritised analysis of the controls upon basal shear stress (τb), 

specifically slope (S). When considered that the action of channel incision serves to 

decrease gradient, idealistically all the way between source and local base-level, a 

negative feedback cycle is identified; reduction of slope by incision serves to reduce shear 

stress thus limit further incision. The initial slope conditions in a channel however are 

what source the non-linear relationship between change in peak flow magnitude and 

incision. In channels of initial low gradient, any incision that occurs acts to reduce slope 

as a greater percentage of the initial gradient. Contrastingly, in streams of high initial 

slope, the negative feedback is less pronounced since vertical scour does not decrease 

slope to the same relative degree that it would in a shallow-gradient system. This 

presents an obvious discourse in the expected channel response between upper stage, 

headwater streams, and lower to middle course channels. 

Landscape context aside, human influences upon the factors which define fluvial form are 

diverse and often widespread in developed countries. Artificial effectors to discharge, 

most pervasively land-use, and sediment type and quantity have varying levels of 

disturbance to river systems. Such disturbance may be spatially or temporally 

inconsistent, with wide-ranging magnitude. Direct interference with sedimentary 

throughput by human installations or processes both in-channel and within the wider 

catchment gives rise to channel adjustments throughout the long-profile. Deforestation 

and subsequent soil erosion as in Restrepo, Kettner and Syvitski (2015) may serve to 

increase a river’s sediment load resulting in aggradation of in-stream habitats (Brookes, 
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1990). Conversely sedimentary cut-off by dam or weir can almost invariably lead to 

vertical scour, bank failure and stripping of riparian vegetation (Barclay, 1980) and thus 

it’s stabilising effect. The connotations of such effects lend significance to the 

understanding of channel adjustment. Increased channel depth as a result of clearwater 

erosion due to sedimentary cut-off upstream, often defined as incision or degradation, 

may progress upstream or downstream depending on the nature of the initial 

disturbance (Galay, 1983). In the former case, an adjustment to the local base-level such 

as a lake level or meander cut-off can introduce an adverse change in gradient or knick-

point, conducive to an increase in velocity and thus shear-stress. Downstream 

progressing incision is synonymous with in-channel installations which disrupt 

sedimentary throughput, reservoir dams being the most prevalent example; retention of 

material within the main reservoir affords outflow water to have a higher affinity to 

erode. 

The proliferation of river bed lowering whilst confined to a singular direction in the case 

of base-level adjustment or sediment cut-off may process both up and downstream in 

certain cases. A localised and sustained removal of bed material introduces a spatially 

discreet area of lowered channel, which can affect equilibriums upstream and 

downstream. In-channel gravel mining presents the most obvious artificial process that 

fits these conditions. Effects identified by Kondolf, (1994) and Rundquist, (1980) namely 

incision occurring up and downstream are attributable to the localised abrupt change in 

slope at the start and terminus of an extraction pit. Two fundamental effectors arise: the 

creation of a knick point at the upstream end of the site, and the retention of bed material 

within the extraction pit (Erskine, 1990; Petit et al., 1996; Harvey and Smith, 1998). In 

accordance with the shift in equilibrium this causes, vertical scour is to be expected 

upstream as the head-cut migrates, and downstream as clearwater erosion takes place 
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due to sediment capture within the pit. Gravel extraction industries are rarely confined 

to the channel alone and often utilize the entire riparian margin, mining the floodplain. 

Whilst this may initially prevent direct channel incision channel avulsion to a floodplain 

pit can have more violent consequences than in-channel mining alone. “Pit capture” as 

referenced in Mossa and Marks, (2011) introduces not only a slope anomaly to the river 

system, but additional lateral instability, potentially exaggerating downstream effects 

(Kondolf, 1998). 
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2.6. Applications for UAV remote sensing 

2.6.1. Ecology and Vegetation Monitoring 

Image-based UAV remote sensing is highly applicable to monitoring of plant health 

parameters. Vegetation distributions and crop plots are often multiple hectares in area, 

thus ground sampling operations are unfeasible for acquisition of big datasets (Kaneko 

and Nohara, 2014). The use of UAVs for surveying of crops has enabled producers to 

maximise yields (Anthony et al., 2014) through provision of higher spatial and temporal 

resolution data (Bendig et al., 2013), for comparatively little cost (Lelong et al., 2008; 

George et al., 2013). The use of near infrared sensors mounted to UAV platforms has been 

demonstrated as capable of providing data for vegetation biomass (via reflectance 

interpretation), which when combined with crop height data, provided by visible light 

(RGB) imagery, can provide a great deal of information (Berni et al., 2009; Bendig et al., 

2015). Calibration of such sensors is critically important, and even slightly variable 

lighting conditions between suveys may skew results (Berni et al., 2009). Implementation 

of other sensors such as thermal imaging systems are able to provide data for plant 

coverage and soil moisture, through use of temperature as a proxy both (Turner et al., 

2011; Baluja et al., 2012). Data processing methods such as object based image analysis 

(OBIA) methodologies make effective use of the high quality data provided by UAVs to 

enable capacities such as distinction between vegetation and bare soil (Torres-Sánchez 

et al., 2015) and more informed weed control (Meyer and Neto, 2008). Such processing 

methods however require imagery where objects of interest are comprised of at least 

several pixels and not occluded (Blaschke, 2010). 

UAV remote sensing for forest applications draws multiple parallels to that of agriculture. 

Whilst aerial LiDAR has been noted as an effective tool for measuring tree height and 
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crown size (Drake et al., 2002; Brandtberg et al., 2003; Patenaude et al., 2004; Andersen 

et al., 2005) risks are presented to aircraft flying low over densely forested landscapes by 

subsequent lack safe landing options in an emergency (FAA, 2004). The use of unmanned 

systems thus represents a bypassing of such risks, whilst still retaining operational 

capabilities. Small platform feasible LiDAR systems have been evaluated to be feasible for 

forestry surveying (Lin et al., 2011) however there are implications for the range of UAVs 

carrying such systems (Wallace et al., 2012), thus the overall survey coverage. All 

literature involving the use of UAV based LiDAR systems appears to have so far 

exclusively used rotary-wing systems and hence been limited in survey coverage. Rotary 

systems are however undoubtedly more feasible for sub-canopy operations, although 

range and battery life implications persist (Chisholm et al., 2013) especially when 

carrying heavy LiDAR scanners. The role of UAVs for insight to forest parameters draws 

many obvious inferences to correlating physical variables, including those of wider local 

biotope. An example being the relationship between forest structure heterogeneity, 

biodiversity and gross primary production (Turner et al., 2003; Gitelson, 2004; van 

Leeuwen and Nieuwenhuis, 2010). 

2.6.2. Earth Sciences 

Photography and other imaging systems have been well used to analyse both modern and 

historic geological subjects (Arnot et al., 1997; Wickliff, 1997). Reconstruction of photo-

realistic 3D models has traditionally been made possible through LiDAR scanning 

(Bellian et al., 2005; Buckley et al., 2010; Lato et al., 2010; Burton et al., 2011), which also 

allows inference of rock properties through variable wavelength reflectance 

measurement (Burton et al., 2011). Such studies often involve use of ground-based 

scanners, which are limited when capturing particularly wide or tall outcrops. To 

circumvent this problem, helicopter mounting of scanning systems has been suggested 
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(Buckley et al., 2008), however cost and accessibility to such assets rules out such 

methodologies to most workers. Photogrammetric employment of UAVs offers a means 

for modelling of large-scale geological structures with greatly reduced cost, perhaps at 

the expense of LiDAR’s property sensing abilities. However, it may be possible to infer 

rock properties through use of multi-spectral imaging systems such as near-infrared 

photography. The use of drone-based photogrammetry and thermal imagery is 

immensely applicable to the volcanic sciences, where access limitations, even for manned 

aircraft, make study problematic (Saiki and Ohba, 2010). For hazard surveillance, UAV 

platforms offer a wide array of sensing possibilities including landform monitoring 

(Saggiani et al., 2007; Nakano et al., 2014; Clapuyt et al., 2016) gas sampling (Caltabiano 

et al., 2005; Patterson et al., 2005; McGonigle et al., 2008), and temperature mapping 

(Amici et al., 2013). 

For management of earth resources, remote sensing facilitates extensive landscape 

modelling and management implementation options. UAVs have proven useful within the 

coal industry for resource management and exploration to a limited degree. For 

monitoring and detection of possible sub-surface combustion events, UAV based thermal 

imaging allows for hazard mitigation and resource preservation (Vasterling et al., 2010; 

Malos et al., 2013). As platforms for resource exploration and mapping, UAVs equipped 

with gravimetric sensors and magnetometers would be feasible for cheap, rapid 

terrestrial mineral exploration (Barnard, 2010). Deurloo, Bastos, & Bos, (2012) however 

note the limitations relating to the bulk of more conventional gravimeters, thus their 

suitability for mounting to manned aircraft more exclusively. Aeromagnetic surveying 

with UAV based instrumentation similarly limits sensor dimensions and mass, however 

Funaki et al. (2008) demonstrates the successful use of such systems with decent 

accuracy in fair conditions (Funaki and Hirasawa, 2008). UAV based magnetometers have 
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additionally been found feasible for unexploded ordnance (UXO) detection (Versteeg et 

al., 2007). 

2.6.3. Glacial Applications 

Glacial retreat as a result of recent climate forcing is ubiquitously identified throughout 

the scientific community (Bond et al., 1993; Zwally et al., 2002; Howat et al., 2007; 

Kulkarni et al., 2007; Joughin et al., 2008), thus an increase in the means to study such 

systems, especially with UAVs, has followed. Photogrammetric and structure from 

motion (SfM) applications include investigation of terminus calving dynamics in marine 

glaciers, where temporally critical DEM generation is of importance (Ryan et al., 2014, 

2015). High temporal resolution data collected via UAV based photogrammetry makes 

these systems ideal for measuring rapid morphological change including that of glacier 

mass balance. Immerzeel et al. (2014) utilize drone photography for investigation of 

ablation and velocity patterns in Himalayan glaciers. The survey does offer great insight 

into sub-feature scale morphological variations, however changes at the scale of the 

entire system are not wholly presented. Other photogrammetric glacier studies include a 

terrestrial based survey; Piermattei, Carturan, & Guarnieri (2015) find photogrammetric 

interpretation of glacier mass balance is achievable, performing similarly to TLS, however 

care must be taken where the presence of shadows and variable contrast may lead to less 

reliable point cloud generation. 

2.6.4. Fluvial Sciences 

Landscapes and features which demonstrate dynamic morphological variability are 

particularly well suited to capture and reconstruction via UAV photogrammetry and SfM, 

especially when such changes may often have a direct effect upon their surrounding 

environment, be it physical or human. Rivers are invariably subject to morphological 

evolution at a wide range of spatial and temporal scales, thus timely data collection is 
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paramount if such variability is to be utilized in modelling and analysis processes. 

Morphological study of rivers employing UAV surveys has drawn significant attention. 

For shallow rivers Bagheri, Ghodsian, & Saadatseresht (2015)and Bangen, Wheaton, 

Bouwes, Bouwes, & Jordan (2014) utilize UAV imaging and ALS respectively, returning 

very comparable yet high quality DEM data. When compared to a work, such as Javernick, 

Brasington, & Caruso (2014), who use a combination of DEM data collected via helicopter 

photogrammetry, and manual GPS referencing of channel bathymetry and water surface 

elevation, rather similar results and accuracies are observed. The obvious implication 

that the former studies offer data quality alike to the latter, whilst having vastly simpler 

methodologies further demonstrates the applicability of UAVs for rapid, effective 

collection of morphology data. Channel bed bathymetry does however present a 

challenge to aerial remote sensing methods, especially image-based ones, where surface 

glare and water visibility negatively affect DEM quality. An interesting approach is taken 

by Storlazzi, Dartnell, Hatcher, & Gibbs (2016) albeit in a marine capacity, who use 

replace the drone mounted method with a housed camera designed to capture 

georeferenced nadir imagery floating on the surface, reconstructing bed bathymetry with 

SfM for waters of good visibility between 4m and 12m depth. Such conditions are rarely 

observed within fluvial systems, although it is not entirely implausible that a hybrid 

aerial-water drone could fulfil both roles. Imaging and interpretation of sub-aerial and 

immersed topography has been demonstrated to be possible using airborne photography 

methods alone, however sonar and LiDAR based methods have been found to provide 

more complete data (Feurer et al., 2008). 

Works which seek to improve facilitation of river restoration through increasing 

ecological integrity whilst maintaining flood protection often include the use of UAV 

imaging. Flynn & Chapra (2014) utilize UAS for detection of algal blooms, a characteristic 
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indicator of organic pollution, at a watershed scale. Such a scale is yet to become feasible 

for SfM methods. Mancini, Frontoni, Zingaretti, & Longhi (2015) work at a similar scale 

to characterize land use for riparian and estuarine environments, interestingly including 

an unmanned ground vehicle (UGV) for additional imaging viewpoints and the use of a 

change detection algorithm to map temporal variability. Jensen, Hardy, McKee, & Chen 

(2011) utilize a fixed wing UAV to generate orthomosaics imagery for assessing habitat 

homogeneity for several miles of river over the course of a year. The results of their 

surveys well show the dynamic nature of the riparian environment, as flow rates fluctuate 

throughout the year. The resolution of imaged areas could have been improved however 

by executing surveys at lower altitudes. The works described above do not utilize 3D 

processing as it is not necessarily required, however for monitoring instream and 

floodplain vegetation heights, a means to gauge elevation is invaluable. Such studies as 

Van Iersel, Straatsma, Addink, & Middelkoop (2016) accomplish this using SfM, however 

whilst their level of accuracy is deemed sufficient for detecting vegetation height change, 

the work does not utilize GCPs and thus includes significant error within the generated 

DEMs.  
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Chapter 3: Research Questions 
 

1. How are existing channel and bed morphologies influenced by the current flow 

regime and how might they be affected by future variability? 

The primary aim of this project is to carry out concise recording and mapping of 

sedimentary processes within the study reach will be carried out. Research question 1 

intends to utilise this data in order to track and extrapolate upon the geomorphic 

evolution of Wooler Water. The role of UAV surveying is most central to this, as timely 

and high-resolution measurement of surface variability is essential in order to build the 

most complete picture of river variability. Volumes of sediment transported during even 

short periods of high flow may exceed those moved during an entire season of low flow 

however, potentially leading to channel avulsion or potential for further change by other 

processes. Flood events represent such periods and have historically led to significant 

morphological change within the study reach. The project aims to generate fine 

resolution mapping of erosional and depositional patterns, allowing for precise tracking 

of the volumes of water and sediment which enter and leave the system, thus permitting 

interpretation of how downstream areas might be affected. Understanding the role of 

flooding and its influences upon local geomorphic change and the wider sediment flux of 

the Wooler Water field site will aid the project by improving transferability of the 

observations made throughout its course as well as developing the capabilities and 

applications for UAV surveying and wider remote sensing.  

2. What present evolutionary trajectories exist for the channel and bed morphology 

of Wooler Water. 

As a study location example, the Northumbrian river; Wooler Water provides a suitable 

case for geomorphic change analysis. Recent and historic channel variability at this 
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location provides basis for prospect of future change which may be studied as part of this 

project. Furthermore, good quality LiDAR data, detailed historical maps as well as other 

surveys by various organisations are available for interpretation of past conditions and 

will aid the project through provision of secondary data. Historical evidence and recent 

observations have concluded that in the case of Wooler Water, approximately 2km south 

of the village of Wooler significant channel adjustment has occurred. More recent 

investigations, such as those carried out following the December floods of 2015, found 

significant portions of the channel and floodplain were morphologically distinct from 

previous configurations, whilst longer term records indicate the main active channel have 

laterally migrated by up to 200m in some places.  

For the purpose of prediction of possible fluvial evolution, contextual interpretation of 

geomorphic alteration is possible from data already available on the study reach. 

Additionally, options for prediction of possible geomorphic change scenarios exist within 

modelling applications. Volumetric sediment budget calculations can provide estimations 

of how a system has and may evolve over time. Using data already available for the study 

site, a range of possible outcomes will be investigated. 

3. How extensively and effectively can UAV photogrammetry be applied for multi-

scale (kilometric to centimetric) fluvial surveying? 

The relatively low cost and accessibility of UAV based data collection and 

photogrammetric processing when compared to alternatives such as LiDAR scanning, 

manifests such methods as a reliable alternative to traditional systems. As has been the 

case for a multiplicity of past technologies cost reduction has been among the first steps 

to wider dissemination and proliferation within society. High detail, large scale fluvial 

surveying is alike in this regard, inaccessible to the majority of organisations and 

individuals. This may stand to change however. Aerial LiDAR surveying (ALS) has been 
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the primary means for such surveying, requiring specialist equipment and tools 

accessible only with generous funding. Aircraft cost and operational fees combined with 

expensive instrumentation and correspondingly costly maintenance make ALS a 

tremendously niche operation.  In the UK, the data from many such surveys carried out 

by the Environment Agency is openly available, however in a temporally succinct 

availability. The need for a rapidly repeatable, low-cost alternative, that does not 

compromise on data quality thus exists. If found to be successful, the use of UAV imagery 

for fluvial surveying stands to open a new front for commercial and private applications. 

Indeed, this has been the case in many other fields and industries, including the 

geosciences, mining, and construction industries, who seek to keep costs down, whilst 

obtaining reliable topographical data. 
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Chapter 4: Field Site & UAV Campaign 
4.1. Introduction 

This project’s three-year field campaign began in July 2016, when the first survey of 

Wooler Water was carried out. The gap between this and the commencement of the PhD 

(January 2016) is attributable to the time necessary to source equipment and be trained 

regarding specific operation. Acquisition of a Phantom 3 Pro UAV system occurred early 

on, and flight training was carried out. Specific operation in relation to field surveying of 

the case site took more time however. Training for operations at Wooler Water included 

a series of test flights near the Peel Park Campus of the University of Salford. During these 

tests, the basis for a pre-flight planning workflow was developed alongside the relevant 

field skills required to effectively gather data at the field site in Northumberland. These 

included the practical skills of manually flying the UAV without GPS assistance if the 

situation required as well as study of existing aerial photographs (Environment Agency, 

2009) in order to scout good locations for GCP placement.  

This section of the thesis will recount the details of the necessary pre-flight workflow as 

well as how it was specifically developed for use with fluvial settings. This workflow was 

utilised in the course of each river survey to preserve data continuity and integrity. In 

practice, conditions at the case study site will of course vary, and the survey workflow is 

intended to normalise this to a degree. Similarly, some equipment was updated between 

surveys. These changes are not deemed to negatively affect the data, since they all 

constitute upgrades over previous equipment. Finally, user proficiency was certainly 

increased between surveys, as experience was gained. 
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4.2. Pre-flight survey planning. 

Use of unmanned aerial vehicles (UAV) has enriched surveying in the environmental 

sciences. Technological advances in onboard GPS technology and ease of data post-

processing using photogrammetric software such as Structure from Motion (SfM). In 

addition, the use of UAV photography to generate 3D elevation models of objects and 

landscapes at high resolutions has proved an easily accessible alternative to often 

expensive, cumbersome laser scanning systems (Flener et al., 2013). Survey spatial 

coverage can be increased simply through an increase in flight altitude, although 

resolution is sacrificed. Finding a balance between these two factors is key to producing 

high quality data, quickly, yet to date a protocol for deployment of UAVs to establish 

optimal spatial coverage, flight height to resolution ratio has not been documented. This 

section intends to establish a simple, repeatable methodology, based on a standard UAV 

platform, to provide information to optimize flight plans according to their requirements 

for resolution and coverage. 

Affordability and extensive choice of Unmanned Aerial platforms along with 

improvements in on-board systems have allowed for a recent exponential growth of their 

use within academic and industrial use. Results have been applicable to a multiplicity of 

scientific fields, from volcanic surveys (Nakano et al., 2014) riverine research  (Woodget 

et al., 2016) and studies of vegetation (Mathews and Jensen, 2013). Among the most 

powerful applications of UAV photography is the ability to rapidly generate digital 

elevation models and high resolution orthomosaics of large scale subjects (Siebert and 

Teizer, 2014). This process is however limited by the conventional restraints of coverage 

and resolution, which are so often present in nearly every form of remote sensing and 

data collection system. Whilst literature exists regarding the applicability of UAV field 
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deployment, there is yet to be a study that defines and examines the relationship between 

spatial coverage and image resolution when surveying in the field. This is often a critical 

element for researchers or industry to both understand this relationship and ensure the 

level of detail in the results. In addition, the protocol presented here provides information 

on how to best plan and manage flights. Fundamentally, this protocol will allow surveyors 

to work more efficiently and produce quality results within their personal constraints. 

4.2.1. Earth Observation Background 

As earth observation technologies developed, a means for testing the resolving power 

and quantifying the spatial resolution of imaging systems was pioneered by the United 

States Air Force, who established a standardised measure of spatial resolution: ground 

resolved distance (GRD), referring to the dimensions of the smallest distinguishable 

objects in the image. The 1951 standard remains in use today and is shown in Figure 4.1. 

The significant recent use of unmanned aerial platforms within a research capacity has 

been supplemented by developments in camera sensors and mounting systems, as well 

as computing and post-processing power (Turner et al., 2012). According to UAV Global’s 

Figure 4.1 – Ground resolution target. 
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listings, there are 241 standalone commercial UAV manufacturers, as of May 2016 

(UAVGLOBAL, 2016), with an estimated worth of $10 billion and a projected 20% growth 

in the civilian sector by 2024. The use of UAVs as a field of remote sensing and 

environmental science has found them to outperform platforms such as LiDAR, especially 

in terms of cost and ease of deployment (Hodgson, 2013). This section will inform 

practitioners seeking to optimise the data collection process for UAV derived 3D DEM 

generation, allowing for the acquisition of highest quality imagery in the most efficient 

time period. 

4.2.2. Methodology Construction 

4.2.2.1. Field of View and Ground Sampling Distance. 

Image resolution is the most important factor when it comes to overall quality of the 

texture of generated DEMs and level of detail in orthophotos (Nex and Remondino, 2014). 

Ground details are often more easily resolved at higher resolutions, by imaging at lower 

altitudes. Doing so however limits the field of view (FOV) for each image and as such, 

requires more individual images to be captured during the survey, necessitating 

increased flight times, battery usage, data storage and processing time. Whilst higher 

resolutions are more desirable if small landscape details are of interest, they are not 

always feasible for surveys of large extent (where coverage is the more favoured factor). 

In this study, survey resolution will be refered to as ground sample distance (GSD). This 

parameter represents the real-world scale of one pixel or the distance between the 

centres of two pixels i.e. the size of the smallest feature that the user wishes to detect in 

their survey. For example, for an image with a GSD of 5cm, one pixel would represent 5cm 

on the ground. Simply flying for the highest possible resolution, (smallest possible GSD) 

is not always feasible, even if users are not limited by processing time constraints or 

computing processing power. For generation of the highest quality, blur free 
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orthophotos, image calibration and alignment error must be reduced through 

employment of ground control points (GCPs). To utilize GCPs effectively however, they 

must be present in numerous overlapping images. Placing and recording the position of 

GCPs using high accuracy GPS can be the most laborious part of executing a UAV survey, 

particularly in the field of environmental science where difficult conditions may 

compromise workers’ ability to access ideal GCP placement or compromise the 

durability/survivability of the UAV. By flying with absolute favour for resolution, 

resulting image FOV can be so narrow that the number of GCPs that would need to be 

placed, recorded and during the course of the survey would be much higher. Image 

overlap is also particularly important when generating DEMs using SfM processing 

methods, specifically when generating 3D point clouds (Neitzel and Klonowski, 2011). 

SfM software commonly identifies three-dimensional structures by recognising common 

points in multiple images. The more images in which a specific point in the surveyed 

environment is documented, the more accurate the resulting point clouds and DEMs will 

be (Fonstad et al., 2013). 

 

The role of data quantity management and storage capacity also become apparent in such 

situations. For subjects of particularly wide extent, thousands of images may be captured 

per flight. This has implications for surveyors using SfM tools to generate DEMs as well 

as those using only orthophotos. Whilst modern data storage is relatively inexpensive 

and accessible for those working in developed areas, workers who might be operating in 

remote field conditions with limited resources for prolonged periods should carefully 

consider their data capacity and processing capabilities. Users must consider limiting 

their survey resolution in such situations in order to increase coverage and reduce 

processing times. Equations that allow users to calculate an optimal surveying altitude 
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for a GSD or FOV of their choice are given by (Hernandez-Lopez et al., 2013). Using simple 

camera parameters, the methodology is universally applicable to nearly any imaging 

platform: 

Equation 4.1 

 

Equation 4.2 

 

Where: H is distance to subject (altitude) in meters, Fl is camera focal length in 

millimetres, Sw is camera sensor width in millimetres, FOV is image field of view (width) 

in meters, GSD is image ground sampling distance in meters and Iw is Image width in 

pixels 
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4.2.2.2. Equation Operation 

Equation 4.1 and Equation 4.2 operate on the proportional nature of angular and distant 

parameters inside the camera and in the imaged environment. This allows for 

trigonometrical calculation of an unknown parameter when others are known. Figure 4.2 

illustrates the identifiable angles and distances, which are used to calculate appropriate 

flying height and image field of view. The upper portion of the diagram shows a highly 

simplified camera (existing as only a lens and sensor), whilst the lower part illustrates 

the field of view for the camera. Values for sensor width (Sw) and focal length (Fl) are 

usually available within manual documentation or image metadata.  It should be noted 

that Equations 4.1 and 4.2 use data for width of FOV and camera sensor (in the X-axis), 

and operate in one dimension, thus width can be substituted for height of FOV and sensor 

(in the Y-axis).  

 

Ultimately, FOV and GSD dictate the overall quality of resultant outputs and processing 

time required to obtain them. Rearranging Equations 4.1 and 4.2 can be particularly 

helpful for users whose survey altitudes are restricted but wish to calculate FOV or GSD 

in order to identify whether their survey is feasible or not. GSD or FOV can also be 

calculated as a product of one or the other through use of the width or height of the image 

in pixels, depending on which dimension (X or Y) was initially selected, as shown in 

Equations 4.3 and 4.4: 

Equation 4.3 

 

Equation 4.4 
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 Figure 4.2 – Diagram to illustrate proportionality of angular and distant parmeters within a 
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4.2.3. Validation 

Workflow development and error estimation is possible by working in reverse with 

Equation 4.1 or 4.2 to calculate known, fixed parameters such as focal length, sensor 

width or image width, whose values can be found from manual documentation and image 

metadata. Equations 4.1 and 4.2 were tested via reverse calculation using data collected 

during experiment flight with a DJI Phantom 3 Professional UAV. The drone was ascended 

to a height of 120m over a fixed point, capturing nadir images at intervals of 5m. A tape 

measure laid to a length of 20m positioned directly below the UAV allowed for gauging of 

scale and thus calculation of FOV width for 18 images. Use of Equation 4.2 then permitted 

calculation of GSD for each image using the image width in pixels (4000). The inferred 

measurements of FOV in all captured images are shown plotted against their respective 

capture altitude in Figure 4.3. Calculated values for GSD are also plotted on the secondary 
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axis of Figure 4.3. Focal length and image width (4mm and 4000 pixels respectively for 

Phantom 3) were reverse calculated using Equations 4.1 and4.2, returning values with 

±0.3% deviation. This error may be attributed to the ±0.1m accuracy in the UAV’s 

altimeter and marginal error when measuring image FOV.  

4.2.4. Workflow 

4.2.4.1. Flight Planning 

Whilst no methodology is universally applicable to all UAV surveys due to the differing 

natures of and problems presented by environments of interest and imaging subjects, the 
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Figure 4.4 – An example workflow to allow users to calculate optimal survey flight parameters 
according to coverage and resolution requirements 
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equations outlined above can however offer a degree of transferability with regard to 

planning for possible survey altitudes. As the primary control upon the variables of image 

FOV and GSD, survey altitude may be considered the most immediately favourable factor 

to be known when flight planning. It may however be favourable to calculate FOV, GSD or 

even focal length as the primary control for a survey, especially in situations where one 

or more parameters may be constrained (altitude being the most common). In such 

circumstances, the above equations remain capable of providing valuable information. If 

altitude is restricted, tuning of FOV and GSD is still possible through adjustment camera 

focal length, calculable via rearrangement of Equations 4.1and 4.2. Similarly, if users wish 

to restrict survey GSD in order to save data capacity and improve image overlap, or 

constrain FOV in order to maximise orthophoto and DEM detail, suitable employment of 

the above equations can facilitate bespoke flight planning and information feedback.  

Figure 4.4 shows a suggested workflow for flight planning with regard to controls for FOV 

and GSD using Equations 4.1 through 4.4. The initial step is to establish the operational 

requirements for coverage or resolution for the survey. Coverage requirements should 

be favoured if users are particularly constrained in terms of their data storage or 

processing power. Contrastingly, identification of resolution requirements should be of 

more concern to workers who wish to set specific limits for the scales of detectable 

features in their surveys. Once the user has established the required resolution and 

extent of their survey, they may choose a primary control variable (GSD or FOV) from 

which to begin the necessary calculations to find a suitable flying height. Desired values 

for image FOV or GSD are utilised in Equation 4.1 or 4.2 in order to calculate a suggested 

survey altitude. Users may also calculate the resultant counter-variable of their chosen 

control through employment of Equation 4.3 or 4.4. Once values for H, FOV and GSD have 

all been named or calculated, they must be checked to ensure they are within the 
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operational capacity of the UAV platform, camera system, as well as the user’s own 

abilities. For altitude, users must be responsible for not exceeding regulatory limits 

(Watts et al., 2012). If calculated H, FOV or GSD are not within desirable limits, the 

surveyor may wish to adjust their quoted values for step 2 in order to improve coverage 

or resolution of their investigation. Once the user is satisfied that all parameters are 

within operational limits, the survey may be executed at the calculated altitude.  

4.2.4.2. Limitations 

The equations and protocols presented here, whilst easily applicable to a wide range of 

UAV imaging systems, cannot circumvent constraints of hardware limitations or altitude 

restrictions, however they are capable of aiding users in making the most of their 

available resources. Whilst FOV and GSD may be calculated as absolute values, the 

amount of error between the desired and actual values observed in survey outputs is 

dependent upon the accuracy of the UAV platform’s altimeter or vertical autopilot (or the 

pilot’s ability, if flying manually). Furthermore, GSD may not necessarily reflect the exact 

scale of distinguishable objects and is not a perfect proxy for resolution due to the effects 

of contrast and other variables. If users are concerned that landscape details or 

morphology of interest may not be detected in their survey because of this, slightly 

decreasing GSD beyond their desired value as a buffer may be advisable. 

4.2.4.3. Conclusions 

The ability for workers to identify the ideal survey altitude for their projects should not 

be understated, as it is the defining factor for the level of detail and volume of data 

captured during the survey. The use of UAVs for environmental surveying allows users to 

overcome the various difficulties and limitations of systems such as LiDAR or satellite-

based sensing. Moreover, with adequate planning and implementation of the methods 

discussed in this section, users are offered a good deal of flexibility (within their 
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operational limits) to find an ideal compromise between survey resolution and data 

volume. Although designed for speed and simplicity of operation, UAV surveying can 

often involve complex techniques and processing methods. The diverse range of 

environments and conditions in which surveyors and researchers may find themselves 

operating leads to great variability in the challenges faced and requirements for gathering 

high quality data. As the field of environmental UAV surveying develops, it is likely that 

different environments and survey subjects will develop specific methodologies suited to 

their particular traits and characteristics. The workflow described is intended to act as a 

strong foundation on which for researchers and surveyors to base their own 

methodologies, tailored to circumvent challenges posed by their particular environment 

of interest. By understanding the relationship between, altitude, coverage and resolution, 

the most important controls on the quality of survey output data, users are able to better 

plan around other factors such as the required battery and data storage capacities. 

Planning carried out well in advance of field operations will similarly allow workers to 

select (and if necessary, purchase) the most suitable hardware for their survey such as 

UAV platforms, cameras, or simply lenses. Overall, the protocols and workflows described 

in this paper are not a “one-size-fits-all” solution, however they can provide a substantial 

base from which users can individually plan methodologies for the particular conditions 

of their project.  
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4.3. UAV Flight Operations 

4.3.1. Field Methodology Overview 

As a utility for rapid and high-resolution recording of surface features, UAV technology 

offers a unique standpoint in terms of equipment accessibility and operation. The abilities 

of consumer grade platforms to deliver data of academic quality makes UAV surveying an 

attractive option for those without access to laser-based surface scanning equipment due 

to prohibitive costs, especially in the case of aerial LiDAR scanning (ALS). UAV based 

photogrammetric surveying and structure from motion (SfM) processing enables 

collection and handling of data more quickly and cheaply than LiDAR based methods. This 

may be attributed to the ease of UAV deployment with reliable operation and faults 

requiring less technical expertise to repair. Data quality and density is also not subject to 

compromise, as survey resolution is entirely controllable by the operator and only 

limited by available processing power. Generation of high-resolution digital elevation 

models (DEMs) and orthomosaic photos enable precise and repeatable tracking of 

landscape variability at a variety of scales. 

To collect data, the UAV is flown across the survey reach, either manually or by autopilot 

along a plotted course, saving usually vertical nadir images with a large degree of overlap 

between each frame. For standard flight operation, the UAV is fitted with inertial and GPS 

based guidance systems, the data for which is additionally utilized during SfM processing. 

Extraction of approximate surface geometry is possible through use of image geo-

referencing (provided by UAV GPS), enabling SfM processing software to detect the 

locations of each imaging point, thus permitting reconstruction of a three-dimensional 

point cloud. The cloud is generated via computer vision algorithm, detecting points 

common to multiple images and giving them a specific 3D position extracted from the 
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geo-referenced data in the images themselves. Further processing enables production of 

a polygonal mesh and ultimately an entire 3D model of the landscape, complete with 

orthomosaic texture. One drawback of image-based surface surveying over systems like 

LiDAR is the inability to provide data beyond occluding structures, such as leaves. 

Whereas data concerning the number of beam returns permits filtering of such 

obstructions for LiDAR methods, the processes is more problematic for photogrammetry, 

leading to lack of data for particularly occluded areas. Fortunately, this can be mitigated 

to a degree through extra processing of the point cloud, by selective use of detected points 

when generating the DEM mesh. 

The method of inferring surface geometry via the geo-referencing method described 

above, whilst extremely easy and fast to carry out and process, cannot produce DEMs 

with sufficient 3D accuracy, as the consumer grade GPS unit in the UAV used for point 

cloud is rarely accurate to within <50cm. This can result in significant spatial inaccuracies 

in DEMs and mismatched image stitching in orthophotos generated using this method 

alone. Other artefacts may also be present in output products, such as a doming or a 

rippling effect towards the edge of DEMs. Reduction of this error is central to the accurate 

detection of geomorphic change as part of this project, thus the methodology will employ 

the use of ground control point (GCP) referenced DEMs and orthophotos. The use of GCPs 

referenced with highly accurate differential GPS (dGPS) enables more precise point cloud 

generation and reduction of error in resultant DEMs. In practice, the area to be surveyed 

is first populated with physical ground markings, detectable within UAV imagery. A3 size 

white cards or spray paint is often sufficient to show up in images, however lighting and 

ground colour conditions should be considered for optimal, ground/marker contrast. The 

exact coordinates of these markers are then recorded using dGPS in the field and utilized 

during SfM processing create DEMs with spatial errors of <5cm. This error may be 
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reduced through further optimisation of GCP placement and equipment accuracy. For the 

purposes of this project, a DEM error of <10cm would be acceptable as geomorphic 

change below this scale is too continuous and universal to reliably predict and map. 

Four surveys of the Wooler Water have been carried out. The first on the 28th of July 2016 

(Survey 1), the second on the 27th of November 2016 (Survey 2), the third on the 7th of 

September 2017 (Survey 3), and most recently on the 29th of April 2018 (Survey 4). The 

four surveys have been conditionally distinct from each other, in terms of ground and 

vegetation conditions and weather, requiring variable approaches for surveying. All 

surveys were executed with the intended resolution of at least 5cm. Depending on the 

platform being used for that survey this dictated the chosen flight survey altitude 

between 50m and 60m according to the pre-flight planning workflow. All four surveys 

took approximately half a day to complete, including placement, recording, and recovery 

of all ground control points (GCPs). The survey area, extending approximately 2km, was 

imaged on all occasions with GCPs spread on either side of the channel.  

The survey is initiated with placement and reference of all GCPs with high accuracy dGPS. 

Initially, large white padded envelopes staked into the ground were used for Survey 1, 

however this required them to be recovered at the end of the survey. As such, Surveys 2, 

3 and 4 instead used white marking spray paint, which had been tested as a suitable 

alternative to the preceding method, enabling more rapid placement, and eradicating the 

need for recovery. Once all GCPs had been placed in suitable locations and their 

coordinates recorded flight operations could commence. Current FAA regulations advise 

that consumer UAV’s be operated in the presence of two people. One, the pilot, ready to 

assume control of the aircraft if any hazards or loss of autonomy arise. The other on hand 

to observe the surrounding conditions, acting as a lookout for potential hazards such as 

flocks of birds or errant branches extending above canopies. Some possible threats within 
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the survey area were identified, including a large power pylon and associated cables 

spanning the northern section of the reach. Following this, the pilot and observer then 

proceed to survey the reach, maintaining visual contact with the UAV at all times. The 

scale of the study site necessitates multiple battery changes as depending on wind 

conditions the consumer grade platforms can sustain 10-20 minutes’ worth of flight time. 

Approximately 3 batteries were used on each occasion. The UAV proceeds to capture 

images in rapid succession, criss-crossing the channel from top to bottom. 

4.3.1.1. Platform Parameters 

Given that different sensors were utilised between Surveys 1 and 2 and Survey 3 and 4, 

survey altitude was altered slightly in order to maintain data consistency. The first two 

surveys used a DJI Phantom 3 Professional model, however the third and fourth made use 

of the updated Phantom 4 Pro. The latter platform included a higher resolution sensor, 

but slightly reduced field of view (FOV). Despite this the Phantom 4 was still able to 

capture images from a higher altitude, thus larger FOV, without sacrificing resolution. 

This enabled reduced raw data quantities but increased data density and an overall 

decrease in survey time and battery use. The effective employment of different UAV 

models between the earlier and later surveys was possible due to a robust pre-flight 

planning workflow, which informed the selection of the most optimal surveying altitude 

for each respective UAV survey flight. Using the specific internal parameters of the 

camera; focal length, image width and sensor width, the maximum altitude for sub 5 cm 

survey resolution was calculated for each survey. 
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4.4. Wooler Water Study Location 

 

  

A B 

Figure 4.5 – Study location map, (A) The town of Wooler, Northumberland and (B) An 
overview of the study reach, including Wooler Water, which is fed by Colgate Water and 
other upland streams. 



Chapter 4: Field Site & UAV Campaign 

53 
 

The study area of interest is an approximately two-kilometre-long stretch of the Wooler 

Water which is fed by watersheds within the Cheviot Hills to the west. Wooler Water is a 

tributary of the River Till, which itself feeds into the Tweed. The drainage area within the 

Cheviot Hills is approximately 18km2 and is primarily composed of managed moorland 

and grassland, with sparse low vegetation and trees beside drainage channels and valley 

floors. Some artificial plantations (coniferous) are present within the wider catchment 

and border the channel in some places along Wooler Water. Two road fords are present 

within the study reach, one at Colgate Cottage and another at Haugh Head. These two 

roads have seen significant lateral migration of the point where they are crossed by the 

river over the past 150 years. The Wooler Water, flowing north, proceeds through the 

village of Wooler itself before joining the Till, its floodplain traversing multiple land uses 

including high and low value residential (cottages and a large caravan park), industrial 

and recreational. The river channel is crossed by three bridges within the built-up area 

and is also traversed by major powerlines, a pylon for which lies within the meander belt, 

just south of the village (Figure 4.6). 

The channel of the River is flanked by steep banks on its left side, increasingly so on 

approach to the village of Wooler. The right of the channel is more low-lying and is almost 

exclusively pastoral use, with the exception of some coniferous plantations and a house, 

near Haugh Head ford. Aerial images depict paleo-channel marks (Figure 4.6), which are 

most visible within the grass of the pastoral fields and appear to cover much of the valley 

floor. These markings are evidence of significant historic channel migration, suggesting 

the river’s wetted channel has migrated by as much as 400m in places. The timescale over 

which such adjustment may have occurred is more uncertain however. Historical maps 

accurately show the previous course of the channel, even depicting the presence of in-

channel islands and bars. In order to gauge the rate at which the river channel may have 
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migrated the distance suggested by paleo-channel markings, tracing of the wetted 

channel is possible for maps available from as far back as circa. 1860. Polygon tracing was 

carried out in ArcGIS for four historical maps (1860 – 1970) and an aerial photograph 

from 2009. The overlaid river courses are visible in Figure 4.8. 

 

Historic records from before 1945 detail flood damages by Wooler Water. The bridge in 

the settlement being swept away on at least two occasions and flood embankments being 

washed away north of the town during a flood in 1839. One record from October 1949 

Figure 4.6 – Powerline pylon, south of the town of Wooler. Paleo-channel marks. (Image 
dated July 2006) 
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describes a “trebling” of channel width and creation of a new channel south of Wooler 

(Sear and Archer, 1998). Further erosion and channel avulsion is described in 1981 and 

1984, resulting in weirs becoming circumvented by auxiliary channels which then 

laterally erode the structures (Wilson, 2010) Such actions are manifestations of Wooler 

Water’s naturally active regime, as a transport dominated system, facilitated by the great 

availability of sediment from the river’s catchment in the Cheviot Hills. 
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4.4.1. Existing Structures and Features of Interest 

The 2km long stretch of Wooler Water which will be the subject of this study has 

numerous features of interest which make it particularly suited as a candidate for the 

project. A highly dynamic system with a history of artificial modification, Wooler Water 

shares many similarities with other rivers in the UK, the majority of which are designated 

as being artificially modified in some way. The presence of a set of 10 iron and concrete 

weirs within sections B and C in the Upper Reach are manifest to the local history of man’s 

Figure 4.7 Weir remnants (top) and Haugh Head Ford respectively (bottom), within Section C 
of the Study Site. 
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involvement. The channel in Section C is also forded by a small road at Haugh Head 

(Haugh Head Ford). The weirs installed during channel straightening works sometime 

after 1920 are now considerably degraded and buried, increasingly so in an upstream 

direction. 

4.4.2. Historic Change Analysis 

The variation in position of the wetted channel seen in Figure 4.8 appears to suggest some 

sections of the study reach are more laterally mobile than others. Whilst some short 

stretches appear to have moved by nearly 100m, others have not strayed for nearly 150 

years. The scale and rate at which channel course change occurs also appears to be 

inconsistent, with certain sections remaining stable for up to a century, then abruptly 

straying from the established path. Historical maps from circa 1920 show the river 

channel encroaching closer to a railway embankment, a potential hazard which must 

have been recognised at the time. We know this as the next available historical maps 

(circa. 1970) show the section of channel has been dramatically adjusted to a much 

straighter path, far from the railway embankment, and contains 10 weirs, presumably as 

a means for maintenance of the new, almost completely straight channel. The course 

realignment is in fact rather extreme, appearing to cut through ground which is marked 

as a steep embankment on previous maps. Such a course adjustment may have been 

warranted by protection of the railway, but also in the interest of local gravel mining 

operations which are discussed as part of this project. 

Whilst interpretation of lateral migration of the channel is made relatively easy through 

use of historical maps, inference of vertical variability within the system is less 

accomplishable with such resources. Fortunately some past studies, specific to Wooler 

Water, provide data concerning bed elevations; Klingeman (1998) and Sear & Archer 
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Figure 4.8 - The previous courses of Wooler Water, as traced from historical maps. 
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(1998). The former provides details regarding the locations of gravel extraction, 

identifying one site near the Haugh Head ford, further suggesting that lateral planform 

changes were more prevalent during the river’s pre-mined phase and triggered by larger, 

low-frequency flood events. Whilst gravel mining operations were found to cause 

significant channel scour, the effect upon lateral stability was variable depending on net 

sediment budget. In any case, gravel extraction has not occurred at the Haugh Head site 

for a number of decades and as such, any lateral stability induced as a result of down-

cutting can be expected to be annulled as the river’s naturally high sediment throughput 

is restored. 

A B 

Figure 4.9 - (A) River course in circa. 1920, encroaching railway embankment and (B) newly 
adjusted river course in circa. 1970. 
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4.4.3. Recent Change Analysis 

Analysis of how Wooler Water has evolved in the long term is valuable to development of 

a wider understanding of the chosen field site, however detecting and mapping 

geomorphic change within the river system at much smaller timescales is the primary 

premise of this project. The context and information provided by historical map analysis 

and review of past studies specific to this site permit for more focused data collection for 

sections which might be subject to particularly dramatic change, such as the section of 

weirs, just upstream of Haugh Head ford. This area is of particular interest as the river 

appears to be re-adjusting into its old course, away from the artificial channel layout 

adopted following 1920. It is expected that the river will attempt to increase sinuosity in 

response to an increase in local gradient caused by the shortening of the channel length 

by straightening (Schumm, 1993). It is not known how the weirs in place throughout the 

channelized section will affect the restoration of natural course, thus the section is of 

particular attention. What is more, the history of gravel extraction in this reach and its 

subsequent cessation, may lead to further channel variability as the system’s sediment 

budget is replenished (Sear and Archer, 1998). 

Sear and Archer, (1998) estimates the sediment yield of per year of Wooler Water to be 

145 m3/year. During the gravel extraction phase an estimated 32,000 m2/year was 

extracted, a yield/extraction ratio of over 200. Similar gravel extraction works on 

Northumbrian rivers are far more conservative, the rivers Wear, Tyne and Coquet having 

yield/extraction ratios of 64, 14, and 54 respectively. The effect upon Wooler Water was 

the introduction of major vertical instability leading to incision and the undermining of 

the ford and footbridge pier at Haugh Head (Figure 4.10) 
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Figure 4.10 – from Sear and Archer (1998), looking upstream at Haugh Head following a 
flood resultant incision  in 1971. The concrete ford is destroyed, and footbridge piers 
exposed. 
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4.5. Survey Details 1 

Table 4.1 gives a description of the various parameters and conditions of each of the four field surveys. Also presented in this section is a 2 

description of on-site activity, followed by the specific processing steps that were taken for each respective survey. 3 

Table 4.1 – Breakdown of various parameters, conditions, and results from all surveys 4 

 Date of 
Survey 

Platform GSD 
(cm) 

RSME (cm) Max Error 
(cm) 

Images 
Captured 

GCPs 
Used 

Number of points 
generated 

Weather and 
lighting conditions 

Survey 1 July 28th 
2016 

Phantom 3 
Pro 

1.75 4.65 9.78 1513 24 45 Million Light cloud and breeze. No 
shadows, good light. 
 

Survey 2 November 
27th 2016 

Phantom 3 
Pro 

2.17 2.02 4.04 929 26 69 Million Light cloud, strong breeze. 
No shadows, fading light. 
 

Survey 3 September 
7th 2017 

Phantom 4 
Pro 

1.50 2.55 5.92 553 30 82 Million Clear sky, direct sun. Calm. 
Shadows present in places. 
 

Survey 4 April 29th 
2018 

Phantom 4 
Pro 

1.31 3.54 7.84 815 80 116 Million Light cloud, light wind. Good 
light, minimal shadows. 
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4.5.1. July 2016 (Survey 1) 

This study’s first survey of Wooler Water was undertaken in July 2016. Being in summer, 

vegetation at the field site was in full leaf. Accurate reconstruction of topography by SfM 

is subject to consistent ground visibility in multiple images, where occlusion is as low as 

possible. The presence of large shrubs and vegetated bars within the river channel thus 

leads to some gaps appearing in the data, where inference of ground level is either too 

unreliable to be considered or impossible due to complete occlusion. A degree of 

vegetation filtering is possible through implementation of a moving-window point 

selection process, which effectively “picks” the points with the lowest elevation in a cell, 

assigning them the designation “ground points”. This processing step is discussed in more 

detail in Section 5.2. Such methods are able to return data of reasonable density and 

reliability for lightly vegetated zones, however for areas of dense canopy cover, no data 

can be discerned. The densest vegetation was however limited to beyond the incised 

channel margin. 

This survey made use of large white padded envelopes as GCPs, which had to be placed 

and affixed to the ground, then collected upon conclusion of the survey. This proved 

laborious, requiring the entire reach to be walked over, twice. Totalling 4-5 km of walking 

in waders. The GCPs were however easily identifiable and remained secured for the 

duration of the survey. Regarding conditions in the field, lighting conditions were very 

consistent with very few shadows or overly bright areas which might lead to errors 

during SfM processing. Water conditions were also favourable for SfM processing, being 

no more than approximately 60cm deep and with little suspended load. The majority of 

the channel was thus successfully captured by SfM, with few areas of submerged 

topography being too deep to image. Even so, the banks of the channel were not 
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submerged due to relatively low flow encountered during the survey. This enabled very 

good quality data collection of the banks. 

Flow conditions on the day were low, with the entire channel margin safely accessible 

with thigh high waders. Once GCPs had been placed the UAV was prepared for flight. 

Flight time was approximately 35 minutes, requiring three returns to the home-point for 

a battery change once the level reached approximately 30%. Being the first survey of the 

site, a much wider initial coverage was flown for reconnaissance purposes; 

approximately 150m either side of the main channel as well as an extra kilometre 

downstream, above a recreational holiday caravan park, for which overflight permission 

had been pre-approved. This resulted in attaining many more images than would 

otherwise be used for SfM processing. This would allow return surveys to have better 

informed access and GCP placement route planning. A total of four out of eight available 

batteries were employed on this occasion, with the final being only partially used, 

retaining 75% of its charge upon termination of the survey. 

4.5.2. November 2016 (Survey 2) 

The second survey, carried out 4 months after Survey 1, almost immediately following 

Storm Angus (Met Office, 2018), was subject to conditions fairly distinct from that of the 

first. Most notably the flow within the channel was high and had to be considered when 

seeking potential crossings to access GCP placement zones. Seasonal vegetation had 

mostly either died back or was not in leaf. Many of the sparsely vegetated areas were now 

able to be captured by SfM given the reduced occurrence of occlusion afforded by the 

leafless conditions. Conversely, the zones more dominated by vegetation remained 

inaccessible to data collection as the density of branches alone was enough to occlude the 

ground. The preceding storm had caused significant vegetation stripping, and recent high 

flow was evident by trash-lines and torrential flattening of more resilient vegetation.  
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Light conditions were not optimal due to delays in arriving at the field site. Conditions 

were not too dark however, and image blurring was minimised by manually piloting the 

UAV, ensuring that horizontal velocity had been wiped before the capture of each image. 

This technique was more laborious but was highly effective at mitigating the effects of 

lower than optimal light. This flight pattern was more energy intensive however and 

resulted in a higher drain and change rate of batteries. A total of 6 out of 8 available 

batteries were used for this survey. Whilst the platform and sensor utilised were identical 

to Survey 1, the methodology for GCP placement differed slightly. On this occasion, to 

circumvent the need to secure and recover the large white envelopes used as GCPs in the 

preceding survey, semi-permanent white and yellow survey marker spray paint was used 

instead such as in Figure 4.11. The colour of paint was selected based on the surface 

colour in order to provide best visibility. This provided more reliability as there was no 

risk that the GCPs could be moved by the wind, which was relatively high on that day, or 

other factors during the survey and would be washed away overtime, thus removing the 

need for recovery at the end of the survey. The painted GCPs were as identifiable as their 

paper counterparts proving the ideal means for ground control marking.  

Given the time of year this survey was executed and time constraints regarding travel and 

other external factors, the flight itself was executed in the mid-afternoon. As a result, near 

the end of the survey, fading light lead to a number of the images captured being blurred 

somewhat. A contingency for such an issue might have been to reduce the exposure time 

of the sensor (shutter speed), however this instead resulted in images being under-

exposed, with features too dim to be discerned within SfM processing. Fortunately, by 

ensuring the aircraft was stable and not moving at the time of image capture when using 
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a longer exposure time this problem could be circumvented. In the cases where images 

were significantly blurred, they were excluded from the SfM processing, justifiable by the 

desire for data reliability over sheer density. This accounts for the lower number of 

images and overall data density in Survey 2 when compared to Survey 1. 

4.5.3. September 2017 (Survey 3) 

Survey 3 made use of the updated Phantom 4 platform, with an improved sensor over the 

Phantom 3, permitting an increase in survey altitude and wider field of view. This in turn 

enabled a reduction in the number of images for the whole survey, without reducing 

resolution. The Phantom 4 also includes a suite of infrared and ultrasonic proximity 

sensors which prevent collision with environmental obstacles, which would certainly 

permit safer operation at extremely low altitudes or amongst vegetation. Conditions at 

Wooler Water do not require such operation, but it is plausible that the methodology 

could be transferred to a situation which does. Lighting conditions were less favourable 

upon the outset of the survey, where a cloudless sky lead to some shadows falling from 

larger rocks and boulders within the channel. Consequently, lighting conditions are 

Figure 4.11 - Painted GCP marker within river channel 
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somewhat inconsistent. Some images captured at the beginning, of the survey, when the 

sun was strongest have a high level of contrast. Winds on the day were particularly calm. 

Flow conditions were typical of summertime low-flow as minimal precipitation had 

occurred in the preceding days. Observations at the site did not suggest much in the way 

of significant bank collapse or channel avulsion, however an increased amount of large 

woody debris (LWD) was present, which had caused some flow redirection and scour 

through gravel bars constructed during Storm Angus. 

The painted GCPs were again used, as they had significantly expedited Survey 2. In this 

case however the GCPs were placed on notable landscape features such as gravel bars or 

near fence posts in positions where the overly bright conditions risked over-exposing the 

camera sensor resulting in the markers being “washed out” and indiscernible from the 

surrounding ground. Furthermore, the direct sunlight introduced many shadows on 

protruding features. Intense light and shadow is known to induce noise within SfM 

(Thomas and Oliensis, 1999) and should be limited where possible. A degree of image 

post-processing can mitigate this, however any contingency which can be implemented 

at the data collection stage will cut down on later processing workload. To do this, the 

UAV flight was extended to capture two auxiliary sets of very slightly oblique images 

(approx. 5-10 degrees off-nadir), opposite to the bearing of the sun. This minimises the 

appearance of shadows within images to a degree and ensures more consistent lighting, 

at the expense of a longer survey duration, larger data quantity and processing time. The 

slightly extended survey used five out of eight available batteries despite the calm flying 

weather. 

4.5.4. April 2018 (Survey 4) 

The most recent survey in April of 2018 also utilised the Phantom 4 platform and the 

“sprayed” GCPs. Lighting conditions were more optimal than the preceding survey, where 
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direct and bright sunlight led to exceedance of the camera’s dynamic range resulting in 

areas of over-bright and over-dark pixels which risks data loss without post-processing. 

In this scenario, light cloud cover provided more diffuse lighting, thus a lower overall 

range of brightness within the environment. This reduced the need for any post-

processing once data collection had been completed. Ground control was intended to be 

more exhaustive. A total of 80 GCPs were sprayed and an additional 78 GPS points taken 

within the river bed, atop large boulders or significant in-channel features as an extra 

independent validation dataset. The position of 158 GPS points was recorded throughout 

the survey. For a sub 2cm GSD a maximum survey ceiling of 55m was calculated using the 

pre-flight planning workflow according to the internal camera parameters of the 

Phantom 4 platform.  

Flow conditions were more medial on this occasion. Recent springtime rainfall events 

had induced some high flow events in the preceding week. The trailing end of the flood 

event was still present at the time of the survey. This level of flow was not deemed to 

affect access requirements or GCP placements during the survey. “Sprayed” GCPs were 

georeferenced alongside the independent checkpoints. GPS points were also taken at the 

base of some low in-channel vegetation, mainly gorse. This was done as a means to later 

validate the accuracy of post-processing vegetation filtering in the SfM workflow. The 

vegetation and ground point filtering details are discussed further in Section 5.2. GPS 

sample points were assigned either GCP (ground control point), HB (hard bed), VEG 

(vegetation base), WR (weir) or BR (bridge deck) coding for ease of differentiation in 

post-processing. Multiple cross-sectional profiles of the wetted channel were also 

recorded by GPS for later validation purposes. As to fit with the research project’s 

timeline, this survey marked the conclusion of field operations at the case study site, 

Wooler Water
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Chapter 5: Methodology and Data 
Processing Approaches 
5.1. Introduction 

The data processing path from plain RBG images to a full scale, high resolution digital 

elevation model (DEM) and orthomosaic image involves intensive application of 

computer vision algorithms. Users have a wide choice of software packages suited to this 

type of data processing. This section of the research will discuss how these processing 

tools were applied throughout the project and how their use might be optimised when 

used for wider study of fluvial geomorphology. For SfM processing this study made use 

of Agisoft Photoscan Professional 1.4.2 (Agisoft), which has some interface 

improvements over previous versions, but whose SfM processing algorithms have 

remained consistent and among the best performing in the industry (Agisoft, 2011, 

2018). Use of this software package has been widespread in geomorphology (Fonstad et 

al., 2013; Javernick, Brasington and Caruso, 2014; Westoby et al., 2015; Woodget et al., 

2016), however competitive open source alternatives such as Mic Mac (Ouédraogo et al., 

2014; Rupnik et al., 2017) exist. Free alternatives provide those without the necessary 

capital, to still deliver high quality SfM products (Jaud et al., 2016). 

Each survey will receive its own processing summary and all software reports generated 

by Agisoft will be available in Appendix 3. General processing steps will be discussed in-

following. Developmental processing steps, such as vegetation removal and DEM 

correction will additionally be discussed in their own respective sections. These steps 

constitute part of what specialises this project to the field of fluvial-geomorphology, as 

they are implemented as a means to side-step the niche problems associated with the 
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conjunction of rivers science and UAV remote sensing. These complications can be 

summarised thus: 

a. The linearity of fluvial features 

River systems are unique in their general morphology in-contrast to other natural 

features. Most notably, their linearity. No other landscape feature retains such a disparate 

ratio of width to length. This fundamental aspect of rivers presents unique challenges 

when surveying them at kilometric scales. GCP placement configuration, which is known 

to critically affect error distributions in SfM DEM products (James et al., 2017) can be 

complicated if key areas are inaccessible , or are outside the survey bounds. Much of the 

existing literature which reviews the accuracy of UAV photogrammetry does include 

variable ground control geometry (Barry and Coakley, 2013; Ruiz et al., 2013; Tahar, 

2013; Leitao et al., 2016), however the general scaling of such studies is more static. 

Limited work exists surrounding accuracy reviews of larger scale surveys.  

b. The presence of in-channel vegetation 

Barren channels are not common in the UK. The majority of managed and un-managed 

river systems worldwide, poses vegetation at their margins if not in the channel. UAV 

photogrammetry exclusively uses RBG imagery as its data source, rendering it as 

susceptible to object occlusion as the human eye. Whereas LiDAR systems are able to 

“see” through even dense vegetation cover to a degree (Chasmer et al., 2006), 

photogrammetric methods cannot. The spindly structures and partial ground occlusion 

present in vegetated environments can interfere with SfM processing, producing noise 

and point cloud artefacts. A means to correct errors like this must be developed if UAV 

remote sensing of river and associated large scale sediments analysis are to truly mature.  

c. The need for extremely low vertical error when sediment budgeting at large 

scales. 
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As part of Research Question 1, this study will investigate the large-scale geomorphic 

evolution of Wooler Water. The 2km long study channel is one of the most extensive ever 

surveyed by a UAV platform. The problems previously brought to attention are part of a 

number of complications which compound vertical uncertainty within final DEMs. These 

uncertainties are preserved when producing a DEM of difference (DoD); subtracting the 

elevations of one DEM from the another as a means to detect geomorphic changes. Even 

if error in the Z axis is apparently low, ±10cm for example, over the course of a 2km 

stretch of river this can induce inaccurate volume calculations potentially leading to mis-

interpretation of geomorphic processes (Milan et al., 2011). The case study channel of 

Wooler Water is approximately 2km long, with a mean width of 25m constituting a 

surface area of roughly 50,000 m2. If each input DEM has a vertical error of ±10cm, the 

resultant raw DoD will have ±20cm, representing a potential volumetric uncertainty of 

10,000 m3 within the river’s sediment budget. Loosing track of that much material is not 

acceptable for effective channel management. The RSME values for each of this project’s 

survey DEMs are considerably lower than ±10cm however and in reality, simple addition 

of surface error is not suitable for calculation of combined error. Rather propagated error 

is used as a measure of DoD uncertainty. This propagated error may then be used as a 

detection threshold, permitting differentiation of signal from noise. More discussion of 

error propagation is given in Section 6.3.1 and 7.2. The data capabilities of UAV SfM has 

been validated to be reliable at intermediate scales and where the survey site is 

approximately square/rectangular (Caroti et al., 2015; Cook, 2017; Sanz-Ablanedo et al., 

2018), however for larger, laterally extensive features, the literature is less supportive. If 

this project’s aims (detection of fine geomorphic shifts across very wide scales) are to be 

met, a means to reduce DEM uncertainty as much as possible must be developed. 
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5.2. Noise Filtering and Vegetation Removal 

The need for removal of all non-ground points is critical to ensure accurate sediment 

budgeting. LiDAR surveying traditionally overcomes this by filtering points according to 

the return number, utilizing only points which exist on the ground surface. No such 

method is available to photogrammetry, which relies on ground remaining un-occluded. 

The standard SfM workflow will reproduce everything it “sees”, resulting in all 

environmental features being reconstructed in the model, including vegetation. This is 

undesirable for the purposes of detecting geomorphic change with UAV photogrammetry, 

especially in the context of fluvial systems, were in-channel vegetation is common. For 

models of smaller scale, vegetation can be easily identified and manually removed, 

however the process is time-consuming and a relatively blunt, risking data loss at the 

margins of vegetated areas. Furthermore, the natural structure of vegetation makes it 

particularly problematic for SfM to accurately discern. If generalised as a surface, shrubs, 

trees and bushes possess extreme roughness, where thin limbs and branches extend 

vertically. This is characterised as noise and within the reconstructed point-cloud, 

increasing local spatial uncertainty. Fortunately, a degree of fine geometric post-

processing is available to circumvent this issue. 

Agisoft Photoscan’s filtering method relies on detection of points which exceed statistical 

thresholds, namely their relative angle and distance from the lowest point in a moving 

window. This can be imagined as a virtual terrain mesh, triangulated from the lowest 

existing point in a given cell size. Each point in the dense cloud is tested relative to this 

virtual mesh. If the tested point exceeds an angular and distant threshold it is classified 

as a non-ground point. Points which lie within the given maximum angle (θmax) and 

distance (Dmax) are designated as “ground points”. The selection of these parameters is 
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dependent upon the spatial properties of the cloud being filtered. The parameter for θmax 

should not exceed the maximum slope of the ground within the model. Similarly, Dmax 

should not be greater than the maximum height of ground elevation variations. The cell 

size of the virtual mesh should also be specified and will be similar to the size of the 

largest object which must be removed from the model. In the case of Wooler Water, a high 

degree of both ground slope and elevation is present due to the very steep banks. Filtering 

must therefore be carried out iteratively in order since filter tolerance will initially be 

relatively low. Single pass filtering would result in inclusion of too much non-ground data 

in the form of low vegetation for sediment budget outputs to be meaningful. Initial 

filtering is able to remove trees and continuous canopies, a large moving window cell size 

of 18m was selected, with a maximum angle of 15 degrees and a maximum distance of 

2.2m; approximately the height of tree leaves above the ground. These filter settings are 

more suited to removing groups of trees proximal to the river banks. Larger groups of 

trees can be removed by manual selection and re-classification. The first filtering pass did 

not however remove small shrubs and low vegetation below 2m. A second filtering pass 

was therefore necessary. For this purpose, a smaller cell size of 10m was selected for the 

moving window. Representing a higher resolution virtual terrain mesh. A reduction in 

θmax to 6 degrees and Dmax to 0.5m was also required in order to remove objects such 

which may have been mis-classified as ground points during the first filtering pass. 

The lack of detected ground points underneath occluding vegetation presents an 

additional problem. Points that are detected through denser vegetation are often of 

erroneous due to the local high-noise environment and may not be caught by filtering in 

Photoscan. This leads to vegetated areas being essentially eliminated from the dataset 

and replaced with “no data” cells in the final DEM. Small holes may be patched via 

interpolation of edge cells, however this method is not suitable for larger “NoData” 
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patches without secondary data. A means to mitigate this was tested during Survey 4, 

where many GPS ground points were recorded within areas of vegetation in the upper 

section of the Study Site, for the purpose of providing additional data to improve hole-

filling interpolations. The highly accurate GPS observations provide a less uncertain 

means for data interpolation when compared to using intermediate points within 

vegetation clusters reconstructed by normal SfM. Ground points calculated to occur 

beneath, or in-between dense vegetation are often indistinguishable from seemingly 

random noise points induced by the visually complex features; overlapping branches, 

leaves and shadows. 

Separation of ground points from vegetation noise is problematic for the geometric 

filtering method. This presents a significant drawback for photogrammetric surveying of 

rivers with UAVs. A potential solution may be to make use of the variable colouring of 

points. Each point within the UAV cloud is assigned its own RGB value. Whilst this value 

is considered a generalisation of the pixels which were used during SfM calculations, the 

extremely high resolutions afforded by UAV photogrammetry limit this dilution. Here 

then lies a means to differentiate darker ground points from differently coloured 

vegetation. Supervised application of point reclassification according to colour provides 

a method to segregate ground points from vegetation noise. In-leaf vegetation is most 

easily detected due to the contrast in colour between the green plant surfaces and the 

often beige/brown hue of the ground. For vegetation not in-leaf, the method is more 

limited, however a degree of colour contrast usually remains between plant material and 

the ground. In such cases, a more refined approach is necessary, utilizing lower tolerance 

when selecting points of a certain colour, as well as more intensive manual inspection 
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that the re-classified points are consistent with erroneous vegetation noise, and not 

correctly computed ground points. 

Figure 5.1 displays the multi-step process used to remove non-ground point data from 

the point cloud. Figure 5.1 A represents the raw point cloud to which no post-processing 

has been applied. Non-ground data present includes gorse bushes to the right of the 

channel and trees which overhand the banks of the incised margin. Figure 5.1 B presents 

E.) 

Max Angle 15

Max Distance 2.2

Cell Size 18

10m 

A.) B.) 

D.) 

Figure 5.1 – Progressive filtering and cleaning of vegetated point-cloud. 

C.) 
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Max Distance 0.5
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first pass result of Agisoft Photoscan’s ground point classification algorithm. Figure 5.1 C 

illustrates the re-application of the ground point classification filter using less tolerant 

settings to remove outlying points which were not captured by the first pass. Following 

visual inspection that no erroneous points, obvious by their significant elevation 

disparity from the river bed, the point cloud is transferred to cloud compare for 

additional filtering. The vegetation filtering phase is not exhaustive however and some 

isolated noise points may persist. These are particularly common within “no data” 

patches, where vegetation was so dense as to completely occlude the ground. This may 

manifest as a “lip” at the edges of holes where vegetation has been removed. This is visible 

in Figure 5.1 C and D. Such points should be removed as they do not represent any valid 

ground data which might be used for sedimentary budgeting. 

Manual removal of such points is too time-consuming and inconsistent for application at 

the data scales present in this project. Further semi-automatic filtering is therefore 

required. CloudCompare’s statistical outlier removal (SQR) tool operates similarly to the 

classification filtering in Agisoft Photoscan but is less constrained by the relative 

verticality of points from each other, and more so the raw distance of a point from its 

neighbours. Instead of testing against a cell on a virtual terrain mesh, pure point-to-point 

comparisons are made. This limits generalisation, making the SQR method more suited 

to clean-up of more discreet groups of points. Mechanically, the SQR filtering operates by 

calculating the mean distance of a point from a set number of its neighbours, then accepts 

or rejects points based on that distance plus a set number of times its standard deviation. 

This permits fine tuning of the size of point groups to be removed, as the number of 

neighbours selected closely controls the standard deviation to be used as part of the 

calculation. The result of this process is displayed by Figure 5.1 E which contains fewer 

potentially erroneous points around the edges of gaps where sections of vegetation and 
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individual shrubs have been removed. The complete vegetation and noise filtering 

workflow makes use of multiple classification and removal methods, beginning with a 

coarse approach and becoming more focused. In the case of Wooler Water, a high 

variability of ground conditions (slope and elevation) and heterogenous vegetation types 

necessitate the multiple stages of filtering. Survey subjects of more consistent conditions 

(low slope, low terrain undulation, and low vegetation diversity) do not require such 

iterative filtering, since  

5.3. Topographic Model Construction 

5.3.1. Common Workflow 

Following image acquisition and recording of ground control points data was transferred 

to the processing computer with an active Agisoft Photoscan Pro Licence. General image 

positioning retrieved from the on-board GPS metadata is visually checked, and any 

anomalous images, such as those accidentally snapped on the ground or for auxiliary 

viewing of the site were removed. Image quality was visually checked for artefacts and 

automatically quantified using the quality estimation utility in Photoscan. Low-quality 

images were removed. Post-processing of differential GPS data used for ground control 

was carried out in-tandem. Receiver Independent Exchange (RINEX) data for the day of 

the survey was downloaded from the UK Ordnance Survey website and used to apply 

differential corrections to all recorded GPS instances. This step is not essential for initial 

camera alignment, as the integral GPS data of each image can approximate alignment and 

be optimised later. It is however time critical, as the RINEX files are hosted for just 30 

days.  

Image tie point computation is the first SfM step and produces a cloud of points with 

spatial commonality to multiple images. This is referred to in-program as the “sparse 
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cloud”. This step is among the most time consuming of the process, taking between four 

to eight hours depending on image quantity and density, and the quality setting chosen 

by the user. Following this, ground control may be added, by “placing” at least three 

named GCPs within all images in which they appear. Following this, GCP coordinates are 

imported to Photoscan, which automatically places the remaining GCPs approximately at 

their real-world positions in-image. Manual correction and refinement are applied to 

GCPs. As this is done Agisoft automatically updates the rest of the ground control set. This 

is carried out until all GCPs are verified to be centred on their respective image markers. 

The model’s coordinate system is then formally switched from the on-board image GPS 

to that of the ground control network. Before alignment optimization, obviously errant 

tie-points are deleted. These may be caused by vegetation noise or the presence of 

anomalous photographs. Camera alignment optimisation is executed by Photoscan to 

minimise misalignments and refine tie-point positioning for the next SfM steps. Dense 

cloud generation is then carried out, producing a large point-cloud with a point density 

approximately that of the survey GSD. A degree of depth-filtering is available to the user 

at this stage and can aid in mitigation of spatial artefacts and noise caused by vegetation 

or white-water. Dense-cloud calculation is also a hardware intensive and time-consuming 

step, taking between 6 and 12 hours at higher qualities. 

The resultant dense cloud is a true spatial reconstruction of the surveyed ground and if 

desired a digital surface model (DSM) could be generated. This project however requires 

a “bare earth” digital terrain model (DTM), alike to that produced by LiDAR, for flawless 

geomorphic change detection. Ground point detection and vegetation filtering is thus 

required. The initial steps of this are carried out in Photoscan which possesses a fairly 

robust point classification suite. In a given cell sample size, the lowest Z point is selected, 

to create an approximate triangulated terrain mesh. Points are then included to this 
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classification providing they do not exceed an angular and distant threshold to the virtual 

terrain mesh. Cell size, max angle and max distance are set by the user. Multiple 

classification passes may be required to catch different geometries of vegetation. 

Additionally, verification that the algorithm has not mis-classified steep banks or similar 

surfaces as “non-ground” points must be done manually. 

The semi-filtered dense point cloud may then be triangulated and gridded to attain a draft 

DEM of the survey area using Photoscan’s in-built algorithm. Orthomosaic generation is 

also executed at this stage. Users have control to set the blending mode (usually mosaic) 

and pixel size (as close to the survey GSD as possible). This orthophoto may be draped as 

a texture on the DEM for visualisation purposes. For additional filtering and refinement 

in CloudCompare, the processed point-cloud is then exported as a .PTS file. 

CloudCompare is an open source program for viewing and editing point clouds and 

possesses an extensive library of user developed plugins, providing a more robust toolkit 

than can be provided by Photoscan. It is here that fine point cloud adjustments are made. 

Point clouds undergo “sieving” to improve data contiguity. Additional reduction of 

vertical error is also applied at this stage, which is described in more detail Section 5.5. 

Once accomplished, the final refined point-cloud for that survey is converted into a high-

resolution DEM, comprising the final data product of the workflow. 

5.3.2. Survey 1 Processing 

Image data and GPS recordings were transferred to the machine used for processing; a 

workstation with 16gb RAM and i7 processor but no graphics processing unit (GPU). Over 

2000 images had been captured during the course of the survey, however much of these 

consisted of wider reconnaissance of the site and were not necessary for spatial 

modelling of the main river channel. Image locations were reviewed and pruned out as 

necessary, reducing the size of the photoset by approximately half. Image quality was also 
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assessed, both manually and by Agisoft Photoscan’s in-built image quality estimation 

utility. Manual visual checks did spot a few images in which the landing legs of the 

Phantom 3 UAV were visible within the photograph. This usually only occurs in high-wind 

conditions when the aircraft will automatically tilt into the wind in order to maintain 

positional stability. These images were easily identifiable and uncommon within the 

dataset, enabling them to be safely excluded from processing. Automatic image quality 

estimation by Photoscan returns a value between 0 and 1 based on image sharpness. 

Motion blurred or out-of-focus images generally receive values below 0.5 and are advised 

to be removed from processing (Agisoft, 2018). Fortunately, this comprised less than 2% 

of images taken in Survey 1. Whilst camera alignment was running, the relevant RINEX 

data was acquired and applied to the GPS observations. Camera alignment was imitated, 

taking a full day to complete due to hardware limitations. Upon completion of camera 

alignment, GCP locations were imported and checked. Alignment optimization was 

executed, and dense-cloud construction started, with aggressive depth-filtering due to 

the abundant vegetation within the channel. Dense-cloud reconstruction took over 3 days 

to complete, due to the processing machine lacking a GPU. Automatic iterative vegetation 

filtering was run over the point surface twice. Firstly, with a coarse cell size of 20m and 

relatively high angle and distance thresholds, to catch larger trees contiguous canopies, 

then again with a 1m cell size and less tolerant settings for maximum angle and distance, 

to filter out smaller areas of scrub and lone bushes. Manual checking of the automatic 

point classification process revealed some sections of steep banks had been misclassified 

as non-ground points, requiring some manual re-classification corrections to be applied. 

The semi-processed point cloud was then migrated to CloudCompare. 

Vegetation filtering in Photoscan had been successful in removing the majority of points 

which might be incorrectly included in the bare-earth DTM. Some retention of ground 
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points below occluding vegetation was observed. Dependent upon in-leaf conditions and 

vegetation height some capture of ground points is possible. The high-noise environment 

encountered around vegetation can induce vertical inconsistencies in such points. These 

points are rarely spatially contiguous however and of dubious vertical accuracy. This is 

visually obvious upon closer inspection of the point cloud however instances are too 

numerous to manually select and clean. To automate this process, CloudCompare’s 

statistical outlier removal (SQR) tool was implemented. This utility works in a similar 

manner to the Photoscan’s point classification tool; The distances of a point from a set 

number of neighbours is calculated. The point is removed if the average distance plus a 

set number of times the standard deviation is exceeded. (max distance = mean distance + 

n * std dev.) This results in a significantly cleaner point cloud, without errant individual 

points that might induce artefacts when converting to the DEM. Final preparations to the 

point cloud included trimming of the extent to just the incised channel. This was done to 

remove the areas of agricultural field and grassland on the floodplain. When later 

comparing DEMs for sediment budgeting, inclusion of these areas could lead to errors 

due to variations in crop height or type. Before clipping the point cloud file size 

approximated 6 gigabytes. CloudCompare initially did struggle to render the cloud, 

however removal of many points by clipping to the channel margins greatly smoothed 

operation. The filtered, clipped point cloud was then grid sampled at a resolution of 5cm 

to produce the final, full reach DEM. This DEM was exported under the name 

JulyChannelDEM.tif, since survey numbering had not yet been established. A grid size of 

5cm was utilised as it was considered at the time an easily achievable minimum 

resolution for potential future surveys to also attain, thus ensuring data consistency. 
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5.3.3. Survey 2 Processing 

The special conditions encountered in during Survey 2 dictated a higher degree of image 

post-processing before the SfM workflow could commence. The lower light conditions 

increased instances of blurred images. Image improvements were made in Adobe 

Lightroom, specifically adjustments to image sharpness, contrast and saturation were 

applied. This had the effect of improving the average image quality estimation score 

assigned by Agisoft from 0.74 to 0.80. Image locations were also reviewed and pruned as 

necessary. For SfM processing, an upgraded workstation was used. Specifications 

included 256GB of RAM, an Intel i9 processor and Nvidia TITAN X GPU. Camera alignment 

was thus dramatically accelerated, taking just 5 hours. Processing of differential GPS 

observations took place in-tandem on a separate machine. 24 GCPs were imported and 

verified to be correctly positioned preceding alignment optimization. Dense cloud 

construction was orders of magnitude faster than in Survey 1 as the TITAN X GPU 

significantly accelerates this section of the workflow. The dense cloud was completed in 

11 hours. Having taken place in November, what vegetation that hadn’t been stripped by 

recent stormflows was not in-leaf, thus the filtering process returned more optimal 

results than in Survey 1. The iterative approach was applied as it had been with Survey 

1. A coarse, high tolerance point-classification filter was passed over the before a fine, 

more conservative filter designed to catch both high and low vegetation. A draft DEM was 

exported at this stage, as well as the semi-processed point cloud. A high resolution 

orthomosaic was created and saved at this point 

Processing in CloudCompare followed a very similar workflow to that of Survey 1, albeit 

in a different order. In order to speed up SQR filtering, parts of the model unnecessary for 

sedimentary analysis, such as adjacent fields, were trimmed before the tool was applied. 

This enabled CloudCompare to run more smoothly under the load of such a large dataset. 
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Visual inspections were carried out to verify no anomalous points were still present in 

the dataset. The point cloud was then converted to a 5cm DEM file, designated 

NovemberChannelDEM.tif, again in the absence of a known number of surveys that would 

be completed at the time.  

5.3.4. Survey 3 Processing 

The lighting conditions of Survey 3 additionally required some image post-processing to 

improve their quality. Adjustments in Adobe Lightroom included a reduction in exposure 

to many of the brighter image, as well as a slight reduction in contrast. Small sharpening 

and saturation boosts were applied to all photographs. This did not affect Photoscan’s 

image quality estimations, since the utility primarily assesses image sharpness, not light 

consistency or colour. If the images had been left unprocessed, an unacceptable risk of 

SfM artefacts and noise appearing in areas of extreme brightness was present. This had 

been tested with a small sub-set of particularly bright images beforehand, the results of 

which were not satisfactory. Image corrections applied, the data was loaded into 

Photoscan for SfM processing. The upgraded workstation was again utilized, no hardware 

changes had been made since Survey 2. The more compact dataset afforded by the 

upgraded UAV used in the instance of this survey additionally reduced processing time. 

Camera alignment was completed in a little under four hours, 18 times faster than Survey 

1. Processed GPS data was inducted to the model and the coordinate system switched 

from the UAV to the ground control network. Optimization of image alignment was 

carried out once all 30 GCPs had been placed and verified. Some points in the sparse-

cloud were miscalculated, particularly around areas of vegetation, which was at the time 

of the survey, in-leaf. These points were deleted preceding dense cloud construction. 

Dense cloud processing was less accelerated than camera alignment had been since the 

data resolution was similar to that of preceding surveys, albeit from a lower number of 
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photographs. Depth reconstruction and cloud generation took approximately 10.5 hours. 

The increasing number of points between surveys had a noticeable effect on the time 

taken to complete initial vegetation filtering. This survey possessed nearly double the 

number of points within the dense cloud than had been generated when processing 

Survey 1. The coarse classification filter took less time than the fine to run, however total 

processing time of this step was approximately 4 hours. Sheer data volume dictated 

unnecessary section of the point cloud be clipped before it could be exported to 

CloudCompare. The high-performance workstation was a capable of rendering the many 

millions of points in CloudCompare, however inputs were choppy, and the program ran 

at a reduced FPS. Trimming the cloud in Photoscan allowed for increased dataset 

portability and ease of backup. Backing up of datasets became a higher priority at this 

stage in the project, and multiple copies of the raw images, GCP data, point clouds and 

DEMs were distributed across backup drives and cloud servers. The trimmed down point 

cloud was subject to SQR filtering in CloudCompare, which was more extensive than in 

Survey 2, given the increased vegetation. Final checks verified data continuity and the 

point cloud was converted to a 5cm DEM, designation SeptemberChannelDEM.tif.  

5.3.5. Survey 4 Processing 

Survey 4 collected the largest quantity of data attained from any survey to date. No post-

processing was required for the images acquired, except for the removal of some images 

accidentally taken on the ground. Image quality estimations in Photoscan were high, not 

requiring any photos to be removed. Camera alignment took 12 hours to complete in 

Agisoft. This survey also utilized the largest number of GPS observations to date. 

Differential corrections are applied all at once, however GCP placement and checking is 

slowed the more markers there are. Once camera alignment was complete the 80 GCPs 

were imported and their placement was checked. Camera alignment optimization was 
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applied, and construction of the dense cloud started. The immense data density meant 

this step took longer than previous surveys, despite being run on higher end hardware. 

At high quality with aggressive depth filtering cloud generation took 17 hours. The 

resultant cloud was trimmed to the channel margin before applying vegetation filtering 

in order to reduce the amount of points that needed to be analysed as part of the process. 

Vegetation conditions were less abundant than in the previous two surveys, however the 

same level of filtering was applied. Ground points were checked, and any mis-

classifications were corrected. The orthomosaic image was generated and exported at 

resolution of 2.6 cm. The clipped, semi-processed cloud was exported to CloudCompare 

for final clean-up and DEM production. Only limited SQR filtering was applied as 

automatic classification in Photoscan had worked particularly well on this occasion. Final 

visual verification of the point cloud was carried out and the final DEM was exported at a 

resolution of 5cm, designation AprilChannelDEM.tif. An overview of each DEM and 

orthophoto is available in Appendix 1. 
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1 

5.4. DEM and DoD error analysis 

Spatial error within a DEM can be characterised as the level of departure from the “real 

world” elevation. This may be characterised in individual dimensions (X, Y, and Z) or as a 

singular root mean squared error (RMSE) value (Carlisle, 2005). The standard error 

reporting format given by Agisoft Photoscan includes RMSE for each spatial dimension 

for both the entire model, as wells as for each GCP. All Surveys carried out were reported 

to have a general RSME below 5cm. Not reported however is the standard deviation of 

this value. The data scales used by this project are too extensive to take general RSME at 

face value, combined with the fact that calculations surrounding sedimentary budgeting 

are highly sensitive to input errors raise the necessity for a more robust error analysis 

(Milan et al., 2011). This section of the project will recount more the more in-depth 

approaches to accuracy assurance which should be applied as part of the processing 

workflow for UAV photogrammetry. This will include modelling spatial distributions of 

error, and novel corrective processing techniques. Singular error estimations are prone 

to inflation of uncertainty across planar surfaces and underestimation at slopes or areas 

of higher relative roughness (Heritage et al., 2009). Modelling of spatial distributions of 

error and its importance to accurate geomorphic change detection has well covered 

(Ashmore and Church, 1998; Lane et al., 1998, 2003; Brasington et al., 2000) and 

powerful tools for detailed inference to error variability are available (Bangen et al., 

2014). Fuzzy inference system (FIS) approaches make use of multiple input models to 

generate an inferred map of DEM error. FIS models, such as that by Bangen et al., (2014) 

utilises input surfaces of point-density, slope, roughness and others to define error at the 

cellular level. This type of error modelling is more suited to GPS surveys, where error is 

more controlled by interpolation uncertainty and 3d point quality. For SfM no “absoulute” 
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error metadata exists for each reconstructed point and densities over ground are 

ubiquitously high enough to not have a significant interpolation error and effect on DEM 

uncertainty. 

A more in-depth analysis of error distributions than can be provided by GCP level 

reporting is presented in this section. For conceptual purposes, this is done only using 

data already gathered in the field during the course of the field campaign. Preservation of 

methodical transferability is made possible by limiting collection of auxiliary datasets, 

instead utilizing data which would already be available to users replicating the protocols 

laid out by this project. In total 160 GCPs are utilised for model construction across all 

four surveys. This may be used as a self-contained dataset of ground truthing checkpoints. 

Checkpoints not utilised as GCPs during the construction of a survey model can be 

considered independent to all other models produced by this project. For a given survey 

model GCPs from every other survey can be used as independent checkpoints. 

5.4.1. Independent Error Analysis 

GCP data provides a basic level of information surrounding error distribution in DEMs 

produced by this research. General roughness analysis may also be of use however, areas 

of high noise are already removed in final DEM products, making this method somewhat 

redundant. GCP network quality then represents the primary control over error within 

the SfM methodology. It is sensible that modelling of error distributions in this project 

falls partially to multi-epoch comparison of Z levels at static GPS points recorded 

throughout the field campaign; at points of unchanging elevation between surveys, DEM 

elevation should vary by less than the 3D uncertainty within the GPS data when that point 

was logged (typically <0.05m). A review of all GPS points taken during the field campaign 
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was undertaken in order to source these points. Each entry was rejected or included into 

the independent checkpoint list provided it satisfied two conditions:  

Figure 5.2 - Locations of GPS observations utilized for error checking. 
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i. It was within the DEM coverages of all four surveys. 

ii. It existed on a surface which had not undergone elevation change between any 

survey (floodplain, weir top, bridge deck or un-wetted channel point) 

A total of sixty-seven such points were identified, 15 from Survey 1, 9 from Survey 2, 16 

from Survey 3, and 27 from Survey 4. Their positions are mapped in Figure 5.2. These 

points are evenly distributed linearly (along the river), however lateral placements are 

nearly all on the floodplain next to the channel as this is where the majority of GCPs were 

placed. Analyses of these points is presented here. Figure 5.3 represents the mean 

absolute error elevation between concurrent surveys of all three Z values for all 67 

checkpoints. Although the mean error for all checkpoints is quite low and within the 

tolerance for reliable sediment budgeting, there is considerable variation between points. 

A maximum absolute error of 0.11m is reported at checkpoint 39, whilst the difference at 

point 11 is practically nil. This outlines how variable error can be across the modelled 

surface when utilizing UAV photogrammetry and presents a problem for reliable 

sediment budgeting. Error reporting is most critical at areas of geomorphic change, since 

any vertical uncertainty will be carried over into volumetric calculations, potentially 

interfering with management implementations. This problem must be overcome if 

meaningful geomorphic change detection can be achieved via the UAV photogrammetry 

method. 
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Any vertical error present within the DEMs produced in this research will be retained as 

volumetric uncertainty in the DoDs created when subtracting the Z values cells of a more 

recent model from that of a previous survey. Since the final results in this project are 

represented by detailed change maps produced from such DoDs, error analysis of these 

data products is as justified as that of the inputs. This not only ensures data quality at the 

final stage of the processing and analysis methodology, but additionally provides a proxy 

for the quality of data inputs used. Error within a DoD product is detectable as significant 

change being observed where static ground is expected. In the case of this project, such 

areas are characterised as: Flood plain spaces where grass length is known to be 

consistent between surveys. Relatively flat areas within the incised channel as-yet 

untouched by known flows, thus not subject to hydrological morphing or failure under 

gravity. Artificial surfaces, such as the concrete at Haugh Head Ford. Very large boulders 

confirmed not to have been shifted between surveys from observation of high-detail 

orthophotos. GCP markers within the main channel whose paint had persisted between 

surveys and were re-discovered during orthophoto observation.  
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Figure 5.3 – Mean absolute error in ±m, of independent GPS checkpoints.  
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Observation of some raw change DoDs produced at the site level indicated significant 

change over some of these features. This is characteristic of error, since they are known 

to be static in reality. The detection of a change in elevation on a static surface implies the 

presence of error within at the input DEMs. This may be illustrated by small-scale DoDs 

of the Haugh Head Ford. This concrete surface should not have undergone any significant 

vertical change throughout the field campaign, however the measured elevation does 

Figure 5.4 – Cross section transect on Haugh Head Ford 
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vary within the UAV constructed DEMs. Cross sectional profiles taken along the axis 

shown in Figure 5.4area displayed in Figure 5.5.  
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Figure 5.6 – Worst case histogram offset of Haugh Head Ford (Survey 1-3 Raw DoD) 
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Maximum variability is found between the surfaces modelled by Survey 1 and 3, which 

are separated by a mean distance of about 15cm. Figure 5.6 displays the histogram of the 

DoD surface produced when these surfaces are compared. For a survey with no error, a 

single peak at zero would be expected, however in this case the peak is skewed to -15cm, 

representing the most common cell value and thus relative vertical error.  Closest in 

agreement, are the DEMs for Survey 2 and 3, however these surfaces cannot be 

considered the most accurate compared to the others and only reflects a relative 

consistency.  

The histogram for the DoD produced by subtraction of the Survey 3 surface from that of 

Survey 2 is shown in Figure 5.7. The peak value reads much closer to zero, reflecting the 

relative local vertical agreement between the two DEMs. Survey 4 represents the most 

accurate reconstruction of Haugh Head Ford in this case, as GCPs used for model 

georeferencing were placed on the surface itself and may act as the local benchmark in 
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Figure 5.7 – More ideal inter-survey histogram offset. (Survey 2-3) 
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this case. The GCPs in question were deemed to have a vertical error of approximately 

1.5cm. Knowing this, Survey 1 can be deemed to be too high, and Survey 2 and 3 to be too 

low, at least in the local context of Haugh Head Ford. Spatial variation of vertical 

uncertainty prevents this statement from being applicable to the wider survey extent. 

The information remains valuable however, since the Survey 4 surface in this case can act 

as a validation dataset, the other models may be manually translated to align with the 

benchmark. This would essentially negate vertical error in a local context but may 

exacerbate uncertainty elsewhere. Therefore, any corrections applied must be done so at 

a scale smaller than that of the full model extent.  

5.4.2. Absolute vs Relative Error 

The discussed measures and methods of spatial error apply to the uncertainty in the 

“absolute” reference system. That is, the relative closeness of DEM elevations to that of 

the “real-world” value. For detection of geomorphic change this makes sense; If both 

input surfaces are minimally disparate from the absolute frame of reference, resultant 

DoDs will also have low error. For DEMs of decent coverage, the histogram of these 

difference surfaces should have its peak at 0. Difference surfaces that have their 

histogram peak at a non-zero value can be assumed to either have the vast majority of 

their cells undergone elevation change between surveys, or that the total vertical error of 

the input surfaces is equal to the value at which the histogram peak is found. If the precise 

amount of absolute error contributed by each input surface is known, then translative 

corrections could be applied to each surface, essentially negating vertical error, at least 

the most statistically significant portion of it. However, knowing the error in each 

respective input surface is impossible at this point as the DEMs are essentially entangled. 

The total error is however known (equal to the value at which the histogram peak lies). 

Applying the inverse of this value as a vertical translation to one of the input DEMs will 
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cause this peak to fall at 0. This will of course increase error in the absolute reference, 

however relative error will have been minimised. The data products of geomorphic 

change detection are themselves relative outputs, thus input data does not necessarily 

need to be absolutely referenced. This method can be summarised as a probabilistic 

approach to error quantification and correction. A very precise offset factor is provided 

for the most common frequency bin of cells in a DoD. For the data utilised here, this 

should be the “static” cells; those which have not undergone elevation change. 

It should be noted that “offset factor” is not synonyms with error, as the uncertainty for 

each DEM, relative to the absolute reference, cannot be known. Offset factor refers only 

to the value at which the peak of the histogram is found. This is characterised by the most 

probable elevation difference that exists between static cells in each respective input 

DEM. Translating one of the input DEMs by the inverse of this factor (placing the 

histogram peak at zero) thus assigns zero to be the most probable vertical difference for 
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static cells between the two surveys, as it would be if both DEMs possessed the perfect 

absolute reference. This can be referred to as probabilistic offset error translation 

(POET). 

5.4.3. Limitations and implications 

It is intended that this translative approach be applied to the DEMs produced by this 

project. The caveats should first be cemented however. POET is not suitable for wholesale 

application to DEMs of large scale, as error is not spatially uniform unlike any translations 

that might be applied. This is characterised by the histograms of DoDs produced at such 

scales possessing a wider frequency distribution and lower kurtosis. This results in a 

higher uncertainty in the translation factor itself, as it is proportional to the “peakedness” 

of the histogram. It is therefore necessary to divide input DEMs into smaller units. By 

spatially limiting the inputs the variability of error within them is also limited. In the case 

of the data presented in this project, splits are applied at the sub-reach level, as illustrated 

in Figure 6.11 Manual translations of any sort to an absolutely referenced model will void 

its usefulness as an accurate representation of real-world elevations, suiting it only to use 

within the relative frame of reference which itself is specific only to surface or surfaces 

against which it has been relatively corrected. This includes use for development 

planning and hydrological modelling. It should be noted that spatial distributions of error 

remain unchanged by application of uniform translations and may in fact be exacerbated 

if POET is applied too generally.  

Table 5.1 – Compared RSME values of this study against similar works. 

Author UAV System RSME (cm) 

This Study DJI Phantom 3 and 4 2.02 - 4.65 

Escobar Villanueva et al., 2019 eBee (fixed wing) 23.0 - 46.2 

Hugenholtz et al., 2016 eBee RTK (fixed wing) 5.7-7.2 

Langhammer et al., 2017 Mikrokopter Hexa 2.5 

Ajayi et al., 2017 DJI Phantom 2 46.87 
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The error shown by  Figure 5.6 and Figure 5.5 represent only a small section of the entire 

survey extent. Overall surface error as reported in Table 4.1 is higher. Table 5.1 compares 

reported RSME values for similar works to that present in this study. The surface error in 

this study is lower than other studies, and is most comparable to Langhammer et al., 

(2017), who achieve particularly low error and high survey resolution  

 (1.5cm). This is however done over a comparatively smaller area relative to this project 

(0.14km2 vs 0.20km2). 
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Chapter 6: Surface Comparison and 
Geomorphic Change Detection 
6.1. Introduction 

Detection and spatial characterisation of changes to the natural landscape is central to 

geomorphic study. Understanding how and why landscape features evolve in the way 

they do is also core to preserving, managing and living alongside dynamic environments 

(Vita-Finzi and Schumm, 1992). Insight to how future landscapes may evolve is granted 

by analysis of previous configurations of river systems. This may be done with historical 

maps (Hooke and Perry, 1976) however workers may encounter data quality and 

availability issues. Contemporary detection of geomorphic evolution has been 

empowered by development of surveying tools capable of delivering higher quality data, 

at more extensive coverages, including aerial photography and LiDAR, which hold 

advantages over historical map interpretation (James et al., 2012). The UAV platform is 

among the most recent of tools to be developed for this purpose, and already is 

recognised as a powerful asset to the general field (Colomina and Molina, 2014). 

Additional developments in the fields of computer vison and processing have revealed 

SfM to be the cheapest means for high-detail reconstruction of landscape features, 

available to more users than ever before, even for those without access to UAV 

photography (James and Robson, 2012; Prosdocimi et al., 2015).  

This section of the research will introduce the data approaches applied to the UAV 

constructed DEMs for the purpose of detecting geomorphic evolution, between both the 

landscape and clast scale. A top-down approach will be taken, with largest scale results 

being presented first and steadily focusing the applied scale of change detection down to 

the centimetric level. Accuracy of detected changes is key. Many reviews of the accuracy 
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of UAV imagery are present within the literature, (Brasington et al., 2012; Harwin and 

Lucieer, 2012; Tonkin et al., 2014; Stumpf et al., 2015; Brunier et al., 2016), mostly citing 

the good level of accuracy provided by the method. This project will contribute to the 

understanding of error and uncertainty within UAV photogrammetry, but also present 

the results of possible corrective methodologies, outlined in the previous section as 

probabilistic offset error translation (POET). This will enable users who for whatever 

reason have been unable to attain data with high quality georeferencing to also take part 

in low-uncertainty geomorphic change detection. This technique is not suitable to 

application at the site scale, instead being more tailored to improving and reducing 

uncertainty at the sub-reach level, approximately within the order of 100-200m. These 

calculations made at the sub-reach level may then be fed into one and other in order to 

gain a semblance of sedimentary mobility throughout the study site. 

This understanding of sediment movement within rivers is crucial to understanding their 

form and development (Erskine, 1986). Sedimentary quantity and grainsize fractions 

control not only the planform shape of the system (Leopold and Wolman, 1957), but 

additionally the types of habitat, niches and communities which inhabit it (Padmore, 

1997). Hence, detailed and accurate insight into the parameter, as well as its temporal 

variance, is a critical fulcrum about which environmental science rotates. This is no 

exception in the setting of Wooler Water, where artificial manipulation of the sediment 

regime has been historically present (Sear and Archer, 1998) and the effects of which are 

present today in the form of a highly-incised channel margin and a system heavily 

disconnected from its floodplain. Sedimentary flux within the system continues and is 

prevalent within the data presented here. Research Question 2 will be the primary focus 

of the work in this section, which presents the maps, volumes and statistics explaining 

the current state of geomorphic change at the site. From this extrapolative analysis of the 
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results will permit a degree of prediction regarding the possible evolutionary trajectory 

of the local configuration and how it may affect flow regime and implementation of future 

management options. 

6.2. Channel Evolution – Full Site 

The results of comparative analyses of DEM data and aerial imagery are presented in this 

section. Cross sectional and planform evolutions also presented, followed by analyses of 

gradient change and overall sediment budget. In order to provide data context, secondary 

elevation data acquired by aerial LiDAR survey in 2009 (Environment Agency, 2009) is 

included in comparative analyses. Examination of broad scale (full-site) changes at 

Wooler Water are critical to provision of insight to the evolutionary trajectory of the 

system, but also test the applicability of UAV surveying to such fluvial monitoring. 

6.2.1. Cross-sectional Analyses 

Seven cross section sample transects were applied to the data (CS1-7), approximately 

every 200m along Wooler Water’s channel. These cross sections include elevation data 

from every UAV survey (2016-2018) as well as LiDAR data from 2009. It should be noted 

that the not every cross-section is able to completely display both banks of the river 

channel due to tree occlusion, the river’s bed is clear in all cases however. An overview 

map of the plotted cross section transects is shown in Figure 6.1. 
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Figure 6.1 – Locations of cross sections CS1-7 at the Wooler Water field site. 



Chapter 6: Surface Comparison and Geomorphic Change Detection 

102 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 displays the cross-sectional profile CS1, which is situated across the first bend 

of the study area. This section is characterised by three vertically disparate sub-channels. 

Included within the cross-section profile are all four UAV surveys to date and an 

additional 2009 LiDAR dataset. Due to occlusion by tree cover the left-most sub-channel 

is not modelled by UAV data but is mapped approximately 25m downstream where it is 

un-occluded. Important cross-sectional evolutions since 2009 include the shifting of the 
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two of river’s sub-channels approximately 15m toward the left side of the incised margin. 

Widening and shallowing of the central inset channel is also recorded. This pattern of 

change persists within the contemporary data, particularly in the left sub-channel, where 

depth-reduction is observed between Survey 1 and 4 (2016-2018). In-contrast to the 

2009-2016 pattern however is the relative channel contraction seen onwards from 

Survey 1. The shallowing of this sub-channel may be attributable to bar construction, 

which is visible by comparison of UAV acquired imagery. 

CS2, shown in Figure 6.3 is situated approximately 1 meander wavelength downstream 

from CS1 (Figure 6.2). This section is dominated by two channels, separated by a partially 

vegetated bar. The right of the two sub-channels extends up to the steep bank of the 

incised margin. The left bank of the left sub-channel is occluded by tree-cover in the UAV 

data. Between 2009 and 2016, the right bank has undergone significant retreat, laterally 

eroding 15m. This paradigm is consistent during the course of this project’s field 

campaign (2016-2018), where approximately 4m of bank retreat is recorded by UAV 

observations (Survey 1-2 epoch). The vegetated bar, (approx. 10-30m across CS2) 

remains static throughout the field campaign, however some erosion into its left margin 

is noted after Survey 1. Contrastingly to CS1, little vertical change is observed at the 

channel bed, which is static in CS2. The pattern of vertical stability extends to cross-

sections CS3-5, profiled in Figure 6.4. The river’s bed appears to have remained static 

since 2009 at CS3 and CS5, however some vertical change is clear at CS4 between 2009 

and the commencement of this project’s field campaign in 2016. This vertical evolution is 

symptomatic of the leftward migration of the 2009 channel rather than downward scour 

under flood conditions. There is also evidence of erosion to the left side of the channel in 

CS4, scouring 20 centimetres between 2016 and 2018. The river bed at CS3 and CS5 has 

contrastingly remained stable since 2009.  
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Cross sections CS6 and CS7 are situated in a sinuous section at the downstream end of 

the study reach and are separated by approximately 1 meander wavelength. The left bank 
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of the main river channel is occluded by trees and therefore not modelled by UAV data. 

The steep right bank is however well captured. Consistent with CS2, significant bank 

retreat is recorded between 2009 and 2016. Approximately 10m at CS6 and 7m at CS7. 

In contrast to CS2 however is the relative stability of the banks recorded by this project’s 

UAV observations. Only 10cm of bank retreat is detected between Survey 1 and 4 at CS6. 

The cross sections presented in Figure 6.2Figure 6.5 suggest a general pattern of lateral 

instability but comparative stability at the river’s bed. Lateral evolution is particularly 

prevalent in zones of high sinuosity, such as in the extreme upstream and downstream 

ends of the field site. Vertical stability is more consistently recorded throughout the study 

reach. Vertical evolutions, particularly those recorded between 2009 and Survey 1 

(2016) in CS1 and CS4, are the result of lateral migrations of channels, not downcutting. 

This is validated by the presence of channels in the 2009 data which are not vertically 

distant from the channel configuration seen from 2016 onwards, and is also supported 

by comparison of 2009 and 2016 aerial imagery Figure 6.12Figure 6.17. 

 

6.2.2. Planform Evolution 

Planform evolutions at Wooler Water manifest primarily as bank adjustment to the 

incised margin, however there are also internal migrations of sediment bars. Lateral 

expansion since 2009 has been most prevalent in the upper sections of the study reach, 

as illustrated by Figure 6.6 and Figure 6.7 and outline the bank extents within the most 

mobile section, as traced from aerial imagery. A maximum expansion of 23.7m is 

observed between 2009 and 2018. Also displayed in Figure 6.6 is a cross section (CS2) 

corresponding to the bank outlines shown. The planform expansion seen between 2009 

and 2016 is consistent with a regression toward the historic channel configuration 

observed pre-1970, as shown by Figure 4.9. The rightward and downstream (northward) 
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expansion of the incised margin is also synonymous with an attempt by the river to 

increase sinuosity as a result of an artificial increase to gradient. The section displayed in 

Figure 6.6 may be considered to show the formation of a proto-meander bend, and as 

such, a counter bend may be expected to develop immediately downstream. It is 

predicted that this will manifest as bank erosion to the left bank within the straightened 

section immediately downstream of point B, where the two sub-channels reconnect. The 

left bank within this section is however heavily forested and likely stabilised by a dense 

root network and there is no mapped course since 1860 (Figure 4.8) which extends 

further left (west) than the present configuration. As such, a leftward expansion may not 

be expected in the short-term. 
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Additional planform adjustment has taken place within the extreme downstream section 

of the study reach which similarly to the section examined by Figure 6.6, is considerably 

more sinuous than the rest of the site. These evolutions are examined in Figure 6.7, which 

includes in-set cross sections for CS6 and CS7. The majority of change is observed to have 

occurred during the 2009-2016 epoch, where significant lateral expansions via bank 

collapse have served to increase sinuosity even further. Of particular note is the large 

bank collapse at the leftmost (west) bend, designated B in Figure 6.7. A more in-depth 

analysis of this area is given in Figure 6.8 , which displays hillshaded DEMs of 2009 LiDAR 

(red) and 2016 UAV photogrammetry (green). Included in Figure 6.8 are additional cross 

section profiles; CS 6.1 and CS 6.2. It should be noted that the traced bank extent for 2016 

does not match the extent of the 2016 UAV data due to occlusion by trees. The high 

ground immediately adjacent to the river’s left flank is considerably eaten into by the 

channel resulting in large sections of collapse, likely by undercutting and mass failure. 

This is particularly evident within the cross sections; CS 6.1 and CS 6.2. The former 

recording a significant landslip style failure and the later capturing a bank retreat of 

approximately 15m.  

 

Planform adjustments A and C seen in Figure 6.7 are lesser in magnitude than that 

observed at the upstream end of the study site. They are however similarly consistent 

with an attempt by the system to increase in sinuosity. The section examined by Figure 

6.7 has no recent mapped history of such a sinuous course. 1860 mapping indicates a 

relatively straight course which persists until at-least 1970. The significant planform 

changes post 1970 are coincidental with termination of gravel mining works, which are 

known to have caused incision and increased gradient (Sear and Archer, 1998).  
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6.2.3. Gradient Adjustments 

Significant longitudinal changes to Wooler Water are recorded by Sear and Archer 

(1998), who reveal the effect of incision due to gravel extraction upon the river’s bed. 

Figure 6.9 is a map and long profile of the section immediately upstream from Haugh 

Head Ford, which was artificially channelized sometime after 1950. A series of 10 weirs 

were installed as part of this work to maintain the straightened course, although many 

have been buried or destroyed. Four remain visible in Figure 6.9. Overall gradient across 

the long-profile in Figure 6.9 has decreased by approximately 7% between 2009 and 

2018. The majority of this change is observed to occur via aggradation immediately 

upstream of Haugh Head Ford and approximately midway along the longitudinal profile. 

Minimal vertical change is observed to occur between 2016 and 2018 (Survey 1 – Survey 

4). 
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6.3. Geomorphic Evolution – Reach Scale Analyses 

For analysis at the sub-reach level, clipping was applied to the processed full-scale point 

clouds to split each Survey into the respective sections illustrated in Figure 6.11. The 

locations of the splits were chosen based on a compromise between sub-reach size and 

morphological regime heterogeneity. This aims to minimise the number of sub-sections, 

and thus processing load, as well as the total level of error variability within respective 

sub-sections. This produced a total of 24 point-clouds ready for application of the 

experimental POET correction workflow. In order to gauge the necessary offset factor 

required, CloudCompare’s “cloud 2 cloud” (C2C) distance tool was employed. This utility 

functions in a similar way to standard DEM to DEM subtraction for DoD production but 

is more suited to point cloud data. This produces a scalar field present on the later survey 

cloud for C2C distance and is represented as a histogram within the program’s interface. 

C2C additionally was able to detect some points which had been missed during cloud  

Table 6.1 – Respective offset factors for each sub-reach when compared to the respective preceding 
survey. 

 

Applied Translations A B C D E F Mean 

Survey 2 -0.042 0.101 0.140 0.339 0.031 -0.008 0.093 

Survey 3 -0.018 0.000 0.051 -0.008 0.117 0.103 0.041 

Survey 4 -0.049 -0.050 -0.074 0.010 0.004 -0.037 -0.033 
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Reclassification in Agisoft Photoscan and by subsequent SQR filtering in CloudCompare. 

These detections were characterised by overly extended histogram limbs, with very low 

frequency, extreme values at the upper and lower numerical extents cloud of difference. 

These are filtered according to adjustment of the maximum and minimum values within 

C2C scalar field.  Histogram data for clouds of difference is accessible in CloudCompare, 

whose in-built viewing utility enables quick checking of the peak frequency offset from  

zero (Figure 6.10). This value is noted, and the inverse applied as a vertical translation to 

the later Survey’s point cloud. All translation offsets are displayed in Table 6.1  

Translative corrections are always applied to the later of the two-point clouds being 

compared, hence why Survey 1 is not present within Table 6.1. The surface of the earlier 

of the two surveys always remains This does however increase the volume of files within 

the processing archive, requiring a high-level of discipline surrounding folder and file 

naming and branching. The magnitude of translations is quite variable. A maximum offset 

translation of+33cm was applied for Sub-reach D when correcting Survey 2 relative to 

Survey 1. Conversely, Sub-reach B for Survey 3 required no translation. 

Figure 6.10 – CloudCompare screenshot displaying “cloud of difference” histogram offset. 
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Figure 6.11 displays the extents of each named sub-reach within the context of the full 

study site. Each red box outlines the viewport for each sub-reach change map. The 

viewport for each grouping of maps for each sub-reach have identical coordinate extents. 

Displayed data possesses similar symbology as in the preceding full site maps, semi-

transparent green shading indicating DoD pixels within the limits of the set detection 

threshold (±0.1m). Blue and red indicative of deposition and erosion respectively. 

Histogram colouring is unrelated to this shading and is used only for ease of 

differentiation between Survey lines. Volumetric and areal statistics are presented 

similarly to the preceding section. Graphical comparisons of volume are presented in 

Section 6.2.5. It should be noted that for all volumetric comparisons, bed/bank 

segregation is integrated as it was for the full-scale change analysis. This is intended to 

provide more intricate data and better insight to geomorphological mechanics at the site.
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Figure 6.11 – Locations of sub-reach splitting, based on a compromise between size and morphological continuity. 
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Figure 6.12 – Geomorphic change analyses for Sub-reach A. 



Chapter 6: Surface Comparison and Geomorphic Change Detection 

118 
 

Figure 6.12 displays DoD shading for all inter-survey epochs and 2009 LiDAR data vs 

2016 UAV data (Survey 1) within Sub-reach A. Important geomorphic developments 

between 2009 and Survey 1 include the scour within the central channel and outer 

section of the bend (right bank). Deposition is seen to occur between these two areas of 

scour, attributable to bar construction. By 2016, this bar is vegetated and seen to be 

stabilised. Significant deposition is recorded between Survey 1 and 2 in the form of a bar 

which extends into the main channel previously excavated during the 2009-2016 epoch. 

A degree of deepening is seen within the main sub-channel is seen, but perhaps not as 

much as might be expected, considering the relative narrowing caused by extension of 

the bar. This may be explained by the appearance of a secondary relief channel near the 

left bank, diverting energy from the aforementioned channel. This constructed bar is then 

actioned upon by woody debris mechanics between Surveys 2 and 3, when a number of 

tree trunks are deposited. 6 tree sized logs are present, spread between the primary 

wetted channel and atop the gravel bar. At least two of the logs are orientated 

perpendicular to the flow. The DoD records scour just upstream of these LWD well. A 

deepening of approximately 70-90cm is seen. Not all LWD items are observed to have 

caused significant scour however, revealing the possible timescale over which they were 

deposited. The LWD associated scour observed is consistent with Bilby and Ward, (1989). 

These debris are seen to cause scour on their upstream side, potentially triggering the 

formation of a chute or cut-off channel adjacent to the left bank. For Survey3-4 

geomorphic change is less extensive; the constructed bar appears fairly static, however a 

slight amount of action is present surround LWD. Common to all DoD of sub-reach A is 

the relative stability of the area near the right bank, which is vegetated primarily by gorse 

bushes. This area is somewhat vertically disconnected, thus requires exceedingly high 

flow to be worked upon.  
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Figure 6.13– Geomorphic change analyses for Sub-reach B. 
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Figure 6.13 illustrates geomorphic changes between 2009 and 2016, and for all inter-

survey epochs at Sub-reach B. The most significant changes seen between 2009 and 2016 

include the departure of the river channel from its straight course to a more sinuous 

pattern. Large sections of the left and right banks are eroded, widening the main incised 

margin by approximately 20m. This occurs in tandem with aggradation within the 

straighter section of the channel. Sub-reach B represents one of the most active sections 

of the study site. The incised channel margins within this section are intermediately 

sinuous (SI=1.29), indicative of embryonic meander formation. The primary wetted 

channel runs centrally however, with minimal lateral deviation. Auxiliary channels are 

present at the margins of the incised channel, one within the upstream half of the sub-

reach, and the other in the downstream half. The upstream sub-channel is vertically 

disparate from the primary wetted channel, being above and set into the naturally higher 

ground that dominates the left floodplain in this section.  The sub-channel within the 

downstream half of this section however is vertically below the central channel by 

approximately 0.3m. This channel is initiated near the upstream limits of sub-reach B 

practically adjacent to the right bank. It is segregated from the primary wetted channel 

by a fairly well vegetated gravel bar, approximately 3m in width. This leads to a lower 

discharge within the auxiliary channel despite being vertically lower than the main. 

 

The pre-2016 pattern of bank erosion is mirrored between Surveys 1 and 2, albeit at a 

lesser magnitude. A vegetated bar now separates two sub-channels, the left occupying 

the river’s pre-2009 course, the right extending up to the right bank of the incised margin. 

Some bar construction is recorded near the left bank, approximately central within sub-

section B, as well as at the southern extent of Figure 6.13.  These bars are seen to migrate 

or be reworked between Survey 2 and 3.  Additional construction to the “central” bar is 
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also recorded. Bank erosion is more limited for this epoch, although some widening is 

recorded near the northern extent of the right bank. Increased bank erosion is however 

recorded between Survey 3 and 4. In addition, some bed scour is captured within the 

southern section of the reach. Mild deposition is seen to occur within the left channel near 

the northern extent of sub-reach B. The general pattern of evolution of this section may 

be described by slight deposition within the central channel, limited vertical scour within 

the auxiliary channel, and aggressive lateral action on the right bank of the incised 

margin. The main and auxiliary channels are punctuated by vegetated areas, which 

mostly persist throughout the field campaign, indicating vertical stability in-between the 

two channels. 
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Figure 6.14– Geomorphic change analyses for Sub-reach C. 
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The maps within Figure 6.14 (Sub-reach C) show less geomorphic evolution than 

previous sub-reaches due to the straight nature of the river in this section. An amount of 

vertical change is however recorded between 2009 and Survey 1 (2016). Such change 

primarily consists of deposition of depth up to 0.47m, however some scour is recorded 

immediately downstream of one of the weirs. Sub-reach C is the most stable section of 

the study site, containing several weirs. These structures were installed circa. 1950 

(Ordnance Survey, 2018) for course maintenance following channelization to halt 

encroachment on a nearby rail line, now disused. The weirs are no longer maintained and 

are becoming either degraded, outflanked, or buried as is the case for those within Sub-

reach B (Figure 4.7). Geomorphic activity within this sub-reach is limited to movement of 

specific large clasts and boulders, rather than channel mobility. The relative stability 

within this sub-reach is reflected within all inter-survey DoD section. Approximately 80-

90% of the entire channel area remains stable for this Sub-reach. 
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Figure 6.15 – Geomorphic change analyses for Sub-reach D. 
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Geomorphic changes within Sub-reach D (shown in Figure 6.15) between 2009 and 2016 

include significant deposition to the main channel, which takes a single threaded form in 

Sub-reach D. This deposition is then largely “undone” between UAV survey’s 1 and 2, 

where erosive action appears to occur. This is however countered by additional 

depositional activity at the upstream (southern) end of the reach, immediately 

downstream of Haugh Head Ford. Further alternations of erosion and deposition are 

recorded between Survey 2 and 4 within this section of Sub-reach D. The rest of the reach 

remains relatively stable, except for some erosion a near the downstream limits of Figure 

6.15 between Survey 2 and 3.  
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Figure 6.16 – Geomorphic change analyses for Sub-reach E. 
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Figure 6.16 maps geomorphic changes in Sub-reach E. 2009 to 2016 (Survey 1) is 

characterised by extensive deposition within the channel, however an amount of erosion 

reflecting channel avulsion is present. The erosion detected records the widening of the 

incised margin, possibly due to bank collapse under high flow conditions. The full extent 

of the bank collapse cannot be directly compared as the UAV survey methodology cannot 

penetrate the vegetation canopy which dominates this sub-reach of the field site. The 

twin channels created by this widening persist throughout this projects field 

observations, however there is a degree of re-working and internal action. Erosion and 

deposition, attributable to bar migration are observed between survey 1 and 2, erosive 

conditions dominating in the left channel and deposition occurring primarily in the right. 

The right channel remains stable for the remainder of this study’s field observations 

however the left channel continues to undergo bed scouring. Bar migration patterns are 

observed in the left channel between Survey 3 and 4. Sub-reaches D and E represent a 

transition to a more stable state than upstream sections, being primarily single threaded 

with densely vegetated margins. Channel divergence is seen in places, punctuated by well 

vegetated bars/islands. Geomorphic patterns within these sub-reaches include 

deposition just downstream of Haugh Head Ford, accompanied by proximal erosion 

downstream. In sub-reach E, preference for flow within the left-hand channel where 

divergence occurs appears, likely attributable to the creation of a gravel bar at the mouth 

of the right channel, potentially restricting flow. 
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Figure 6.17 – Geomorphic change analyses for Sub-reach F. 
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Figure 6.17 illustrates geomorphic changes within Sub-reach F, which is the downstream 

extent of this project’s data collection. The 2009 – Survey 1 epoch is characterised by 

significant bank erosion and widening of the incised margin. These widening actions are 

additionally analysed in Figure 6.7 and Figure 6.8. This is coupled with extensive 

deposition on the river’s bed. Widening action between Survey 1 and 2 is more modest 

but still underway. The river bed is mostly stable during this epoch, however some bar 

mechanics manifesting as patterns of erosion and deposition are present within the 

westmost bend of Sub-reach F. This bend continues to see the majority of geomorphic 

change for the rest of this project’s observations. Bars constructed during the Survey 1-2 

epoch are reworked between Survey 2 and 3, whilst some bank collapse and material 

storage is observed in the Survey 3-4 epoch. Sub-reach F is the downstream extent of the 

UAV survey and sees conditions more similar to the sinuous upstream reaches. Bank 

gradients within sub-reach F are less extreme, unlike in Sub-Reach B where banks are 

vertical or overhang. This shallower gradient enables material failing under gravity at the 

very top of the bank to remain and “sit” partway up. This is visible within the DoD figures, 

as red at the extreme margins of the bank and blue adjacent to the wetted channel. 

6.3.1. Error Considerations and implications 

Geomorphic change detection analyses are sensitive to survey errors, thus careful 

consideration must be given to ensure reliability of volumetric calculations and change 

maps. Minimum level of detection (LOD) thresholding is used by this project’s DEM 

comparisons. The threshold of detection is defined by the square root of the sum of each 

survey’s maximum Z error (given in Table 4.1) squared:  

Equation 6.1 

𝐿𝑂𝐷(𝑚𝑖𝑛) = √𝛿𝑍1
2 + 𝛿𝑍2

2 



Chapter 6: Surface Comparison and Geomorphic Change Detection 

130 
 

Table 6.2 - LODs and net propagated error in volume calculations for inter-survey epochs. 

Inter-survey epoch Minimum LOD 
Threshold (m) 

Propagated 
Erosion 
Volume Error 

Propagated 
Deposition 
Volume Error  

Survey 1-2 0.106 24% 35% 

Survey 2-3 0.072 31% 32% 

Survey 3-4 0.098 36% 63% 

 

The minimum LOD values given by Table 6.2 define the threshold for detection of 

geomorphic changes differentiating between vertical differences which can be ruled out 

due to DEM error and those which reflect valid geomorphic evolution. DoD cells which do 

not exceed the minimum LOD are not used in volumetric analyses for sediment budgeting 

and are not displayed as erosion or deposition on geomorphic change maps (Figure 6.12 

Figure 6.17). For inter-survey epochs 1-2 and 2-3 an LOD of approximately ±10cm 

calculated, for Survey 2-3, a threshold of approximately ±7cm is used. The scale of these 

thresholds is low enough that moderate bed adjustments, bar evolutions and bank 

erosion are capturable. Margins of bar formations and the mobility of individual clasts 

smaller than the threshold are however undetectable through DEM comparison. The 

implication that the edges of bars or material movement might not be detected is an 

apparent drawback of the UAV surveying methodology. The loss of fine scale geomorphic 

change to noise is unavoidable if minimum LOD thresholding is used, however this is only 

the case for elevation data. The provision of secondary data outputs such as high 

resolution orthmosaic imagery aid detection and interpretation of geomorphic changes. 

It should also be noted that survey timing may affect the amount of detectable changes. 

In the event of a scour or fill event which is then neutralised by countering deposition or 

erosion, recorded volumetric change would be zero, despite geomorphic evolution 
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having occurred. Such action is however likely to be limited to special cases, such as LWD 

inclusions. 

Table 6.2 also includes the calculated propagated error within volumetric calculations for 

sediment budgeting. The values are calculated by multiplication of the propagated error 

(also minimum LOD threshold) with the total area of DoD cells which exceed that value 

(positively in the case of deposition, negatively in the case of erosion) to attain an error 

volume for erosion and deposition components. The final propagated volume error is the 

propagation of either the erosion or depositional error volume as a percentage of the 

complete volume for the negative or positive component respectively. These propagated 

errors are manifested as error bars on sediment budget graphs, reflecting the percentage 

of volume which may or may not be attributable to survey error. The variable nature of 

the propagated error is attributable to the large range of change volumes observed 

between surveys. Volumetric error is higher for epoch 3-4 than 1-2 despite the LOD being 

lower since the average depth of change is significantly smaller relative to the detection 

threshold. This is an example of the one of the drawbacks of the UAV surveying 

methodology, that for even for surveys of decent accuracy, signal cannot be differentiated 

from noise below a certain threshold. Such a disadvantage is however common to all 

landscape surveying methods and can be mitigated by improvements to instruments and 

processing techniques. 

6.3.2. Budget Segregation 

Raw change alone limits the amount of spatial intricacy accessible to users. 

Understanding the geomorphic origins and contexts of sedimentary flux is particularly 

important when analysing fluvial systems at the scales utilised here. The near vertical 5m 

high banks at the site, particularly those in sub-reach B and F present an enormous 

potential source of sediment if laterally eroded. The high-resolution data afforded by the 
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UAV enables precise volumetric segregation of material lost from the rivers banks vs that 

which is eroded from the bed of the river. Significant (±0.2m) erosion is spatially 

segregated into that which occurs from the banks of the incised margin and that which 

occurs within the riverbed itself. This was done by applying a masking polygon to the 

specific banks identified to be undergoing mass wasting, namely within sub-reach B and 

F. The masking polygons were then used to query the DoD pixel values, allowing for 

calculation of volumetric statistics, independent of the rest of the model. Segregation 

results are presented within the volumetric and areal statistics section pertaining to the 

analysis of geomorphic change at the full reach scale. 

6.3.3. Sediment Budget - Volumetric Statistics 

Figure 6.18 - Bed/bank segregated volumetric statistics for Survey 1-2. displays 

volumetric change for the Survey 1-2 epoch. Most erosion is seen to occur within sub-
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Figure 6.18 - Bed/bank segregated volumetric statistics for Survey 1-2. 
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reach B, where bank material loss accounts for nearly half of all negative volume loss. 

Erosion in other reaches is more equal to deposition, however sub-reach A has a 

dominantly positive sediment budget. Inspection of Figure 6.12 reveals this is likely due 

to the creation of a large bar which extends into the channel. Minimal volumetric change 

activity is observed in sub-reach C, which is consistent with change mapping. Sub-reaches 

D-F are more balanced in terms of volumetric change; however, bank collapse does make 

a significant contribution to erosion in sub-reach F, ultimately tipping the budget to a 

negative regime. 

Volumetric change presented in Figure 6.19 (Survey 2-3) is overall more conservative 

than that in Figure 6.18. The previously most negative sub-reach, (sub-reach B) is now 

net-positive. Bar construction and reduced bank collapse activity observed in Figure 6.13 

are the cause of this. Much of the erosion in sub-reach A is attributable to scour activity 

Figure 6.19 - Bed/bank segregated volumetric statistics for Survey 2-3. 
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triggered by introduction of woody debris atop the bar constructed during the Survey 1-

2 epoch. Erosion appears to dominate in sub-reaches D-E and there is evidence for some 

bed scouring in change mapping. Bank losses are significantly reduced in sub-reach F 

however. 

 

 

Figure 6.20 outlines volumetric changes for the Survey 3-4 epoch. The overall magnitude 

of change is lower than shown by Figure 6.18 and Figure 6.19.   Sub-reach A is particularly 

static. Similarly, sub-reach C also seen to undergo relatively little volumetric change.  The 

negative budget of sub-reach B is attributable to the reworking of bed material and some 

bank collapse activity. Such bank collapse may be due to sub-areal processes, particularly 

if previous flows have served to undercut and destabilize the margins of the incised 

channel. The largely negative sediment budget of sub-reach F may be attributed to the 
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Figure 6.20 - Bed/bank segregated volumetric statistics for Survey 3-4. 
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loss of material from the bed by scour induced by woody debris falling into the channel. 

A portion of erosion in sub-reach F may be linked to bank losses by sub-areal processes.  

 

 

Overall comparison of sediment budgets for all sub-reaches and epochs reveal the 

variability of geomorphic change over both time and space. Sub-reach B most prevalently 

losing mass between Surveys 1 and 2 at a scale unlike the other sections of the study site. 

Figure 6.13 maps significant bank collapse and widening at the right bank and Figure 

Figure 6.18 accounts for nearly half of all eroded material being sourced from that bank. 

This strongly suggests that the incised margin of the river is responsible for much of the 

geomorphic dynamism at Wooler Water, especially in its upper section. Significant 

depositional activity is also revealed during the survey 1-2 epoch, especially in sub-

reaches A and B. 
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Figure 6.21 – Total volumetric comparison for all inter-survey periods. Lighter shading represents erosion. 
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6.3.4. Sediment Budget - Area Statistics 

Figure 6.22 graphically compares the total area of ground within each sub-reach which is 

subject to deposition, erosion, or no detectable change between Surveys 1 and 2. By area, 

the largest portion of erosion is seen to occur in sub-reach B. This reach also sees the 

largest volume loss as supported by Figure 6.18. The majority of cells compared for sub-

reaches A, D and E are seen to be depositional in nature, however the depth of this 

deposition varies. In sub-reach A, the majority of depositional area is attributable to the 

construction of a large bar. However, for sub-reaches D and E, general bed deposition 

appears to be more the cause. Sub-reach F is the most stable by area for the Survey 1-2 

epoch, however it is the second most erosive by volume, as indicated by Figure 6.18. 

Erosion within this sub-reach must therefore be relatively deep, indicative of bank 

collapse activity. 
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Figure 6.22 – Area statistics for erosion (red), stability (grey) and deposition (blue) between Surveys 1 and 2.  
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Figure 6.23  compares the areas of positive, negative and neutral geomorphic change 

between Surveys 2 and 3.  Stability is more dominant than in Figure 6.22 (survey 1-2) 

which agrees with the more conservative rate of geomorphic change for this period.  For 

sub-reach A, deposition is seen to occur over a larger area than erosion, despite the 

section having a net-negative sediment budget. This is attributable to the role of woody 

debris which had been deposited following Survey 2, causing acute scour. Bar 

construction continues as normal just upstream however, thus accounting for the larger 

area of deposition.  Sub-reach B deposition dominant by area, as well as by volume in-

contrast to sub-reach A. Bed aggradation and limited bank collapse are similarly the cause 

of this. Erosional area outweighs depositional area for sub-reaches D to F. 
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Figure 6.23 - Area statistics for erosion (red), stability (grey) and deposition (blue) between Surveys 2 and 3. 
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Area statistics given by Figure 6.24  refer to changes which occur between Surveys 3 and 

4. A further increase in overall stability is observed relative to previous inter-survey 

periods.  Minimal geomorphic evolution is seen to occur in sub-reaches A and C, which is 

reflected in Figure 6.12Figure 6.14.  More prevalent change activity is reflected in sub-

reaches B and F, which are both seen to undergo moderate erosion, both in the form of 

bank collapse and bed scour. The largest area of deposition is seen in sub-reach D, which 

also contains the most positive geomorphic change by volume. This deposition is seen in 

Figure 6.15 to occur in the upstream extent of the sub-reach and is reflective of bed 

aggradation as the channel widens downstream of Haugh Head ford. 
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Figure 6.24 - – Area statistics for erosion (red), stability (grey) and deposition (blue) between Surveys 3 and 4. 
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6.4. Internal Bed Dynamics and Inter-reach Geomorphic Change 

Gravel bed rivers are defined by the nature of their channel bottoms, where facies are 

subject to constant reconfiguration, even at relatively low flow conditions. Vegetation and 

in-channel features are very often the drivers of lateral erosion (Rodrigues et al., 2006). 

The heterogeneity  of biotopes created by gravel features additionally lends ecological 

value to such rivers (Karaus et al., 2005). Bed evolution at Wooler Water, in light of the 

now ceased gravel mining operations, is particularly reflective of the very transitional 

phase the system is presently experiencing. Sub-reach A and B see extensive construction, 

destruction and reconfiguration of channel features, often catalysed by woody debris. 

Figure 6.25 – Internal Bed dynamics occurring in Sub-reach A. 
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Figure 6.25a and b display orthomosaic imagery and semi-transparent DoD layers for 

inter-survey 1-2 and 2-3 epochs respectively. Prevalent bar construction is seen, leading 

to some erosion into the terrace which comprises the right bank of the confined sub-

channel. Also of note is the opening of a new channel near the left bank to accommodate 

the reduction of depth within the primary wetted channel. Development of this cut-off 

channel is further catalysed by the introduction of large woody debris (LWD) atop the 

newly constructed bar, which scours a pool area perpendicular to the bar’s a-axis. This 

pool then connects to the previously scoured chute channel, increasing throughput. The 

continuation of this chute channel is visible in Figure 6.26a and b, again showing 

orthomosaic imagery and vertical change detection mapping between Surveys 1-2 and 2-

3. Imagery for inter-survey epoch 3-4 is not included as this section remains stable.  

Figure 6.26 – Continuation of chute channel in Figure 6.25 
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Figure 6.26a reveals continued bed erosion following reconnection of the chute channel 

to the primary course. In addition, a gravel splay lobe is created when flow velocity is lost 

at the “mouth” of the secondary channel upon convergence. Reworking of these features 

during the intermediate flows which occur between Survey 2 and 3 appears to have a 

levelling effect; the previously constructed gravel splay is eroded, and aggradation occurs 

at the convergence between the main channel and the mouth of the chute channel. The 

appearance of a chute cut off channel observed at this section of the study site is 

mechanically similar (Hooke, 1995; Fuller et al., 2003; van Dijk et al., 2014), albeit at a 

somewhat smaller scale. Maintenance of chute cut-offs is dependent on continued 

throughput (Micheli and Larsen, 2011), however construction of bars or other 

depositional features at their upstream end may choke these channels. The prevalent bar 

visible in Figure 6.25b could be considered large enough to vertically disconnect the 

chute cut-off from the main channel, however dissection of the bar by LWD associated 

scour offers a secondary flow supply. Coincidental if approximate alignment of the scour 

created by the LWD enables continued use of the cut-off channel. 
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Figure 6.27a and b display DoD change maps and orthomosaic imagery of sub-reach D for 

inter-survey epochs 1-2 and 2-3 respectively. The channel in this sub-reach diverges into 

two channels of approximately equal width but with a degree of vertical contrast. The 

left-hand channel being the deeper of the two. Dense tree canopy and vegetation gives 

the underlain orthophoto images patchy coverage of the medial island which punctuates 

the channels, however the continued presence of vegetation on this island throughout the 

field campaign is indicative that no inter-survey flows were large enough to rework 

material atop it. Inclusive in the left channel are a pair of gravel bars, their initial state 

shown in Figure 6.28a. Imagery of the upstream bar on the left side of the channel (Bar 

1) is limited due to occlusion by dense vegetation, however the head and tail of the feature 

are visible. Just downstream on the right bank, is a second bar (Bar 2), which extends 

a. 
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Deposition 
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“levelling” 
effect + mild 
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Figure 6.27 - Internal Bed dynamics occurring in Sub-reach E. 
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from the vegetated island that separates the twin channels. Reworking under the high 

flow conditions (approx. 32 m3/s-1) configures the channel such that Bar 1 and Bar 2 

appear to swap their respective lateral positions and move upstream approximately 20m. 

The bars appear to be configured in an alternating fashion, potentially symptomatic of an 

attempted increase in sinuosity or embryonic meander development by the channel at 

this otherwise relatively straight section. Whilst material continuity cannot be verified 

between Figure 6.28a and b, comparison of Figure 6.28b and c clearly indicate the 

downstream  growth of both Bar 1, which appears point-bar like, and Bar 2, which is more 

morphologically alike a mid-channel bar or sediment slug. Vertical contrast is also 

reduced between the riverbed and both sediment features, as verified by Figure 6.27b. 

This levelling effect is also similar to that observed in Figure 6.26b.  

This equalisation of surface features appears to occur during periods of medium flow 

conditions (<15m3/s), such as that seen between Survey’s 2, 3, and 4 (peak estimated 

discharge14.6 m3/s and 7.9 m3/s respectively). The reduction in height of gravel bars and 

mild aggradation within adjacent channels is attributable to the surface structure of each 

Bar 2 

Bar 1 Bar 1 

Bar 2 

Bar 2 

Bar 1 

Figure 6.28 – Detail view of bar formation and migration in Sub-reach E. 

a. b. c. 



Chapter 6: Surface Comparison and Geomorphic Change Detection 

144 
 

respective feature. For protruding features, such as bars, shear stresses are generally 

higher resulting in mobilisation of some material (Rice et al., 2009). Conversely the 

relatively reduced velocity within deeper sections will cause deposition. High magnitude 

flows, if not already carrying sufficient sediment, will universally cause scour to the bed; 

the difference in velocity between flow over bar features and deep channels being 

minimal. However, for intermediate flow conditions, the disparity in velocity between 

these locations is larger, due in part to the vertical contrast between bar and bed being a 

larger fraction of the water depth. This results in more limited erosion of bar forms whilst 

permitting aggradation to occur within adjacent channels (Hassan and Church, 2000). 
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Figure 6.29 – Detail view of the left bank within Sub-reach F. DoDs for Survey 1-2 and 2-3. 
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Figure 6.29 and Figure 6.30 display the left-hand bank within the sinuous section of Sub-

reach F. This area sees geomorphic evolution in the form of gravel bar construction and 

maintenance, as well as vegetation stripping and some localized scouring. The banks 

within this section however see comparatively little erosion. This is more clearly 

illustrated by Figure 6.30 which shows aerial imagery only. The contour of the bank lip is 

seen to be approximately the same between surveys, indicating no collapses from the top 

have occurred. More erosion is however present upon the face and at the base of the bank. 

Erosion visible at the base of the bank in Figure 6.29a indicates a partial collapse. A close-

up view of this section is shown by Figure 6.31. The very top of the bank appears stable 

and to even have partially re-vegetated during the two years between this project’s first 

and most-recent survey of Wooler Water. Noticeable however in Figure 6.31b is the 

failure plane of a large section of this bank. This mass failure is likely due to lateral erosion 

at the base of the bank, however this is not continuous for the whole bank. The blurred 

a. b. c. 

Survey 1, July 2016 Survey 2, November 2017 Survey 4, April 2018 

Figure 6.30 – Orthomosaic images for Survey 1, 2 and 4 of the left bank within Sub-reach F. 
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portion of Figure 6.31a is due to the presence of LWD; one large deciduous tree which 

has retained its smaller branches, very likely deposited in-situ following bank erosion 

during a much higher flow, such as that in 2013. This vegetation was filtered out during 

post-processing so as to prevent it contributing to volumetric calculations. This LWD 

persists between all surveys. Scour on the upstream side of LWD is universally observed 

(Triska, 1984), however in this special case the proximity of the bank introduces added 

complexity. The natural scour caused by eddy recirculation on the upstream side of the 

debris in this case contributes to bank erosion, however very minimal bank erosion is 

observed immediately downstream. This a result of a “shielding” effect by the LWD which 

lies approximately parallel to the bank.  

The retention of smaller branches and limbs has the effect of lowering velocity and 

reducing shear stress. Unfortunately, ground elevation data is unavailable underneath 

Survey 1, July 2016 Survey 4, April 2018 

b. a. 

Figure 6.31 – Close up of left bank within Sub-reach F. Mass failure and bed scour visible 
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this LWD feature due to the density of the branches which obscure SfM data collection, 

however it may be expected that aggradation of finer material is occurring. This may 

eventually lead to the LWD becoming buried which may decrease it’s shielding effect of 

the adjacent bank. Alternatively, this may effectively result in construction of a bank 

“extension”, where deposited material appears to augment the existing bank. Further 

investigation is required however, perhaps by a more subject specific surveying tool such 

as LiDAR, since vegetation penetration is a known drawback of the UAV-SfM method. On 

the other hand, detection of novel germophobic processes requires extensive datasets 

which enable a good level of detail across wide scales, to which low-cost drone surveying 

is well suited. 

D 

6.5. Clast Scale Geomorphic Change Analysis 

Besides capture and reconstruction of landscape geometries, characterisation and 

classification of the bedload present within fluvial systems is one of the most prevalent 

means of analysis undertaken by geomorphologists. Grain size one of the main controllers 

of fluvial form (Dade and Friend, 1998) and a key input parameter to hydrological models. 

Quantification that is accurate and extensive is therefore crucial to understanding what 

form a river will naturally take, information highly valuable to planners and for 

implementation of management strategies. Grainsize ratios are also able to inform 

regarding flow regime, a relative fining or coarsening load may be indicative of changes 

upstream (Bagnold, 1966).  Distributions and variability of grainsize is known to be 

considerably heterogenous at the reach scale, although usually present in homogenous 

“patches” (Dietrich et al., 2005). This inherently makes attaining a representative 

measure of grainsize distributions within a river reach a difficult task if using contact 

sampling methods. Traditional methods for attaining grainsize data such as the Wolman 



Chapter 6: Surface Comparison and Geomorphic Change Detection 

148 
 

Pebble Count (Wolman, 1954) are manually intensive, invasive, and require access 

directly to sample areas. Additionally they may be susceptible to bias (Kondolf and Li, 

1992). Additionally, such surveys must be carried out twice if geomorphic change results 

are sought, making the process doubly intensive. The ability to remotely sense grainsize 

data is thus invaluable to river scientists.  

Numerous works surrounding the remote quantification of river bedload grainsize exist. 

LiDAR systems have demonstrated their power and suitability for such applications 

(Entwistle and Fuller, 2009; Heritage and Milan, 2009; Hodge et al., 2009; Brasington et 

al., 2012), however their bulk and cost restrict their coverage. The survey reach of this 

project represents too large an area for continuous data to be collected with terrestrial 

LiDAR scanning. Characterisation of grainsize with LiDAR primarily relies upon surface 

roughness. Optical methods are similarly present within the literature field. These studies 

primarily utilize RGB imagery and associated SfM processing DEMs, and may be sub-

classified into those which quantify grainsize based on image texture (Carbonneau et al., 

2004, 2005a; Verdú et al., 2005a; Woodget and Austrums, 2017), and those which use 

spectral variability and frequency to detect individual clasts (Buscombe, 2008, 2013; 

Buscombe and Masselink, 2009; Buscombe et al., 2010). Limited work to apply such 

methodologies to scales beyond individual sediment patches exists. Absent from the 

literature is a demonstration of the application of remotely sensed grainsize distribution 

mapping for the purpose geomorphic evolution and at the macro/kilometric scale. This 

may be distinguished by the need for wide coverage, very high-resolution data, that must 

be precisely spatially referenced for data validation purposes. 

 

Analysis of grainsize distribution is complicated for the UAV surveying methodology, as 

the minimum resolvable grainsize is linked to the GSD of an image. Despite the ability of 
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UAV systems to attain very high resolutions (~1cm/pixel) the resolution of this project’s 

dataset cannot fully resolve the smallest grainsizes present within the Wooler Water 

system. Whilst it is possible to gauge what clasts are resolved by eye, for reliable 

estimation of grainsize a GSD 2-3 times smaller than the median grainsize must be used 

(Buscombe et al., 2010). 

Table 6.3 – Ground sampling distances and minimum resolvable grainsized for all surveys. 

Survey Number Resolution (cm/pixel) Minimum Resolvable Grainsize (cm) 

Survey 1 1.75 5.25 
Survey 2 2.17 6.51 
Survey 3 1.50 4.50 
Survey 4 1.31 3.93 

 

Table 6.3 gives the resolutions and minimum resolvable grainsizes (3 x GSD) for each 

respective UAV survey. A D50 of 15.2cm from Sear and Archer (1998) does place the 

median grainsize above the GSD for all surveys, however a portion of the clasts at Wooler 

Water cannot be quantified. 

D16 = 8

D50 = 15.2 cm

D84 = 21.5 cm

Minimum Resolvable 
Grainsize = 6.51 cm 
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Figure 6.32 - Estimated portion of grains unable to be sized by image based analysis methods  
(6.3%) based on reported D16, D50, and D84 from Sear and Archer (1994). 
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Figure 6.32 makes use of grainsize data provided by Sear and Archer (1994) to estimate 

the fraction of clasts at Wooler Water that cannot be resolved by aerial imagery. For the 

coarsest imagery (Survey 2) this is 6.3%. This figure is likely to be conservative however, 

since in reality lighting conditions, sediment contrast and other factors such as 

submergence can further reduce resolving ability. This places an inherent limit upon the 

amount of information which can be retrieved from such aerial imagery when compared 

to conventional field sampling. Coarse clast detection, mapping and change analysis still 

presents a potential insight to fluvial dynamics at Wooler Water however. 

Figure 6.33 displays an area within sub-reach B which is seen to undergo significant 

reworking during the course of the field campaign, particularly during the Survey 1-2 

epoch. Channel scour and bank collapse are observable in comparison DoDs, however 

there is evidence of deposition at the channel margins. This area is suitable for 

experimental application of a clast detection methodology which utilizes image intensity 

sieving to differentiate coarse material from the fine-grain matrix upon which such clasts 
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rest. The contrast between the surface of a stone and the apparent dark boundary around 

it (also known as the “pore”) permits this (Buscombe et al., 2010). 

Figure 6.33 – Area of Interest for coarse clast analysis (sub-reach B 

A.) Survey 1 (2016) 

B.) 2016-2018 DoD 

C.) Survey 4 (2018) 
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For detection of sediment clasts, the RGB orthophotos where clipped to the extent of the 

area of interest and then converted from multiband RGB to single-band greyscale 

(intensity) raster files by addition of each colour bands 0-255 integer. The intensity 

histograms for these images were individually tweaked by clipping their maximum and 

minimum extents so that only the spectral signatures of bed material remained. The 

maximum and minimum intensity values are noted at this point and utilised for re-

classification of the raster file to a binary image. Pixels with intensity values outside the 

identified spectral threshold are reassigned as 0 (no data), whereas those which lie 

within the threshold receive 1, indicating the presence of a contiguous sediment quanta. 

The binary raster is converted to vector data by applying the minimum bounding convex 

hull to each individual group of contiguous pixels. All polygons whose minor axis does 

not exceed the minim resolvable grainsize of 6.51 cm are deleted. For clast sampling, a 

random selection of 500 clasts was extracted from the remaining shape data. 

The boundaries of the shapefiles produced approximate the “pore” boundaries of each 

individual clast. Conversion of the ellipsoid envelopes to oriented minimum bounding 

boxes permits measurement of the major and minor axes of the approximate enclosing 

Figure 6.35 – Detected clasts (grey) for 2016 and 2018 based upon clast/pore contrast definition 
B.) 2018 Detected Clasts A.) 2016 Detected Clasts 

Figure 6.34 - Detected clasts (grey) for 2016 and 2018 based upon clast/pore contrast definition 
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polygon. It is unreasonable to assume that all measured minor axis lengths correspond to 

the b axis of the real-world stone, since factors such as clast orientation, occlusion, and 

imbrication may not present the entire axis to the camera. In the absence of cohesion or 

clast occlusion, stones can be expected to naturally settle with their c (shortest) axis 

orientated upwards (Wolman, 1954), thus presenting the a and b axes parallel to the 

ground and thus visible from the air. For a large sample size (>300) the presented minor 

axis of most stones will thus be representative of the clast’s b axis. 

For acquisition of a validation dataset, the minor axes of clasts in aerial imagery were 

manually measured using a digital ruler. 636 for 2016 and 802 for 2018 data. 

Randomisation was ensured in this step by use of a grid-wise selection process. A 1x1m 

grid was imposed over the area of interest and all resolvable clasts which touched the 
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Figure 6.36 – Comparison of image sieving methodology against manual measurement of resolved 
clasts from aerial imagery. The former underestimates grainsize by approximately 23%. 
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gridlines at any point were measured. A random sample of 500 of these clasts (from each 

year) makes up the validation dataset.  

Figure 6.36 graphically displays the comparison in mean measured grainsize between the 

image intensity sieving methodology. Error bars represent the GSD of each respective 

survey (1.75 cm for 2016, 1.31 cm for 2018). The image analysis methodology 

underestimated mean grainsizes by an average of 23% when compared to the manual 

digital measurement of clasts. The underestimation is more pronounced for large clasts, 

evidenced by Figure 6.37. Clasts over 0.4m are more likely to be significantly 

underestimated in size by the method (> 50%). This places a limitation on the upper size 

limit of clasts the image analysis technique can quantify. 
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6.5.1. Critical Evaluation and Limitations 

The clast detection and measurement methodology presented here cannot be considered 

comprehensive enough to be used for routine grainsize quantification, since inherent 

limits to the minimum and maximum grainsizes that can be discerned exist. The lower 

limit of detection is controlled by the resolution of the imagery. Clasts which are smaller 

than 3 x GSD cannot be resolved and thus are not detectable. The maximum limit of 

detection, approximately 0.4m in this case, is likely attributable to the mis-classification 

of large clasts as multiple smaller ones. Above a certain size, visible variations in light and 

colour occur across the surface of a stone. This effect is illustrated in Figure 6.38 where 

particularly large clasts have been mis-represented as multiple smaller stones by the 

contrast sieving methodology.  

A degree of aliasing is also present in the data. Although smoothed so as to more closely 

envelope each clast, the bounding polygons are “snapped” to the pixels of the image, thus 

Figure 6.38 – Mis-classifications (red) of individual clasts as multiple due to 
surface contrast variations 
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their measurement of clast size is only as precise as the image resolution. This may result 

in clasts at the smallest resolvable scale (3xGSD) being mis-measured by up to 33%. The 

inherent limitations of this method suit it to a specific range of clast sizes. The range of 

clasts detectable by this method (6.51cm – 40cm) remain a significant fraction of the 

grainsize distribution at Wooler Water however (Sear and Archer, 1998). The 

implications of the underestimation of clast size by the image analysis method are that 

the technique cannot be utilised as a direct quantification of grainsize distribution but 

rather as a proxy measurement potentially suitable for classification of morphological 

units. For areas of sediment, such as fine gravels, cohesive material or boulder-fields, un-

classifiable by the method, the grainsize within such zones may be reasonably assumed 

to be at least below or above the detection limits of the methodology. 
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6.5.2. Grainsize evolution at Wooler Water 

For examination of grainsize changes at Wooler Water, the contrast sieving clast 

detection methodology was applied to a larger area shown in Figure 6.39. An identical 

methodology was used as when analysing the smaller area of interest in Section 6.5.0, 

except a larger random sample of 3000 clasts was instead extracted for each year of 

analysis (2016 and 2018). 

Table 6.4 – Reported grainsizes (cm) from Sear and Archer 1998, and estimated distributions for 
2016 and 2018 by this study. (2016 error ±1.75cm, 2018 error ±1.31cm) 

 D16 D16 +23% D50 D50 +23% D84 D84 + 23% 

1998 8.0 - 15.2 - 21.5 - 

2016 7.8 9.6 11.7 14.4 17.5 21.5 

2018 7.5 9.2 10.1 12.9 18.0 22.1 

 

The results of clast sizing analysis are given by Table 6.4. 1998 data is provided by Sear 

and Archer (1998). Based on findings in the previous section that the automatic clast 

detection methodology underestimated grainsizes by an average of 23%, an offset was 

added to each respective grainsize proportion. Doing so appears to bring the 

Figure 6.39 – Region of interest for grainsize change analysis and detected clasts for 2016 and 2018. 

C.) 2018 Detected Clasts B.) 2016 Detected Clasts A.) Region of Interest 



Chapter 6: Surface Comparison and Geomorphic Change Detection 

158 
 

approximated values for 2016 and 2018 much more closely in-line with that reported by 

Sear and Archer (1998), actually matching it in the case of D84 in 2016. Data for 2016 and 

2018 are however subject to the same errors reported by Section 6.3.0 and displayed in 

Figure 6.36 (±1.75cm for 2016 and ±1.31cm for 2018 data). The findings within the 

region of interest do not appear to suggest a discernible change in grainsize in the past 

decade. Figure 6.40 indicates 1998 values for D16, D50, and D84 lie within the error range 

of this study’s data. 
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Figure 6.40 – Grainsize distributions for 1998 (Sear and Archer, 1998), and error corrected 
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Chapter 7: Discussion & Conclusions 
7.1. Sediment Budget and Flow Regime 

The evolutionary trajectory of Wooler Water modelled here within the context of its 

artificially modified past presents some contrary findings to what may be expected from 

standard river re-naturalization models. Most notably, the persistently negative net 

sediment budget. Previous analyses of the site by Sear and Archer (1994) recount phased 

extraction volumes from various in-channel gravel mines. Volumes approximating 

32,000 m3/year are recorded. An estimated annual natural sediment yield of 145 m3/year 

places the Wooler Water at an obvious deficit (Sear and Archer, 1998). Associated 

degradation results in the modern paradigm of a confined channel, set within a highly 

incised (4-9m) margin. Summarily, the very high and steep banks delivered by this 

degradation represent an enormous supply of material, mobilizable by modest widening 

action. This is particularly the case within Sub-reach B. This does not particularly 

contradict existing models of channel adjustment, however more contrary is the very 

little comparative deposition is seen within the bed of the confined channel, despite 

caseation of gravel mining works. This section relates the temporal variability of 

sedimentary mobility throughout the course of the field campaign to Wooler Water’s local 

flow regime and the role of large flood pulses. Data provided by a gauging station at 

Coldgate Mill, approximately 500m upstream of the Study Site’s upper extent grants 

insight to Wooler Water’s flow regime within the context of the recent survey carried out 

by this project. 
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Figure 7.2 - Gauged flow record 2009-2016 from Coldgate Mill gauging station. Maximum 
gauge = 20 m3/s. 

Figure 7.1 - Daily River level record at Coldgate Mill. 
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Figure 7.1 and Figure 7.2 represent the measured flow at the Coldgate Mill station. Figure 

7.1 provides mean daily river level in meters between 2016 and 2018. Of particular note 

are the high flows recorded in early and late 2016, as well as in mid-2017. Figure 7.2 gives 

longer term data available as discharge in m3/s. The apparent “cuttoff” at approximately 

20 m3/s represents the upper limit of the gauging station’s recording ability. Figure 7.2 is 

therefore more useful as a measure of flood-pulse frequency than absolute discharge over 

a given time period. Recurrence of >20 m3/s flows was very common in 2012 when at 

least 7 pulses of such magnitude are recorded. Conversely, only 7 flows that exceed 20 

m3/s are present for the multiple years of this project’s field campaign (2016-2018). 

Figure 7.3 illustrates the cross-sectional topographic profile at the Coldgate Mill gauging 

station based off 1m resolution aerial LiDAR collected in 2009 by the UK Environment 

Agency. These datasets are openly available, for a range of resolutions and with good 

national coverage. Imposed upon this cross section are level lines, taken from Figure 7.3 

and a historical data from 2013 (riverlevels.uk, 2019), corresponding to peak flow events 
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Figure 7.3 – Flow levels within cross section at Coldgate Mill. 
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during and before this study’s surveys. Trapezoidal fitting to calculate cross-sectional 

area was used in combination with velocity calculated with Manning’s equation 

(n=0.055) to estimate discharge. Included in Figure 7.3 is the highest recorded flow in the 

past decade, which occurred in October 2013.  

Table 7.1 – Comparison of inter-survey peak flows and respective volumetric change. 

 

 

 

 

Table 7.1 displays the maximum recorded river level, amount of erosion and deposition, 

as well as the net sediment loss for each inter-survey epoch. This data is graphically 

displayed by Figure 7.4 with linear best-fit lines applied. It should be noted that 

“negative” sediment on the Y axis refers to erosive action or “loss” of material and not 

 Maximum 
inter-survey 
river level 
(m) 

Estimated 
Discharge 
(m3/s) 

Inter-survey 
Erosion (m3) 

Inter-survey 
Deposition 
(m3) 

System 
Sediment 
Loss (m3) 

2009-2016 1.91 99.51 -19373.60 7020.58 -12353.01 

Survey 1 - 2 1.09 32.20 -1904.18 1372.28 -531.9 

Survey 2 - 3 0.785 14.63 -706.12 528.27 -177.85 

Survey 3 - 4 0.598 7.945 -520.35 191.83 -328.52 
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Figure 7.4 – Scatter graph of sedimentary response to different flow magnitudes. 
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negative quantities. Flow magnitude thus positively correlates with erosion. Deposition 

also strongly correlates to flow magnitude. Subtle variance within the gradients of each 

linear trendline suggest these two variables are not correlated to flow magnitude with 

the same strength. The sediment budget appears to trend negatively as a result, indicative 

of that higher magnitude flood pulses will create a sediment deficit.  The data presented 

here is however limited to three inter-survey epochs, thus net sedimentary flux cannot 

be confidently considered to be negatively correlated with flow magnitude. 

7.1.1. Planform Response 

Termination of gravel extraction works within Wooler Water should be synonymous with 

a return to a net-positive sediment regime however the data presented suggest such a 

transition is yet to fully occur. Chang, (1986) describes the general response of river 

systems to variability in flow magnitude and sediment input. An increase in material from 

upstream that exceeds the carrying capacity should be expected to cause bed 

aggradation. This reduction in depth constricts the channel, resulting in responsive 

widening. This is not the case for channels such as that of Wooler Water, which exists 

partly as an in-set channel within an incised margin. In such a scenario, widening of the 

wetted sub-channel does not occur under the same mechanics. Figure 7.5 shows a 

diagrammatic representation of bed aggradation (Figure 7.5a) in an incised context. Flow 

in aggregated sub-channels will overtop and instead occupy the considerably wider 

incised margin (Figure 7.5b). This constitutes a huge reduction in velocity and aids 

further deposition. Resultant aggradation within the wider incised margin to continues 

to reduce depth, however the now confined flow causes the associated widening 

response to affect the very high banks (Figure 7.5c). Even limited lateral erosion to steep 
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banks can translate to a disproportionately big mobilization of material, as hydraulic 

work is augmented by mass failure under gravity (Figure 7.5d). 

This model of development is somewhat replicated at the right bank of sub-reach B of the 

Wooler Water Study Site. Figure 7.7 is a cross sectional profile of the right bank of the 

incised margin in sub-reach B which includes two sub-channels which diverge 

Confined sub-channel 

Incised Margin 

a. Bed aggradation 

b. Flow occupies incised margin 

c. lateral 
erosive action Aggradation continues 

c. lateral 
erosive action 

Figure 7.5 – Diagrammatic representation of a widening mechanism in an incised river. 



Chapter 7: Discussion & Conclusions 

165 
 

approximately 30m upstream (south) of the transect line. The location of the cross 

section transect is shown in Figure 7.6, underlaid by orthomosaic imagrey for Survey 1 

(2016) and Survey 4 (2018). 

  

Figure 7.6 – Cross sectional transect location. 

Survey 1 (2016) 
orthophoto 

Survey 4 (2018) 
orthophoto 

Overview 

Flow 
Flow 

Survey 1 (2016) 

Survey 4 (2018) 

A B 

Figure 7.7 – Cross sectional profile of right bank in Sub-reach B. 
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Inspection of Figure 7.7 indicates minimal vertical change to the river bed, in this case the 

lowest point of the cross section, which is validated by inspection of the associated DoD 

map presented in Chapter 6 (Figure 6.13). Vertical stability is more compromised 

downstream within this sub-channel as erosion becomes more prevalent on the inner 

(left) bank but does not exceed 0.25m until convergence of the two sub-channels. Bank 

erosion is very dominant within this section. Figure 7.7 illustrates a bank retreat of 

approximately 2m, for the outer 100m stretch of right bank in Sub-reach B. Collapse of 

this right bank accounts for nearly half (451m3) of all erosion within Sub-reach B between 

Surveys 1 and 2. This coincides with the maximum recorded flow during the field 

campaign, which occurred on the 22nd of November 2016 during Storm Angus. If bank 

eroded material is excluded from budgetary calculations for this inter-survey epoch the 

sediment budget of the entire survey site becomes almost neutral, from -531m3 to just -

80m3. Additional but more minor bank erosion is seen to occur within the highly sinuous 

Sub-reach F. Bank losses here approximate 150m3, however bed stability is fairly 

consistent. 

Table 7.2 – Source: Janes et al., (2018), modelled bank retreat rates for UK rivers. 
 

Mean Bank retreat rate per 
year (m/yr) 

Mean Bank retreat as a 
percentage of mean channel 
width (%) 

Exe  0.114 0.78 

Avon  0.117 0.82 

Itchen  0.09 0.59 

Stour  0.075 0.91 

Wye  0.074 0.39 

Eye  0.086 0.72 

Ouse 0.105 0.49 

Wooler Water (This Study) 0.830 4.10 

 

For the case of sub-reach B the rate of bank retreat is considerably higher than other UK 

rivers. These UK values presented in Spiekermann et al., (2017) and Janes et al., (2018) 

https://www.sciencedirect.com/science/article/pii/S0169555X17303586#tf0010
https://www.sciencedirect.com/science/article/pii/S0169555X17303586#tf0010
https://www.sciencedirect.com/science/article/pii/S0169555X17303586#tf0010
https://www.sciencedirect.com/science/article/pii/S0169555X17303586#tf0010
https://www.sciencedirect.com/science/article/pii/S0169555X17303586#tf0010
https://www.sciencedirect.com/science/article/pii/S0169555X17303586#tf0010
https://www.sciencedirect.com/science/article/pii/S0169555X17303586#tf0010
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are more conservative than the global mean of 0.86 m/yr and 1.6% channel width/yr as 

measured by Walker and Rutherfurd, (1999) which is more comparable to the data 

presented by this study. Whilst data for Wooler Water is more localised, the sub-reach in 

question shows to be undergoing significant planform adjustment characteristic of 

meander development. Large flood pulse flows are a necessary driver of this planform 

adjustment. High discharge events have been shown to be important forcers of riverbank 

erosion, particularly for cohesive margins (Wolman, 1959; Julian and Torres, 2006). 

Subaerial processes do contribute to sediment mobilization (Henshaw et al., 2013), 

threshold exceedance by flood pulse flows is what drives bank erosion (Palmer et al., 

2014). This agrees with observations at Wooler Water. The majority (>60%) of bank 

erosion takes place between Survey’s 1 and 2 during which the peak flow of level of 1.1m 

is recorded at Coldgate Mill. Other inter-survey peaks are measured at 0.8m and 0.6m for 

Survey 2-3 and 3-4 respectively. Bank erosion is seen to occur during these times, 

however a larger portion of lost material may be attributed to subaerial processes. 

In terms of the evolutionary trajectory that is implied by the significant bank erosion at 

sub-reach B, an indirectly proportional increase in channel sinuosity is to be expected 

following particularly high (>1m) level flows. The most recent flow of such magnitude 

was in November of 2016, however such flood pulse events have been observed to occur 

multiple times per year, as in 2012. Continuation at the current estimated rate of 0.83 

m/yr will see outflanking of the remaining legacy weirs within sub-reach C in the short-

term (1-5 years.) In the long term, a counter-bending meander channel may be expected 

to form downstream of the present area of most aggressive lateral erosion (Walker and 

Rutherfurd, 1999). Such a course would be consistent with the natural evolution of 

wandering gravel bed rivers and contrary to the straightened course which currently 

exists (Desloges and Church, 1989; Fuller et al., 2003). Erosion to the left bank within 
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Sub-reach C has potential to reveal another, even larger source of material for fluvial 

transport, due to the natural rise in the landscape there. Vertical separations of nearly 

15m exist between the current river-bed, and the land adjacent to its left bank. 

Furthermore, this steep slope is forested, thus bank collapses will certainly introduce 

woody debris that will further serve to deflect flows and introduce bed dynamism. Lateral 

vs Vertical Stability 

The general geomorphic findings of this thesis may be summarised by the observed 

widening due to bank erosion within sub-reach B and F, which are currently the most 

sinuous sections. The material mobilised by this action is a significant fraction of all 

sediment that is being lost from the study reach. If lateral erosion is ignored, the negative 

sediment budget is effectively neutralised, becoming positive in the case of inter-survey 

period 1-2. Such a sediment regime is reflective of a system undergoing slow aggradation, 

as might be expected during following in-channel gravel extraction. large flows, such as 

that which occurred in 2013 and 2016 may be expected to cause significant vertical and 

lateral expansion given their increased stream power, however for the case of Wooler 

Water the observed erosion is limited to the horizonal dimension. Large scale vertical 

adjustment is not comparable to the lateral changes seen, nor is it proportional to the 

magnitude of flows between each survey. Internal bed dynamics are present in the form 

of gravel feature creation, but no generalized vertical adjustment can be detected by the 

data presented here. 
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Figure 7.8 – Upstream half of full-scale DoD for 2009 LiDAR against 2016 UAV Dataset. 
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Figure 7.9 - Downstream half of full-scale DoD for 2009 LiDAR against 2016 UAV Dataset. 
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For a 32 m3/s flow (2016 Peak) the reflected mean retreat of the right bank in sub-reach 

B approximates 3.5m. Comparison of the UAV data acquired by Survey 1 to the open 

LiDAR dataset from 2009, it is evident that maximum bank retreat of 34m in Sub-reach B 

and 19m in Sub-reach F have occurred between 2009 and 2016. Figure 7.8 and Figure 7.9 

are DoD change maps for the 2009 LiDAR and 2016 Drone DEMs. Volumetric change data 

is included within Table 7.1. The pattern of geomorphic change remains similar to that 

seen during this project’s field campaign, lateral expansion accompanied by relatively 

vertical stability or accretion in places. It is known that some flows which occurred 

between 2009 and 2016 are considerably larger than peak discharge events recorded 

during the course of this thesis. A recorded river level of 1.91 in October 2013, translates 

to an estimated discharge of approx. 100 m3/s is the maximum between 2009 and 2016. 

Figure 7.10 shows a cross section spanning the same transect as in Figure 7.6 and Figure 

7.7. A bank retreat of approximately 20m is observed between 2009 and 2016. Whilst the 

precise amount of widening caused by the 2013 peak cannot be known, it is possible to 

ascertain what effect this flow might have had upon the river’s bed by relating known 

discharge values to the median size of clasts which are not moved between surveys. Since 

peak flow river level data is not known for Sub-reach B, data from the Coldgate Mill 

gauging station will be used to approximate the mean flow velocity of the 2013 maximum 

Survey 1 (2016) 

Survey 4 (2018) 

2009 LiDAR 

Figure 7.10 – Cross sectional profile along the same transect as in Figure 7.6, including LiDAR DEM 
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at this location. Estimated velocity during the peak flow within the 30m wide channel at 

the gauging station was 2.1 m/s-1, based upon a slope of 0.015 and roughness coefficient 

of 0.055. A mean water depth of 1.26m was calculated for the 2013 flow at the gauging 

station based on the trapezoidal fitting applied to Figure 7.3. Assuming a channel width 

of 30m at that location, this translates to a mean depth within the right-hand channel of 

Sub-reach B of 0.95m. Special consideration must be taken however due to the dual 

nature of the channels within this section. Calculations were made based on the full 50m 

width of the incised margin and then adjusted (divided by two) to account for the splitting 

of the sub-reach into two channels, approximately 25m wide, separated by a 5m wide 

vegetated island. This estimates the velocity within right channel of Sub-reach B to be at 
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least 1.8 m/s-1. Visual inspection of high-resolution imagery between surveys reveals a 

large number of recognisably static clasts. Figure 7.11 shows a selection of the some of 

the most easily identifiable boulder sized clasts which are seen to persist throughout the 

field campaign. This example shows only 9, however the effect is noticeable throughout 

the right-hand channel of Sub-reach B. The 9 identified clasts do not represent the median 

size of material observed to persist. Smaller clasts are seen to persist between 2016 and 

Figure 7.11 – Example selection of easily identifyable clasts which remain imobile throughout the field campaign. 



Chapter 7: Discussion & Conclusions 

174 
 

2018 due to imbrication and hiding of by larger clasts. The generally very coarse material 

seen within sub-reach B following this flow is a likely cause of the relatively high vertical 

stability which is seen at Wooler Water. 

The sedimentary makeup of Wooler Water’s floodplain can be considered to be very 

heterogenous as the channel currently presides within a river terrace formation of coarse 

material and sand, identified to have been laid down between 3900 – 4200 years ago 

(Tipping, 1994; Sear and Archer, 1998). The river bed in Sub-reach B reflects this fact, 

containing boulders larger than could have been deposited from upstream, that instead 

have been laid down in-situ as the right bank of the river has retreated and in doing so, 

exposed them. A diagrammatic representation of this process is illustrated by Figure 7.12. 

The selective sorting of material liberated from the banks by lateral erosion is the main 

reason for the lack of obvious vertical scour during the particularly high flow events since 

armouring of the bed would not be possible if such coarse material were not present. This 

links the vertical and horizontal components of geomorphic evolution within this section 

Figure 7.12 – A mechanism for in-situ construction of a bed armour layer by lateral expansion. 
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of the case study; lateral instability and bank erosion permit vertical stabilisation of the 

river’s bed. The process as outlined here is similar to that observed by Erskine, (1992) 

where the preferential erosion of fine material leaves behind a densely packed layer of 

coarse clasts that protects underlying sands and gravels. In contrast to this study Erskine, 

(1992) examines the process in a laterally stable setting. Here, the process is revealed to 

actually be augmented by lateral erosion, due to the liberation of floodplain facies during 

bank collapse. Increase re-occurrence of a larger flows, such as that in 2013 (approx. 100 

m3/s), may cause a partial breakup of the armour layer (Vericat et al., 2006), however a 

general increase in water throughput will include a higher frequency of low-medium 

sized floods (30 m3/s) which are responsible for construction of the armour layer by 

selective transport and clast liberation from bank avalanches. 

7.2. Error Considerations and Limitations 

The error for each survey DEM given by Table 4.1 and the associated minimum levels of 

change detection in Table 6.2 represent the smallest scale of geomorphic change which 

can be detected by the comparative analyses undertaken by this study. For the purpose 

of detecting large scale changes such as bank collapse, bar construction and migration, 

LWD dynamics, a threshold of 10cm is highly conservative as such geomorphic actions 

usually manifest as vertical change well in-excess of 10cm. Fine scale geomorphic action, 

such as individual clast mobility or sand bar construction, is harder to detect as the error 

propagated error of the comparison surface must be below that of size of change 

occurring. In the case of gravel bed rivers, especially coarse clast dominated systems, this 

may be of less concern since the minimum “unit” of change (1 clast) may itself be larger 

than the detection threshold. The size of detection threshold achievable also has 

implications for detection of the actual X/Y extents (planform extent) of geomorphic 
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processes such as bars. The edges of such features may be below the detection threshold 

and thus their size may be slightly underestimated on change maps. This may be 

mitigated by increasing survey resolution however, such that more cells describe the 

margins of a geomorphic feature. Comparative analysis of UAV-SfM DEMs, even if 

completely errorless, is not enough to be able to describe every level of geomorphic 

evolution in a fluvial system. Secondary data products provided by the UAV methodology, 

such as high-resolution orthomosaic imagery, do however aid in interpretation of 

changes and are useful in their own right. Providing RGB data and a more accessible 

visualisation of site evolution. 

7.3. Conclusions 

The work of this thesis joins the fields of remote sensing and fluvial geomorphology. The 

need for accurate, vegetation free, high-resolution topographic data is facilitated by 

workflows and processing methods which optimise the UAV methodology. Data 

collection is optimised through careful flight planning according to the users’ 

requirements for coverage and resolution. Planning out the placement GCPs ahead of 

fieldwork is advised; placement in or as close as possible to the river channel will limit 

vertical uncertainty in error sensitive sections. Data quality is improved further by 

application of vegetation and noise filtering tools to the SfM generated point-cloud. These 

steps may be carried out in both Agisoft Photoscan and in free software, like 

CloudCompare. Correction for geo-referencing error may be applied by vertically 

translating one model by a probabilistically determined distance such that it aligns more 

closely with a compared model. This removes the usefulness of the model as an 

“absolutely” referenced surface but increases the reliability of volumetric change 

calculations. 
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The general geomorphic regime at the Wooler Water field site is vertically static, but 

laterally unstable. Peak flows lead to lateral erosion, particularly in Sub-reach B and F, 

where bank collapse events liberate coarse clasts that serve to limit vertical scour of the 

river’s bed. Intermediate level flows (~10-15 m3/s) are seen to also cause more limited 

lateral erosion whilst permitting retention of finer material on the bed. Incised and 

sediment starved rivers may be rejuvenated by artificial replenishment of gravels 

(Kondolf, 1997; Merz & Ochikubo Chan, 2005), however such strategies are very costly 

and require import of gravels extracted elsewhere. Replication of the bed armouring 

effect seen at Wooler Water by dumping a lower mass of much coarser clasts into channel 

may be more efficient. An armoured bed layer benefits the restoration of an incised river 

channel by preventing further scour and catalysing the transition to a more wandering 

and laterally mobile system via natural bed aggradation. The reconnection of a previously 

incised channel to its floodplain holds benefits for flood management and ecological 

conservation (Heritage et al., 2016). 

7.3.1. Research Question 1 

1. How are existing channel and bed morphologies influenced by the current flow 

regime and how might they be affected by future variability? 

The current evolutionary trajectory of Wooler Water is dependent upon a varied flow 

regime, where occasional large flood pulses drive lateral expansion and medium to low 

flows serve to resupply the bed with more fine material. These medium flow events 

between that exceed 20 m3/s may occur multiple times per year. The aggradation caused 

by such flows is most common within Sub-reaches A, B and F. Lateral erosion to the steep 

banks leads to mass failure and collapse events, avalanching material onto the bed. Bed 

aggradation in the presence of lateral erosion is afforded by relatively moderate flow 

events (~30 m3/s), which retain enough energy to erode the banks, but lack the velocity 
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to strip anything but the finest bed material. Fining of bed material is detected within 

orthomosaic imagery of sub-reach B following such a flow. High magnitude flow events 

are responsible for more aggressive lateral erosion and removal of fine bed material. The 

increased rate of bank erosion is however responsible for creating a self-armouring 

effect, where coarse floodplain facies are deposited on the riverbed, thereby shielding 

underlying fine material. The amount of very coarse material liberated is proportional to 

the amount of bank erosion which occurs, thus higher magnitude flows serve to augment 

the process. Imbrication and occlusion of intermediate material additionally serves to 

increase bed resilience. Although limited by the armouring effect, some vertical scour 

may be expected under very high flows (~100 m3/s). The UK’s precipitation regime may 

see an increased occurrence of extreme rainfall events in the coming decades due to 

climate change (Ekström et al., 2005). This could in-turn increase the frequency of high 

magnitude flood events, particularly in for small catchments (Prudhomme et al., 2003) 

which are more sensitive to highly localised rainfall. Such regime change could lead to an 

increased rate of vertical scour at Wooler Water however the lateral expansion caused by 

such pulses may serve to limit bed erosion to a degree. Conversely, a reduction in the 

return frequency of large flood events will see a decreased rate of bank erosion, offset by 

increased aggradation. The inability of the river to continue its de-constriction could 

prevent the formation of ecologically valuable features; pools, riffles and gravel bars.   

7.3.2. Research Question 2 

2. What present evolutionary trajectories exist for the channel and bed morphology 

of Wooler Water. 

The geomorphic evolution of Wooler Water following the termination of gravel extraction 

works generally is reflective of an attempt by the system to revert the changes introduced 

during these works, including vertical incision and channelization. Gentle aggradation of 
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the bed during medium size flow events (~10-15 m3/s), is observed between Surveys 2-

3 and Surveys 3-4 of this study. This is accentuated in more sinuous sections of the study 

site, such as Sub-reach B and F. Flow events of high magnitude (>30 m3/s) are seen to 

cause lateral erosion, which has the effect of liberating large amounts of extremely coarse 

material from the steep banks. The release of such clasts results in their concentration on 

the river bed which limits the ability of flood pulses to cause any further scour. As lateral 

expansion progresses, bed aggradation may be expected to accelerate as the channel 

takes on a more wandering form. As channel widening and aggradation take place, high 

magnitude flood pulses may be expected to overtop the banks of the incised margin. If 

allowed to do so repeatedly, a transition to an anastomosing system would result. The 

reconnection of the main channel to its floodplain may constitute the completion of the 

recovery of Wooler Water’s restoration to its pre-extraction layout.  

Construction of in-channel features such as gravel bars, chute cut-offs, and channel 

bifurcations serve to add complexity and diversity to the system. The additional space 

granted by lateral expansion will permit continued development of these features, which 

themselves are able to catalyse other geomorphic developments. LWD is seen to be 

particularly important for providing the initial disturbance required for features such as 

chute cut-off channels to form. Lateral expansion within the heavily wooded Sub-reaches 

D and E is more limited. Bank collapses here could lead to inclusions of large amounts of 

LWD items. The more laterally active Sub-reach F may see further development of in-

channel bars or channel bifurcations as a result. Addition of LWD from upstream of the 

study site can also be expected to contribute to dynamism within Sub-reaches A and B, 

where lateral expansion is most prevalent. 
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7.3.3. Research Question 3 

2. How extensively and effectively can UAV photogrammetry be applied for multi-

scale (kilometric to centimetric) fluvial surveying? 

The use of low-cost UAV surveying to acquire the data presented by this study has 

permitted highly detailed insight of geomorphic processes across a wide scale, although 

there are several aspects which require increased workload on the part of the user to 

ensure end data products are fit for purpose. The high-resolution imagery provided by 

the UAV allows rapid and easy inspection of bed and channel morphologies, enabling 

users to detect areas and features of geomorphic interest. Compared to traditional field 

observations on the ground, the aerial perspective gives users a unique viewpoint from 

which to observe fluvial features at practically any scale. Topographic data generated via 

SfM provides users with a true digital reconstruction of their river of study. The cost 

barrier to such surveying methods is fractional when compared to other methods of 

topographic data collection like LiDAR. Such data must have the highest possible level of 

accuracy to acquire reliable sediment budget calculations. As survey scale increases, so 

too does the spatial variability of error within the end elevation model. Without post-

processing, wholesale surface comparison of kilometre scale river DEMs produced by 

UAV-SfM is not reliable enough for practical application.  

In order for large DEM surfaces generated by UAV-SFM to be competitive with those 

produced by LiDAR, their accuracy and resolution must be at least as good if not better. 

Acquisition of centimetric resolutions is routine for UAV surveying and has been 

demonstrated by numerous studies (Bhandari et al., 2015; Nolan et al., 2015; Jay et al., 

2019). The photogrammetric aspect of the UAV methodology however can increase the 

error within end-data products. Camera calibration, lens distortion and subject features 

(shape, illumination, occlusion etc.) all contribute to point-cloud error. This error may be 
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limited by inclusion of independent ground control points (GCPs), whose known position 

allows for of fine point cloud geo-referencing. The scale of site being surveyed is thus 

proportional to the number of GCPs required. The placement and referencing of these 

points remain the most laborious part of the methodology. Even for surveys undertaken 

to strict methodological standards, resultant surfaces should be subject to full error 

analysis and validated for quality assurance against independent data if available. 

Besides management of vertical error, users must additionally ensure that final DEMs are 

representative of the ground surface and do not include vegetation and other irrelevant 

data. Spatial filtering and DEM creation tools are included within photogrammetry 

software such as Agisoft Photoscan and Pix4D. The default settings for ground point 

classification may often be sufficient to remove non-ground data if the terrain slope and 

undulation is limited for the site. For subjects with more variable ground conditions and 

vegetation types (as in the case of this study) multiple iterations of filtering may be 

required. The needed parameters for filtering are specific to the site and users should 

experiment to gauge which settings best detect vegetation whilst not mis-classifying 

ground points as irrelevant data. The success of point-cloud filtering is visually obvious, 

especially at the margins of vegetation areas. Isolated viewing of solely ground points or 

non-ground points is the best way to check for possible classification inaccuracies, as 

such points will be noticeably disconnected from their neighbours. If desired, users may 

simply select and manually re-classify point’s as necessary, rather than apply another 

filtering pass. 

The maximum scale at which UAV-SfM can be applied is more-so a question of the time 

available in which to work in field and what final DEM resolution is required. GCP 

placement and referencing being the most time-consuming step of the data collection 

process. Resolution and image quantity most strongly define the duration of processing 
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required. For dedicated workstations with excess RAM and powerful GPU cards, 

wholesale processing may be feasible. For more standard machines, splitting of the 

survey site into sections to be joined later may be necessary due to memory limitations. 

Under best circumstances, the processing machine will have as many GB of RAM as GBs 

of images which can be processed in one go.  

For detection and mapping of centimetric scale geomorphic change, such as sediment size 

change, the very-high resolution photography provided by the UAV enables visual 

detection of changes in bed character, quantifiable by application of image-analysis 

techniques. The methods applied by this thesis for such a purpose are not exhaustive 

however, and many other methods to precisely measure bedload size exist for aerial 

imagery and topographic data (Carbonneau et al., 2005b; Verdú et al., 2005b; Woodget et 

al., 2016). This project demonstrates the applicability of “image-sieving” for detection of 

individual clasts, albeit at a limited scale, fractional to that of the entire survey extent. The 

method used here is most suitable to targeted application, however other methods, such 

as those which quantify roughness as a proxy for sediment size (Vázquez-Tarrío et al., 

2017) may be suitable for wholesale application. 

The UAV-SfM method requires careful tailoring to the specific river being surveyed, from 

data collection to post-processing. Subject scale, survey conditions, in-channel vegetation 

and accessibility to GCP placement locations all affect the level and type of post-

processing methods which must be applied to ensure the quality of data outputs. The 

benefits provided by the UAV-SfM workflow, namely low-cost and easy deployment, 

when compared to other topographic survey methods, make the method extremely 

attractive to geomorphic researcher without large capital resources. Such users should 

however be aware of the need for the relatively large amount of post-processing required 

to produce competitive data-products. The usefulness of a single UAV-SfM dataset to 
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multiple scales and types of geomorphic study is dependent foremost upon the GSD to 

coverage ratio attainable by the surveyor. Smaller ratios will increase required field time 

and processing resources, thus maximising resolution may not always be feasible. Users 

should consider the scale of their study and select resolution and flight height accordingly 

using a workflow such as that suggested by Figure 4.4. 

7.3.4. Future Works 

This Thesis reveals that a diverse flow regime of both high and low-magnitude flood 

pulses is needed to recover Wooler Water from its incised state. The geomorphic 

development of the system is balanced by lateral erosion from high-magnitude flows and 

by bed aggradation during medium-low flood events. The potential for a flow event larger 

than 100 m3/s to occur presents an opportunity to observe the resilience of the armoured 

bed during such a flow and how it may be affected by lateral expansion. If such a flow 

were to occur, a UAV survey could rapidly capture the resulting developments. A 

continuous or regular monitoring of Wooler Water will continue to improve knowledge 

of the self-armouring effect. Wooler Water is highly unique in its mechanism of bed-

armouring, however incised channels exist all over the world. Global demand for 

aggregate and sand is unlikely to see deceleration and present production cannot keep 

pace (Torres et al., 2017). Exploitation of river and floodplain sediments will additionally 

place strain on water resources through pollution and channel incision. Any means to 

limit these effects must be considered, particularly in developing part of the world, where 

vulnerability is higher (Vörösmarty et al., 2000). For this reason, the continuation of 

study that seeks to improve and recover the state of gravel-bed river systems is 

imperative. 

The growth of the field will be aided by the continued development of cheap and easy-to-

use UAV systems, as well as open source SfM processing package. Such technology will 
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improve proficiency of current workers whilst opening up the fields of geomorphology 

and river restoration to a new generation of scientists. Further streamlining of the UAV-

SfM workflow will be facilitated by the inclusion of highly accurate real time kinematic 

(RTK) GPS to drone systems. Presently such platforms are relatively expensive, however 

as the technology proliferates, cost will decrease. This may eventually negate the need for 

ground control point placement during fieldwork, which remains the most laborious part 

of the survey process. This will permit truly remote analysis of rivers, where data 

collection may be essentially automated.  
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Appendix 1 – Final Data Products 

Figure A1.1 – Survey 1 Channel DEM result. 
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Figure A1.2 – Survey 1 Orthomosaic Result 
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Figure A1.3 - Survey 2 Channel DEM result. 
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Figure A1.4 - Survey 2 Orthomosaic Result 
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Figure A1.5 - Survey 3 Channel DEM result. 
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Figure A1.6 - Survey 3 Orthomosaic Result 
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Figure A1.8 - Survey 4 Orthomosaic Result Figure A1.7 - Survey 4 Channel DEM result. 
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Appendix 2 – Geomorphic change Tables 1 

 2 

Table A2.1 - Reported volumetric statistics for sub-reach scale analyses between Surveys 1 and 2. 3 

 4 

Survey 1-2 Volumetric Statistics A B C D E F Total 

Total Volume Gain 643.5 300.1 52.9 421.4 647.8 627.6 2693.4 

Total Volume Loss -247.7 -1322.8 -106.4 -425.6 -448.4 -649.3 -3200.0 

Significant (+0.1m) Deposition 325.7 129.6 8.2 181.9 411.7 315.3 1372.3 

Significant (-0.1m) Erosion -110.5 -911.0 -20.2 -203.0 -286.4 -373.1 -1904.2 

Sub-threshold Volume Gain 317.9 170.5 44.7 239.5 236.2 312.4 1321.1 

Sub-threshold Volume Loss -137.2 -411.8 -86.2 -222.6 -161.9 -276.2 -1295.9 

Net Sedimentary Change 215.2 -781.4 -12.0 -21.1 125.3 -57.8 -531.9 

Bank Erosion (-0.1m) N/A -451.4 N/A N/A N/A -150.6 -602.0 

Bed Erosion (-0.1m) -110.5 -459.6 -20.2 -203.0 -286.4 -222.5 -1302.2 
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Table A2.2 - Reported volumetric statistics for sub-reach scale analyses between Surveys 2 and 3. 1 

 2 

Table A2.3 - Reported volumetric statistics for sub-reach scale analyses between Surveys 3 and 4. 3 

 4 

Survey 2-3 Volumetric Statistics A B C D E F Total 

Total Volume Gain 257.6 437.7 72.3 191.2 196.2 388.6 1543.6 

Total Volume Loss -203.8 -301.6 -96.7 -353.1 -340.9 -558.6 -1854.7 

Significant (+0.1m) Deposition 62.8 155.6 15.7 43.0 74.6 176.7 528.3 

Significant (-0.1m) Erosion -86.1 -118.8 -22.1 -105.0 -138.7 -235.5 -706.1 

Sub-threshold Volume Gain 194.8 282.1 56.7 148.2 121.7 211.9 1015.3 

Sub-threshold Volume Loss -117.7 -182.8 -74.6 -248.1 -202.2 -323.1 -1148.6 

Net Sedimentary Change -23.4 36.8 -6.4 -62.0 -64.2 -58.8 -177.9 

Bank Erosion (-0.1m) N/A -23.0 N/A N/A N/A -30.4 -53.4 

Bed Erosion (-0.1m) -86.1 -95.8 -22.1 -105.0 -138.7 -205.1 -652.7 

Survey 3-4 Volumetric Statistics A B C D E F Total 

Total Volume Gain 108.6 186.6 68.2 234.4 182.9 174.7 955.3 

Total Volume Loss -101.3 -358.4 -52.5 -177.1 -172.0 -601.7 -1462.9 

Significant (+0.1m) Deposition 6.4 31.4 11.8 62.8 40.9 38.7 191.8 

Significant (-0.1m) Erosion -14.6 -122.3 -8.1 -34.3 -62.6 -278.5 -520.4 

Sub-threshold Volume Gain 102.3 155.1 56.4 171.6 142.1 136.0 763.5 

Sub-threshold Volume Loss -86.7 -236.1 -44.4 -142.7 -109.4 -323.2 -942.5 

Net Sedimentary Change -8.3 -90.9 3.7 28.4 -21.7 -239.8 -328.5 

Bank Erosion (-0.1m) N/A -36.0 N/A N/A N/A -5.9 -41.8 

Bed Erosion (-0.1m) -14.6 -86.3 -8.1 -34.3 -62.6 -272.6 -478.5 
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Table A2.4 - Reported area statistics for sub-reach scale analyses between Surveys 1 and 2. 1 

 2 
Table A2.5 - Reported area statistics for sub-reach scale analyses between Surveys 2 and 3. 3 

 4 

Survey 1-2 Area Statistics A B C D E F Total 

Total Surveyed Area 6521.5 7610.1 2724.6 5785.1 4603.8 8352.7 35597.8 

Significant (+0.1m) Deposition Area 2296.1 1050.3 124.9 1924.4 2076.3 1900.1 9372.0 

Significant (-0.1m) Erosion Area 819.7 3189.5 313.3 1603.8 1397.1 1827.1 9150.5 

Sub-threshold (stable) Area 3405.7 3370.4 2286.4 2256.9 1130.4 4625.5 17075.4 

% Survey Area Stable 52.2 44.3 83.9 39.0 24.6 55.4 48.0 

% Survey Area Deposition 35.2 13.8 4.6 33.3 45.1 22.8 26.3 

% Survey Area Erosion 12.6 41.9 11.5 27.7 30.4 21.9 25.7 

Survey 2-3 Area Statistics A B C D E F Total 

Total Surveyed Area 5587.5 7271.8 2787.3 5766.9 5397.0 8089.4 34899.8 

Significant (+0.1m) Deposition Area 860.0 1588.8 179.5 677.4 568.8 1274.7 5149.3 

Significant (-0.1m) Erosion Area 596.2 1002.1 260.2 1638.1 1300.5 1921.7 6718.8 

Sub-threshold (stable) Area 4131.3 4680.9 2347.5 3451.4 3527.7 4893.0 23031.7 

% Survey Area Stable 73.9 64.4 84.2 59.9 65.4 60.5 66.0 

% Survey Area Deposition 15.4 21.9 6.4 11.8 10.5 15.8 14.8 

% Survey Area Erosion 10.7 13.8 9.3 28.4 24.1 23.8 19.3 
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Table A2.6 - Reported area statistics for sub-reach scale analyses between Surveys 3 and 4. 1 

2 

Survey 3-4 Areal Statistics A B C D E F Total 

Total Surveyed Area 5393.3 7257.5 2904.3 5823.6 5490.3 8141.5 35010.5 

Significant (+0.1m) Deposition Area 159.1 519.1 121.7 1068.5 432.8 453.6 2754.8 

Significant (-0.1m) Erosion Area 255.0 1054.4 116.3 447.4 519.2 1959.9 4352.1 

Sub-threshold (stable) Area 4979.2 5684.0 2666.3 4307.7 4538.3 5728.1 27903.6 

% Survey Area Stable 92.3 78.3 91.8 74.0 82.7 70.4 79.7 

% Survey Area Deposition 3.0 7.2 4.2 18.4 7.9 5.6 7.9 

% Survey Area Erosion 4.7 14.5 4.0 7.7 9.5 24.1 12.4 
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Appendix 3 – Agisoft Photoscan® Processing Reports 1 

 2 



JulyChannel
Processing Report

28 August 2018



Survey Data

1

2

3

4

5

6

7

8

9

> 9

200 m

Fig. 1. Camera locations and image overlap.

Number of images: 1,296

Flying altitude: 56 m

Ground resolution: 1.75 cm/pix

Coverage area: 0.037 km²

Camera stations: 1,283

Tie points: 432,030

Projections: 2,192,557

Reprojection error: 0.813 pix

Camera Model Resolution Focal Length Pixel Size Precalibrated

FC300X (3.61 mm) 4000 x 3000 3.61 mm 1.56 x 1.56 μm No

FC300X (3.61 mm) 4000 x 3000 3.61 mm 1.56 x 1.56 μm No

FC300X (3.61 mm) 4000 x 3000 3.61 mm 1.56 x 1.56 μm No

FC300X (3.61 mm) 4000 x 3000 3.61 mm 1.56 x 1.56 μm No

FC300X (3.61 mm) 4000 x 3000 3.61 mm 1.56 x 1.56 μm No

Page 2



Camera Model Resolution Focal Length Pixel Size Precalibrated

FC300X (3.61 mm) 4000 x 3000 3.61 mm 1.56 x 1.56 μm No

Table 1. Cameras.
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Camera Calibration

1 pix

Fig. 2. Image residuals for FC300X (3.61 mm).

FC300X (3.61 mm)
96 images

Type Resolution Focal Length Pixel Size
Frame 4000 x 3000 3.61 mm 1.56 x 1.56 μm

Value Error F Cx Cy B1 B2 K1 K2 K3 K4 P1 P2

F 2262.35 0.55 1.00 0.20 -0.26 -0.10 0.01 -0.06 0.01 0.05 -0.07 0.12 0.01

Cx -8.09623 0.32 1.00 0.04 0.11 0.25 -0.01 -0.02 0.03 -0.03 0.30 0.04

Cy 0.13555 0.22 1.00 -0.13 0.24 0.00 0.01 -0.03 0.03 0.01 0.23

B1 -0.471491 0.042 1.00 0.06 -0.01 -0.00 -0.00 0.00 -0.18 -0.02

B2 1.27485 0.047 1.00 0.00 -0.01 0.01 -0.01 -0.03 0.54

K1 -0.00658869 0.00013 1.00 -0.95 0.90 -0.84 -0.00 -0.01

K2 -0.00978929 0.00041 1.00 -0.98 0.95 -0.01 -0.00

K3 0.0305971 0.00054 1.00 -0.99 0.02 0.00

K4 -0.0131595 0.00024 1.00 -0.02 -0.00

P1 0.00235771 1.1e-05 1.00 0.03

P2 4.32426e-05 9.2e-06 1.00

Table 2. Calibration coefficients and correlation matrix.
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Camera Calibration

1 pix

Fig. 3. Image residuals for FC300X (3.61 mm).

FC300X (3.61 mm)
236 images

Type Resolution Focal Length Pixel Size
Frame 4000 x 3000 3.61 mm 1.56 x 1.56 μm

Value Error F Cx Cy B1 B2 K1 K2 K3 K4 P1 P2

F 2262.49 0.4 1.00 0.10 -0.08 0.05 0.05 -0.06 -0.01 0.10 -0.15 0.17 -0.03

Cx 7.67665 0.1 1.00 -0.07 -0.08 0.06 -0.02 0.01 0.01 -0.02 0.20 -0.00

Cy -0.734073 0.1 1.00 -0.12 -0.02 -0.00 0.01 -0.02 0.03 -0.07 0.19

B1 -0.027196 0.014 1.00 -0.00 0.01 -0.02 0.02 -0.02 -0.01 0.07

B2 0.411406 0.014 1.00 -0.01 0.01 -0.00 0.00 -0.02 0.00

K1 -0.00494467 7e-05 1.00 -0.97 0.91 -0.85 -0.02 0.02

K2 -0.0136919 0.00023 1.00 -0.98 0.95 -0.00 -0.03

K3 0.0377638 0.0003 1.00 -0.99 0.02 0.02

K4 -0.0170475 0.00013 1.00 -0.03 -0.02

P1 0.00341214 3.8e-06 1.00 -0.15

P2 -0.000171743 4.2e-06 1.00

Table 3. Calibration coefficients and correlation matrix.
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Camera Calibration

1 pix

Fig. 4. Image residuals for FC300X (3.61 mm).

FC300X (3.61 mm)
196 images

Type Resolution Focal Length Pixel Size
Frame 4000 x 3000 3.61 mm 1.56 x 1.56 μm

Value Error F Cx Cy B1 B2 K1 K2 K3 K4 P1 P2

F 2264.5 0.38 1.00 0.16 -0.10 0.12 -0.01 -0.06 0.02 0.05 -0.08 0.18 0.01

Cx 13.9891 0.084 1.00 -0.02 -0.16 0.06 -0.01 -0.00 0.01 -0.02 0.32 -0.01

Cy -2.70165 0.079 1.00 -0.11 -0.13 0.01 -0.00 -0.00 0.01 -0.03 0.28

B1 -0.653622 0.014 1.00 0.01 0.02 -0.03 0.04 -0.04 -0.02 -0.05

B2 -1.2599 0.015 1.00 -0.00 -0.00 0.01 -0.01 -0.08 0.10

K1 -0.00868456 8.2e-05 1.00 -0.97 0.91 -0.86 0.04 -0.02

K2 -0.00318123 0.00027 1.00 -0.98 0.95 -0.04 0.02

K3 0.0251518 0.00034 1.00 -0.99 0.05 -0.02

K4 -0.0116368 0.00015 1.00 -0.05 0.02

P1 0.00394631 4.3e-06 1.00 0.02

P2 -0.000482614 5.1e-06 1.00

Table 4. Calibration coefficients and correlation matrix.
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Camera Calibration

1 pix

Fig. 5. Image residuals for FC300X (3.61 mm).

FC300X (3.61 mm)
277 images

Type Resolution Focal Length Pixel Size
Frame 4000 x 3000 3.61 mm 1.56 x 1.56 μm

Value Error F Cx Cy B1 B2 K1 K2 K3 K4 P1 P2

F 2270.51 0.39 1.00 0.14 -0.11 0.12 0.00 -0.07 -0.01 0.12 -0.19 0.23 0.04

Cx 3.52545 0.096 1.00 -0.03 -0.04 0.07 0.02 -0.02 0.03 -0.03 0.17 -0.03

Cy -2.10374 0.097 1.00 -0.11 -0.07 0.01 0.00 -0.02 0.02 -0.05 0.20

B1 -0.0990445 0.013 1.00 -0.03 0.02 -0.03 0.04 -0.05 0.04 -0.02

B2 0.276096 0.013 1.00 0.00 -0.00 0.00 -0.00 -0.07 0.06

K1 -0.00530092 6e-05 1.00 -0.97 0.90 -0.84 0.03 0.01

K2 -0.0131362 0.00019 1.00 -0.98 0.94 -0.02 -0.01

K3 0.0366028 0.00025 1.00 -0.99 0.04 0.01

K4 -0.0166853 0.00011 1.00 -0.05 -0.02

P1 0.00307131 3.2e-06 1.00 -0.03

P2 0.000272974 3.7e-06 1.00

Table 5. Calibration coefficients and correlation matrix.

Page 7



Camera Calibration

1 pix

Fig. 6. Image residuals for FC300X (3.61 mm).

FC300X (3.61 mm)
344 images

Type Resolution Focal Length Pixel Size
Frame 4000 x 3000 3.61 mm 1.56 x 1.56 μm

Value Error F Cx Cy B1 B2 K1 K2 K3 K4 P1 P2

F 2283.4 0.45 1.00 0.06 -0.14 0.07 -0.03 -0.03 -0.01 0.13 -0.20 0.13 -0.04

Cx -4.27363 0.13 1.00 -0.03 0.01 0.20 -0.01 0.01 -0.01 0.01 0.24 0.01

Cy -0.880186 0.14 1.00 -0.15 -0.05 -0.01 0.01 -0.03 0.04 -0.01 0.13

B1 -1.75829 0.02 1.00 0.03 0.01 -0.02 0.03 -0.03 0.14 -0.10

B2 -0.718503 0.02 1.00 0.02 -0.01 0.00 0.00 0.08 -0.16

K1 -0.00609296 6e-05 1.00 -0.97 0.91 -0.85 0.02 -0.00

K2 -0.00978214 0.00019 1.00 -0.98 0.94 -0.01 0.01

K3 0.0332983 0.00025 1.00 -0.99 0.02 -0.01

K4 -0.0154796 0.00011 1.00 -0.03 0.01

P1 0.00317789 4.1e-06 1.00 -0.07

P2 -0.000284536 4.3e-06 1.00

Table 6. Calibration coefficients and correlation matrix.
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Camera Calibration

1 pix

Fig. 7. Image residuals for FC300X (3.61 mm).

FC300X (3.61 mm)
135 images

Type Resolution Focal Length Pixel Size
Frame 4000 x 3000 3.61 mm 1.56 x 1.56 μm

Value Error F Cx Cy B1 B2 K1 K2 K3 K4 P1 P2

F 2293.33 0.57 1.00 0.07 -0.19 -0.07 0.09 -0.04 0.01 0.06 -0.09 0.22 -0.13

Cx 15.2324 0.15 1.00 -0.10 -0.03 0.15 0.00 -0.00 0.01 -0.02 0.17 -0.12

Cy -0.685428 0.13 1.00 -0.03 0.06 -0.00 -0.00 -0.01 0.01 -0.06 0.18

B1 -1.2763 0.016 1.00 0.08 0.03 -0.03 0.01 -0.00 -0.02 0.04

B2 0.549135 0.016 1.00 -0.00 0.00 0.01 -0.01 0.08 -0.03

K1 -0.0070433 0.0001 1.00 -0.97 0.91 -0.86 0.02 0.00

K2 -0.00816853 0.00034 1.00 -0.98 0.95 -0.01 -0.01

K3 0.0323264 0.00046 1.00 -0.99 0.02 -0.01

K4 -0.0151282 0.00021 1.00 -0.03 0.01

P1 0.00317033 6.1e-06 1.00 -0.20

P2 -0.000231974 6.6e-06 1.00

Table 7. Calibration coefficients and correlation matrix.
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Ground Control Points

point 1
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point 4

point 5
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200 m

Fig. 8. GCP locations and error estimates.

Z error is represented by ellipse color. X,Y errors are represented by ellipse shape.

Estimated GCP locations are marked with a dot or crossing.

Count X error (cm) Y error (cm) Z error (cm) XY error (cm) Total (cm)

24 3.19904 3.13731 1.24908 4.48069 4.65154

Table 8. Control points RMSE.
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Label X error (cm) Y error (cm) Z error (cm) Total (cm) Image (pix)

point 1 -1.02118 7.00688 0.386127 7.09143 0.258 (5)

point 3 2.69723 -1.21143 0.889696 3.08775 0.495 (9)

point 4 -2.49686 -4.17936 -1.21229 5.01707 0.336 (19)

point 5 -2.69688 -0.527284 -0.85631 2.87828 0.359 (12)

point 6 1.72499 -2.62853 -1.66802 3.55908 0.307 (8)

point 7 -1.12633 -0.310587 0.596774 1.31195 0.242 (9)

point 9 8.36342 -4.6766 1.98274 9.78512 0.672 (15)

point 10 -0.162936 3.71676 -0.0424857 3.72058 0.352 (8)

point 12 -0.7661 -0.769964 -0.0650786 1.08811 0.353 (8)

point 13 -1.1117 7.54383 1.94495 7.86944 0.326 (13)

point 14 0.700667 -3.1629 -1.81466 3.7132 0.346 (10)

point 15 -4.46543 -0.888501 1.56003 4.81281 0.269 (14)

point 16 1.07291 0.248394 -1.91658 2.21046 0.252 (18)

point 17 -1.80264 4.92871 1.12776 5.36782 0.262 (15)

point 19 -4.78158 -0.911311 0.603129 4.90487 0.447 (15)

point 20 2.37672 0.961597 1.98986 3.24546 0.397 (18)

point 21 -4.56968 -0.808674 0.275758 4.64886 0.226 (14)

point 24 1.77813 0.475784 -0.821893 2.01585 0.322 (9)

point 25 1.84604 -0.391047 -0.525217 1.95873 0.213 (22)

point 30 -4.39261 0.857233 0.021075 4.47553 0.222 (11)

point 31 5.02455 -4.72839 -1.09565 6.986 0.301 (25)

point 37 -0.373445 1.8918 1.61333 2.51419 0.187 (12)

point 39 -0.778881 -0.419741 -1.81064 2.01526 0.227 (8)

GPS0025A 4.65446 -1.71479 -0.581408 4.99425 0.230 (14)

Total 3.19904 3.13731 1.24908 4.65154 0.335

Table 9. Control points.
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Digital Elevation Model

57 m

88 m

200 m

Fig. 9. Reconstructed digital elevation model.

Resolution: 3.51 cm/pix

Point density: 814 points/m²
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Processing Parameters

General
Cameras 1296
Aligned cameras 1283
Markers 24
Shapes

Polygons 2
Coordinate system Local Coordinates (m)
Rotation angles Yaw, Pitch, Roll

Point Cloud
Points 432,030 of 1,085,614
RMS reprojection error 0.250083 (0.813 pix)
Max reprojection error 3.22572 (38.0237 pix)
Mean key point size 3.1605 pix
Point colors 3 bands, uint8
Key points No
Average tie point multiplicity 4.67791
Alignment parameters

Accuracy High
Generic preselection No
Reference preselection No
Key point limit 40,000
Tie point limit 4,000
Filter points by mask No
Adaptive camera model fitt ing Yes
Matching time 20 hours 44 minutes
Alignment time 2 hours 42 minutes

Optimization parameters
Parameters f, b1, b2, cx, cy, k1-k4, p1, p2
Optimization time 4 minutes 22 seconds

Dense Point Cloud
Points 45,562,133
Point colors 3 bands, uint8
Reconstruction parameters

Quality High
Depth filtering Aggressive
Depth maps generation time 3 days 5 hours
Dense cloud generation time 4 hours 24 minutes

Model
Faces 1,973,147
Vertices 1,141,761
Vertex colors 3 bands, uint8
Reconstruction parameters

Surface type Height field
Source data Dense
Interpolation Disabled
Quality High
Depth filtering Aggressive
Face count 3,037,475
Processing time 3 minutes 9 seconds

DEM
Size 38,512 x 59,734
Coordinate system Local Coordinates (m)
Reconstruction parameters

Source data Mesh
Interpolation Disabled

Page 13



Processing time 47 seconds
Orthomosaic

Size 48,167 x 89,732
Coordinate system Local Coordinates (m)
Colors 3 bands, uint8
Reconstruction parameters

Blending mode Mosaic
Surface DEM
Enable hole filling Yes
Processing time 34 minutes 59 seconds

Software
Version 1.4.2 build 6205
Platform Windows 64
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Survey Data

1
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500 m

Fig. 1. Camera locations and image overlap.

Number of images: 929

Flying altitude: 58.1 m

Ground resolution: 2.17 cm/pix

Coverage area: 0.0599 km²

Camera stations: 925

Tie points: 680,050

Projections: 2,465,327

Reprojection error: 0.831 pix

Camera Model Resolution Focal Length Pixel Size Precalibrated

FC300X (3.61 mm) 4000 x 3000 3.61 mm 1.56 x 1.56 μm No

FC300X (3.61 mm) 4000 x 3000 3.61 mm 1.56 x 1.56 μm No

FC300X (3.61 mm) 4000 x 3000 3.61 mm 1.56 x 1.56 μm No

Table 1. Cameras.
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Camera Calibration

1 pix

Fig. 2. Image residuals for FC300X (3.61 mm).

FC300X (3.61 mm)
127 images

Type Resolution Focal Length Pixel Size
Frame 4000 x 3000 3.61 mm 1.56 x 1.56 μm

Value Error F Cx Cy B1 B2 K1 K2 K3 K4 P1 P2

F 2296.85 0.98 1.00 0.47 -0.25 0.05 -0.12 -0.14 -0.00 0.22 -0.31 0.20 -0.00

Cx 0.298137 0.18 1.00 -0.12 0.01 0.17 -0.11 0.02 0.10 -0.15 0.39 -0.03

Cy -4.43826 0.18 1.00 -0.12 -0.00 0.02 0.03 -0.08 0.10 -0.04 0.38

B1 0.109472 0.08 1.00 0.03 -0.01 -0.01 0.03 -0.04 -0.23 0.16

B2 -3.12037 0.072 1.00 0.01 -0.00 -0.02 0.03 0.21 -0.10

K1 -0.0105537 7.1e-05 1.00 -0.94 0.85 -0.77 -0.04 -0.02

K2 -0.00232942 0.00023 1.00 -0.96 0.91 0.01 0.03

K3 0.0273876 0.00031 1.00 -0.99 0.04 -0.02

K4 -0.0131235 0.00014 1.00 -0.06 0.02

P1 0.0030082 6.2e-06 1.00 0.00

P2 -0.00072948 1.1e-05 1.00

Table 2. Calibration coefficients and correlation matrix.

Page 3



Camera Calibration

1 pix

Fig. 3. Image residuals for FC300X (3.61 mm).

FC300X (3.61 mm)
409 images

Type Resolution Focal Length Pixel Size
Frame 4000 x 3000 3.61 mm 1.56 x 1.56 μm

Value Error F Cx Cy B1 B2 K1 K2 K3 K4 P1 P2

F 2329.07 1 1.00 0.07 -0.01 0.01 -0.07 -0.17 -0.09 0.41 -0.53 0.62 -0.06

Cx -36.9648 0.15 1.00 0.01 0.01 0.32 -0.01 -0.02 0.05 -0.06 0.20 0.01

Cy -12.7634 0.18 1.00 -0.37 0.04 -0.01 0.02 -0.02 0.02 -0.02 -0.00

B1 -0.719855 0.018 1.00 0.02 0.02 -0.03 0.03 -0.03 0.01 -0.02

B2 -1.90211 0.018 1.00 0.02 -0.01 -0.01 0.02 0.00 -0.02

K1 -0.00782424 4.2e-05 1.00 -0.94 0.76 -0.64 -0.11 0.01

K2 -0.00791869 0.00015 1.00 -0.93 0.85 -0.05 0.00

K3 0.0343654 0.00022 1.00 -0.98 0.26 -0.02

K4 -0.0164392 0.00011 1.00 -0.33 0.03

P1 0.00334246 2.4e-06 1.00 -0.06

P2 -0.000455191 2e-06 1.00

Table 3. Calibration coefficients and correlation matrix.
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Camera Calibration

1 pix

Fig. 4. Image residuals for FC300X (3.61 mm).

FC300X (3.61 mm)
393 images

Type Resolution Focal Length Pixel Size
Frame 4000 x 3000 3.61 mm 1.56 x 1.56 μm

Value Error F Cx Cy B1 B2 K1 K2 K3 K4 P1 P2

F 2318.86 0.8 1.00 0.00 -0.25 -0.01 -0.18 -0.07 -0.05 0.24 -0.31 0.32 -0.06

Cx -15.3645 0.18 1.00 -0.13 0.06 0.36 0.01 0.00 -0.00 0.01 0.07 0.04

Cy -6.88931 0.2 1.00 -0.51 -0.05 0.02 0.01 -0.06 0.08 0.03 0.16

B1 -0.0944111 0.031 1.00 -0.06 -0.00 -0.00 0.01 -0.01 -0.03 -0.02

B2 -2.09069 0.029 1.00 0.01 0.02 -0.05 0.07 -0.08 0.06

K1 -0.0071134 5.7e-05 1.00 -0.96 0.88 -0.80 -0.01 0.00

K2 -0.00836447 0.0002 1.00 -0.97 0.92 -0.03 0.00

K3 0.0337839 0.00029 1.00 -0.99 0.09 -0.01

K4 -0.0159654 0.00014 1.00 -0.11 0.02

P1 0.00333209 3.6e-06 1.00 0.31

P2 -0.00043336 3.5e-06 1.00

Table 4. Calibration coefficients and correlation matrix.
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Ground Control Points
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Fig. 5. GCP locations and error estimates.

Z error is represented by ellipse color. X,Y errors are represented by ellipse shape.

Estimated GCP locations are marked with a dot or crossing.

Count X error (cm) Y error (cm) Z error (cm) XY error (cm) Total (cm)

26 1.51055 1.1717 0.661951 1.91171 2.02307

Table 5. Control points RMSE.
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Label X error (cm) Y error (cm) Z error (cm) Total (cm) Image (pix)

point 2 -1.35991 -1.28527 0.065847 1.87233 0.218 (6)

point 3 0.948116 0.552249 -0.589893 1.24574 0.160 (8)

point 4 2.29235 -2.13219 -0.519767 3.17352 0.266 (19)

point 5 0.796261 0.0751387 -1.01685 1.2937 0.289 (13)

point 6 0.24699 -0.473029 0.582068 0.78966 0.221 (7)

point 7 -0.317395 0.780112 -0.937375 1.26015 0.298 (8)

point 8 -1.795 -1.15199 2.16147 3.03662 0.187 (11)

point 9 0.237763 -0.389584 -0.858653 0.972415 0.302 (8)

point 10 1.58928 -1.71737 -0.621724 2.4211 0.300 (11)

point 11 -1.09862 1.26719 0.342638 1.71176 0.202 (8)

point 12 1.76988 -0.204481 0.524225 1.85717 0.047 (4)

point 13 3.13519 0.726239 -0.214617 3.22535 0.236 (5)

point 14 -2.55289 2.6874 -0.154637 3.70989 0.106 (7)

point 15 -3.87983 0.315986 1.08167 4.04016 0.175 (7)

point 17 -0.265864 0.117261 0.764856 0.818193 0.185 (5)

point 19 0.200879 1.13504 0.0509669 1.1538 0.196 (11)

point 20 0.459094 -0.207034 -0.144284 0.523878 0.127 (9)

point 21 -0.0111647 0.383654 -0.0441403 0.386346 0.113 (6)

point 22 -0.892487 0.570686 -0.00786271 1.05938 0.126 (9)

point 23 0.860545 0.326035 -0.217814 0.945663 0.264 (17)

point 24 1.81746 -2.57978 0.204833 3.16234 0.225 (13)

point 25 -1.8699 -0.729517 -0.288167 2.02774 0.167 (5)

point 26 -0.533364 2.30438 -0.511288 2.41993 0.142 (5)

point 28 0.0991325 0.0680515 -0.105655 0.160066 0.023 (3)

point 29 0.137147 -0.0375639 0.153817 0.209476 0.200 (6)

point 30 -0.106107 -0.0229489 -0.107968 0.153109 0.158 (9)

Total 1.51055 1.1717 0.661951 2.02307 0.218

Table 6. Control points.
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Digital Elevation Model

57 m

89 m

500 m

Fig. 6. Reconstructed digital elevation model.

Resolution: 4.35 cm/pix

Point density: 529 points/m²
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Processing Parameters

General
Cameras 929
Aligned cameras 925
Markers 26
Coordinate system Local Coordinates (m)
Rotation angles Yaw, Pitch, Roll

Point Cloud
Points 680,050 of 732,102
RMS reprojection error 0.189151 (0.831269 pix)
Max reprojection error 2.40802 (29.4011 pix)
Mean key point size 4.15552 pix
Point colors 3 bands, uint8
Key points No
Average tie point multiplicity 3.76511
Alignment parameters

Accuracy Highest
Generic preselection Yes
Reference preselection No
Key point limit 40,000
Tie point limit 3,000
Filter points by mask No
Adaptive camera model fitt ing Yes
Matching time 5 hours 7 minutes
Alignment time 8 minutes 1 seconds

Optimization parameters
Parameters f, b1, b2, cx, cy, k1-k4, p1, p2
Optimization time 41 seconds

Dense Point Cloud
Points 69,084,263
Point colors 3 bands, uint8
Reconstruction parameters

Quality High
Depth filtering Moderate
Depth maps generation time 11 hours 13 minutes
Dense cloud generation time 1 hours 35 minutes

Model
Faces 2,999,347
Vertices 1,682,457
Vertex colors 3 bands, uint8
Reconstruction parameters

Surface type Height field
Source data Dense
Interpolation Disabled
Quality High
Depth filtering Moderate
Face count 4,199,611
Processing time 2 minutes 42 seconds

DEM
Size 23,265 x 41,236
Coordinate system Local Coordinates (m)
Reconstruction parameters

Source data Mesh
Interpolation Disabled
Processing time 59 seconds

Orthomosaic
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Size 19,838 x 56,132
Coordinate system Local Coordinates (m)
Colors 3 bands, uint8
Reconstruction parameters

Blending mode Mosaic
Surface DEM
Enable color correction No
Enable hole filling Yes
Processing time 13 minutes 4 seconds

Software
Version 1.4.2 build 6205
Platform Windows 64
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Survey Data
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Fig. 1. Camera locations and image overlap.

Number of images: 553

Flying altitude: 63 m

Ground resolution: 1.5 cm/pix

Coverage area: 0.0339 km²

Camera stations: 528

Tie points: 453,776

Projections: 1,569,527

Reprojection error: 0.541 pix

Camera Model Resolution Focal Length Pixel Size Precalibrated

FC6310 (8.8 mm) 5472 x 3648 8.8 mm 2.41 x 2.41 μm No

Table 1. Cameras.
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Camera Calibration

1 pix

Fig. 2. Image residuals for FC6310 (8.8 mm).

FC6310 (8.8 mm)
553 images

Type Resolution Focal Length Pixel Size
Frame 5472 x 3648 8.8 mm 2.41 x 2.41 μm

Value Error F Cx Cy B1 B2 K1 K2 K3 K4 P1 P2

F 3674.5 0.26 1.00 -0.27 -0.79 -0.02 -0.23 0.05 -0.08 0.12 -0.16 0.03 -0.06

Cx 5.49789 0.076 1.00 0.17 0.14 0.60 -0.03 0.03 -0.04 0.05 0.25 0.10

Cy 20.2519 0.14 1.00 -0.37 0.32 -0.07 0.09 -0.13 0.15 0.00 0.25

B1 0.0376414 0.015 1.00 -0.00 0.01 -0.01 0.01 -0.01 -0.07 -0.17

B2 1.13794 0.015 1.00 -0.03 0.03 -0.04 0.04 0.03 0.11

K1 0.0145288 3.4e-05 1.00 -0.97 0.92 -0.87 -0.01 -0.01

K2 -0.0584304 0.00017 1.00 -0.99 0.95 -0.01 0.01

K3 0.107812 0.00034 1.00 -0.99 0.01 -0.01

K4 -0.0660677 0.00023 1.00 -0.01 0.02

P1 0.00171385 1.5e-06 1.00 0.15

P2 0.000255027 1.6e-06 1.00

Table 2. Calibration coefficients and correlation matrix.
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Ground Control Points
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Fig. 3. GCP locations and error estimates.

Z error is represented by ellipse color. X,Y errors are represented by ellipse shape.

Estimated GCP locations are marked with a dot or crossing.

Count X error (cm) Y error (cm) Z error (cm) XY error (cm) Total (cm)

30 1.66851 1.83505 0.615891 2.48019 2.55552

Table 3. Control points RMSE.
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Label X error (cm) Y error (cm) Z error (cm) Total (cm) Image (pix)

point 1 0.744341 -2.93273 -0.000746994 3.02572 0.201 (9)

point 2 -1.44786 -1.13528 0.563384 1.92421 0.326 (8)

point 3 -3.54588 -1.00799 -0.155992 3.68967 0.175 (6)

point 4 0.354546 -3.65866 0.663848 3.73526 0.182 (4)

point 5 1.33374 0.411221 0.695779 1.55951 0.170 (5)

point 6 -0.00972672 4.97481 1.53373 5.20588 0.142 (5)

point 7 1.15746 -1.72826 -2.34244 3.13267 0.419 (13)

point 8 1.78355 0.251346 -0.164563 1.80868 0.246 (10)

point 10 2.22668 -0.233551 -0.715502 2.35045 0.217 (18)

point 11 2.79612 5.21564 0.262089 5.92367 0.156 (11)

point 12 -3.55138 1.92207 0.475254 4.06602 0.199 (13)

point 13 1.78691 -0.093632 0.388431 1.83104 0.190 (14)

point 14 0.0112417 0.0707018 0.120794 0.140415 0.110 (5)

point 15 -0.0378968 0.736704 -0.122084 0.747713 0.072 (5)

point 16 0.0276753 0.128958 -0.36421 0.387356 0.065 (2)

point 17 0.456015 -0.0571622 0.217062 0.508265 0.090 (3)

point 18 0.814307 0.852049 0.122471 1.18494 0.085 (5)

point 19 0.92593 -0.856777 -0.129417 1.26813 0.091 (11)

point 20 -0.837554 -0.661214 -0.138659 1.07607 0.107 (7)

point 21 0.0587744 0.0374776 -0.0105661 0.0705028 0.002 (2)

point 22 -0.103029 -0.530819 0.214008 0.581535 0.101 (4)

point 23 0.677998 -0.00685058 -0.204884 0.708312 0.060 (4)

point 24 -0.450715 -0.279132 0.190938 0.563486 0.067 (3)

point 25 2.5641 0.459614 -0.252877 2.61721 0.160 (8)

point 26 -0.312122 -0.12 -0.00875855 0.33451 0.054 (5)

point 27 -0.867127 1.12086 -0.87261 1.66424 0.350 (8)

point 30 -2.13267 -1.18752 0.128085 2.44436 0.180 (8)

point 9 -0.466017 1.68413 -0.24352 1.7643 0.163 (9)

point 29 0.313413 -3.02751 0.00217663 3.04369 0.197 (10)

point 31 -4.22967 -0.286846 0.0597332 4.23981 0.220 (14)

Total 1.66851 1.83505 0.615891 2.55552 0.208
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Table 4. Control points.
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Digital Elevation Model

57 m

90 m

200 m

Fig. 4. Reconstructed digital elevation model.

Resolution: 3.01 cm/pix

Point density: 11 points/cm²
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Processing Parameters

General
Cameras 553
Aligned cameras 528
Markers 30
Coordinate system Local Coordinates (m)
Rotation angles Yaw, Pitch, Roll

Point Cloud
Points 453,776 of 520,132
RMS reprojection error 0.158044 (0.540707 pix)
Max reprojection error 2.43596 (31.5688 pix)
Mean key point size 3.11304 pix
Point colors 3 bands, uint8
Key points No
Average tie point multiplicity 3.62523
Alignment parameters

Accuracy High
Generic preselection No
Reference preselection No
Key point limit 40,000
Tie point limit 4,000
Filter points by mask No
Adaptive camera model fitt ing Yes
Matching time 3 hours 31 minutes
Alignment time 39 minutes 36 seconds

Optimization parameters
Parameters f, b1, b2, cx, cy, k1-k4, p1, p2
Optimization time 1 minutes 40 seconds

Dense Point Cloud
Points 82,356,248
Point colors 3 bands, uint8
Reconstruction parameters

Quality High
Depth filtering Aggressive
Depth maps generation time 9 hours 10 minutes
Dense cloud generation time 1 hours 36 minutes

Model
Faces 3,671,848
Vertices 2,095,578
Vertex colors 3 bands, uint8
Reconstruction parameters

Surface type Height field
Source data Dense
Interpolation Disabled
Quality High
Depth filtering Aggressive
Face count 5,490,416
Processing time 2 minutes 51 seconds

Tiled Model
Texture 3 bands, uint8
Reconstruction parameters

Source data Mesh
Tile size 256
Processing time 1 hours 9 minutes

DEM
Size 35,593 x 56,468

Page 8



Coordinate system Local Coordinates (m)
Reconstruction parameters

Source data Mesh
Interpolation Disabled
Processing time 52 seconds

Orthomosaic
Size 59,975 x 104,225
Coordinate system Local Coordinates (m)
Colors 3 bands, uint8
Reconstruction parameters

Blending mode Mosaic
Surface DEM
Enable hole filling Yes
Processing time 20 minutes 33 seconds

Software
Version 1.4.2 build 6205
Platform Windows 64
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Survey Data

1

2

3

4

5

6

7

8

9

> 9

200 m

Fig. 1. Camera locations and image overlap.

Number of images: 815

Flying altitude: 53.6 m

Ground resolution: 1.31 cm/pix

Coverage area: 0.054 km²

Camera stations: 813

Tie points: 974,321

Projections: 3,377,614

Reprojection error: 0.656 pix

Camera Model Resolution Focal Length Pixel Size Precalibrated

FC6310 (8.8 mm) 4864 x 3648 8.8 mm 2.61 x 2.61 μm No

Table 1. Cameras.
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Camera Calibration

1 pix

Fig. 2. Image residuals for FC6310 (8.8 mm).

FC6310 (8.8 mm)
815 images

Type Resolution Focal Length Pixel Size
Frame 4864 x 3648 8.8 mm 2.61 x 2.61 μm

Value Error F Cx Cy B1 B2 K1 K2 K3 K4 P1 P2 P3 P4

F 3695.22 0.067 1.00 0.02 -0.33 -0.38 0.03 -0.07 0.07 -0.05 0.04 -0.01 -0.03 0.00 -0.00

Cx -4.56705 0.022 1.00 0.00 -0.01 0.30 -0.01 0.00 -0.00 0.00 0.45 -0.10 0.14 -0.09

Cy 1.52036 0.021 1.00 -0.07 -0.01 -0.01 0.01 -0.02 0.02 -0.05 0.41 -0.08 0.06

B1 1.19678 0.007 1.00 0.00 -0.00 0.00 -0.00 0.01 -0.00 0.01 -0.01 0.01

B2 1.35846 0.0066 1.00 -0.00 0.00 -0.00 0.00 -0.01 0.01 -0.02 0.01

K1 0.0196534 4e-05 1.00 -0.97 0.93 -0.88 -0.02 0.01 -0.02 0.02

K2 -0.0862425 0.00024 1.00 -0.99 0.96 0.02 -0.01 0.02 -0.02

K3 0.173228 0.00056 1.00 -0.99 -0.01 0.01 -0.01 0.01

K4 -0.117783 0.00044 1.00 0.01 -0.00 0.01 -0.00

P1 -0.000157436 2.5e-06 1.00 -0.59 0.80 -0.70

P2 8.77063e-05 1.6e-06 1.00 -0.68 0.61

P3 -0.0995827 0.052 1.00 -0.97

P4 0.130293 0.067 1.00

Table 2. Calibration coefficients and correlation matrix.
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Ground Control Points

point 1

point 2

point 3

point 9

point 4

point 5
point 6

point 7

point 8

point 24

point 25point 34
point 72

point 73

point 75

point 76point 77point 78
point 79

point 81
point 80

point 82

point 17point 18

point 19
point 20

point 21

point 22

point 23

point 85

point 91
point 90
point 89

point 88

point 92

point 93point 94

point 95

point 96

point 97

point 10

point 100point 101point 104

point 11

point 115point 116point 118
point 119

point 12

point 121
point 122

point 123point 129

point 13

point 130
point 131

point 132
point 133point 135

point 14point 15point 16

point 26
point 27point 28point 29point 30point 31

point 32point 33point 35
point 36point 49point 55

point 61point 68

point 83

point 86
point 87

-6 cm
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-1.2 cm
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1.2 cm

2.4 cm

3.6 cm

4.8 cm

6 cm

x 1000

Control points Check points
200 m

Fig. 3. GCP locations and error estimates.

Z error is represented by ellipse color. X,Y errors are represented by ellipse shape.

Estimated GCP locations are marked with a dot or crossing.

Count X error (cm) Y error (cm) Z error (cm) XY error (cm) Total (cm)

80 2.09057 2.30727 1.69542 3.11352 3.5452

Table 3. Control points RMSE.
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Label X error (cm) Y error (cm) Z error (cm) Total (cm) Image (pix)

point 1 -3.45684 2.65887 1.63127 4.65622 0.259 (14)

point 2 0.293941 0.0776866 -1.36639 1.39981 0.546 (8)

point 3 4.5564 5.97337 0.466651 7.52726 0.484 (4)

point 9 2.70783 1.21268 1.47252 3.31229 0.250 (3)

point 4 0.436307 2.45744 0.706461 2.59393 0.375 (6)

point 5 0.703046 -0.481833 0.838925 1.19592 0.622 (10)

point 6 1.30938 0.275356 -0.559115 1.45014 0.476 (6)

point 7 2.87319 1.60328 -1.31492 3.54327 0.064 (3)

point 8 3.42844 0.255725 0.553967 3.48231 0.229 (8)

point 24 -0.896451 3.12484 2.00476 3.81934 0.342 (9)

point 25 -0.240612 0.0621766 -3.30587 3.3152 0.483 (6)

point 34 -1.50864 -2.3719 3.67624 4.62782 0.750 (24)

point 72 6.83886 -1.89525 -2.65322 7.57638 0.327 (8)

point 73 -4.61094 1.29844 1.2974 4.96286 0.376 (7)

point 75 -5.52505 -0.26698 -0.0111341 5.53151 0.456 (5)

point 76 -1.54058 -3.66622 -0.335688 3.99089 0.538 (11)

point 77 0.0142011 -2.10798 -1.3053 2.47944 0.423 (9)

point 78 1.30737 2.16344 1.04756 2.73626 0.402 (12)

point 79 0.469143 -0.871591 0.197013 1.00925 0.461 (12)

point 81 1.04375 -0.51764 1.15632 1.64147 0.363 (13)

point 80 1.10105 0.693011 -0.646493 1.45276 0.242 (13)

point 82 0.0177082 1.34164 0.312947 1.37777 0.368 (11)

point 17 0.369433 -0.788777 -2.02434 2.20377 0.524 (7)

point 18 2.63509 -2.97385 1.73831 4.33696 0.525 (5)

point 19 -0.702582 -0.659946 -0.0908489 0.968196 0.354 (10)

point 20 2.29968 0.144801 -0.836021 2.4512 0.314 (14)

point 21 -1.14845 3.53135 -2.1211 4.2765 0.011 (2)

point 22 -1.15679 -1.18506 0.487384 1.72629 0.572 (5)

point 23 2.22838 2.21232 -0.0576565 3.1406 0.356 (4)

point 85 1.39526 0.390318 -0.139095 1.45549 0.423 (5)

point 91 -4.97283 3.77571 0.376009 6.25511 0.524 (6)
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Label X error (cm) Y error (cm) Z error (cm) Total (cm) Image (pix)

point 90 -1.10957 -1.46302 0.0840311 1.8381 0.315 (6)

point 89 2.12669 0.0593432 1.12047 2.40453 0.261 (3)

point 88 0.241266 1.82326 -1.51661 2.38381 0.321 (4)

point 92 -1.35277 5.87989 2.13044 6.39858 0.510 (5)

point 93 -1.66925 -0.151055 0.377437 1.71804 0.481 (6)

point 94 -3.39466 2.08226 2.20989 4.55446 0.254 (7)

point 95 1.14563 0.119276 -0.75926 1.37955 0.121 (4)

point 96 1.60692 -1.55351 1.48556 2.68374 0.097 (3)

point 97 -1.99268 -1.40728 0.671792 2.53032 0.067 (2)

point 10 -1.41549 3.95393 -2.3163 4.79608 0.352 (5)

point 100 4.54583 2.87578 2.06586 5.76216 0.175 (6)

point 101 1.0632 -0.616025 -0.693034 1.41074 0.381 (4)

point 104 0.167869 1.27734 -2.23183 2.57699 0.344 (4)

point 11 -0.67809 1.05415 0.223161 1.27312 0.453 (5)

point 115 2.01667 -0.688692 2.32322 3.15255 0.365 (6)

point 116 -1.46775 0.110933 -2.45172 2.85964 0.225 (5)

point 118 1.277 0.609962 -1.06016 1.76826 0.155 (4)

point 119 0.349573 1.40646 0.326995 1.48569 0.596 (7)

point 12 -1.22181 -0.194375 -0.118362 1.24282 0.445 (7)

point 121 -3.0878 -3.05896 -5.02609 6.64479 0.278 (12)

point 122 -2.18541 -0.905769 2.99452 3.81623 0.384 (9)

point 123 -3.47238 0.607207 -0.0947747 3.52635 0.530 (9)

point 129 0.825405 -3.3331 2.11113 4.03085 0.312 (15)

point 13 -0.627836 0.176274 2.07082 2.17107 0.382 (17)

point 130 -1.204 -4.39888 -2.55218 5.22622 0.345 (15)

point 131 -2.09215 -4.45708 -0.0435933 4.92387 0.343 (14)

point 132 1.85567 -4.39375 2.99373 5.63125 0.556 (18)

point 133 -1.51691 -4.19965 -5.688 7.23128 0.486 (19)

point 135 -0.437468 -7.79025 -0.753251 7.8388 0.460 (9)

point 14 0.18989 -0.0459356 0.690384 0.717494 0.398 (20)

point 15 -1.09391 -0.481337 0.967116 1.53741 0.385 (21)

point 16 -0.784757 0.883564 -2.41282 2.68668 0.416 (19)

Page 6



Label X error (cm) Y error (cm) Z error (cm) Total (cm) Image (pix)

point 26 -1.45234 -2.24661 -0.923806 2.83019 0.391 (13)

point 27 1.65434 0.138733 1.70653 2.38082 0.541 (11)

point 28 -1.88094 -0.810154 -0.0198555 2.04809 0.589 (12)

point 29 -1.35964 -0.474246 -0.800846 1.64769 0.538 (9)

point 30 -0.0508692 -0.203843 0.140826 0.252926 0.636 (14)

point 31 -0.808678 -2.83524 -0.912221 3.08621 0.447 (22)

point 32 -1.02815 -0.71457 1.16744 1.7119 0.598 (27)

point 33 -1.77141 -0.656095 -0.168211 1.89649 0.527 (24)

point 35 1.43909 -3.36025 0.00460609 3.65544 0.490 (31)

point 36 -0.445971 -2.15853 -0.802495 2.34566 0.315 (22)

point 49 0.554297 2.96115 -1.12518 3.21585 0.318 (23)

point 55 -0.762353 0.598557 0.237364 0.997895 0.340 (13)

point 61 -1.38554 -1.44918 2.48317 3.19155 0.547 (15)

point 68 2.07206 -0.679654 -0.78487 2.31763 0.508 (19)

point 83 0.667938 0.987028 1.01797 1.56736 0.487 (5)

point 86 0.838864 -0.109788 -1.26413 1.52111 0.327 (5)

point 87 -1.1869 1.05028 1.99073 2.54457 0.335 (4)

Total 2.09057 2.30727 1.69542 3.5452 0.446

Table 4. Control points.
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Digital Elevation Model

57 m

90 m

200 m

Fig. 4. Reconstructed digital elevation model.

Resolution: 2.62 cm/pix

Point density: 14.6 points/cm²
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Processing Parameters

General
Cameras 815
Aligned cameras 813
Markers 80
Coordinate system Local Coordinates (m)
Rotation angles Yaw, Pitch, Roll

Point Cloud
Points 974,321 of 1,075,286
RMS reprojection error 0.203196 (0.656282 pix)
Max reprojection error 2.22568 (36.2676 pix)
Mean key point size 3.33066 pix
Point colors 3 bands, uint8
Key points No
Average tie point multiplicity 3.67332
Alignment parameters

Accuracy High
Generic preselection No
Reference preselection No
Key point limit 40,000
Tie point limit 6,000
Filter points by mask No
Adaptive camera model fitt ing No
Matching time 11 hours 21 minutes
Alignment time 1 hours 55 minutes

Optimization parameters
Parameters f, b1, b2, cx, cy, k1-k4, p1-p4
Optimization time 6 minutes 54 seconds

Dense Point Cloud
Points 116,717,288
Point colors 3 bands, uint8
Reconstruction parameters

Quality High
Depth filtering Aggressive
Depth maps generation time 15 hours 44 minutes
Dense cloud generation time 2 hours 41 minutes

Model
Faces 5,855,695
Vertices 3,216,503
Vertex colors 3 bands, uint8
Reconstruction parameters

Surface type Height field
Source data Dense
Interpolation Disabled
Quality High
Depth filtering Aggressive
Face count 7,781,152
Processing time 5 minutes 50 seconds

DEM
Size 54,707 x 84,041
Coordinate system Local Coordinates (m)
Reconstruction parameters

Source data Dense cloud
Interpolation Disabled
Processing time 1 minutes 47 seconds

Orthomosaic
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Size 66,551 x 115,097
Coordinate system Local Coordinates (m)
Colors 3 bands, uint8
Reconstruction parameters

Blending mode Mosaic
Surface DEM
Enable color correction No
Enable hole filling Yes
Processing time 28 minutes 11 seconds

Software
Version 1.4.2 build 6205
Platform Windows 64
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