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Abstract 8 

Aerodynamic shape optimization for the high-subsonic low-Reynolds number flow regime 9 

represents an area of on-going research. The interaction between supercritical compressible 10 

flow and laminar boundary layer separation is not well understood due to the high challenges 11 

associated with setting up relevant experimental work. However, in the design of future fixed-12 

wing aircraft for flight in extra-terrestrial atmospheres, such flow conditions might commonly 13 

occur. The present study presents a family of single-point and multi-point optimized airfoils 14 

designed for high-subsonic flight at a high-lift condition in the Martian atmosphere. A gradient-15 

based optimizer is used, with a second-order finite-volume flow solver and a second-order 16 

continuous adjoint solver for determining surface sensitivities with respect to the objective 17 

function of minimizing drag. Both fully turbulent and transitional flow are considered, to 18 

evaluate the impact on the resulting design and to stress the importance of continuing research 19 

to develop robust shape optimization including laminar boundary layer and transition 20 

prediction. Both on-design and off-design conditions are evaluated, the airfoils obtained when 21 

considering transition effects demonstrating good overall performance. 22 
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1. Introduction 23 

Airplanes designed for flight in the Martian atmosphere have been proposed by NASA 24 

(Braun and Spencer, 2006) and a group of Japanese researchers (Tanaka et al., 2006). 25 

Achieving fixed-wing flight in the low-density CO2-based low-temperature environment 26 

represents a very challenging problem due to the low-Reynolds number values of the order of 27 

ℴ(104 − 105) and the high speeds required to produce sufficient lift. The airflow around any 28 

lifting surface in such conditions is expected to be complex, with a strong non-linear interaction 29 

between viscous and compressibility effects. Available experimental and numerical data for 30 

airfoils in the high-subsonic Mach number, low-Reynolds number flight regime is very limited 31 

in the open literature. 32 

Anyoji et al. (2015) have investigated the aerodynamic characteristics of a NACA 0012-34 33 

airfoil at very low Reynolds numbers of the order of ℴ(104) and Mach numbers between 0.10 34 

and 0.60, using a CO2-based “Mars Wind Tunnel”. It was seen that the lift curve of the airfoil 35 

shows non-linear effects at low lift conditions due to the formation of laminar separation 36 

bubbles, while compressibility mainly affects high lift behaviour and stalling characteristics, 37 

however the Mach number range used did not allow for the occurrence of shock waves. 38 

Munday et al. (2015) used the same wind tunnel to conduct a study on the suitability of 39 

triangular airfoils as propeller blade sections for a Mars fixed-wing airplane concept. 40 

Several authors have conducted numerical studies of airfoils in high-subsonic, relatively 41 

low-Reynolds number conditions, with application to High-Altitude Long-Endurance (HALE) 42 

Unmanned Aerial Vehicles (UAVs). Drela (1992) conducted an influential work on this topic. 43 

The computational study highlighted the importance of effectively using the high-Mach 44 

number flow on the airfoil’s upper surface to extend laminar flow and reduce losses associated 45 

with laminar separation bubbles by increasing the transition rate in the bubble via the lambda 46 
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shock. The author’s remark on the lack of in-depth understanding and progress in optimal 47 

airfoil design in such flow conditions remains true even 25 year later. The Apex-16 airfoil 48 

resulted from the research presented in (Drela, 1992) was later experimentally tested as part of 49 

a very high-altitude sailplane flight, details being found in (Greer et al., 1999), but no measured 50 

flight test data was presented in the open literature. 51 

Biber and Tilmann (2003) have performed the design of a supercritical airfoil for a HALE 52 

aircraft, using the XFOIL and MSES computational codes. The Mach numbers considered were 53 

approximately in the 0.50 − 0.70 range, while the Reynolds number range was 0.7 to 3.0 54 

million. It was shown that the extent of the laminar boundary layer and the behaviour of laminar 55 

separation bubbles must be accurately captured. However, such a Reynolds number range is 56 

still very high compared to what would be encountered by the Mars plane. Jung et al. (2017) 57 

designed an airfoil for flight in the Martian atmosphere using results obtained from a Reynolds-58 

averaged Navier Stokes (RANS) flow solver and the Langtry-Menter 𝛾 − 𝑅𝑒𝜃 transition model 59 

(Menter et al., 2004), focusing on high-subsonic flow conditions but below the critical Mach 60 

number. The lack of shock waves allowed a fully laminar flow on both upper and lower 61 

surfaces for flight on design conditions. 62 

As part of the NASA ARES Mars airplane project, a family of cambered airfoils was 63 

designed, as reported by Smith et al. (2003). The coupled inviscid-boundary layer code MSES 64 

was used for the work, incorporating the 𝑒𝑁 transition prediction method, and some validation 65 

was performed using a Navier-Stokes solver, with relatively good agreement between the 66 

numerical predictions. More recently (Kaynak et al., 2012), the performance of the Apex-16 67 

airfoil has been revisited using state-of-the-art RANS-based finite volume methods and several 68 

transition prediction models including 𝛾 − 𝑅𝑒𝜃 the 𝑘 − 𝑘𝐿 − 𝜔 model (Walters and Leylek, 69 

2004). Comparisons were made with the MSES code results published in (Drela, 1992) and 70 

indicated significant differences in the predicted drag polar characteristics, especially at 71 
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moderate-to-high 𝐶𝐿 conditions, but no possible explanations were provided to account for 72 

these differences. 73 

Much of the state-of-the-art aerodynamic shape optimization work is performed assuming 74 

fully turbulent flow. Even for relatively low-Reynolds number applications such as wind 75 

turbine blades, it is common to use fully turbulent RANS solvers (see for example Dhert et al., 76 

2017), together with an adjoint method for efficiently computing the objective functional 77 

gradients, and a gradient-based optimization technique. 78 

However, some studies involving aerodynamic shape optimization including laminar-to-79 

turbulent transition prediction methods have been published in literature, although sparsely. 80 

The 𝑒𝑁 method was used in a Newton-Krylov discrete-adjoint optimization framework (Driver 81 

and Zingg, 2007), in a continuous adjoint-based design methodology (Lee and Jameson, 2009), 82 

in an optimization tool based on a multi-objective genetic algorithm (Zhang et al., 2019), and 83 

in a Discontinuous Galerkin finite element framework (Halila et al., 2019). The 𝛾 − 𝑅𝑒𝜃 model 84 

was used in a discrete adjoint-based design framework (Khayatzadeh and Nadarajah, 2011, 85 

2014). The work of Vassberg et al. (2004) as part of the NASA ARES project must be 86 

referenced as the earliest use of RANS-based aerodynamic shape optimization in compressible 87 

flow considering transition prediction. 88 

The research of Robitaille et al. (2015) focused on the aerodynamic shape optimization of 89 

a transonic airfoil using both fully turbulent and transitional flow approaches. Although not 90 

computationally efficient due to the use of finite-differences to estimate gradients, the work 91 

highlighted the subtle but important differences between the fully turbulent and transitional 92 

optimal shapes, as well as the need to avoid using purely Boolean (on-off type) transition 93 

correlations which can introduce oscillations in the numerical solutions and prevent steady-94 

state convergence. Rashad and Zingg (2015) showed that robust, natural laminar flow airfoils 95 
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can be obtained using state-of-the-art RANS solvers and the 𝛾 − 𝑅𝑒𝜃 transition model, as 96 

solutions to a multi-point design optimization problem. It must be noted that these studies were 97 

all focused on high-Reynolds conditions, at both subsonic and transonic airspeeds, flow 98 

condition for which a very good understanding exists. 99 

The present work represents (to the authors’ knowledge) the first attempt to conduct a 100 

robust optimal airfoil design process for the supercritical very low Reynolds number conditions 101 

typical of the Martian atmosphere, using a state-of-the-art adjoint gradient-based optimization 102 

framework and a second-order accurate RANS finite volume flow solver including transition 103 

prediction. Section 2 briefly outlines the optimization methodology and framework, while 104 

section 3 presents the results for both single-point and multi-point optimization cases, 105 

highlighting both on and off-design performance and discussing the significant aspects 106 

observed. The work contributes to a verification and validation of state-of-the-art RANS-based 107 

aerodynamic shape optimization for low-Reynolds high-Mach number flows. In addition, an 108 

algorithm for achieving a desired lift coefficient value when the lift curve has strongly 109 

nonlinear behaviour is developed and tested, algorithm based on control-law techniques. 110 

 111 

2. Optimization Methodology and Problem Formulation 112 

2.1. Theoretical and Numerical Aspects 113 

The aerodynamic shape optimization problem is solved using the SU2 open-source package 114 

(Economon, 2016). This choice is motivated by the demonstrated insensitivity of the optimal 115 

solutions obtained with the framework with respect to the optimizer setup, for transonic shape 116 

optimization scenarios (see Yang et. Al., (2018) for details). The flow around the airfoil is 117 

governed by the compressible Navier-Stokes equations, which can be expressed in differential 118 

form as: 119 
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𝜕𝑼

𝜕𝑡
+ ∇ ∙ 𝑭𝑐 − ∇ ∙ (𝜇𝑘𝑭𝑘

𝑣) = 0 (1) 

Where: 120 

𝑼 = {𝜌, 𝜌𝑽, 𝜌𝐸}𝑇 ,   𝑭𝑐 = {𝜌𝑽, 𝜌𝑽⨂𝑽 + 𝑰𝑝, 𝜌𝐸𝑽 + 𝑝𝑽}𝑇 121 

𝑭1
𝑣 = {0, ∇𝑽 + ∇𝑽𝑇 −

2

3
𝑰∇ ∙ 𝑽, (∇𝑽 + ∇𝑽𝑇 −

2

3
𝑰∇ ∙ 𝑽) ∙ 𝑽}

𝑇

,   𝑭2
𝑣 = {0,0, 𝑐𝑃∇𝑇}𝑇 122 

In the above equations, 𝜌 is the fluid density, 𝑽 is the velocity vector, 𝐸 is the total energy 123 

per unit mass, 𝑝 is the static pressure, 𝑐𝑃 is the specific heat at constant pressure, 𝑇 is the 124 

temperature, 𝑰 is the unit second-order tensor,  𝑼 is the vector of conservative variables, 𝑭𝑐 and 125 

𝑭𝑘
𝑣  are the convective and viscous flux vectors, and 𝜇𝑘 is the dynamic viscosity (when 𝑘 = 1) 126 

or the thermal conductivity (when 𝑘 = 2). 127 

In the field of RANS-based aerodynamic shape optimization, using the adjoint approach 128 

for determining the gradient is very advantageous because the computational cost of computing 129 

the derivatives in a gradient is practically independent of the number of design variables. A 130 

functional of interest 𝐽(𝑆) for an aerodynamic shape optimization problem is dependent on the 131 

shape of the boundary 𝑆 and the variables 𝑼 describing the flow state. The total derivative of 𝐽 132 

is given by: 133 

𝑑𝐽

𝑑𝑆
=

𝜕𝐽

𝜕𝑆
+

𝜕𝐽

𝜕𝑼

𝑑𝑼

𝑑𝑆
 (2) 

Evaluating the changes in the flow variables with respect to changes in boundary shape 134 

requires an additional flow solution for each geometry modification, being an extremely 135 

computationally expensive procedure. However, the total derivative of the flow solution with 136 

respect to boundary shape changes can be obtained by observing that the total derivative of the 137 

flow equations 𝑹(𝑆, 𝑼) with respect to 𝑆 vanishes for a feasible steady-state solution: 138 
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𝑑𝑹

𝑑𝑆
=

𝜕𝑹

𝜕𝑆
+

𝜕𝑹

𝜕𝑼

𝑑𝑼

𝑑𝑆
= 0 (3) 

The above expression provides a linear system whose solution is the total derivative of the 139 

flow solution with respect to changes in the geometry shape: 140 

𝑑𝑼

𝑑𝑆
= − [

𝜕𝑹

𝜕𝑼
]

−1 𝜕𝑹

𝜕𝑆
 (4) 

Substituting the solution of this linear system into Equation (2) gives: 141 

𝑑𝐽

𝑑𝑆
=

𝜕𝐽

𝜕𝑆
+

𝜕𝐽

𝜕𝑼
[
𝜕𝑹

𝜕𝑼
]

−1 𝜕𝑹

𝜕𝑆
 (5) 

The adjoint equation is set up as: 142 

[
𝜕𝑹

𝜕𝑼
]

𝑇

𝚿 = − [
𝜕𝐽

𝜕𝑼
]

𝑇

 (6) 

Where 𝚿 are the adjoint variables. In the adjoint equation, the boundary shape changes do not 143 

appear explicitly, and thus the adjoint solution does not depend on the design variables 144 

introduced to create those boundary shape changes. This constitutes the major advantage of the 145 

adjoint method: the cost of obtaining the adjoint variables is independent of aspects related to 146 

geometry parameterization and the number of design variables.  147 

Once the adjoint solution is obtained, it is substituted into the total derivative of the 148 

objective functional, giving: 149 

𝑑𝐽

𝑑𝑆
=

𝜕𝐽

𝜕𝑆
+

𝜕𝐽

𝜕𝑼
𝚿𝑇

𝜕𝑹

𝜕𝑆
 (7) 

The equations presented above represent a conceptual description of the adjoint method. 150 

Within the SU2 solver, the continuous-adjoint approach is used, where Equation (6) is a partial 151 

differential equation. The calculation of the objective functional 𝐽(𝑆) gradient with respect to 152 

variations in the shape of the boundary 𝑆 is achieved by solving the following continuous-153 

adjoint RANS equations: 154 
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−
𝜕𝚿𝑇

𝜕𝑡
− ∇𝚿𝑇 ∙ (𝑨𝑐 − 𝜇𝑘𝑨𝑘

𝑣) − ∇ ∙ (∇𝚿𝑇 ∙ 𝜇𝑘�̅�𝑘
𝑣) = 0 (8) 

The various Jacobian matrices 𝑨𝑐, 𝑨𝑘
𝑣 , �̅�𝑘

𝑣  obtained from the linearization of the governing 155 

equations can be found in the work of Bueno-Orovio et al. (2012) and were omitted here for 156 

reasons of brevity. 157 

After satisfying the adjoint system indicated above, the final expression for the objective 158 

functional variation becomes: 159 

𝛿𝐽(𝑆) = ∫ [𝒏 ∙ 𝜇1 (∇𝝋 + ∇𝝋𝑇 −
2

3
𝑰∇ ∙ 𝝋) 𝜕𝑛𝑽 − 𝜇2𝑐𝑃∇𝑆Ψ5 ∙ ∇𝑆𝑇] 𝛿𝑆𝑑Σ

𝑆

 (9) 

Where 𝒏 is the outward-pointing unit vector, 𝝋 is the adjoint velocity vector and ∇𝑆( ) =160 

∇( ) − 𝜕𝑛( ) ∙ 𝒏 is the tangential gradient operator at the surface 𝑆. This equation provides the 161 

surface sensitivity, a measure of the variation of the objective functional with respect to 162 

variations of the boundary shape. 163 

Laminar-to-turbulent transition location was determined using the correlation-based 164 

algebraic transition model recently developed by Cakmakcioglu et al. (2018) (referred to as the 165 

BC model). The underlying turbulence model is the well-known Spalart-Allmaras model 166 

(Spalart and Allmaras, 1992), in which the production term is multiplied with an intermittency 167 

function 𝛾𝐵𝐶: 168 

𝜕�̃�

𝜕𝑡
+ 𝑢𝑗

𝜕�̃�

𝜕𝑥𝑗
= 𝛾𝐵𝐶𝑐𝑏1�̃��̃� − 𝑐𝑤1𝑓𝑤 (

�̃�

𝑑
)

2

+
1

𝜎
{

𝜕

𝜕𝑥𝑗
[(𝜐 + 𝜈)

𝜕�̃�

𝜕𝑥𝑗
] + 𝑐𝑏2

𝜕�̃�

𝜕𝑥𝑗

𝜕�̃�

𝜕𝑥𝑗
} (10) 

The intermittency function is defined as: 169 

𝛾𝐵𝐶 = 1 − 𝑒𝑥𝑝(−√𝐴1 − √𝐴2) (11) 

Where: 170 

𝐴1 =
𝑚𝑎𝑥(𝑅𝑒𝜃 − 𝑅𝑒𝜃𝐶

, 0.0)

𝜒1𝑅𝑒𝜃𝐶

,   𝐴2 =
𝑚𝑎𝑥(𝜐𝐵𝐶 − 𝜒2, 0.0)

𝜒2
 171 
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𝑅𝑒𝜃 =
𝑅𝑒𝜐

2.193
,   𝑅𝑒𝜐 =

𝜌𝑑2

𝜇
Ω,   𝑅𝑒𝜃𝐶

= 803.73(𝑇𝑢∞ + 0.6067)−1.027 172 

𝜐𝐵𝐶 =
𝜐𝑡

𝑈𝑑
,   𝜒1 = 0.002,   𝜒2 = 5.0 173 

In the above, 𝜌 is the local density, 𝑑 is the distance to the nearest wall, Ω is the vorticity, 174 

𝜇 is the local dynamic viscosity, 𝑅𝑒𝜐 is the vorticity Reynolds number, 𝑅𝑒𝜃𝐶
 is the transition 175 

onset critical momentum thickness Reynolds number, 𝑇𝑢∞ is the freestream turbulence 176 

intensity in percentage, 𝜐𝑡 is the kinematic turbulent viscosity, 𝑈 is the local velocity magnitude 177 

and 𝑅𝑒∞ is the freestream Reynolds number. It must be noted that the BC model is not Galilean 178 

invariant due to the presence of the local velocity magnitude in 𝜐𝐵𝐶, while the 𝜒2 term 179 

introduces a dependency on an arbitrary reference length through 𝑅𝑒∞. Validation cases for 180 

compressible high-Reynolds flows have been presented in (Cakmakcioglu et al., 2018) and 181 

(Kaynak et al., 2019). To increase the level of confidence in the BC transition model, additional 182 

validation cases are presented in the paper, focusing on low-Reynolds number flows. 183 

The Navier-Stokes equations (1) and the adjoint equations (8) are recast in integral form 184 

and discretised using a finite-volume method on a dual grid, the control volumes being 185 

constructed using a median-dual vertex-based scheme (Economon et al., 2016). The convective 186 

numerical fluxes for both direct and adjoint flow equations are evaluated using the second-187 

order accurate Jameson-Schmidt-Turkel (JST) scheme (Jameson et al., 1981), gradients are 188 

calculated using a least-squares approach, while time-marching to steady-state is achieved 189 

using an implicit Euler method. The solution of the linearized equations is done using the 190 

Generalized Minimal Residual (GMRES) method, and convergence acceleration is achieved 191 

by a 3-level V-cycle agglomeration multigrid strategy, for both direct and adjoint equations 192 

(Economon et al., 2016). The turbulence model equation and the adjoint turbulence equation 193 

are solved segregated, using a second-order upwind scheme. 194 
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2.2. Geometry Parameterization, 𝑪𝑳 Control Method and Optimization Problem 195 

For parameterizing the geometry, the Free-Form Deformation (FFD) method (Sederberg 196 

and Parry, 1986) is used, initially developed for computer graphics applications. The baseline 197 

geometry is initially embedded in a B-spline control volume. The coordinates are mapped with 198 

respect to a set of control points on the box outer boundary. Modifications made on the external 199 

surface of this box then implicitly affect the object inside the volume. The design variables of 200 

the shape optimization problem are represented by the coordinates of the control points on the 201 

box boundary. To keep a feasible design space, the motion of these points with respect to their 202 

initial position can be easily constrained in terms of both permitted direction of motion and 203 

maximum displacement. This approach is particularly compact and efficient because it does 204 

not parametrize the shape itself but rather its deformation, thus also facilitating geometry 205 

sensitivity calculations. Additionally, it allows for enough flexibility to parameterize even non-206 

conventional geometries (He et al., 2019), expanding the possible design space. 207 

The SciPy implementation of the Sequential Least Squares Programming (SLSQP) 208 

gradient-based constrained optimization algorithm (Kraft, 1988) is used to determine the 209 

optimal airfoil shapes, the optimization variables being the FFD box control points coordinates. 210 

Due to the expected non-linearity of the lift curve (see (Anyoji et al., 2015) for details), a 211 

method inspired from control theory was implemented in the SU2 package to maintain 𝐶𝐿 at a 212 

desired value. Letting 𝑒 = 𝐶𝐿
𝑟𝑒𝑓

− 𝐶𝐿 be the error between the reference and current lift 213 

coefficient values, the airfoil angle of attack adjustment is done using the following 214 

Proportional-Integral-Derivative (PID) control law inspired approach: 215 

∆𝛼 = 𝐾𝑝𝑒 + 𝐾𝑑[𝑒(𝑛) − 𝑒(𝑛 − 1)] + 𝐾𝑖 ∑ 𝑒(𝑛)

𝑛

0

 (12) 
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Where 𝐾𝑝, 𝐾𝑑 and 𝐾𝑖 are the gains and 𝑛 represents the current iteration number. The angle of 216 

attack correction is calculated at all iterations, in order to update the discrete-integral term, but 217 

it is actively applied only a few numbers of times during the iterative process of marching to 218 

steady-state conditions. The gains have to be manually adjusted depending on the problem, 219 

with the values used for the present work being 𝐾𝑝 = 0.05, 𝐾𝑑 = 0.005 and 𝐾𝑖 = 0.005. These 220 

values have been found to minimize 𝐶𝐿
𝑟𝑒𝑓

− 𝐶𝐿 is as little iterations as possible for the particular 221 

problem investigated here. 222 

The Apex-16 airfoil designed by Drela (1992) is used a baseline geometry, embedded in an 223 

FFD box having 21 ×  2 (chordwise and vertical) equally-spaced control points, for a total of 224 

42 design variables. These points are constrained to displace only vertically, with the maximum 225 

displacement limited to 0.10𝑐. To avoid non-physical shapes resulting from the intersection of 226 

the airfoil upper and lower surfaces, constraints are introduced by enforcing positive thickness 227 

(𝑦𝑢𝑝𝑝𝑒𝑟 > 𝑦𝑙𝑜𝑤𝑒𝑟) at all x-coordinates. In addition, the maximum thickness of the optimized 228 

airfoil is required to be greater than 0.10𝑐. The objective is to minimize the drag coefficient 229 

subject to the specified geometric constraints and can be written as: 230 

min
𝑷

∑ 𝑤𝑘

𝑁𝑓

𝑘=1

𝐶𝐷(𝑷, 𝐶𝐿
𝑟𝑒𝑓

, 𝑀𝑘 , 𝑅𝑒𝑘) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑖(𝑷) ≤ 0 

(13) 

Where 𝑷 is the vector of design variables (coordinates of FFD box control points), 𝑀𝑘 , 𝑅𝑒𝑘 are 231 

the Mach and Reynolds number defining the flight condition, 𝑤𝑘 ≤ 1 are user-defined weights 232 

and 𝑔𝑖(𝑷) represent the geometric constraints. 233 

This formulation permits an optimization for both single-point and multi-point cases (if the 234 

number of flight conditions 𝑁𝑓 > 1). It must be noted that the constant lift coefficient constraint 235 

is enforced directly in the flow solver through the PID-type technique rather than being 236 
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included in the optimization problem list of constraints. This approach permits achieving some 237 

savings in the total computational time, as an adjoint problem for 𝐶𝐿 functional no longer needs 238 

to be solved. 239 

2.3. Grid Convergence Study 240 

A grid convergence study was done to determine the required resolution. A sequence of 241 

three C-type grids was generated using a refinement ratio of 2, grids whose properties are 242 

summarised in Table 1. 243 

The convergence study was done at a Mach number of 0.68, a Reynolds number of 244 

2.26 × 105 and an angle of attack of 2°.Both fully turbulent and transitional cases were 245 

analysed, the results being presented in Table 2. 246 

Figure 1 plots the convergence behaviour for better visualization, where 𝐶0 represents the 247 

Richardson extrapolation of the coefficient and 𝑁 is the number of cells. As can be seen from 248 

both this and Table 2, the range of convergence is close to one for all coefficients, indicating 249 

the solutions are in the asymptotic range of convergence. As expected, the transition model 250 

requires a more refined grid compared to a fully turbulent solution under the same conditions 251 

to achieve grid-independent drag coefficient values. Rather surprisingly, the 𝐶𝐿 and 𝐶𝑚 orders 252 

of convergence are better when transition is considered. Figure 2 plots a typical convergence 253 

history for the density residual and drag coefficient. The solution obtained with the SA-BC 254 

model requires slightly more iterations until steady coefficient values are obtained, however 255 

the residual decrease for the high iteration number range is relatively unchanged. Following 256 

the convergence study, it was decided to use the fine level grid for the shape optimization work. 257 

A close-up view of the grid in the vicinity of the airfoil surface can be seen in Figure 3. 258 

The impact of the PID-type 𝐶𝐿 control method on the convergence behaviour is shown in 259 

Figure 4. The airfoil is set at a Mach number of 0.68, a Reynolds number of 2.26 × 105 and 260 
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an initial angle of attack of 2°, with a desired 𝐶𝐿
𝑟𝑒𝑓

= 0.80. The angle of attack correction is 261 

applied every 5000 iterations. Both turbulent and transitional solutions achieve a density 262 

residual drop of 6 orders of magnitude in 30000 iterations, with some visible differences in the 263 

𝐶𝐿 convergence history. 264 

2.4. Validation Studies 265 

A study was performed to verify the capabilities of the BC transition model for high-Mach 266 

low-Reynolds number flow. Experimental results matching the flight conditions considered in 267 

this paper were not found in literature. However, the work of Anyoji et al. (2015) includes wind 268 

tunnel results for a NACA 0012-34 airfoil at a very low Reynolds numbers of 1.1 × 104 and a 269 

subcritical Mach number of 0.61, using CO2 as the working fluid. These experimental results 270 

were obtained as part of a study aimed at understanding airfoil aerodynamics in the Martian 271 

atmosphere and are considered to be a suitably challenging verification case, even if the flight 272 

conditions are not matching. The solver was set up as indicated in section 2.1, while the grid 273 

properties are similar to the fine level grid generated for the convergence study. 274 

Figure 5 presents a comparison between the numerical and experimental drag polar (left) 275 

and lift curve (right). It can be observed the numerical results obtained with the BC model 276 

capture the non-linearity of the lift curve, but the high angle of attack behaviour is not well 277 

captured, with much higher predictions of 𝐶𝐿𝑚𝑎𝑥
 and stalling angle. The drag estimation is good 278 

up to 𝐶𝐿 ≅ 0.55. It must be noted that no information was provided in [3] about the turbulence 279 

intensity level in the wind tunnel, the value being arbitrarily set to 0.05% in the numerical 280 

setup. Equally important is the fact that for the high angles of attack range, the solver did not 281 

obtain steady-state convergence. The unsteady behaviour did not show any periodicity to allow 282 

for a clear selection of an averaging interval. To better isolate the average values, the random 283 

variations of coefficient values in the results are first filtered out using a moving average build 284 
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with quadratic regression over intervals of 50 iterations, and then the filtered data is averaged 285 

over 40,000 iterations to output the coefficient value. Although this procedure is questionable, 286 

[3] does not specify whether the flow was naturally unsteady during the experimental test, and 287 

if so, how the average coefficient values were determined. The behaviour in the numerical 288 

results is attributed to solver capturing flow unsteadiness in the separated region, though noting 289 

again that boundary layer separation prediction is not accurate. 290 

A second validation case was done using the experimental work of McGhee et al. (1988) 291 

on the Eppler E387 airfoil. The tests were conducted in the low-turbulence pressurised tunnel 292 

at Langley Research Centre. The case chosen is for a Reynolds number of 2.00 × 105, similar 293 

to the value used for the optimization cases, while the Mach number is only 0.06. This verifies 294 

the capabilities of the BC transition model for low-Mach low-Reynolds number flow. The 295 

freestream turbulence intensity estimated during the experimental tests was 0.05%, value also 296 

used for the numerical results. Again, the solver setup follows the details presented in section 297 

2.1, with a grid similar to the fine level grid generated for the convergence study. 298 

The comparison between the numerical and experimental drag polar and lift curve is shown 299 

in Figure 6. There is generally a very good agreement in terms of both lift and drag coefficient 300 

values, especially for the mid to high 𝐶𝐿. The numerically predicted maximum lift coefficient 301 

and stalling angle are slightly higher than the observed values, however the difficulties of 302 

RANS-based turbulence models to accurately predict trailing-edge boundary layer separation 303 

are well documented. There numerically predicted 𝐶𝐷 values at the low 𝐶𝐿 conditions are too 304 

high, however (McGhee et al., 1988) does not include skin friction measurements to verify 305 

whether the behaviour is caused by early laminar-to-turbulent transition by the BC model. 306 

 307 

 308 
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3. Results and Discussion 309 

3.1. Preliminary Aspects 310 

In evaluating airfoil performance characteristics, the so-called reduced Mach and Reynolds 311 

numbers (Drela, 1992) represent very useful parameters, as they remain unchanged as an 312 

aircraft undergoes trim changes. However, calculating representative values requires 313 

knowledge about the aircraft weight, wing loading and wing aspect ratio. Since these values 314 

have yet to be fixed in the present study, it was decided to work with the true Mach and 315 

Reynolds number values. 316 

The Martian atmosphere is 95% CO2, 2.7% N2 and 2.3% other gases, with a mean surface 317 

atmospheric temperature of 214K, mean pressure of 640 Pa and mean density of 0.0155 kg/m3 318 

(Young, 2000). Although these parameters vary significantly spatially and temporally, the 319 

values indicated are considered sufficiently accurate for the purpose of designing an airfoil for 320 

low-altitude flight in the equatorial region. The Mach number range considered is 0.66 − 0.70, 321 

which leads to a Reynolds number range of 2.19 − 2.33 × 105, for a constant, unit airfoil 322 

chord. It is assumed the gas mixture behaves as a perfect gas, having a ratio of specific heats 323 

of 𝛾 = 1.289 and a specific gas constant of 𝑅 = 189 𝐽/(𝐾𝑔 ∙ 𝐾). 324 

The reference molecular viscosity of the Martian atmosphere is 1.289 × 10−5 𝑘𝑔/(𝑚 ∙ 𝑠) 325 

(Young, 2000). The dynamic viscosity as function of temperature is obtained using 326 

Sutherland’s law: 327 

𝜇 = 𝜇0 (
𝑇

𝑇0
)

3/2 𝑇0 + 𝑆

𝑇 + 𝑆
 (14) 

Where 𝜇0 = 1.289 × 10−5 𝑘𝑔/(𝑚 ∙ 𝑠), 𝑇0 = 214 𝐾 and 𝑆 = 270 𝐾, with the constants taking 328 

values representative for the CO2-based atmosphere. 329 



16 
 

There is no data available for average turbulence intensity levels at low altitudes in the 330 

Martian atmosphere. Assuming calm meteorological conditions, it was assumed these levels 331 

would be similar to those at relatively high altitudes in Earth’s atmosphere, assuming still air, 332 

for which measurements exist (Riedel and Sitzmann, 1998). Thus, the freestream turbulence 333 

intensity considered is 0.04%. 334 

3.2. Optimization Results and On-Design Performance 335 

To better understand the impact of the laminar boundary layer on the airfoil optimal shapes, 336 

the optimization was done in both transitional and fully turbulent modes, with the objective of 337 

minimizing the drag coefficient and subject to the geometry constraints presented earlier. The 338 

multi-point case includes three flight conditions, at 𝑀 = 0.66, 0.68 𝑎𝑛𝑑 0.70, with equal 339 

weights 𝑤𝑘 = 0.3333. For all optimization runs the lift coefficient is fixed at the relatively 340 

high value of 𝐶𝐿
𝑟𝑒𝑓

= 0.80, in order to provide sufficient lift force under low dynamic pressure 341 

conditions. The angle of attack is a free variable which can be adjusted accordingly by the 342 

solver during the optimization runs. 343 

A summary of the optimization process results is presented in Table 3. As expected, the 344 

single-point optimized airfoils outperform the multi-point airfoil at their respective Mach 345 

numbers. It interesting to note that for 𝑀 = 0.70, the drag obtained with the transition model 346 

is higher than the fully turbulent drag, behaviour attributed to laminar boundary layer 347 

separation which was corrected but not fully alleviated during the single-point optimization 348 

scenario. Except for the highest Mach number case, the drag difference between multi-point 349 

and single-point optimized airfoils is lower in the transitional case, indicating that multi-point 350 

designs could achieve good overall performance in such flight conditions. 351 

Figures 7 and 8 show the outline of the multi-point and three single-point optimal airfoils 352 

obtained for transitional and fully turbulent conditions. Similarities can be observed in the 353 
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shape of the single-point designs at Mach 0.66 and 0.68 for both models, the airfoils showing 354 

a relatively flat lower surface for the first 0.50𝑐, a maximum thickness location towards mid-355 

chord, as well as a continuously curving upper surface (unlike classical high-Reynolds number 356 

supercritical airfoils). The multi-point airfoils show a higher leading-edge radius, higher 357 

maximum thickness and an unusual concave lower surface for approximately 0.20𝑐 from the 358 

leading edge, especially visible for the transitional airfoil. These features contribute to 359 

increasing the generated 𝐶𝐿 at lower angle of attack values without requiring too high camber, 360 

point which is also corroborated by the lower angle of attack required to generate 𝐶𝐿
𝑟𝑒𝑓

= 0.80 361 

compared to the single-point designs. 362 

The transitional 𝑀 = 0.70 airfoil is closer in shape to the multi-point design, but with a rear 363 

shift in maximum camber location, which is translated into a more favourable pressure gradient 364 

for extending laminar flow and avoiding upper surface shocks. The differences observed 365 

between the transitional and turbulent airfoil shapes is a very strong argument for the need of 366 

robust aerodynamic shape optimization including transition prediction for any low-Reynolds 367 

design cases. 368 

Figures 9 and 11 present the pressure coefficient distribution for the multi-point and single 369 

point airfoils at the three design conditions, while Figures 10 and 12 show the variation of the 370 

skin friction coefficient. There are important differences in the pressure variation between the 371 

transitional and fully turbulent cases, most notably the shock located before 0.30𝑐 at all Mach 372 

numbers for the latter, as seen in Figure 11. The transitional single-point airfoils show a 373 

pressure plateau up to 0.60𝑐, followed by an isentropic recompression, while the multi-point 374 

airfoil develops a weak shock at approximately 0.40𝑐 for all Mach numbers considered. The 375 

leading-edge pressure peak seen in the fully turbulent results is absent from the transitional 376 

airfoils pressure distribution, leading to local flow conditions more favourable for a laminar 377 
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boundary layer. There is also an increase in the contribution to lift generation from the lower 378 

surface, compared to the multi-point airfoil, as seen from the more positive lower surface 379 

pressure curves in Figure 9. The skin friction curves presented in Figure 10 indicate that the 380 

single-point optimized airfoils achieve a greater extent of laminar flow on the upper surface, 381 

as expected due to the pressure plateau, the delay in pressure recovery and the weaker adverse 382 

pressure gradient. The results for 𝑀 = 0.70 show laminar boundary layer separation and the 383 

formation of a reverse-flow region for both single-point and multi-point airfoils, as indicated 384 

by the negative 𝐶𝐹 values on the aft part of the chord, thus justifying the relatively poor 385 

performance which was mentioned earlier. 386 

It is worth noting that laminar separation bubbles are present at 𝑀 = 0.66 and 𝑀 = 0.68, 387 

followed by flow reattachment. The flow reattachment (and thus avoiding bubble bursting and 388 

significant flow separation) is possible due to a less-severe adverse pressure gradient compared 389 

to that caused by a stronger upper surface shock wave. The single point 𝑀 = 0.68 airfoil 390 

experiences laminar separation, however its overall drag coefficient is still lower compared to 391 

the multi-point design due to a more favourable pressure distribution up to 0.60𝑐. As expected, 392 

the fully turbulent results of Figure 12 reveal a simpler behaviour, with generally less difference 393 

between the multi-point and single-point airfoils, and with turbulent separation on the upper 394 

surface aft of 0.80𝑐 at all three Mach number values. 395 

Figures 13 and 14 present a comparison of the Mach number contours between both 396 

transitional and turbulent multi-point and single-point optimized airfoils for a freestream Mach 397 

number of 0.68. The variations in the Mach number directly relate with the comments 398 

previously made using the pressure coefficient distributions. The turbulent airfoils show a 399 

pocket of supersonic flow located on the upper leading-edge region, the multi-point transitional 400 

foil shows a rearward shift in the location of the supersonic pocket, while the single-point foil 401 

achieves a smoother isentropic airflow over the upper surface. 402 
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A breakdown of the pressure 𝐶𝐷𝑝
 and friction 𝐶𝐷𝑓

 drag components for the airfoil obtained 403 

following the optimization process is presented in Table 4. The values indicate the drag 404 

reduction achieved by the single-point designs is generally balanced between pressure 405 

(including wave drag reductions from weaker upper surface shocks) and friction drag 406 

components (attributed to an extended laminar region in the transitional case and changes in 407 

pressure gradient magnitude and local flow velocities in the fully turbulent case). 408 

3.3. Off-Design Performance 409 

The off-design performance of each optimized airfoil is investigated by conducting a Mach 410 

ramp study, in order to capture the drag-divergence behaviour. The lift coefficient is fixed at 411 

𝐶𝐿
𝑟𝑒𝑓

= 0.80, while the Mach number is varied between 0.60 and 0.76. The drag rise curves 412 

are shown in Figure 15. With the exception of the 𝑀 = 0.70 single-point airfoil, the other three 413 

airfoils have relatively similar off-design performance in the transitional case, showing a small, 414 

gradual 𝐶𝐷 increase up to 𝑀 = 0.68, after which the drag significantly rises. This shows the 415 

airfoils are suitable for operating in a Mach number range larger than the design condition 416 

without suffering severe performance losses. In fully turbulent flow, the difference between 417 

the drag rise curves is more pronounced, each airfoil experiencing significant drag rise for 418 

freestream Mach number higher than the design condition. This behaviour is attributed to the 419 

presence of the stronger shock wave near the leading edge and the higher wave drag 420 

component. 421 

Figures 16 and 17 present the Mach contours around the transitional and fully turbulent 422 

𝑀 = 0.66 single-point optimal airfoils, when operating on-design (left picture) and off-design 423 

at 𝑀 = 0.73 (right picture). On-design, both airfoils show a shock-free flow field, which can 424 

also be correlated with the pressure distributions shown in the left-hand image of Figures 9 and 425 

11. Off-design, the transitional foil experiences massive shock-induced boundary layer 426 



20 
 

separation, the shock being located at approximately 0.40𝑐. The fully turbulent airfoil develops 427 

a stronger shock (thus higher wave drag) located further downstream, but the impact on the 428 

turbulent boundary layer is less significant. 429 

The drag polar of the designed airfoils is depicted is Figure 18 for the transitional flow case 430 

and Figure 20 for the fully turbulent flow, while the lift curves are shown in Figures 19 431 

(transitional) and 21 (turbulent). Each polar was constructed at the Mach number for which the 432 

single-point airfoils were optimized, with the multi-point foil being analysed at all three Mach 433 

number values. 434 

In the transitional case, the single-point optimized designs tend to consistently outperform 435 

the multi-point airfoil for 𝐶𝐿 values at and above the design value of 0.80. The delay in stall is 436 

due to a more favourable interaction between the laminar boundary layer separation and the 437 

isentropic upper surface flow. The lift curves shown in Figure 19 indicate the multi-point foil 438 

generates more lift at a given angle of attack, as was expected based on the lower surface 439 

curvature. However, it stalls earlier and achieves a lower 𝐶𝐿𝑚𝑎𝑥
 value for all three Mach 440 

numbers. It is also interesting to note the nonlinear nature of the lift curve observed at 𝑀 =441 

0.70, attributed to the laminar separation on the upper surface (behaviour also indicated in 442 

Figure 10). In the fully turbulent case, there is much less variation in the aerodynamic 443 

characteristics between single-point and multi-point designs. At both 𝑀 = 0.66 and 𝑀 = 0.68, 444 

the single-point airfoil achieves lower drag over almost the entire range of angles of attack. 445 

This behaviour is attributed to a lower wave drag achieved by a weaker upper surface shock 446 

not only for the design 𝐶𝐿, but over a more significant lift coefficient range. Again, a decrease 447 

in the generated lift at a given angle of attack can be seen in Figure 21, but much lower 448 

compared to the transitional case. The loss in lift could be overcome by setting more tighter 449 

bounds on the angle of attack variation during the optimization process. 450 
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With relatively mature computational methods such as those chosen for this work, some 451 

degree of confidence can be achieved with respect to the obtained airfoil designs, but much 452 

more work is required with respect to experimental verification and validation. This is however 453 

an extremely challenging task. Wind tunnels capable of replicating the atmospheric conditions 454 

on Mars are very rare in laboratories throughout the world, and only one, used in the work of 455 

Anyoji et al. (2015) can achieve airspeeds in the compressible regime. Mach and Reynolds 456 

similarity to flight on Mars by very-high altitude flight on Earth is equally challenging, 457 

requiring models smaller than the Mars airplane flying at altitudes preferably above 30,000 m. 458 

Significantly more work is required before the challenges introduced by the high-speed flight 459 

of a fixed-wing Mars airplane are fully understood. 460 

 461 

4. Conclusions 462 

The paper presents the robust design of multi-point and single point airfoils suitable for 463 

flight in the challenging high-Mach low-Reynolds number regime as would be encountered in  464 

the Martian atmosphere. The aerodynamic shape optimization was done using a gradient-based 465 

optimizer and the state-of-the-art SU2 flow solver. Three Mach numbers were considered, and 466 

a relatively high lift coefficient required due to the low dynamic pressure. The optimization 467 

was performed using both transitional and fully turbulent models, in order to highlight the 468 

differences in optimal design shape. The results have shown: 469 

1) There are non-negligible differences in the airfoil shapes between transitional and fully 470 

turbulent flow. Although aerodynamic shape optimization including laminar to turbulent 471 

transition is not very widely used, it can be used to obtain robust designs for more challenging 472 

flight conditions, such as extra-terrestrial flight or very high-altitude transonic aircraft. 473 
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2) The transitional multi-point airfoil achieves very good performance at 𝑀 = 0.66 and 474 

𝑀 = 0.68, with only small drag penalty compared to the single-point designs but is not 475 

efficient at 𝑀 = 0.70 due to massive laminar boundary layer separation. 476 

3) An isentropic laminar upper surface flow can be achieved with adequate airfoil design, 477 

showing more favourable high-lift behaviour and increased 𝐶𝐿𝑚𝑎𝑥
 without incurring significant 478 

penalties at higher Mach number off-design conditions, and achieving good performance at 479 

lower-than-design Mach numbers. 480 

4) The success of high-Mach low-Reynolds high-lift airfoil designs hinges on using the 481 

high-speed flow on the upper surface to extend laminar flow as much as possible and avoid 482 

laminar flow separation due to a strong shock generated at laminar separation bubbles, leading 483 

to bubble bursting and significant flow separation. 484 

 485 

Data Availability 486 

Some or all data, models, or files generated or used during the study are available from the 487 

corresponding author by request. These include generated grid files, solver configuration files, 488 

solver source code files modified compared to SU2 repository and selected results files. 489 

 490 

Appendix 491 

It can be observed (Figures 9 and 11) that the shock on the upper surface of the airfoils does 492 

not appear to be captured as well as would be normally expected in a grid-independent solution. 493 

To improve the quality of shock capturing, more refined grids were created and tested, as well 494 

as reduced artificial dissipation coefficients in the JST scheme. However, the changes observed 495 

with respect to shock capturing remained minimal. 496 
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Methods for analytically investigating the inner structure of a normal shock wave have been 497 

proposed in literature (for example Puckett and Stewart (1950) or Cohen and Moraff (1971)). 498 

An analysis derived from that of Puckett and Stewart (1950) is used to understand if any 499 

differences exist in the shock structure and thickness due to the different environment on Mars. 500 

Assuming one-dimensional flow of a perfect gas having constant specific heat at constant 501 

pressure, the following ordinary differential equation (ODE) can be deduced for the smooth 502 

variation of the velocity across the shock wave: 503 

𝑑𝑢

𝑑𝑥
= (

𝐻 −
𝑢2

2

𝐻 −
𝑢1

2

2

)

−0.75

𝜎

𝜇1
[𝜌1𝑢1

𝛾 + 1

2𝛾
+ 𝜌1𝑢1

𝐻
𝛾 − 1

𝛾

𝑢
− (𝜌1𝑢1

2 + 𝑝1)] (A1) 

The conditions upstream of the shock are denoted with a 1-subscript, these being the 504 

velocity 𝑢1, density 𝜌1, pressure 𝑝1 and dynamic viscosity 𝜇1. The other parameters are the 505 

Prandtl number 𝜎 and the ratio of specific heats 𝛾. The flow is assumed adiabatic, so the total 506 

enthalpy 𝐻 remains constant. 507 

Solving this ODE using finite differences until the velocity becomes constant and equal to 508 

the velocity downstream of the shock, an estimate of the shock thickness can be obtained. 509 

The normal shock thickness was calculated both for flow conditions typical of the Martian 510 

atmosphere (as defined in section 3.1 of the paper), and flow in the Earth atmosphere at an 511 

altitude of 11,000 m. This 11km condition was chosen as a comparison case due to its high 512 

occurrence in research dealing with supercritical flow over airfoils. A plot of the ratio between 513 

normal shock wave thickness on Mars and on Earth as function of the upstream Mach number 514 

is depicted in Figure A1 below. 515 

Interestingly, it can be seen that the thickness ratio is around 2 at an upstream Mach number 516 

of 1.05, rapidly increases to 20 at a Mach number of 1.3 and then asymptotically tends to a 517 
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value of around 23. For many of the optimisation cases analysed in this research, the Mach 518 

number upstream of the shock is slightly higher than 1.2, meaning that shocks appearing on 519 

the airfoil’s upper surface would be 16-17 times thicker compared to flight at a typical 11km 520 

in Earth’s atmosphere. 521 

It is unclear at this moment if this analysis can provide the explanation of the relatively low 522 

quality of the shock capturing observed in the CFD results, or at least a part of the explanation. 523 

More research is needed aimed at investigating the performance of shock-capturing schemes 524 

in such extreme flow conditions. 525 

 526 
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 653 

Table 1. Properties of grids used for convergence study 654 

Grid No. Cells Cells on Wall Max 𝒚+ 

Coarse 6400 80 1.33 

Medium 25600 160 0.66 

Fine 102400 320 0.33 

 655 
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 665 

Table 2. Summary of convergence study results 666 

Fully Turbulent (SA) 

Grid 𝑪𝑳 𝑪𝑫 [𝒄𝒕𝒔] 𝑪𝒎 

Coarse 0.61187 256.54 0.08750 

Medium 0.63889 219.43 0.09007 

Fine 0.64959 213.16 0.09169 

Richardson 

Extrapolation 
0.65660 211.88 0.09447 

Order of Convergence 1.33631 2.56527 0.66207 

Range of Convergence 1.01674 0.97142 1.01799 

Grid Convergence 

Index 
0.0135 0.0075 0.0279 

Transitional (SA-BC) 

Grid 𝑪𝑳 𝑪𝑫 [𝒄𝒕𝒔] 𝑪𝒎 

Coarse 0.54298 214.39 0.07822 

Medium 0.66110 185.77 0.09447 

Fine 0.66508 171.88 0.09664 

Richardson 

Extrapolation 
0.66522 158.78 0.09697 

Order of Convergence 4.89097 1.04297 2.90946 

Range of Convergence 1.00602 0.92523 1.02290 

Grid Convergence 

Index 
0.0002 0.0095 0.0042 

 667 
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 674 

 675 

 676 

 677 

Table 3. Results of multi-point and single-point optimization 678 

` Mach Number 
Multi-point 

𝑪𝑫 [𝒄𝒕𝒔] 

Single-point 

𝑪𝑫 [𝒄𝒕𝒔] 
∆𝑪𝑫 [𝒄𝒕𝒔] 

Transitional 

0.66 177.11 171.49 5.62 

0.68 202.30 191.20 11.10 

0.70 311.39 263.35 48.04 

Turbulent 

0.66 233.31 201.91 31.40 

0.68 237.73 209.66 28.07 

0.70 242.30 236.04 6.26 

 679 
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 692 

Table 4. Drag components breakdown for multi-point and single-point optimization 693 

` Mach 

Multi-

point 

𝑪𝑫𝒑
 [𝒄𝒕𝒔] 

Single-

point 

𝑪𝑫𝒑
 [𝒄𝒕𝒔] 

∆𝑪𝑫𝒑
 [𝒄𝒕𝒔] 

Multi-

point 

𝑪𝑫𝒇
 [𝒄𝒕𝒔] 

Single-

point 

𝑪𝑫𝒇
 [𝒄𝒕𝒔] 

∆𝑪𝑫𝒇
 [𝒄𝒕𝒔] 

Transitional 

0.66 112.33 109.34 2.99 64.78 62.15 2.63 

0.68 138.41 133.04 5.37 63.89 58.17 5.72 

0.70 254.60 206.76 47.84 56.79 56.60 0.19 

Turbulent 

0.66 113.91 94.24 19.67 119.40 107.66 11.74 

0.68 119.75 103.69 16.06 117.99 105.97 12.02 

0.70 125.90 132.89 -6.99 116.40 103.15 13.25 
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 703 

Figure 1. Grid convergence of aerodynamic coefficients 704 

 705 

 706 

 707 

Figure 2. Convergence behaviour of density residual and drag coefficient 708 

 709 
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 710 

 711 

 712 

Figure 3. Close-up view of fine level grid around airfoil surface 713 

 714 

 715 

 716 

Figure 4. Convergence behaviour of density residual and lift coefficient when fixed 𝐶𝐿 is 717 

required 718 

 719 
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 722 

Figure 5. Verification of transition model for NACA 0012-34 airfoil at M = 0.61 and 723 

Reynolds number of 11000 in CO2 724 

 725 

 726 

Figure 6. Verification of transition model for Eppler E387 airfoil at M = 0.06 and Reynolds 727 

number of 200000 728 

 729 
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 732 

Figure 7. Contour of optimal airfoils obtained with transition model 733 

 734 

 735 

 736 

Figure 8. Contour of optimal airfoils obtained with fully turbulent model 737 
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 740 
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 742 

Figure 9. Pressure coefficient distribution of optimized airfoils for each Mach number, 743 

transitional case 744 

 745 

 746 

Figure 10. Skin friction coefficient distribution of optimized airfoils for each Mach number, 747 

transitional case 748 

 749 
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 752 

Figure 11. Pressure coefficient distribution of optimized airfoils for each Mach number, fully 753 

turbulent case 754 

 755 

 756 

Figure 12. Skin friction coefficient distribution of optimized airfoils for each Mach number, 757 

fully turbulent case 758 

 759 
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 760 

 761 

Figure 13. Comparison of Mach number contours around (a) the multi-point optimized 762 

airfoil for transitional flow at M = 0.68 and (b) the single-point optimized airfoil for 763 

transitional flow at M = 0.68 764 

 765 

 766 

Figure 14. Comparison of Mach number contours around (a) the multi-point optimized 767 

airfoil for fully turbulent flow at M = 0.68 and (b) the single-point optimized airfoil for fully 768 

turbulent flow at M = 0.68 769 
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 772 

Figure 15. Drag rise curves for the multi-point and single-point optimized airfoils 773 

 774 

 775 

 776 

Figure 16. Comparison of Mach number contours around the transitional M = 0.66 single-777 

point optimized airfoil when (a) operating on-design and (b) operating off-design at M = 0.73 778 

 779 
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 782 

Figure 17. Comparison of Mach number contours around the fully turbulent M = 0.66 single-783 

point optimized airfoil when (a) operating on-design and (b) operating off-design at M = 0.73 784 

 785 

 786 

 787 

Figure 18. Drag polar for multi-point and single-point optimized airfoils, transitional flow 788 
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Figure 19. Lift curve for multi-point and single-point optimized airfoils, transitional flow 793 
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 796 

Figure 20. Drag polar for multi-point and single-point optimized airfoils, fully turbulent flow 797 
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 801 

 802 

Figure 21. Lift curve for multi-point and single-point optimized airfoils, fully turbulent flow 803 

 804 

 805 

 806 

Figure A1. Ratio between normal shock wave thickness in low-altitude flight on Mars and 807 

flight at 11km altitude in Earth’s atmosphere 808 

 809 


