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The magnetic pendulum
A tabletop demonstration of chaos

James Christian and Holly Middleton-Spencer

Y have to go a long way to beat the magnetic pendulum for demonstrating the deep and
profound nature of physics. One is pictured on the right. On the face of it, a swinging
bob seems simple enough to understand. But as is so oen the case, simplicity is masking

complexity and the motion possesses an almost magical quality. Here, we will take a glimpse into
just how unpredictable the predictable can really be.

The magnetic pendulum: it com-
prises a bob with a small magnet
suspended by a string above a base
plane that contains similar magnets
arranged with opposite poles to en-
sure araction

Pull the pendulum back some distance in any direction,
let it go, and prepare to be mesmerised by the way it darts
back and forth in an erratic and seemingly random way.
The bob is drawn simultaneously to all three base-plane
magnets until, finally, it tends towards a precarious state
of rest above one of them. Playing like this, it does not
take long to become convinced of two immutable facts.
Firstly, one can never know beforehand over which mag-
net the bob will stop. Secondly, and perhaps more subtly,
the motion is not reproducible. No maer how hard one
tries to replicate the initial displacement, the bob never
follows the same winding path twice and the magnet that
ultimately ‘wins’ seems to be governed by chance. How
can we possibly find such randomness in a tabletop toy?
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Of course, the bob is not moving randomly at all and we are at best starting it off each time from
only roughly the same initial conditions. Its motion is prescribed by purely deterministic equa-
tions, a combination of classical mechanics and electromagnetics, and at that level there is no
randomness. Were we able to release the bob from exactly the same starting position each time,
the subsequent motions would all be identical and they would always stop at the same place. No
uncertainty. No unpredictability. No endless fascination!

Since our first pull can never be repeated with infinite precision, what we are seeing is sensitive
dependence on initial conditions or, more colloquially, the buerfly effect. Any change in input—
any, no maer how imperceptibly small—can have a dramatic impact on output. That intriguing
phenomenon turns out to be far more widespread and pervasive than one might first imagine.
Moreover, it provides our working definition of chaos and crystallises what we mean by saying “a
system is chaotic”. In this article, we will start to explore how the magnetic pendulum embodies
chaos in the scientific (rather than the everyday) sense.

A phenomenological model

It is not too difficult to devise a model that exhibits all the key qualitative features of the magnetic
pendulum. Our approach is a phenomenological one, meaning that we are aiming to capture the
essence of the motion using intuitive physical ideas rather than focusing on all the mathematical
minutiae. A relatively easy way forward is to consider looking down on the pendulum from a
plan view (see figure below). The bob’s trajectory in the three-dimensional space is projected
downwards onto the horizontal base plane, and the origin of the (x, y) coordinates is fixed at the
centre of an equilateral triangle. The magnets are subsequently located at vertices X1, X2, and X3,
all of which lie along the circumference of a circle with a radius taken to be the unit length.

Le: Schematic diagram of the magnetic pendulum
Right: Projecting the position of the bob (white square at
position x) onto the horizontal (x, y) plane. The base-plane
magnets (red squares 1, 2, and 3) are positioned at the vertices
of an equilateral triangle.

The position vector of the bob may
be represented by x(t) at time t.
To account for gravity, it is suffi-
cient for our purposes to consider a
restoring force F grav ∝ −x whose
influence, due to the minus sign, al-
ways acts to pull the bob towards
the origin x = 0 (the constant
of proportionality is set equal to 1,
just to keep things simple). Dissi-
pation might be introduced by way
of the standard velocity-dependent
damping force familiar from text-
book physics. Here, we use F losses =
−bu, where u ≡ dx/dt. For some

constant b > 0, the effect of F losses is to drain kinetic energy from the motion through air resis-
tance at low speeds. Finally, we must look to include the aractive forces due to the base-plane
magnets. It is tempting to reach immediately for the inverse-square rule familiar from Coulomb’s
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law of electrostatics and Newton’s law of universal gravitation. We instead opt for a 1/distance4

rule as this form tends to describe the forces exchanged by magnetic dipoles.

SinceNewton’s second law ofmotion equatesmass× acceleration to the combined forces of gravity,
magnetism, and damping, we can write down a governing equation of the form

d2x
dt 2

+ b
dx
dt

+ x =
3

∑

n=1

Xn − x
(|Xn − x|2 + h2)5/2

. (1)

Pythagoras’s theorem has been deployed here, and so each contribution in the summation on
the right-hand side of (1) corresponds to a ‘distance/distance5 = 1/distance4’ type of term. An
additional parameter, h2, has also appeared. Its role is to suppress unphysical (that is, infinite!)
accelerations that would otherwise result whenever x approaches Xn. We then interpret h as being
related to the average height of the bob above the base plane.

The equilibrium points are defined to be those positions x = xeq that are unchanging in time. Since
the velocity and acceleration of the bob must be zero at those points (hence satisfying dxeq/dt = 0
and d2xeq/dt 2 = 0, respectively), it follows from (1) that

xeq =
3

∑

n=1

Xn − xeq
(

|Xn − xeq|2 + h2
)5/2 . (2)

Aer playing with the pendulum and noting the positions where the bob tends to stop, we might
reasonably expect to find maybe three or at most four solutions (with xeq = 0 being the origin). It
is worth mentioning that the nontrivial roots of (2) do not occur at xeq = Xn, as one might initially
suspect. Instead, they lie at the same angular positions as Xn (as symmetry demands) but at a
radial distance |xeq| that is slightly less than unit length. At these positions, the competing pulls
from gravity and magnetism are perfectly balanced.

Equation (1) does a surprisingly good job at mimicking the unpredictability so readily seen in
experimental demonstrations; the le-hand side is just the damped harmonic oscillator problem
frommechanics while the right-hand side sums over the pairwisemagnetic-dipole interactions. On
the one hand, any urges to seek analytical solutions should be kept in check. Even this stripped-
down toy model confronts us with a formidable mathematical beast living in a four-dimensional
realm whose axes are (x, y, ux, uy). On the other hand, computing a numerical solution can be
relatively quick and easy for given initial conditions, say x(0) = x0 and u(0) = 0.

Basins of attraction
Physically, we anticipate that the bob will almost inevitably come to rest at one of the non-trivial
equilibrium points xeq [cf. (2)] as t → ∞. Those special points can be thought of as positions in
the (x, y) plane that aract the trajectory, and accordingly they are oen referred to as fixed-point
aractors. The idea now is to use a computer to carry out a systematic set of simulations, recording
which magnet ‘wins’ (interpreted as the output) as we vary the starting point x0 (taken to be the
input). By associating the outcome of each computation with a colour (eg red for magnet 1, white
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for magnet 2, and black for magnet 3), we can overlay the output on top of the input (x0, y0) plane
to produce a kind of abstract map. The set of all initial conditions lying in the red region is the
basin of araction for magnet 1—that is, any x0 lying on a red point will always end up at magnet
1 (and similar for the other colours and magnets), though the colour itself gives no information
about the path taken by the bob to arrive at that point.

Figure 1. Basins of araction for the magnetic pendulum with b = 0.1 and h2 = 1/4. In the
first pane, the grey squares denote the position of the base-plane magnets and the doed grey
line is a circle with radius equal to the unit length. The second and third panes show successive
magnifications.

Figure 2. An illustration of FSS in the magnetic pendulum. Two initial conditions that are arbi-
trarily close together can give rise to subsequent trajectories that will start to move away from
one another aer a finite amount of time. The red path ends at magnet 1, while the black path
ends at magnet 3.

Using this recipe, we discover a rather striking paern (see fig. 1). Regions around the origin
appear relatively simple. There are large single-colour lobes which indicate that variations in x0
tend to have lile impact on which magnet wins. Further out beyond the unit circle, there is much
greater complexity and all three colours are intertwined in a beautifully complicated way. In those
regions, the pendulum is extremely sensitive to changes in x0. Successive zooming-in suggests the
intertwining survives down to smaller and smaller length-scales. That feature—proportional levels
of paern detail persisting under arbitrary magnifications—is a defining characteristic of a fractal.
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A less obvious but equally fascinating property relates to the nature of the boundary separating
two differently-coloured regions. We typically cannot cross from a region of red to an adjacent
region of black without touching the white (similar is true for other permutations of colours). This
situation is reminiscent of the delightfully strange Wada property from the field of topology.

Final state sensitivity

Figure 3. Variation of the basins of arac-
tion for the magnetic pendulum as damping
is increased. The second and third columns
show successive magnifications. Other pa-
rameters and domains of the (x0, y0) plane
are the same as those in fig. 1.

The basins of araction have three-fold rotation
symmetry about the origin, which is a conse-
quence of the equilateral-triangle arrangement of
magnets and the initial condition u(0) = 0. Their
details also depend crucially on system parame-
ters. One might consider what happens, for in-
stance, when the level of damping is increased (see
figure to the right) through b = 0.125 (first row),
b = 0.150 (second row), b = 0.175 (third row), and
b = 0.200 (boom row). The paern becomes less
complex and, accordingly, the pendulum less sen-
sitive to small fluctuations in x0. However, their
key features remain intact: the persistence of self-
similar structure (fractality) and complex bound-
aries that tend to involve all three colours. The
Wada-type property is still present in the right-
hand column of the last two rows, but it is not ob-
vious from these figures.

A helpful way to quantify just how strongly the
long-term state of a system depends upon small
fluctuations at its input is to estimate the fractal
dimension 1 < D ⩽ 2 of the basin boundaries.
One selects a set of NΓ points in a domain Γ of the
(x0, y0) plane and tests each of them in turn for
the property of final-state sensitivity (FSS) by considering a triplet of initial conditions: say (x0, y0),
(x0+ ε, y0), and (x0− ε, y0), where 0 < ε ≪ O(1) can be interpreted as an error or as a limit to our
experimental precision. When the winning magnet is the same for all three trajectories, then the
final state is independent of ε and (x0, y0) is, accordingly, free from FSS. Alternatively, think of ε as
the radius of a small disc centred on (x0, y0), somewhere within which the ‘true’ initial condition
lies. FSS, as demonstrated in fig. 2, appears whenever that disc impinges on a basin boundary and
thus overlaps more than one colour.

If the total number of points possessing FSS for a given ε is denoted by Nε , one finds that that
Nε/NΓ ∼ εα . The parameter α ≡ 2 − D is known as the uncertainty exponent and it satisfies the
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inequality 0 ⩽ α < 1. Finally, we obtain the uncertainty dimension D, where

D = 2− d log10(Nε/NΓ)

d(log10 ε)
(3)

and a larger D is indicative of increased susceptibility to initial fluctuations. The paerns shown
in the middle panes of figs 1 and 3 turn out to have dimensions in the range D ≈ 1.32 (for b = 0.1)
to D ≈ 1.16 (for b = 0.2). It follows that the basin boundaries for lightly-damped pendula tend
to be associated with higher values of D. More generally, we now see a connection between the
dimension of an abstract fractal paern (which, crucially, need not be an integer such as 1 or 2)
and the physical property of FSS.

Concluding remarks
In this article, we have started to unpick some of the intriguing behaviour exhibited by what is, in
reality, a simple toy—one that never fails to capture the imagination of university students in lec-
tures and Ucas applicants (and their parents alike!) at open days. The apparently erratic swinging
and unknowable terminus of a bob are not quite so ‘random’ as one might first suppose from a
few naïve observations. The essential ingredient giving rise to all this rich and diverse behaviour is
the interplay between the three constituent feedback loops (here, due to gravity, dissipation, and
magnetism).

Although we have considered the barest of bare-bones models (from pretending gravity provides
a restoring force proportional to −x, to suppressing the fully-vectorial character of magnetic in-
teractions), the beautiful complexity of nature survives and we simply cannot get rid of it. That, it
seems to us, is a mind-blowing conclusion!
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Did you know...

…that if you walk randomly on a 2D laice, you will eventually end up back where you
started, but if you do the same on a 3D laice you might not. Or, as Shizuo Kakutani puts
it: “A drunk man will find his way home, but a drunk bird may get lost forever.”

Did you know...

…that primes are so scary that there is a prime named aer one of the seven princes of hell:
Belphegor’s prime (1000000000000066600000000000001).
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