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Abstract 

Stratum ventilation can energy efficiently provide good inhaled indoor air quality with 

a proper operation (e.g., fresh outdoor air ratio). However, the non-uniform CO2 

distribution in a stratum-ventilated room challenges the provision of targeted indoor 

air quality. This study proposes an optimization on the fresh outdoor air ratio of 

stratum ventilation for both the targeted indoor air quality and maximal energy saving. 

A model of CO2 concentration in the breathing zone is developed by coupling CO2 

removal efficiency in the breathing zone and mass conservation laws. With the 

developed model, the ventilation parameters corresponding to different fresh outdoor 

air ratios are quantified to achieve the targeted indoor air quality (i.e., targeted CO2 

concentration in the breathing zone). Using the fresh outdoor air ratios and 

corresponding ventilation parameters as inputs, energy performance evaluations of the 

air conditioning system are conducted by building energy simulations. The fresh 

outdoor air ratio with the minimal energy consumption is determined as the optimal 
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one. Experiments show that the mean absolute error of the developed model of CO2 

concentration in the breathing zone is 1.9%. The effectiveness of the proposed 

optimization is demonstrated using TRNSYS that the energy consumption of the air 

conditioning system with stratum ventilation is reduced by 6.4% while achieving the 

targeted indoor air quality. The proposed optimization is also promising for other 

ventilation modes for targeted indoor air quality and improved energy efficiency.  

Keywords: Fresh outdoor air ratio; Targeted indoor air quality; Energy saving; CO2 

removal efficiency; Stratum ventilation  

Nomenclature 

�, �, � constant coefficients 

 

�� rated chiller capacity (kW) 

��� air changes per hour  ��	 room cooling load (kW) 

�
 specific heat capacity of air  
(1.004 kJ/(kg•⁰C)) ��	� chiller cooling load (kW) 

�
 exit CO2 concentration (ppm) �� proposed fresh airflow rate (ACH) 

�� 
outdoor CO2 concentration  
(400 ppm) 

��,� conventional fresh airflow rate (ACH) 

�� CO2 concentration in breathing 
zone (ppm) 

�� capacity ratio 

�� supply CO2 concentration (ppm) �� COP ratio 

��� coefficient of performance (5) �
 exit air temperature (⁰C) 

�� total energy consumption (kJ/hr) ���� inlet cooling water temperature (⁰C) 

�����	 chiller energy consumption (kJ/hr) ���� outlet chilled water temperature (⁰C) 

��� !	 fan energy consumption (kJ/hr)  �� room air temperature (⁰C) 

��"#$"	 pump energy consumption (kJ/hr) �� supply air temperature (⁰C) 

%%&� fraction of full load power  ' room volume (m3) 

( CO2 generation rate (m3/s) )� ! fan efficiency (70%) 

* number of room occupants  )"#$" pump efficiency (60%) 

j j,- case . �/ air density (1.2 kg/m3) 

01 � 2 water flow rate (kg/s)  .345 CO2 gas density (kg/m3) 

6�� mean absolute error (%)  .� 2 water density (1000 kg/m3) 

7 number of cases  ∆ℎ head of water flow (m) 
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: supply airflow rate (ACH)  ∆� �/ total pressure (Pa) 

PLR part load ratio  ; fresh outdoor air ratio (%) 

�6' Predicted Mean Vote  < CO2 removal efficiency in breathing 
zone 

 

1. Introduction 

Modern people spend most of their time (80%-90%) in indoor environments [1, 

2]. Indoor air quality significantly affects occupants’ health and productivity 

[3, 4]. For quality indoor air, the fresh outdoor air is conditioned and supplied 

into the indoor environment by the air conditioning system, so that the indoor 

air pollutants can be diluted. However, conditioning the fresh outdoor air 

consumes more energy when its enthalpy is higher than that of indoor air, 

particularly in subtropical/tropical and humid regions [5-7]. Besides indoor air 

quality, improving the energy efficiency of the air conditioning system is also 

a common concern, since the air conditioning system accounts for the 

significant part (around 50%) of the building energy consumption [8, 9]. 

Taking into consideration both indoor air quality and energy efficiency of the 

air conditioning system, a part of the indoor air is recirculated in practice. The 

recirculated indoor air and fresh outdoor air constitute the air supplied into the 

indoor environment. The airflow rate of the fresh outdoor air is required to 

satisfy indoor air quality, and the total air supply, which determines the air 

movement, to the indoor environment is required to meet the requirement of 

thermal comfort [10-12]. The ratio of the fresh outdoor airflow rate to the total 

supply airflow rate is defined as the fresh outdoor air ratio [13, 14]. Intuitively, 

increasing the fresh outdoor air ratio might improve the indoor air quality but 

deteriorate the system energy efficiency. Thus, the fresh outdoor air ratio 

needs to be optimized to provide satisfactory indoor air quality and minimize 

the energy consumption of the air conditioning system simultaneously.  

The air conditioning system with stratum ventilation can energy efficiently 

create a health and thermally comfortable indoor environment [15-18]. It 

horizontally supplies conditioned air into the breathing zone, thereby resulting 

in lower concentration of air pollutants in the breathing zone than that of 
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mixing ventilation [19, 20]. The air distribution pattern of stratum ventilation 

is a “sandwich”, with the lowest air temperature and the highest air velocity at 

the head level [21, 22]. The head is the most sensitive part of the body 

regarding thermal comfort, so that stratum ventilation can efficiently cool the 

body and provide thermal comfort [23]. Stratum ventilation has been 

experimentally verified to provide a uniformly comfortable thermal 

environment for a group of occupants [17]. Air movement is preferred at 

thermally neutral and slightly warm thermal environments [22], and is 

recommended to be not greater than 0.8 m/s [24]. With satisfactory indoor air 

quality and thermal comfort, stratum ventilation can reduce the annual energy 

consumption of the air conditioning system by at least 37.7% as compared 

with mixing ventilation [25]. Stratum ventilation is designed for 

small-to-medium sized rooms [24], and has been experimentally confirmed to 

be able to provide a uniform thermal environment for occupants in multiple 

rows [17, 26, 27]. 

To achieve high performance in practice, stratum ventilation is required to be 

carefully operated [16, 22]. However, few existing studies on the operation 

optimization of stratum ventilation are available [25, 28]. Zhang et al. [12] 

proposed an operation optimization of the supply air temperature and supply 

airflow rate for stratum ventilation to achieve the targeted thermal condition 

and save energy. For this operation optimization, the fresh outdoor air ratio is 

determined to introduce a constant amount of the fresh outdoor air according 

to the minimal requirement of ASHRAE Standard 62 [25, 29]. ASHRAE 

Standard 62 stipulates the minimal fresh outdoor airflow rate of 10 L/s per 

person to account for both human bio-effluents and contaminants related to 

building materials and furnishings [11, 25 30]. However, there are no 

justifications for the stipulated minimal amount of the fresh outdoor air 

whether it is adequate for indoor air quality [31]. An appropriate operation 

with a variable amount of the fresh outdoor air can generally provide more 

energy efficient indoor air quality compared with that of the constant fresh 

outdoor air. The appropriate operation with a variable amount of the fresh 

outdoor air has been reported to save energy up to 60% by the studies on 

different air conditioning systems under different outdoor weather conditions 
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[31, 32]. Thus, the operation optimization on the fresh outdoor air ratio of 

stratum ventilation is needed for energy efficiency improvement while 

providing satisfactory indoor air quality.  

Quantifying the fresh outdoor air ratio based on demand-controlled ventilation 

is getting more and more attentions from researchers and policymakers for 

both indoor air quality and energy saving [31]. Demand-controlled ventilation 

adjusts the fresh outdoor air ratio as a response to the indoor pollutant load 

[33, 34]. The indoor pollutant load is indicated by the concentration of a 

pre-defined surrogate of indoor air quality, e.g., CO2, humidity and radon [35, 

36]. The demand-controlled ventilation methods essentially control the fresh 

outdoor airflow rate to achieve the targeted indoor CO2 concentration when 

CO2 is used as the surrogate of indoor air quality [37, 38]. CO2 is a widely 

used surrogate of indoor air quality [32, 39]. Although indoor CO2 

concentration can be up to 10,000 ppm without severe health damage on 

occupants, a high indoor CO2 concentration indicates that the fresh airflow 

rate is inadequate to dilute indoor pollutants [39, 40]. For acceptable indoor 

air quality, indoor CO2 concentration can be below 1000 ppm or 650 ppm 

above that of outdoor air [40, 41].  

The accurate measurement/prediction of indoor CO2 concentration is the core of the 

demand-controlled ventilation [34, 42]. Based on the methods of obtaining the indoor 

CO2 concentration, demand-controlled ventilation is classified into sensor-based and 

model-based types [31, 43]. However, the non-uniform distribution of indoor CO2 

under stratum ventilation challenges both types of the demand-controlled ventilation 

[44]. Experiments showed that under stratum ventilation, the ratio of CO2 

concentration difference between the exit air and supply air to that between air in 

breathing zone and supply air could reach 1.76, indicating a substantial 

non-uniformity of indoor CO2 distribution [45]. The CO2 concentration in the 

breathing zone is most critical to the inhaled air quality. However, the existing 

model-based demand-controlled ventilation is developed for an indoor environment 

with a uniform indoor CO2 distribution, and cannot accurately predict the 

non-uniform indoor CO2 distribution under stratum ventilation [46]. As a result, 

implementing the existing model-based demand-controlled ventilation for stratum 
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ventilation would fail to maintain the targeted CO2 concentration in the breathing 

zone thereby deteriorating the inhaled air quality [47]. For the sensor-based 

demand-controlled ventilation, the non-uniform distribution of indoor CO2 requires 

multiple sensors to be installed in the breathing zone. The multiple-sensors in 

breathing zone firstly increase the initial cost and operation complexity, and secondly 

obstruct the space use of the occupants [48]. Practically, the non-uniform distribution 

of the indoor CO2 concentration is commonly encountered under different ventilation 

modes, e.g., mixing ventilation, displacement ventilation and task/ambient air 

conditioning system [49-52]. Since the existing demand-controlled ventilation 

methods ignore the non-uniformity of indoor CO2 concentration distribution, the field 

tests in school and office buildings have reported that the existing demand-controlled 

ventilation methods failed to provide the targeted indoor air quality [47]. Moreover, 

the existing demand-controlled ventilation methods harvest the energy saving mainly 

from the variation of the number of occupants [31, 53]. When the number of 

occupants decreases, the fresh outdoor airflow rate can be decreased to save energy 

[53, 54]. However, when the number of occupants is fixed, by properly determining 

the supply air parameters, the indoor air distribution has potential to be improved to 

more energy-efficiently provide indoor air quality [45, 47, 51]. Since the existing 

demand-controlled ventilation methods ignore the effects of supply air parameters on 

the indoor air distribution, they are unable to capture the associated energy saving.  

This study proposes an optimization of the fresh outdoor air ratio for stratum 

ventilation to minimize the energy consumption of the air conditioning system 

and to achieve the targeted indoor air quality (i.e., targeted CO2 concentration 

in the breathing zone) simultaneously. The proposed optimization belongs to 

the model-based demand-controlled ventilation category. CO2 is used as the 

surrogate of indoor air quality. A model of CO2 concentration in breathing 

zone is developed and experimentally validated. The proposed optimization 

will be elaborated in Section 2, and its effectiveness will be demonstrated in 

Section 3. By accounting for the non-uniform distribution of indoor CO2 

concentration, the proposed method mainly has two advantages over the 

exiting demand-controlled ventilation methods. Firstly, the proposed method 

can control the CO2 concentration in the breathing zone at the targeted value 

using the developed model, while the existing demand-controlled ventilation 
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methods would fail to fulfill the targeted CO2 concentration in the breathing 

zone. Secondly, the proposed method can properly determine the supply air 

parameters to improve indoor air distribution to more energy-efficiently 

provide indoor air quality, while the existing demand-controlled ventilation 

methods cannot. The proposed method can be conveniently implemented in 

practice. This is because the developed model mainly requires the inputs of 

the supply airflow rate and fresh outdoor air ratio which can be obtained from 

the building management system. Thus, the proposed method contributes to 

the proper operation of stratum ventilation to achieve both the targeted indoor 

air quality and maximal energy saving. Moreover, the proposed method is also 

promising for other ventilation modes with non-uniformly distributed indoor 

CO2 concentration as discussed in Section 4. 

2. Methodology  

2.1 Overview of proposed optimization on fresh outdoor air ratio 

As shown in Figure 1, the proposed optimization on the fresh outdoor air ratio 

of stratum ventilation mainly includes two issues: (1) modeling CO2 

concentration in breathing zone and (2) energy performance evaluations of the 

air conditioning system with different fresh outdoor air ratios. For the first 

issue, following the law of mass conservation, under steady states, the mass 

sum of the CO2 entering the room in the supply air and the CO2 generated 

indoors is equal to the mass of CO2 removed by the exit air (Equation 1); and 

the CO2 concentration in the supply air equals the CO2 concentration in the 

mixture of the recirculated air and fresh outdoor air (Equation 2) (Figure 2) 

[29, 43]. CO2 removal efficiency in breathing zone is used to correlate CO2 

concentrations in the breathing zone, supply air and exit air (Equation 3). 

Therefore, CO2 concentration in breathing zone is quantified by the fresh 

outdoor air ratio, outdoor CO2 concentration, supply airflow rate, indoor CO2 

generation rate and CO2 removal efficiency in breathing zone (Equation 4) 

(i.e., =� in Figure 1). Then the CO2 removal efficiency in breathing zone is 

correlated to the supply airflow rate based on experiments (i.e., =� in Figure 

1). The CO2 removal efficiency in the breathing zone might be affected by the 

supply airflow rate, supply air temperature and exit air temperature [45]. 
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However, the preliminary analyses show that only the supply airflow rate is 

statistically significant to the CO2 removal efficiency in the breathing zone 

(Section 3.1). The correlation between the CO2 removal efficiency in the 

breathing zone and the supply airflow rate will be validated by the 

experiments (Section 3.1). In this study, the breathing zone refers to the zone 

between the heights of 0.9 m and 1.3 m above the floor for seated occupants 

[45]. However, when other special zones are concerned, the proposed method 

is also applicable by replacing the CO2 concentration in the breathing zone 

(Equations 3 and 4) with the CO2 concentration of the specifically concerned 

zone (e.g., the occupied zone as discussed in Section 4). 

.345:'��
3600 + .345(

10C − .345:'�

3600 = 0																																(1) 

�� = (1 − ;)�
 + ;��																																																				(2) 
< = �
 − ��

�� − �� 																																																																		(3) 

�� = �� + 3600(
:'< + 3600((1 − ;)

:'; 																																				(4) 
where �
, ��, �� and �� are CO2 concentrations in exit air, outdoor air, breathing 

zone and supply air respectively (ppm); ( is the indoor CO2 generation rate which is 

determined by the number of occupants [50] (m3/s); : is the supply airflow rate 

(ACH); ' is the volume of indoor environment (m3); .345 is the CO2 gas density 

(kg/m3) and is regarded as constant for the indoor environment; ; is the fresh 

outdoor air ratio (%); < is CO2 removal efficiency in the breathing zone.  
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Fig.1. Flowchart of proposed optimization on fresh outdoor air ratio for stratum 

ventilation. 
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Fig.2. Schematic diagram of air side and water side of air conditioning system.  

Based on the validated correlation (i.e., =� in Figure 1), the CO2 removal 

efficiency in the breathing zone can be replaced by the supply airflow rate for 

quantifying the CO2 concentration in the breathing zone (i.e., =� in Figure 1). 

As a result, the CO2 concentration in the breathing zone is modeled as a 

function of the fresh outdoor air ratio, outdoor CO2 concentration, supply 

airflow rate, indoor CO2 generation rate (i.e., =J in Figure 1). The outdoor 

CO2 concentration can be monitored by the building management system, or 

assumed to be constant since its variation is relatively small (e.g., the outdoor 

CO2 concentration in Hong Kong can be assumed to be 360 ppm) [39, 55]. The 

supply airflow rate can also be monitored by the building management system 

[28]. The indoor CO2 generation rate can be calculated from the indoor 

occupancy [56, 57]. Thus, the CO2 concentration in the breathing zone can be 

determined by the fresh outdoor air ratio. The model of CO2 concentration in 

breathing zone is directly derived from the conservation of mass law and the 

experimentally validated correlation of the CO2 removal efficiency in the 

breathing zone, thus the model of CO2 concentration in the breathing zone is 

reliable. The accuracy of the model of CO2 concentration in the breathing zone 
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will be demonstrated by comparing its predicted CO2 concentrations in the 

breathing zone with those from the experiments (Section 3.2).  

For the second issue, with the given outdoor CO2 concentrations and indoor 

CO2 generation rate, one supply airflow rate is determined for each fresh 

outdoor air ratio to achieve the targeted CO2 concentration in the breathing 

zone according to the model of CO2 concentration in the breathing zone (i.e., 

=J in Figure 1). With the determined supply airflow rate, the air temperature 

in the occupied zone is calculated to meet the requirement of thermal comfort 

according to the modified PMV model for stratum ventilation (Equation 5) [12, 

58, 59]. The other two ventilation parameters (i.e., supply air temperature and 

exit air temperature) can be solved by the requirement of heat removal of the 

indoor environment (Equation 6) and air distribution characteristics of stratum 

ventilation (Equation 7) [60]. The heat required to be removed from the indoor 

environment (i.e., room cooling load) can be simulated by building models in 

TRNSYS or by other existing room cooling load prediction models [61, 62]. It 

is noted that since the indoor air temperature distribution of stratum 

ventilation is non-uniform [26, 27, 63], TRNSYS [64] is recommended to be 

integrated with the multi-node model [65] to accurately predict the room 

cooling load. The targeted CO2 concentration in the breathing zone can be 

determined in compliance with standards of indoor air quality or according to 

the preferences of the users. Thus, for each fresh outdoor air ratio, the 

corresponding ventilation parameters of the supply airflow rate, supply air 

temperature and exit air temperature are obtained for stratum ventilation, 

which satisfies the targeted indoor air quality. The fresh outdoor air ratios and 

corresponding ventilation parameters are used as inputs for the energy 

performance evaluation of the air conditioning system by building energy 

simulation tools (e.g., TRNSYS [64]). The fresh outdoor air ratio with the 

minimal energy consumption of the air conditioning system is identified as the 

optimum. Therefore, the proposed optimization can identify the optimal fresh 

outdoor air ratio and the corresponding ventilation parameters to maximize the 

energy saving of the air conditioning system and achieve targeted indoor air 

quality simultaneously. It is noted that the proposed method can also satisfy 

different thermal comfort preferences by replacing the PMV value of zero in 
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Figure 1 with the preferred value. Since the main contributions of this study 

are to optimize the fresh outdoor air ratio for the targeted CO2 concentration in 

the breathing zone and the maximal energy efficiency, the merit of the 

proposed method of providing the preferred PMV is not emphasized. 

�6' = − 7
91300:��

� + 19
50�� −

689
74 																																										(5) 

��	 =
:'. �/�

3600 (�
 − ��)																																																							(6) 

�� − ��
�
 − �� 		=

:'(11.787 − 0.432��)
3600��	 + 0.419																																		(7) 

where �
 is the specific heat capacity of air ((kJ/(kg∙⁰C)); �6' is Predicted 

Mean Vote; �
, �� and �� are the temperatures of the exit air, air in the occupied 

zone and supply air (⁰C); ��	 is the room cooling load (kW). 

2.2 Experiments for modeling CO2 concentration in breathing zone 

A typical office cooled with stratum ventilation at Xi’an Jiaotong University, Xi’an, is 

shown in Figure 3. The cool air is supplied from the middle level of one side wall and 

exhausted from the ceiling. The inlet terminal is a 200 mm × 195 mm grille, and the 

exit terminal is a 600 mm × 600 mm perforated panel. The office is designed for two 

occupants, with the dimensions of 3800 mm (length) × 2800 mm (width) × 2600 mm 

(height) as the experiments described by Huan et al. [45]. This environmental 

chamber is surrounded by an air-conditioned room. The heat generation by the electric 

heating film embedded in one side wall (regarded as the exterior wall) is used to 

simulate the effects of outdoor weather condition. The other walls are insulated and 

assumed to be the interior enclosure without heat transmission from the ambiance. 

The internal heat sources include two occupants (65 W each), two computers (80 W 

each) and two lamps (70 W each). The two seated occupants are simulated by 

manikins, with the dimensions of 400 mm (length) × 250 mm (width) × 1200 m 

(height). Each manikin is heated by bulbs with a power of 65 W. At the 1.1 m height 

of the manikin, CO2 is released to simulate the exhalation, with a flow rate of 320 

ml/min and a temperature of 36⁰C. Eight sampling lines for CO2 concentration are 
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placed on one side of the symmetric axis of the office (Figure 3), with three sampling 

points for each sampling line in breathing zone for sedentary occupants (i.e., at the 

heights of 0.9 m, 1.1 m and 1.3 m). The TES-1370 non-dispersive infrared radiation 

system is used to measure CO2 concentration, with a measuring accuracy of Q3% for 

the measuring range of 0 ppm to 6000 ppm.  

 

Note: L1-L8 are the sampling lines of CO2 concentration for seated occupants, with 
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three height levels of each sample line, i.e., 0.9 m, 1.1 m and 1.3 m.   

Fig.3. (a) Setup of environmental chamber and (b) sampling lines for CO2 

concentration in breathing zone.  

Thirteen experimental cases are designed to cover a wide range of the supply airflow 

rate from 5 ACH to 17 ACH and the supply air temperature from 17⁰C to 21⁰C for a 

broad range of the room cooling load from 0.43 kW to 1.49 kW. The room cooling 

load is adjusted by the electric heating film simulating the heat gain from the 

ambiance. For all experimental cases, the air temperature in the occupied zone is 

controlled within 25.7⁰C to 26.3⁰C for thermal comfort. The experimental cases are 

divided into Series 1 (Case 1-6) and Series 2 (Cases 7-13). Series 1 is used for the 

correlation identification of the CO2 removal efficiency in the breathing zone by 

ANOVA (analysis of variance) and multiple regression (Section 2.1). Series 2 is not 

involved in the correlation identification but used for validating the developed 

correlation. Both the experiments for model development and validation are randomly 

determined. However, the experiments for model validation (Experiments 7-13) are 

designed to cover a broader range of the supply airflow rate than that of the 

experiments for model development (Experiments 1-6) to test the robustness of the 

developed model of CO2 concentration in the breathing zone (see Section 3.1). More 

detailed information on the experiments can be found in Huan et al. (2016) [45].  
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Table 1. Experimental case designs and resulted CO2 removal efficiency in the 

breathing zone.  

Cases ��	 (kW) N (ACH) �� (℃) �� (℃) < 

Series 1 

1 0.43 5.7 21 25.8 1.70 
2 0.76 7.2 17 25.7 1.62 
3 0.76 9.2 19 26.0 1.40 
4 1.24 9.5 17 25.8 1.51 
5 0.99 11 19 26.0 1.34 
6 1.24 15 19 26.1 1.32 

Series 2 

7 0.54 5 17 25.7 1.76 
8 0.54 6.5 19 26.3 1.68 
9 0.99 8.5 17 26.3 1.52 
10 0.54 9 21 25.7 1.51 
11 1.49 10.2 17 25.7 1.48 
12 0.76 11.5 21 25.8 1.35 
13 0.99 17 21 25.9 1.29 

Note: N is the supply airflow rate; ��	 is the room cooling load; �� and �� are the 

room air temperature and supply air temperature respectively; Series 1 is used for the 

correlation identification of CO2 removal efficiency in the breathing zone (<), and 

Series 2 is not involved in the correlation identification but used for the correlation 

validation. 

2.3 Energy performance evaluation of air conditioning system 

TRNSYS [64], one of the most popular building simulation tools, is used for the 

energy performance evaluation of the air conditioning system (Figure 2). The energy 

consumption of the air conditioning system is mainly counted by the water-cooled 

chiller (including the chiller and cooling water loop), pumps of the primary and 

secondary chilled water loops and ventilation fans [66, 67]. Energy performance 

models of these components in TRNSYS are standardized and have already been 

validated by the developers (e.g., Type 666 for the chiller, Type 742 for the constant 

speed pump in the primary chilled water loop, Type 741 for the variable speed pump 

in the secondary chilled water loop, Type 744 for the ventilation fan), which are the 

same as those in previous studies [12, 67-72]. The energy consumption of the chiller 

is calculated from Equations 8-12, and the energy consumptions of the pumps and 

fans are estimated using Equations 13 and 14 respectively [71-73]. The key 
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parameters of the air conditioning system in TRNSYS are summarized in Table 2, 

more detailed descriptions of the energy consumption evaluation of the air 

conditioning system are available in studies [67-72].  

�����	 = 3600%%&�	 ��	�����	�� 																																														(8) 
%%&� = =S(�&T)																																																													(9) 
�&T = ��	�

��	�� 																																																																(10) 
�� = =U(����, ����)																																																										(11) 
�� = =C(����, ����)																																																										(12) 

where ���	is the rated chiller COP, which is set to 5; �����	is the chiller energy 

consumption (kJ/hr); %%&� is the fraction of full load power which is related to the 

part load ratio (i.e., =S provided by TRNSYS) [64, 74]; �&T is the part load ratio; 

�� is the rated chiller capacity (kW) [68]; and ��	� is the chiller cooling load [66]; 

�� is the capacity ratio, which is calculated from the outlet chilled water temperature 

(����) and inlet cooling water temperature (����) (i.e., =U provided by TRNSYS) 

[64]; ��  is the COP ratio, which is calculated from the outlet chilled water 

temperature and inlet cooling water temperature (i.e., =C provided by TRNSYS) [64]. 

��"#$"	 = 	360001 � 2 	∆ℎ
)"#$"	.� 2 																																																				(13) 

��� !	 = :'	∆�VWX
	)� ! 																																																										(14) 

where ��� !	 is the fan energy consumption (kJ/hr); ��"#$"	is the pump energy 

consumption (kJ/hr); 01 � 2 is the water flow rate (kg/s) [71]; )� ! is fan efficiency, 

which is set to 70%; )"#$" is pump efficiency, which is set to 60%; .� 2 is water 

density (kg/mJ); ∆ℎ is the head of the water flow (m) [75]; ∆� �/	is the total 

pressure (Pa) [71]. 
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Table 2. Key parameters of the air conditioning system [68]. 

Component  Parameter Value Unit 

Chiller 

(Type 666) 

Rated COP 5 - 

Set point temperature of chill 

water 

7 ℃  

Cooling water temperature  32 ℃ 

Variable speed Pump  

(Type 741 ) 

Overall pump efficiency 60 % 

Motor efficiency 90 % 

Constant speed Pump  

(Type 742 ) 

Overall pump efficiency 60 % 

Motor efficiency 90 % 

Pressure drop 100 kPa 

Ventilation fan 

(Type 744 ) 

Overall fan efficiency 70 % 

Motor efficiency 90 % 

 

3. Results 

3.1 Correlation between CO2 removal efficiency in breathing zone and supply airflow 

rate 

Table 1 and Figure 4 show that the CO2 removal efficiency in the breathing zone of 

Series 1 and Series 2 from the experiments ranges from 1.29 to 1.76, indicating that 

the CO2 distribution of stratum ventilation is significantly non-uniform. The maximal 

CO2 removal efficiency is achieved at the supply airflow rate of 5 ACH (Experiment 

7), and the minimal CO2 removal efficiency is achieved at the supply airflow rate of 

17 ACH (Experiment 13). Based on the results of Series 1, the CO2 removal 

efficiency in the breathing zone is correlated to the supply airflow rate as shown in 

Equation 15, with a coefficient of determination T� of 0.91. Software Design Expert 

[76] is used to obtain the regression model of Equation 15. The CO2 removal 

efficiency in the breathing zone of Series 1 predicted by the correlation agrees 

reasonably with the experimental data, with a maximal absolute error no greater than 

5% and a mean absolute error of 2.5% (Equation 16 [77]). The correlation is further 

validated that the maximal absolute error for Series 2 is no greater than 5% except 

Case 11 (5.4%) and the mean absolute error is 2.5%. Thus, the correlation between 

CO2 removal efficiency in the breathing zone and supply airflow rate is accurate.  

< = 0.0054:� − 0.1565: + 2.4344, T� = 0.91(15) 
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6�� =
∑ ^0_�` − a�_`

0_�` ^!̀b�
7 																																												(16) 

where 6�� is the mean absolute error; 0_�` and a�_`	are the measurement and 

prediction respectively; j is for the j,- case; 7 is the number of cases. 

Moreover, the validations imply that the correlation is general, which can be extended 

to conditions beyond those used for the correlation identification. The correlation is 

identified under conditions with a supply airflow rate from 5.7 ACH to 11 ACH (i.e., 

Series 1 in Table 1), but can be satisfactorily applied to conditions with a supply 

airflow rate extended to between 5 ACH and 17 ACH (i.e., Series 2 in Table 1). The 

generality of the developed correlation will be further discussed in Section 4 by 

extending to other ventilation modes.  

  

Note: Error bar of Q5% indicates that the relative difference between the predicted 

and measured CO2 removal efficiencies in the breathing zone is within Q5%. 

Fig.4. Comparisons between predicted and measured CO2 removal efficiencies in 

breathing zone.  

3.2 Model of CO2 concentration in breathing zone 

By replacing the CO2 removal efficiency in the breathing zone (<) in Equation 4 with 
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the validated correlation in Section 3.1 (i.e., Equation 15), the model of CO2 

concentration in the breathing zone is finally expressed as Equation 17. Since 

Equation 4 is the equation of the CO2 mass conservation (Section 2.1) and Equation 

15 has been experimentally validated, Equation 17 (i.e., the model of CO2 

concentration in the breathing zone) should be regarded as accurate. This is further 

validated by the experiments. As shown in Figure 5, for Cases 1-13, the predicted 

CO2 concentration in the breathing zone by the model (Equation 17) is fairly close to 

that of the experiments (Section 2.2), with the maximal error less than 5% and the 

mean absolute error of 1.9%.  

�� = �� + 3600(
'(0.0054:J − 0.1565:� + 2.4344:			) +

3600((1 − ;)
:'; 								(17) 

 

Note: Error bar of Q5% indicates the relative difference between the predicted and 

measured CO2 concentrations in the breathing zone is within Q5%. 

Fig.5. Comparisons between predicted and measured CO2 concentrations in breathing 

zone. 

3.3 Energy consumptions of different fresh outdoor air ratios 

The room studied is the same as the environmental chamber in Figure 3 (Section 2.2). 

The cooling load is 0.96 kW (i.e., 90 W/m2) [45]. The outdoor air temperature and 
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relative humidity are 33.5⁰C and 68% respectively [78]. The outdoor CO2 

concentration is 400 ppm [39]. For each fresh outdoor air ratio, the ventilation 

parameters including the supply airflow rate, fresh outdoor airflow rate and 

temperatures of supply and exit air are quantified to achieve the targeted CO2 

concentration of 1000 ppm in the breathing zone (Section 2.1) (Table 3).  

Table 3. Ventilation parameters corresponding to different fresh outdoor air ratios for 

targeted indoor air quality quantified by the proposed optimization.  

; (%) 
: 

 (ACH) 
�� 

 (ACH) 
�c 

(⁰C) 
�
 

(⁰C) 
10.0 22.2 2.2 25.4 30.1 
12.5 17.9 2.2 23.3 29.1 
15.0 14.9 2.2 21.7 28.7 
17.5 12.7 2.2 20.3 28.5 
20.0 10.9 2.2 19.1 28.6 
22.5 9.6 2.2 17.9 28.7 
25.0 8.5 2.1 16.7 28.9 
27.5 7.6 2.1 15.6 29.2 
30.0 6.8 2.0 14.4 29.6 
32.5 6.2 2.0 13.2 30.0 

Note: : is the supply airflow rate; �� is the fresh outdoor airflow rate; ; is the 

fresh outdoor air ratio; �d and �c are the temperatures of exit air and supply air 

respectively. 

Figure 6 shows that the proposed optimization can maintain the targeted CO2 

concentration of 1000 ppm in the breathing zone, while the conventional method fails 

to meet the targeted CO2 concentration in the breathing zone. The conventional 

method refers to that the fresh outdoor airflow rate is 10 L/s for each occupant which 

takes into consideration CO2 removal efficiency in the breathing zone (Equation 18) 

[24]. When the fresh outdoor air ratio increases from 10% to 17.5%, the CO2 

concentration in the breathing zone with the conventional method decreases from 

1123 ppm to 1073 ppm. When the fresh outdoor air ratio continuously increases to 

32.5%, the CO2 concentration in the breathing zone with the conventional method 

increases to 1243 ppm. The corresponding supply airflow rate decreases from 18.7 

ACH to 4.3 ACH, which is calculated from the fresh outdoor airflow rate and fresh 

outdoor air ratio. When the fresh outdoor air ratio increases to be larger than 32.5%, 
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the supply airflow rate of the conventional method decreases to be less than 4 ACH 

which might deteriorate the ventilation efficiency and even fail to satisfy the airflow 

characteristics of stratum ventilation due to the too small supply momentum [45]. 

Thus, the fresh outdoor air ratio larger than 32.5% is not considered. The variations of 

the CO2 concentration in the breathing zone with the conventional method are mainly 

caused by the variations of the CO2 removal efficiency in the breathing zone, which 

firstly decreases and then increases with the variations of the supply airflow rate 

(Equation 15). The CO2 concentration in the breathing zone with the conventional 

method is also calculated by the model validated for the CO2 concentration in the 

breathing zone (Equation 17), while the supply airflow rate is different from the 

proposed optimization. The proposed optimization increases the supply airflow rate 

thereby the fresh outdoor airflow rate as compared with the conventional method 

(Figure 6), so that the CO2 concentration in the breathing zone with the proposed 

optimization can be maintained at 1000 ppm (Section 2.1).  

��,� = 36*	
<' 																																																									(18) 

where ��,� is the fresh outdoor airflow rate with the conventional method (ACH); * 

is the number of occupants.   

Although the CO2 concentration in the breathing zone with the conventional method 

could be different from that shown in Figure 6 when the outdoor CO2 concentration 

and indoor occupancy change, the variations of the CO2 concentration in the breathing 

zone indicate that the conventional method fails to maintain the CO2 concentration 

constant at the targeted level in the breathing zone. The main reason for the 

conventional method failing to maintain the targeted CO2 concentration in the 

breathing zone is that the conventional method assigns a fixed airflow rate of fresh 

outdoor air for one occupant (i.e. 10 L/s) which has not been justified [31].  
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Fig.6. Comparisons between proposed and conventional methods: Variations of 

supply airflow rate and CO2 concentration in breathing zone with fresh 

outdoor air ratios.  

Using the ventilation parameters listed in Table 3 as the inputs, Figure 7 shows the 

variations of the energy consumptions of the air conditioning system and its 

components with the fresh outdoor air ratios from the proposed optimization. Since 

the conventional method fails to provide the targeted indoor air quality, one of the 

primary tasks of the air conditioning system, it makes no sense to evaluate the energy 

performance of the air conditioning system with the conventional method [2, 31]. 

With the proposed method, when the fresh outdoor air ratio increases from 10% to 

32.5%, the energy consumption of the ventilation fan decreases from 890 kJ per hour 

to 170 kJ per hour. This is because the supply airflow rate decreases with the 

increasing fresh outdoor air ratio (Figure 6). However, the energy consumptions of the 

chiller and pumps increase from 1082 kJ per hour to 1807 kJ per hour. This is mainly 

caused by the largely reduced supply air temperature (Table 3) thereby a lower 

coefficient of performance (COP) of the chiller [64, 79, 80]. Although Table 3 also 

shows the fresh outdoor airflow rate slightly decreases from 2.2 ACH to 2.0 ACH 

which helps to decrease the chiller cooling load thereby reducing the energy 

consumption, its effects are overwhelmed by those of the largely decreased supply air 
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temperature. As a trade-off between the variations of the energy consumption of the 

ventilation fan and those of the chiller and pumps, the total energy consumption of the 

air conditioning system firstly decreases and then increases with the minimal value 

achieved at the optimal fresh outdoor air ratio of 15%. Compared with the worst case 

(i.e., the fresh outdoor air ratio of 32.5%), the energy saving by the optimal fresh 

outdoor air ratio is 6.4%. Adopting the worst case as the benchmark is because no 

commonly recommended fresh outdoor air ratios for stratum ventilation are available.  

 

 
Fig.7. Variations of energy consumptions of air conditioning system and its 

components with fresh outdoor air ratios.  

When the outdoor weather condition varies, the room cooling load also varies and the 

corresponding ventilation parameters for the targeted indoor air quality change 

(Section 2.1). With changed input ventilation parameters, the energy consumption of 

the air conditioning system would also change. The variations of the outdoor weather 

condition also affect the ventilation cooling load thereby impacting the energy 

performance of the air conditioning system [81]. Thus, the optimal fresh outdoor air 

ratio and its corresponding ventilation parameters need to be updated according to the 

outdoor weather condition [82]. It is noted that TRNSYS is just one of the feasible 
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methods for the energy consumption evaluation of the air conditioning system. If the 

meteorological data and the performance data of the air conditioning system are 

available, similar to Study [83], the energy performance models of the air 

conditioning system can be coded to calculate the energy consumption by hand. 

4. Discussion 

The above case studies demonstrate the effectiveness of the proposed optimization 

method on the fresh outdoor air ratio for stratum ventilation to achieve both the 

targeted air quality and maximal energy saving. For the optimization method, three 

elements are specific for stratum ventilation, i.e., the model of the CO2 concentration 

in the breathing zone (Equation 17), the PMV model (Equation 5) and the air 

distribution characteristics (Equation 7). As long as these three elements are available 

for other ventilation modes, the proposed optimization can also be applied. Both the 

PMV model and air distribution characteristics for other ventilation modes (e.g., 

mixing ventilation and displacement ventilation) can be derived according to the 

methods reported in the previous studies [12, 16]. Thus, when the model of the CO2 

concentration in the breathing zone for other ventilation modes is available, the 

proposed optimization can be extended to those ventilation modes. It is noted that 

when the design of stratum ventilation substantially changes (e.g., different terminal 

layouts), Equations 5, 7 and 15 are also recommended to be revised according to the 

methods proposed by Study [12], Study [16], and this study (Section 2.1) respectively.  

Krajčík et al. [51] experimentally determined that the CO2 removal efficiency in the 

occupied zone of the three different ventilation modes (Modes A, B and C in Figure 8) 

can also be correlated to the supply airflow rate in a way similar to Equation 15. They 

focused on the CO2 concentration in the occupied zone while this study focuses on the 

CO2 concentration in the breathing zone. The occupied zone is broader than the 

breathing zone [45, 51]. Controlling CO2 concentration in the occupied zone at a 

targeted level is a stricter requirement for indoor air quality. However, since the 

breathing zone is the critical zone for inhaled air quality, controlling CO2 

concentration in the breathing zone at a targeted level is adequate for indoor air 

quality [45]. It seems to be general for the CO2 removal efficiency of the breathing 

zone/occupied zone to be correlated to the supply airflow rate as presented in 
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Equation 19. Besides the experiments of this study and the study by Krajčík et al. [51], 

the experiments from Olesen et al. (2011) [84] and Jurelionis et al. (2015) [85] also 

confirmed the generality of the correlation between CO2 removal efficiency in the 

breathing zone/occupied zone and supply airflow rate presented in Equation 19. The 

constant coefficients in Equation 19 are different from ventilation modes to 

ventilation modes, and can be determined by experiments/CFD simulations using 

ANOVA (analysis of variance) and multiple regression. As a result, the model of the 

CO2 concentration in the breathing zone/occupied zone can be obtained as shown in 

Equation 20 by replacing the CO2 removal efficiency in the breathing zone/occupied 

zone in Equation 4 with Equation 19. Thus, the proposed optimization is also 

promising for other ventilation modes for the targeted indoor air quality and maximal 

energy saving.   

< = �:� + �: + �																																																							(19) 
�� = �� + 3600(

'(�:J + �:� + �:) +
3600((1 − ;)

:'; 																													(20) 
where �, � and � are the three constant coefficients in the correlation between the 

CO2 removal efficiency in the breathing zone/occupied zone and supply airflow rate.  
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Note: The results are reported by Krajčík et al. (2012) [51]; for Mode A, both the 

supply and exit air terminals are on the ceiling; for Mode B, both the supply and exit 

air terminals are on the upper part of the same wall with the supply air terminal 

above the exit air terminal; for Mode C, the supply air terminal is on the ceiling and 

the exit air terminal is on the wall at floor level. 

Fig.8. Variations of CO2 removal efficiency in occupied zone with supply airflow 

rates for three ventilation modes.   

It is noted that the proposed method is oriented for the supervisory control. The 

supervisory control has been widely implemented for the operation optimization of 

the air conditioning system [86, 87]. It updates the optimal settings of the operation 

parameters with a certain frequency, usually one time per hour [57, 86]. The 

steady-state assumption of the proposed method (Section 2.1) is acceptable for a time 

interval of one hour [73, 88]. The local control, i.e., the dynamic control of CO2 

concentration with a smaller time interval (e.g., one minute) considering the 

non-uniform distribution of indoor CO2 concentration, needs to be further developed 
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in the future. 

5. Conclusions 

This study proposes an optimization method on the fresh outdoor air ratio of stratum 

ventilation for both targeted indoor air quality and maximal energy saving. The indoor 

air quality is indicated by the CO2 concentration in the breathing zone. A model of the 

CO2 concentration in the breathing zone is developed by coupling the CO2 removal 

efficiency in the breathing zone and the mass conservation law. Compared with the 

experiments, the mean absolute error of the model of the CO2 concentration in the 

breathing zone is 1.9%. Based on the model of the CO2 concentration in the breathing 

zone, for each fresh outdoor air ratio, the corresponding ventilation parameters can be 

quantified to maintain the CO2 concentration in the breathing zone at a targeted level. 

As a comparison, the conventional method fails to achieve the targeted CO2 

concentration in the breathing zone. Using the fresh outdoor air ratios and quantified 

ventilation parameters as inputs, evaluations of the energy performance of the air 

conditioning system are conducted by building energy simulations with TRNSYS. 

The fresh outdoor air ratio with the minimal system energy consumption is identified 

as the optimum. Case studies show that the proposed optimization reduces the system 

energy consumption by 6.4% while achieving the targeted indoor air quality. The 

proposed optimization method can contribute to the improved performances of the air 

conditioning system with stratum ventilation, and is also promising for the air 

conditioning system with other ventilation modes.  
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Highlights 

• Optimization method is proposed for fresh outdoor air ratio of stratum ventilation. 

• CO2 concentration in breathing zone is modeled and experimentally validated. 

• Targeted CO2 concentration in breathing zone is achieved. 

• Energy consumption of air conditioning system is minimized. 

• Proposed optimization is promising for other ventilation modes.  
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