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Abstract
We apply seven alternative t-distributions to estimate the market risk measures Value at 
Risk (VaR) and its extension Expected Shortfall (ES). Of these seven, the twin t-distri-
bution (TT) of Baker and Jackson (in Twin t distribution, University of Salford Manches-
ter. https​://arxiv​.org/abs/1408.3237, 2014) and generalized asymmetric distribution (GAT​) 
of Baker (in A new asymmetric generalization of the t-distribution, University of Salford 
Manchester. https​://arxiv​.org/abs/1606.05203​, 2016) are applied for the first time to esti-
mate market risk. We analytically estimate VaR and ES over 1-day horizon and extend this 
to multi-day horizon using Monte Carlo simulation. We find that taken together TT and 
GAT​ distributions provide the best back-testing results across individual confidence levels 
and horizons for majority of scenarios. Moreover, we find that with the lengthening of time 
horizon, TT and GAT​ models performs well, such that at the 10-day horizon, GAT​ provides 
the best back-testing results for all of the five indices and the TT model provides the second 
best results, irrespective period of study and confidence level.
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1  Introduction

From its very beginnings in the 1980s Value-at-Risk (VaR) as a measure of market risk 
has received widespread acceptance both amongst industry and regulators on account of 
its ease of calculation and intuitive interpretation. In its most basic form, VaR provides the 
worst possible loss at a given confidence level over a specific horizon. The main drawback 
of VaR, other than, that it is a single number is that there is no one accepted way of calcu-
lating it. It is possible that the use of different models will lead to different VaRs and that 
this could be very costly to financial institutions. In that, if VaR is over estimated, then the 
institution is tying of capital which it could use elsewhere for a higher return; or if it under 
estimates, then the firm is severely exposed to market down turns as it has not set aside 
correct amount of capital. The financial crisis of 2007–2008 has illustrated the drawbacks 
in stark terms of the VaR methodology and this has resulted in debate amongst academics, 
regulators and market practitioners. As part of this debate, the related measure to VaR, the 
expected shortfall (ES) is now given more prominence under Basel III.

Given the underlying nature of equity returns, forecasting of volatility is critical to the 
success of VaR models Siu (2018) and Chiou et  al. (2009) amongst others. The volatil-
ity clustering resulting from infrequent large jump has been modelled using GARCH type 
process of Bollerslev (1986). This basic GARCH model leads to the development of more 
advanced models such as EGARCH, NGARCH, which are explicitly able to incorporate 
the skewness and excess kurtosis that are observed in equity returns.

To calculate VaR and ES, GARCH models need to be enhanced with more complex dis-
tributions. One such approach has been the use of the family of t-distributions. The student 
t-distributions have played particularly significant role in financial research as models for 
the distribution of heavy-tailed phenomena such as financial markets data. However, stu-
dent t-distribution that allows for heavy tails than the normal, but assumes that the distribu-
tion is symmetric around zero. Huang and Lin (2014) compare the forecasting performance 
of several VaR models. Lin et al (2006) use historical simulation to estimate portfolio VaR. 
Baixaali and Alvarez (2006) consider the impact of excess kurtosis on VaR. Angelidis 
et al. (2007) examine different weighing schemes for robust VaR estimation. Wong et al 
(2012) model tail risk beyond VaR. The comparison focuses on the difference between 
normal distribution and student t-distribution. Mogel and Auer (2018) imply student t and 
extreme value theory to compute Value at Risk and compare them with historical simula-
tion other approaches. Their results suggest that historical simulation outperforms EVT-
based approach.

The student’s t-distribution can permit for kurtosis in the conditional distribution but not 
for skewness. Hansen (1994) was the first to propose a generalization of student’s t-distri-
bution that allowed modelling skewness in conditional distributions of financial returns.

In this study we compare the performance of seven different t-distributions. The first 
is the standardized t-distribution (ST) used by Bollerslev (1987). The second is the Twin 
t-distribution (TT) of Baker and Jackson (2014). This distribution is heavy-tailed like a 
ST distribution but closer to the normality at the central part of the curve. The third dis-
tribution is the Generalized t-distribution (GAT​) of Baker (2016). This distribution gener-
alizes the t-distribution through two types of skewness. Fourth and fifth distributions are 
the Asymmetric exponential power distribution (AEP) and its special case (SEP) of Zhu 
and Zinde-Walsh (2009). The sixth and seventh distributions are the Asymmetric student 
t-distribution (AST) and Skewed student t-distribution (SST) respectively of Zhu and Gal-
braith (2010).
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Our analysis focuses on datasets of five major stock indices covering S&P500, FTSE100, 
NASDAQ100, NIKKEI225 and DAX30 for the period 1995–2014. Calculation of 1-day 
ahead ES follows a two-stage procedure. In the first step, an asymmetric GARCH-type volatil-
ity model is fitted to the historical data by maximum likelihood estimation. From this model, 
the so-called standardized residuals are extracted. The asymmetric GARCH-type model is 
used to calculate 1-step predictions of conditional mean and conditional standard deviation. In 
the second step, various long tail and asymmetric distributions are applied to the standardized 
residuals and calculate with estimated parameters of distributions. Finally, 1 day ahead condi-
tional expected shortfall ESt+1 is calculated.

For the situation where the variance is time varying, going from 1-day-ahead to h-days-
ahead expected shortfall is not so straightforward. As in the case of GARCH, scaling by the 
horizon h is not attainable as variance mean revert. Additionally, the returns over the next 
h days are not normally distributed. To overcome this difficulty in calculating VaR and ES we 
use Monte Carlo simulation to generate the returns h- ahead.

We find overall EGARCH (1,1) provides the best fit for volatility for the indices considered 
in this study. We find substantial evidence in the improvement of our results with the use of 
EGARCH(1,1) combined with GAT​ and EGARCH(1,1) combined with TTD. When we com-
pare the GAT​ distribution proposed by Baker (2016) with AST distribution proposed by Zhu 
and Galbraith (2010) we find GAT​ outperforms AST by providing better fit to financial returns 
and more accurate forecast of the ES. As the empirical distribution of the financial returns has 
been reported to be asymmetric and shows a significant excess of kurtosis (Abad et al. 2014). 
The longer period ES forecasts is estimated using Monte Carlo Simulation with GAT​, AEPD, 
SEPD, AST, SST, ST and TT as standardized distributions of returns for world’s major five 
stock indices (S&P500, FTSE100, NASDAQ100, NIKKEI225 and DAX30).

The contribution of this paper is as follows. First, our study provides further support for the 
usefulness and superiority of fat tailed distributions especially asymmetric distributions in the 
major stock markets. Second, it proposes the use of fat tailed distribution to measure financial 
risk for a longer horizon. In contrast to the current literature that mainly focuses on the 1 day 
ahead ES, our approach considers the usefulness of fat tail distribution for calculation of ES 
beyond 1-day. To the best of our knowledge, our research is the first to consider two new dis-
tributions and compare them with other previous distributions for ES calculation.

The remainder of this paper is organized as follow: Sect. 2 addresses the methodological 
framework. Results are discussed in Sect. 3. Section 4 concludes the findings.

2 � Methodological framework

Since its inception in the 1980s, VaR and its extension the ES have been the market risk meas-
ure of choice both for industry and regulators. To calculate market risk, we follow the risk 
measure of Dowd et al. (2008) and define M� as follows:

where qp is the p loss quintile, �(p) is a weighting function defined over the full range of 
cumulative probabilities p ∈ [0, 1] and M� is the class of quantile-based risk measures.

(1)M� =

1

∫
0

�(p)qpdp
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As noted by Dowd et al. (2008) VaR and ES constitute two well-known members of this 
class. The VaR at confidence level � with Rt as the index return in period t and Ψt−1 repre-
sents the information available at time t − 1 is defined as follows:

Moreover, each individual risk measure is characterised by its individual weighting 
function �(p) . The weighting function for VaR is a Dirac delta function that gives the out-
come (p = �) an infinite weight and zero weight for every other outcome.

The ES at confidence level � is the average of the worst 1 − � losses, which is defined as 
follows:

The weighting function for ES gives all tail quantiles the same weight of 1∕1 − a and 
the non-tail quantiles zero weight.

We define an asset’s return process at time t as follows:

where σt is the conditional volatility, μt is the conditional mean of returns and zt is an inde-
pendent and identically distributed random variable that follows alternative t-distributions.

The key challenge in calculating VaR and other market risk measures is the modelling 
and estimation of the conditional volatility that incorporates the observed characteristics of 
share price and index returns such as volatility clustering, asymmetry and long memory. 
Since its introduction by Bollerslev (1986), the GARCH approach to modelling volatility 
has become popular, resulting in a wide range of alternative GARCH specifications being 
proposed.

2.1 � VaR and ES calculation over single period

Following Christoffersen (2012) the calculation of VaR and ES follows a two-stage 
procedure:

1.	 A GARCH-type volatility model is fitted to the historical data by maximum likelihood 
estimation (ML). From this model, the so-called standardized residuals are extracted. 
The GARCH-type model is used to calculate 1-step predictions of conditional mean (
�t+1

)
 and conditional standard deviation 

(
�t+1

)
.

2.	 Various long tail and asymmetric distributions are applied to the standardized residuals 
to calculate F−1(p) with estimated parameters of the distributions. Finally, the 1-day 
ahead conditional VaRp

t+1
 and conditional ESp

t+1
 are calculated based on the following 

formulae:

(2)VaR� = q�
(
Rt|Ψt−1

)

(3)ESa =
1

1 − a

1

∫
a

qpdp

(4)Rt = �t + �tzt

(5)VaR
p

t+1
= −�t+1 − �t+1F

−1(p)

(6)ES
p

t+1
= −Et

[
Rt+1|Rt+1 < −VaR

p

t+1

]
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2.1.1 � Standardized t‑distribution

Bollerslev (1987) used the standardized t-distribution with v > 2. The standardized t-dis-
tribution density with v > 2 is then:

where � (v) = ∫ ∞

0
e−xxv−1dx is the gamma function. v is the parameter that describe the 

thickness of tails. Corresponding conditional VaRp

t+1
 with t−1

p
 as the pth quantile of student 

t-distribution and conditional ESp
t+1

 are:

where

 The main drawback of the student t-distribution is that it is symmetrical while financial 
time series can be skewed.

2.1.2 � Twin t‑distribution (TT)

Baker and Jackson (2014) applied Johnson’s transformation to statistical modelling and 
construct a new long tailed distribution that is like the t-distribution. The t like distribu-
tion is useful for fitting data, as it is more normal in the body of the distribution but has 
the same power law tail behavior.

The probability density function is:

As v → ∞ the distribution becomes standard normal. The distribution function for 
x > 0 is:

where S =
x2

v
,C =

√
1 + S2 , B is the beta function and I the regularized incomplete beta 

function.
Conditional VaRp

t+1
 and ESp

t+1
 of TT are:

(7)ft(z, v) =
� (

1

2
(v + 1))

� (v∕2)
√
�(v − 2)

�
1 +

z2

v − 2

�−
�

1+v

2

�

(8)
VaR

p

t+1
= −�t+1 − �t+1

√
v − 2

v
t−1
p
(v)

ES
p

t+1
= −�t+1 − �t+1ESt(v)(p)

ESt(v)(p) =
C(v)

p

��
1 +

1

v − 2
t−1
p
(v)

� 1−v

2 v − 2

1 − v

�

withC(v) =
� ((v + 1)∕2)

� (v∕2)
√
�(v − 2)

(9)f (x�v) = 25∕2� (v∕4 + 3∕2)√
�v� (v∕4)(v + 1)

�
x2∕v +

�
1 +

�
1 +

�
x2∕v

��2�−(v+1)∕2

(10)FTT (x) =
1

2
+

23∕2x(S + C)−(v+1)∕2√
v(v + 1)B(v∕4, 3∕2)

+
�
1

2

�
I
�
1 − (C(x) + S(x))−2;3∕2, v∕4

�
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where

F−1
TT

 is the inverse of cdf FTT.

2.1.3 � Generalized asymmetric t‑distribution (GAT)

A 6-parameter asymmetric fat-tailed distribution (GAT​) is proposed by Baker (2016). The 
pdf of the GAT​ is:

where B is the beta function, ν > 0 controls tail power, µ is a centre of location (not neces-
sarily the mean), ϕ > 0 is a measure of scale (but not the variance, which may not exist), 
r > 0 controls tail power asymmetry, c > 0 controls the scale asymmetry, and α > 0 controls 
how early ‘tail behaviour’ is apparent.

The cdf of the GAT​ distribution is:

where

Conditional VaRp

t+1
 and ESp

t+1
 of GAT​ are:

where

and F−1
GAT

 is the inverse of cdf FGAT.

(11)
VaR

p

t+1
= −�t+1 − �t+1VaRTT (p|v )

ES
p

t+1
= −�t+1 − �t+1ESTT (p|v )

VaRTT (p|v ) = F−1
TT
(p|v )

ESTT (p|v ) = −Et

[
Rt+1|Rt+1 < −VaRTT (p|v )

]

(12)

fGAT (x|�,�, �, r, c, v )

=
�
(
1 + r2

)
r�

{
(cg((x − �)∕�))�r + (cg((x − �)∕�))−�∕r

}−v∕�

B
(

v∕a

1+r2
,
r2v∕�

1+r2

) (
1 + ((x − �)∕�)2

)−1∕2

(13)FGAT (x|�,�, �, r, c, v ) = B

(
v

�
(
1 + r2

) , vr2

�
(
1 + r2

) ;q(x)
)

q(x)

=
1

1 + c−�(1+r
2)∕r

{
(x−�)

�
+

√
1 +

(x−�)2

�2

}
− �

(
1 + r2

)
∕r

(14)
VaR

p

t+1
= −�t+1 − �t+1VaRGAT (p|�,�, �, r, c, v )

ES
p

t+1
= −�t+1 − �t+1ESGAT (p|�,�, �, r, c, v )

VaRGAT (p|�,�, �, r, c, v ) = F−1
GAT

(p|�,�, �, r, c, v )
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2.1.4 � The asymmetric exponential power distribution (AEP)

The asymmetric exponential power distribution is proposed by Zhu and Zinde-Walsh (2009).

where � =
(
�, d1, d2,�, �

)
 is parameter vector, 𝜇 ∈ R and 𝜎 > 0 is still location and scale 

parameters respectively,� ∈ (0, 1) is skewness parameter.d1 > 0 and d2 > 0 are left and 
right tail parameters respectively, KEP(d) is the normalizing constant is:

and �∗ is:

Note that:

The AEP density function is still continuous at every point and unimodal with mode at � . 
The parameter �∗ in the AEP density provides scale adjustments respectively to the left and 
right parts of the density to ensure continuity of the density under changes of shape param-
eters 

(
�, d, d2

)
.

The VaR and ES is computed analytically for the AEP distribution in Zhu and Galbraith 
(2011).

Conditional VaRp

t+1
 conditional ESp

t+1
 of AEP are:

where

Q(�, x) denotes the regularized complementary incomplete gamma function:

ESGAT (p|𝜇,𝜙, 𝛼, r, c, v ) = −Et

[
Rt+1|Rt+1 < −VaRGAT (p|𝜇,𝜙, 𝛼, r, c, v )

]

(15)fAEP(x�𝛽 ) =
⎧
⎪⎨⎪⎩

�
𝛼

𝛼∗

�
1

𝜎
KEP

�
d1
�
exp

�
−

1

d1

���
x−𝜇

2𝛼∗𝜎

���
d1
�
, x ≤ 𝜇

�
1−𝛼

1−𝛼∗

�
1

𝜎
KEP

�
d2
�
exp

�
−

1

d2

���
x−𝜇

2(1−𝛼∗)𝜎

���
d2
�
, x > 𝜇

KEP(d) ≡ 1[
2d

1∕d�
(
1 + 1∕d

)]

�∗ = �KEP

(
d1
)
∕
[
�KEP

(
d1
)
+
]
(1 − �)KEP

(
d2
)

(
�

�∗

)
KEP

(
d1
)
=
(
1 − �

1 − �∗

)
KEP

(
d1
)
=
[
�KEP

(
d1
)
+
]
(1 − �)KEP

(
d2
)

(16)
VaR

p

t+1
= −�t+1 − �t+1VaRAEP

(
p||�, d1, d2

)

ES
p

t+1
= −�t+1 − �t+1ESAEP

(
p||�, d1, d2

)

VaRAEP

�
p��𝛼, d1, d2

�
=

⎧⎪⎨⎪⎩

−2𝛼∗
�
d1Q

−1
�

p

𝛼
,
1

d1

�� 1

d1 , p ≤ 𝛼

2(1 − 𝛼∗)
�
d2Q

−1
�

1−p

1−𝛼
,
1

d2

��1∕d2
, p > 𝛼
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Q−1 denotes the inverse of Q(�, x) and �  is gamma function:

2.1.5 � Skewed exponential power distribution (SEP)

Skewed is the special case of AEP proposed by Zhu and Zinde-Walsh (2009), if d2 = d1 = d 
implying � = �∗ The AEP reduced to SEP:

The SEP density is skewed to the right for 𝛼 < 1∕2 and to the left for 𝛼 < 1∕2.
Conditional VaRp

t+1
 and ESp

t+1
 of SEP are:

where

2.1.6 � Asymmetric student t‑distribution (AST)

AST proposed by Zhu and Galbraith (2010) and density function is defined as:

Q(�, x) =

∞

∫
x

t�−1exp(−t)dt∕� (�)

(17)

ESAEP
(
p||�, d1, d2

)

= −
2�∗

p

p

∫
0

[
d1Q

−1

(
p

�
,
1

d1

)] 1

d1

dp +
2(1 − �∗)

p

p

∫
0

[
d2Q

−1

(
1 − p

1 − �
,
1

d2

)] 1

d2

dp

(18)fSEP(x�𝛽 ) =
⎧
⎪⎨⎪⎩

1

𝜎
KEP(d)exp

�
−

1

d

���
x−𝜇

2𝛼𝜎

���
d
�
, x ≤ 𝜇

1

𝜎
KEP(d)exp

�
−

1

d

���
x−𝜇

2𝛼𝜎

���
d
�
, x > 𝜇

(19)
VaR

p

t+1
= −�t+1 − �t+1VaRSEP(p|�, d )

ES
p

t+1
= −�t+1 − �t+1ESSEP(p|�, d )

VaRSEP(p�𝛼, d ) =
⎧
⎪⎨⎪⎩

−2𝛼∗
�
d1Q

−1
�

p

𝛼
,
1

d

�� 1

d

, p ≤ 𝛼

2(1 − 𝛼∗)
�
dQ−1

�
1−p

1−𝛼
,
1

d

��
,1∕d p > 𝛼

ESSEP(p�𝛼, d ) = −
2𝛼∗

p

p

�
0

�
dQ−1

� p
𝛼
,
1

d

��1∕d
dp +

2(1 − 𝛼∗)

p

p

�
0

�
dQ−1

�
1 − p

1 − 𝛼
,
1

d

��1∕d
dp

(20)fAST (x�𝛽 ) =

⎧
⎪⎪⎨⎪⎪⎩

�
𝛼

𝛼∗

�
K
�
v1
��
1 +

1

v1

�
x

2𝛼∗

�2
�− v1+1

2

, x ≤ 0

�
1−𝛼

1−𝛼∗

�
K
�
v2
��
1 +

1

v2

�
x

2𝛼∗

�2
�− v2+1

2

, x > 0
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� ∈ (0, 1) is skewness parameter.v1 > 0 and v2 > 0 are left and right tail parameters 
respectively.

where Γ (.) is gamma function and �∗ is:

Denoting by µ and σ the location (centre) and scale parameters, respectively, the general 
form of the AST density is expressed as 1

�
fAST

(
x−�

�
;�, v1, v2

)
.

Note that

Conditional VaRp

t+1
 and ESp

t+1
 of AST are:

where

where Sv(.) is the cumulative distribution function of the standard student t-distribution 
with ν degrees of freedom and S−1

v
 is its inverse.

where q = VaRAST ≡ F−1
AST

.

2.1.7 � Skewed student t‑distribution (SST)

By letting v2 = v1 = v and �∗ = � in AST by Zhu and Galbraith (2010), we obtain new 
parameterization of skewed student t-distribution (SST):

Conditional VaRp

t+1
 and ESp

t+1
 of SST are:

K(v) ≡ �
� (v + 1)∕2∕

�√
�v(v∕2)

��

�∗ = �
(
v1
)
∕
[
�K

(
v1
)
+
]
(1 − �)K

(
v2
)

(
�

�∗

)
K
(
v1
)
=
(
1 − �

1 − �∗

)
K
(
v2
)
=
[
�K

(
v1
)
+
]
(1 − �)KEP

(
v2
) ≡ B

(21)
VaR

p

t+1
= −�t+1 − �t+1VaRAST

(
p||�, v1, v2

)

ES
p

t+1
= −�t+1 − �t+1ESAST

(
p||�, v1, v2

)

VaRAST

(
p||�, v1, v2

)

= 2�∗S−1
v1

(
min(p, �)

2�

)
+ 2(1 − �∗)S−1

v2

(
max(p, �) + 1 − 2�

2(1 − �)

)

ESAST
�
p���, v1, v2

�

= −
4B

p

⎧
⎪⎨⎪⎩

(�∗)2v1

v1 − 1

�
1 +

1

v1

�
min(q − �, 0)

2�∗

�2� 1−v1
2

−
(1 − �∗)2v2

v2 − 1

�
1 +

1

v2

�
min(q − �, 0)

2�∗

�2� 1−v2
2
⎫⎪⎬⎪⎭

(22)fSST (x�𝛽 ) =

⎧
⎪⎪⎨⎪⎪⎩

1

𝜎
K(v)

�
1 +

1

v

�
x−𝜇

2𝛼𝜎

�2
�− v+1

2

, x ≤ 𝜇

1

𝜎
K(v)

�
1 +

1

v

�
x

2𝛼𝜎

�2
�− v+1

2

, x > 𝜇
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where

where Sv(.) is the cumulative distribution function of the standard student t-distribution 
with ν degrees of freedom and S−1

v
 is its inverse.

where q = VaRSST ≡ F−1
SST

.

2.2 � Term structure of risk: VaR and ES calculation over multi‑period

To date majority of studies have focused on single day market risk estimation. Currently 
the most popular method is the square-root rule that is applied over short time horizons. 
If we consider a simple case of normal distribution with a constant variance �2

PF
 , per 

square–root rule, the VaR and ES for returns over the next h days calculated on day t, as:

However, given the dynamic nature of variance, moving from one period ahead to 
multi period h-days ahead is not straightforward because scaling variance as modelled 
by GARCH processes is not mean reverting with the returns over the next h days are not 
normally distributed. This drawback means that Monte Carlo simulation needs to be used 
to calculate VaR and ES over multi-period horizon. We follow Christoffersen (2012) in 
simulating the index returns having first estimated the underlying GARCH model param-
eters. Further details on the simulation methodology can be found in Christoffersen (2012). 
Based on simulated returns over h-days 

{
Ři,t+1∶t+h

}MC

i=1
 , the VaR and ES over period h is:

where 1(⋅) takes the value 1 if the argument is true and zero otherwise and MC denotes the 
number of draws.

(23)
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2.3 � Back‑testing risk models

2.3.1 � Bootstrap test for the expected shortfall

To evaluate ES we first use McNeil and Frey (2000) test for zero unconditional mean. 
The test focuses on the discrepancy between the observed return and the ES forecast for 
the periods in which the return exceeds the VaR forecast, the assessment of ES forecasts 
is not independent of the VaR forecasts. McNeil and Frey (2000) defined residuals as:

According to McNeil and Frey (2000) these residuals are iid and conditional on 
Xt+1 > xq or equivalently Zt+1 > zq being the q-quantile of Z. Based on our stock price 
data and our estimates of expected shortfall, we can construct the corresponding residu-
als on days when violation occurs. McNeil and Frey (2000) call these residuals exceed-
ance residuals and denote them by:

where

Under the null hypothesis that we estimate �t+1, �t+1 and the expected shortfall cor-
rectly, these residuals should behave like an iid sample from a random variable with 
mean zero and the alternative hypothesis is that the residuals have a mean greater than 
zero (McNeil and Frey, 2000).

2.3.2 � MAE for back‑testing ES

We evaluated the expected shortfall as measure of downside risk based on the mean 
absolute error defined as

where ESt+i(q) is the expected shortfall as measure of downside risk and Rt+1 are observed 
returns and N is the number of observations. The model with minimum MAE value is pre-
ferred to the other models.

(26)
Rt+1 =

Xt+1 − ES
q

t

(
Xt+1

)
�t+1

Rt+1 =
�t+1 + �t+1Zt+1 −

(
�t+1 + �t+1ES

q

t (Z)
)

�t+1

(27)Rt+1 = Zt+1 − Et

�
Z�Z⟩zq

�

(28)r =
{
rt+1;for t such thatxt+1 > x̂q

}

rt+1 =
xt+1 − ESt

q

(
Xt+1

)

𝜎̂t+1

(29)MAEj(q) =
1

N − 1

N−1∑
i=1

||Rt+1 − ESt+i(q)
||
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3 � Empirical results

3.1 � Data and preliminary analysis

The data for this study comprises of five global stock indices, including S&P500, 
FTSE100, NASDAQ100 – comprising of non-American and non-financial top 100 
companies on the NASDAQ exchange, NIKKEI225 and DAX30. All data is obtained 
from Datastream. For all the indices, the sample comprises of 18 years of daily obser-
vation from 1995 to 2013 with a total of 4698 daily observations. The continuously 
compounded returns are calculated as the logarithmic difference of daily closing price 
multiplied by 100.

The summary statistics are presented in Table 1. The value of skewness is negative for 
all return series, indicating an asymmetry in the distribution of return. A negatively skewed 
distribution or skewed to the left has a long-left tail. All our data series are characterized 
by many small gains and a few extreme losses. The kurtosis of our data set is greater than 3 
and reflects fat tails. We reject the null hypothesis of the normal distribution as the p value 
for Jarque–Bera (1980) test is less than 0.05. Jarque–Bera test confirms that all return series 
have non-normal distributions. The Ljung–Box (1978) Q-statistics reported in Table 1 for 
both returns and squared returns for all data series also reject the null hypothesis of no 
autocorrelation through 20-lags at a 5% significance level.

3.2 � Parameter estimation of distributions of return

Specifically we estimate the parameters of the following seven models: Standardized t-dis-
tribution (ST), Twin t-distribution (TT) of Baker and Jackson (2014), Generalized asym-
metric distribution (GAT​) of Baker (2016), Asymmetric exponential power distribution 
(AEP) of Zhu and Zinde-Walsh (2009), Skewed exponential power distribution (SEP) and 
the special case of AST, the Skewed Student t-distribution, Asymmetric Student t- distribu-
tion (AST) of Zhu and Galbraith (2010). The estimation procedure is as follows:

•	 Given the specific ith t distribution with parameter Θ(i)for 1 ≤ i ≤ 7 , we identify the 
underlying GARCH process using the likelihood method. Then use the estimated 

Table 1   Summary descriptive statistics

**Significance at the 1% confidence level

S&P500 FTSE100 NASDAQ100 NIKKEI225 DAX30

Mean 0.0002 0.0001 0.0004 − 0.0001 0.0003
Median 0.0001 0.0001 0.0005 0.0000 0.0007
Min − 0.2283 − 0.0927 − 0.1111 − 0.1211 − 0.0887
S.D. 0.1096 0.0938 0.1720 0.1323 0.1080
Skewness − 1.0212 − 0.1562 − 0.1083 − 0.3329 − 0.1238
Excess kurtosis 27.1950 5.9081 5.1532 6.1275 4.3434
J–B 38077.34** 6850.30** 5206.39** 7434.82** 3704.07**
ADF-Unit Root − 23.54** − 16.80** − 15.70** − 16.34** − 16.01**
L-B(20) 145.55 129.88 132.97 63.02 64.02
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GARCH process to generate the conditional volatility ( ̂𝜎t ) and the conditional mean 
( 𝜇̂).

•	 We obtain standardized residuals ẑt as the function of 𝜇̂t and 𝜎̂t.
•	 We define F(i)(.) as the CDF of i-th candidate t distribution, and Q(.) as the quantile 

function of zt. The desired Θ∶∗
(i)

 should satisfy

The parameter estimates are reported in Tables 2, 3, 4, 5 and 6 with the log-likeli-
hood values, AIC and BIC values. The bold values of AIC and BIC criteria in all tables 
represent top three best models for the specific data set. Per AIC and BIC values in 
Table  2, the best-fitting models for S&P 500 data are the Generalized asymmetric t- 
distribution (GAT​), Student t-distribution (ST) and Twin t-distribution (TT). All above 

(30)Θ∗
(i)
=

arg inf

Θ∗
(i)

|||Q
(
ẑt
)
− F−1

(i)

(
ẑt
)
;Θ(i)

|||, 1 ≤ i ≤ 7

Table 2   Estimated parameters and goodness of fit tests for S&P500 for the period 1995–2013

Standard errors are reported in parenthesis. Log L is the maximum value of log likelihood function. AIC, 
Akaike information criterion; BIC, Bayesian information criterion; ST, Student t-distribution; TT, Twin 
t-distribution; GAT, Generalized asymmetric t-distribution; AEP, Exponential power distribution; SEP, 
Skewed exponential power distribution; AST, Asymmetric t-distribution; SST, Skewed student t-distribution. 
The lowest AIC and BIC are in bold

Models Estimated parameters Goodness of fit tests

− Log L AIC BIC

ST ν
6.8609 − 8686.1 17378.1 17398.3
(0.4172)

TT ν − 8720.0 17442.0 17448.7
4.9625
(0.3334)

GAT​ � � � r c v

0.0100 2.5691 1.6891 1.0721 1.3372 6.9217 − 8682.7 17377.4 17417.8
(0.4825) (0.4013) (0.4361) (0.1673) (0.2238) (0.6194)

AEP � d
1

d
2

0.5467 1.4397 1.9396 − 8731.9 17469.9 17490.1
(0.0063) (0.0156) (0.0015)

SEP � d − 8759.3 17522.6 17536.07
0.5098 1.6356
(0.0042) (0.0332)

AST � v
1

v
2

− 8884.3 17774.5 17794.7
0.416 3.9043 8.7875
(0.0326) (4.3594) (1.2350)

SST � v

0.5140 18.032 − 8766.1 17536.3 17549.8
(0.0054) (2.285)
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models have lowest AIC and BIC while, asymmetric t-distribution (AST) and skewed 
exponential power distribution (SEP) have highest AIC and BIC value respectively.

Examining the values of AIC and BIC in Tables 3, 4, 5 and 6 for the indices FTSE100, 
NASDAQ100, NIKKEI225 and DAX30, we observe that the generalized asymmetric 
t-distribution (GAT​),1,2 Student t-distribution (ST) and Twin t-distribution (TT) are the top 

Table 3   Estimated parameters and goodness of fit tests for FTSE100 for the period 1995–2013

Standard errors are reported in parenthesis. Log L is the maximum value of log likelihood function. AIC, 
Akaike information criterion; BIC, Bayesian information criterion; ST, Student t-distribution; TT, Twin 
t-distribution; GAT, Generalized asymmetric t-distribution; AEP, Exponential power distribution; SEP, 
Skewed exponential power distribution; AST, Asymmetric t-distribution; SST, Skewed student t-distribution. 
The lowest AIC and BIC are in bold

Models Estimated parameters Goodness of fit tests

− Log L AIC BIC

ST ν
11.554 − 6625.2 13256.4 13275.8
(1.741)

TT ν
6.6250 − 6632.6 13267.3 13273.7
(0.7118)

GAT​ � � � r c v − 6612.2 13236.4 13275.1
2.2865 4.4041 2.3052 0.9841 1.6462 13.2794
(6.6407) (7.4269) (3.8638) (1.0193) (3.7233) (13.7587)

AEP � d
1

d
2

0.4851 1.5576 2.1301 − 6624.3 13254.6 13273.9
(0.0060) (0.0494) (0.0704)

SEP � d − 6646.5 13297.1 13310.0
0.5115 1.7938
(0.0045) (0.0399)

AST � v
1

v
2

− 6760.3 13526.7 13546.1
0.5343 1.9972 1.0011
(4.2395) (4.1308) (2.4285)

SST � v

0.5162 24.713 − 6644.4 13292.8 13305.7
(0.0059) (4.322)

1  The flexibility of GAT​ distribution allows us to set � = 1 , leading to a 5-parameter distribution that turns 
out to fit returns data almost identically well as the AST distribution. On the other hand, by allowing α to 
deviate from the unity, we have a more general distribution that fits the data better. As α increases, the 
fatness of the tails decreases, while the power-law behaviour remains the same. In this study we allow α 
deviate from the unity to fit the data with fatter tails. AST and GAT​ distribution behaviour are compared by 
fixing α = 1.
2  According to Baker (2016) the AST distribution by Zhu and Galbraith (2010) has discontinuity in the sec-
ond derivative of the log-likelihood function, as a result the usual regularity conditions for maximum likeli-
hood estimation are not satisfied and makes inference for parameter values difficult. This is a real problem-
atic issue for estimation of standard error because it relies on the second derivative of the log-likelihood. 
On the other hand, GAT​ does not have the same inferential problems, as the log-likelihood function has 
no discontinuities in derivatives. When we compare GAT​ with Azzalini (2015) skew-normal distribution 
it reveals that the derivative of the log-likelihood with respect to the skewness parameter is zero when the 
parameter is zero (the skew-normal reduces to a normal distribution). GAT​ distribution does not have this 
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three models respectively except for FTSE100 where AEP is the second best model. When 
we compare GAT​ and AST models, we find that GAT​ significantly outperforms AST. AEP 
model as an alternative to AST and GAT​ performs better that AST but under performs GAT​
. We see that the best fitting models for all our indices data sets are our two new distribu-
tions GAT​ and TT and Standardized Student t- distribution. Overall the GAT​ distribution is 
the best model, as it has many advantages over Standardized Student t-distribution. Stand-
ardized t-distribution does not support asymmetry. Neither of the Zhu–Zinde-Walsh (2009) 
Asymmetric exponential power distribution and Zhu and Galbraith (2010) asymmetric 

Table 4   Estimated parameters and goodness of fit tests for NASDAQ100 for the period 1995–2013

Standard errors are reported in parenthesis. Log L is the maximum value of log likelihood function. AIC, 
Akaike information criterion; BIC, Bayesian information criterion; ST, Student t-distribution; TT, Twin 
t-distribution; GAT, Generalized asymmetric t-distribution; AEP, Exponential power distribution; SEP, 
Skewed exponential power distribution; AST, Asymmetric t-distribution; SST, Skewed student t-distribution. 
The lowest AIC and BIC are in bold

Models Estimated parameters Goodness of fit tests

− Log L AIC BIC

ST ν
9.147 − 6610.8 13227.7 13247.06
(1.173)

TT ν − 6622.2 13246.4 13252.9
5.9750
(0.5749)

GAT​ � � � r c v − 6604.7 13221.5 13260.2
0.1769 2.8841 1.1135 1.2002 0.8842 9.5866
(0.9549) (3.4575) (2.4286) (0.5010) (0.7110) (0.9861)

AEP � d
1

d
2

− 6623.0 13252.0 13271.4
0.4879 1.5285 1.9742
(0.0061) (0.0496) (0.0661)

SEP � d − 6637.9 13279.8 13292.7
0.5097 1.7201
(0.0046) (0.0394)

AST � v
1

v
2

− 6742.7 13491.5 13510.9
0.4811 5.0000 4.9701
(0.0265) (5.8300) (9.0530)

SST � v − 6638.1 13280.2 13293.1
0.5178 21.799
(0.0059) (3.594)

problem (Baker 2016). The parameter r controls the asymmetry, with r = 1 for a symmetric distribution. 
We can also fit GAT​ distribution by setting α = 1 and r = 1 with only four parameters floated as many skew 
distributions require only μ,�, v and c parameter so that skewness is modelled purely by having different 
probability mass in the two tails.

Footnote 2 (continued)
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t-distribution provide the best fits to the models. Per AIC and BIC, the new Twin t-distri-
bution also performs better than Asymmetric t- distribution and Exponential power distri-
bution for all data sets. To summarize based on the AIC and BIC criteria GAT​, TT and ST 
provide a better fit than AST and AEP and their skewed versions.

3.3 � One‑day ahead expected shortfall back‑testing

To test the validity of the different t-distributional assumptions on the five different indices, 
the VaR and ES at different confidence levels ranging from 5% to 0.5% are calculated. As 
the existing literature has demonstrated VaR has serious drawbacks, we therefore only eval-
uate different ES models to assess market risk. As stated earlier the competing risk models 
are ST, TT, GAT​, AEP, SEP, AST and SST, with the TT and GAT​ used for the first time in 
the literature to calculate market risk as calculated by VaR or ES.

To evaluate the ES forecasts, we first use McNeil and Frey’s (2000) bootstrap test. 
The high p values given by this test speak in favour of a model, while low p values speak 
against a model. The results indicate that AST, AEP and GAT​ have highest p values which 

Table 5   Estimated parameters and goodness of fit tests for NIKKEI225 for the period 1995–2013

Standard errors are reported in parenthesis. Log L is the maximum value of log likelihood function. AIC, 
Akaike information criterion; BIC, Bayesian information criterion; ST, Student t-distribution; TT, Twin 
t-distribution; GAT, Generalized asymmetric t-distribution; AEP, Exponential power distribution; SEP, 
Skewed exponential power distribution; AST, Asymmetric t-distribution; SST, Skewed student t-distribution. 
The lowest AIC and BIC are in bold

Models Estimated parameters Goodness of fit tests

− Log L AIC BIC

ST ν
7.6881 − 6580.7 13167.5 13186.8
(0.8443)

TT ν − 6593.7 13189.5 13195.9
5.4500
(0.4582)

GAT​ � � � r c v − 6577.9 13167.8 13206.5
3.0281 9.5427 1.1226 1.0327 1.3563 18.3375
(8.8281) (7.0586) (4.7099) (0.2828) (1.7572) (6.4887)

AEP � d
1

d
2

− 6609.6 13225.3 13244.6
0.4881 1.5004 1.8328
(0.0062) (0.0497) (0.0622)

SEP � d − 6618.7 13241.4 13254.3
0.5051 1.6457
(0.0048) (0.0393)

AST � v
1

v
2

− 6701.4 13408.9 13428.2
0.5348 7.0107 2.9356
(0.6859) (1.7620) (8.2456)

SST � v − 6609.1 13222.2 13235.1
0.5337 18.648
(0.006) (2.744)
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is significantly higher then of 0.01. As indicated by McNeil and Frey’s (2000) that an 
assumption of normality always fails the test with p values in all cases much less than 0.01. 
In our case p values for all distribution is much higher than of 0.01 in almost all the cases. 
The results, which are shown in Table 7, and clearly provide insight for the use of asym-
metric distributions for the risk analysis purpose. However, this test provides little informa-
tion into the relative performance of the methods. This motivates the use of an additional 
approach to evaluating ES forecast accuracy.

We compare ES by using MAE that calculates the difference between the actual and the 
expected losses when a violation occurs. The small value of calculated mean absolute error 
and the mean squared errors appear small enough to suggest that the best fitting models are 
reasonable.

Table 7 contains the performance results for all the models and indices, with each of the 
panels containing the results for each of the indices across the seven models. From Panel 
A, we see that for the S&P500, at the 5% level GAT, TT and SST provide the best fit. At 
the 2.5% level, again results indicate that GAT​, TT and SST models providing the best fit. 

Table 6   Estimated parameters and goodness of fit tests for DAX30 for the period 1995–2013

Standard errors are reported in parenthesis. Log L is the maximum value of log likelihood function. AIC, 
Akaike information criterion; BIC, Bayesian information criterion; ST, Student t-distribution; TT, Twin 
t-distribution; GAT, Generalized asymmetric t-distribution; AEP, Exponential power distribution; SEP, 
Skewed exponential power distribution; AST, Asymmetric t-distribution; SST, Skewed student t-distribution. 
The lowest AIC and BIC are in bold

Models Estimated parameters Goodness of fit tests

− Log L AIC BIC

ST ν
9.254 − 6605.1 13216.2 13235.5
(1.1715)

TT ν − 6619.7 13241.5 13247.9
5.9500
(0.5544)

GAT​ � � � r c v − 6594.4 13200.8 13239.5
1.3257 2.1184 0.8694 0.6905 2.7242 8.9509
(2.0776) (0.3957) (1.7480) (0.1939) (1.4251) (9.0387)

AEP � d
1

d
2

− 6620.0 13246.0 13265.4
0.4890 1.5178 2.0030
(0.0060) (0.0497) (0.0626)

SEP � d − 6638.3 13280.8 13293.7
0.5126 1.7396
(0.0046) (0.0392)

AST � v
1

v
2

− 6739.6 13485.2 13504.5
0.5380 2.9423 7.0104
(0.9160) (9.7721) (4.9073)

SST � v

0.5267 23.074 − 6631.9 13267.9 13280.8
(0.005) (4.020)
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However, at the 1% or 0.5% level SST model provides the best fit by outperforming the 
other models. At 1% and 0.5% SEP is the second best model.

Panel B contains the results for the FTSE100 index, up to 2.5% confidence level GAT, 
ST and TT model outperforms all other models. However, at the 1% and 0.5% level GAT, 
TT are the best performers. Panel C comprises of the NASDAQ back-testing results where 
we find that at 5% GAT​ provides the best fit, while SEP and AEP are second and third best 
models. At 2.5%, 1% and 0.5% again GAT​, SEP and AEP are the outperformers, however 
SEP outperforms GAT​ and AEP marginally. Moreover, AST performs better then TT, SST 
and ST. In Panel D we present the results for NIKKIE225 and note that our proposed GAT​ 
model outperforms all other models at 5%. At 2.5% only SEP outperforms GAT​. However, 
at 1% and 2.5% both SEP and AEP perform better than of GAT​. Panel E indicate the results 
for DAX30 GAT, TT and SEP are the best performing models at 5% and 2.5%. At 1% TT, 
SEP and SST are the best performers. AT 0.5% SEP, SST and AEP perform better than GAT​ 
and TT.

To summarize our key results:

	 (i)	 GAT​ model and TT models are in the top three models at 5% and 2.5% confidence 
level in almost all cases.

	 (ii)	 AST model have highest values of MAE for almost all datasets and significance levels 
except NASDAQ in panel C.

	 (iii)	 The skewed version of AST model (SST) is amongst the models with the highest 
MAE values except S&P500 in panel A, where it is third best model after GAT​ and 
TT.

	 (iv)	 AEP model as alternative to asymmetric distributions performs better than the AST, 
but GAT​ model clearly outperforms AEP in most of the cases.

	 (v)	 The skewed version of AEP model (SEP) performs better than of the skewed version 
of AST model (SST) in most of the cases. For NASDAQ, NIKKIE300 and DAX225 
it is among the top three models.

	 (vi)	 The results of MAE indicate different model ranking for the same confidence level. 
However, for most of the cases GAT​ remain in the top three models.

	 (vii)	 These results give us a strong indication that new parameterization of generalized 
asymmetric distribution provides valuable improvement in the results. When we 
compare ES back-testing for two asymmetric t-distributions, MAE of GAT​ are sig-
nificantly lower than that of AST. These results indicate strong implication for further 
research for use of asymmetric t-distribution as ES measure.

Based on the ES back-tests conducted, we conclude that the GAT​ model by Baker 
(2016) outperforms the competing AST by Zhu and Galbraith (2010) model by a significant 
margin. As an alternative to asymmetric t-distribution AEP model also underperforms GAT​ 
model.3

3  To further test the robustness of our results, we created subsample for the whole period excluding the 
three financial crisis period and subsample for each of the financial crisis periods. We found that the per-
formance of the models were independent of the sample period, i.e. GAT​ distribution was overall the best 
performer regardless of the sample period. However, magnitude of the risk measures VaR and ES decreased 
when we excluded the crisis periods from our sample and correspondingly they increased during each of 
the financial crisis periods.
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3.4 � Multi‑period horizon ES back‑testing

Table 8 contains the back-testing results across 4 days and 10 days for each of the indices 
across all of the models. Regarding the results for the 5-day horizon, we find that for the 
S&P500, SST model outperforms all other models up to 1% level. However, at the 0.5% 
level GAT​ model outperforms all other models. SST and GAT​ are among the top three out-
performers for all the significance level while TT is among top two best model for 2.5% and 
1% significance level.

From Panel B, we see that for the FTSE100 index, up to 2.5% level, SST is the best per-
former, followed by GAT​ at 1% and 0.5%. Looking at Panel C and D, we see that for the 
NASDAQ100 and NIKKIE225 at all significance level GAT​, SST and TT are the best per-
formers. At 5% and 2.5% SST outperforms GAT​ and TT. However, at 1% and 0.5% GAT​ has 
smallest MAE than of SST and TT. In panel C the results for DAX30 indicates that GAT​, 
TT and AEP are the top three models for all significance levels.

From Table  8, with regards to the 10-day horizon, results are straight cut, for the 
S&P500, FTSE100, NIKKEI225 and DAX30, GAT​ provides the best result across 
all confidence levels with the TT providing the best fit for the remaining index NAS-
DAQ100. Our results for the predicted ES for 5-days and 10-days can be summarized as 
follows:

(i)	 At the 5-day horizon results are mixed with the SST being the best performer up to 
1% level in majority of the cases. However, at 0.5% confidence level GAT​ is the best 
performer. Overall, GAT​ remains in the top three models based on the lowest MAE 
value.

(ii)	 When we increase the number of horizons to 10-days, MAE values clearly suggest GAT​ 
as the best model for almost all data sets.

(iii)	 Both AEP and SEP perform very poorly to forecast ES for both 5-days and 10-days 
horizon at various significance levels.

(iv)	 AST model has highest MAE value in most of the case for both 5-days and 10-days 
horizon.

(v)	 We can infer that results of ES models are not similar across different time horizons. 
However, the satisfactory predictions of the GAT​ are in accordance with the findings 
of 1-day ahead ES evaluation. Again, like 1-day ahead GAT​ model out performs AST 
model and give clear implication for the use of GAT​ distribution for risk forecasting.

4 � Concluding remarks

The recent crisis has highlighted the weaknesses of VaR as a market measure of risk. This 
has resulted in the related superior measure ES being given more prominence under Basel 
III (Basel Committee on Banking and Supervision 2013, 2017). Previous studies have 
focused on VaR and more specifically on a single day VaR. This study has sought to com-
plement earlier studies by expanding market risk measures to ES over multi-day horizon 
using seven different models that incorporate the observed empirical characteristics of 
equity returns as noted by Kellner and Rosch (2016) who recommends that only models 
which allow for heavy tailed and/or skewness can accurately estimate both VaR and ES.

In this study we make a number of contributions. First, we found that when seven 
different models based on alternative t-distributions were fitted to the standardized 



	 R. Iqbal et al.

1 3

Table 7   Back-testing results for 1-day ahead ES for international indices

MAE: mean absolute error and BOOT: p values from the bootstrap test for ES at 5%, 2.5%, 1% and 0.5% 
significance level. Student t-distribution: ST; twin t-distribution: TT; generalized asymmetric t-distribution: 
GAT​; exponential power distribution: AEP; skewed exponential power distribution: SEP; asymmetric t-dis-
tribution: AST; skewed student t-distribution: SST. The lowest three MAE and highest three BOOT are in 
bold

p 5% 2.5% 1% 0.5%

Models MAE BOOT MAE BOOT MAE BOOT MAE BOOT

Panel A: S&P500
ST 0.0268 1.0000 0.0318 1.0000 0.0387 0.9990 0.0443 0.9990
TT 0.0226 0.4082 0.0267 0.4940 0.0318 0.4707 0.0392 0.4104
GAT​ 0.0209 0.9764 0.0263 0.9772 0.0341 0.9810 0.0381 0.9721
AEP 0.0291 0.7958 0.0323 0.2823 0.0395 0.0505 0.0437 0.2588
SEP 0.0240 0.0084 0.0275 0.0050 0.0319 0.0041 0.0350 0.0006
AST 0.0271 1.0000 0.0314 1.0000 0.0413 0.9855 0.0503 0.9972
SST 0.0235 0.0186 0.0269 0.0225 0.0313 0.0151 0.0346 0.0036
Panel B: FTSE100
ST 0.0222 0.0021 0.0228 0.0000 0.0382 0.9958 0.0482 0.0000
TT 0.0229 0.1615 0.0265 0.7734 0.0315 0.5839 0.0371 0.0001
GAT​ 0.0219 0.9799 0.0225 0.9836 0.0301 0.9827 0.0361 0.9809
AEP 0.0254 0.9857 0.0293 0.6481 0.0342 0.2827 0.0377 0.2416
SEP 0.0254 1.0000 0.0292 0.5912 0.0338 0.1768 0.0371 0.1302
AST 0.0341 0.9999 0.0417 0.9912 0.0540 0.9753 0.0685 1.0000
SST
Panel C: NASDAQ
ST 0.0425 0.9999 0.0497 1.0000 0.0594 0.9995 0.0671 0.7128
TT 0.0374 0.8130 0.0436 0.6915 0.0523 0.4006 0.0603 0.0070
GAT​ 0.0261 0.9964 0.0326 0.9759 0.0429 0.3016 0.0443 0.1038
AEP 0.0276 0.8934 0.0312 0.5983 0.0358 0.0134 0.0393 0.0174
SEP 0.0266 0.5614 0.0297 0.3145 0.0336 0.0411 0.0365 0.0013
AST 0.0369 1.0000 0.0467 0.9968 0.0541 0.9284 0.0638 0.9126
SST 0.0399 0.5655 0.0456 0.3511 0.0528 0.0585 0.0581 0.0025
Panel D: NIKKEI225
ST 0.0358 1.0000 0.0423 1.0000 0.0512 0.9995 0.0583 0.9867
TT 0.0308 0.1255 0.0362 0.5216 0.0439 0.4487 0.0531 0.0039
GAT​ 0.0253 1.0000 0.0297 0.9210 0.0378 0.4307 0.0402 0.2413
AEP 0.0264 0.7185 0.0303 0.2174 0.0354 0.1622 0.0390 0.0274
SEP 0.0255 0.1595 0.0290 0.2141 0.0334 0.1091 0.0366 0.0529
AST 0.0390 0.9987 0.0466 0.9151 0.0545 0.3904 0.0633 0.2836
SST 0.0340 0.3944 0.0389 0.1068 0.0453 0.1877 0.0500 0.0260
Panel E: DAX30
ST 0.0362 0.9999 0.0426 0.9999 0.0515 0.9886 0.0586 0.9663
TT 0.0300 0.7413 0.0350 0.7144 0.0420 0.6281 0.0531 0.0001
GAT​ 0.0301 0.9993 0.0368 0.8573 0.0454 0.5553 0.0543 0.6219
AEP 0.0336 0.7116 0.0390 0.2139 0.0456 0.1506 0.0504 0.0482
SEP 0.0319 0.0676 0.0364 0.0856 0.0420 0.0480 0.0459 0.0441
AST 0.0589 1.0000 0.0768 0.9979 0.1072 0.8631 0.1369 0.9980
SST 0.0331 0.1378 0.0377 0.1126 0.0436 0.1101 0.0479 0.0508
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Table 8   Back-testing results for 5-days and 10-days ahead ES using MAE for international indices

MAE: mean absolute error test for ES at 5%, 2.5%, 1% and 0.5% significance level. ST, student t-distri-
bution; TT, twin t-distribution; GAT, generalized asymmetric t-distribution; AEP, exponential power distri-
bution; SEP, skewed exponential power distribution; AST, asymmetric t-distribution; SST, skewed student 
t-distribution. The lowest three MAE are in bold

p 5% 2.5% 1% 0.5%

Models 5-days 10-days 5-days 10-days 5-days 10-days 5-days 10-days

Panel A: S&P500
ST 0.4386 1.4184 0.3608 1.2326 0.2875 1.0457 0.2229 0.8713
TT 0.4798 1.6000 0.3115 1.3892 0.2388 1.1644 0.2388 0.9543
GAT​ 0.4074 1.1559 0.3214 1.0450 0.2434 1.0178 0.1833 0.7805
AEP 0.7028 3.3821 0.5920 3.0459 0.4850 2.7110 0.3919 2.420
SEP 0.4078 2.1537 0.3559 2.0103 0.3006 1.8525 0.2499 1.7088
AST 0.4997 2.5772 0.4000 1.6412 0.3065 1.1067 0.2314 0.9054
SST 0.3336 1.2182 0.2875 1.0899 0.2374 0.9418 0.1895 0.7906
Panel B: FTSE100
ST 0.4258 2.3477 0.3469 1.8844 0.2720 1.4823 0.2101 1.1696
TT 0.5809 3.2106 0.4563 2.5578 0.3442 1.9671 0.2596 1.5075
GAT​ 0.4181 2.1396 0.3358 1.7178 0.2576 1.3564 0.1934 1.0674
AEP 1.0883 17.110 0.8433 14.124 0.6390 11.3122 0.4893 9.0765
SEP 0.4320 4.4874 0.3736 3.9710 0.3129 3.4674 0.2585 3.0121
AST 0.6559 3.3531 0.5034 2.6126 0.3688 1.5345 0.2679 1.4835
SST 0.3832 2.2210 0.3230 1.8350 0.2603 1.4734 0.2036 1.1718
Panel C: NASDAQ
ST 0.5056 3.0715 0.4116 2.5191 0.3234 1.9894 0.2453 1.5736
TT 0.4493 2.3542 0.3546 1.9630 0.2696 1.5951 0.2036 1.2832
GAT​ 0.4924 2.4510 0.4039 2.0485 0.3014 1.6451 0.2230 1.3153
AEP 0.5264 5.7652 0.4423 5.0583 0.3650 4.3713 0.2972 3.7823
SEP 0.5077 5.4814 0.4386 4.8805 0.3679 4.2782 0.3022 3.7496
AST 0.7335 4.0120 0.5699 3.2298 0.4225 2.5249 0.3086 1.9786
SST 0.4377 2.7354 0.3693 2.2738 0.2964 1.8404 0.2293 1.4733
Panel D: NIKKEI225
ST 0.5845 2.8188 0.4564 2.3142 0.3494 1.8499 0.2631 1.4663
TT 0.4808 2.3296 0.3687 1.9159 0.2781 1.5409 0.2096 1.2404
GAT​ 0.4788 2.3282 0.3739 1.8985 0.2831 1.5133 0.2118 1.2024
AEP 0.5299 5.4371 0.4474 4.7553 0.3702 4.1006 0.3033 3.5433
SEP 0.5501 5.2936 0.4632 4.6467 0.3799 4.0389 0.3076 3.5203
AST 0.6989 3.5864 0.5458 2.8978 0.4081 2.2801 0.3012 1.7957
SST 0.4210 2.4453 0.3574 2.0426 0.2890 1.6623 0.2257 1.3387
Panel E: DAX30
ST 0.7406 6.9067 0.5486 5.4817 0.3917 4.1715 0.2739 3.1206
TT 0.6306 5.4223 0.4433 4.2996 0.3072 3.3353 0.2121 2.5555
GAT​ 0.6473 5.4831 0.4628 4.3249 0.3195 3.2380 0.2170 2.4076
AEP 0.6673 14.1015 0.5414 12.0997 0.4218 10.1782 0.3262 8.5443
SEP 0.7166 13.8252 0.5662 11.9087 0.4330 10.0599 0.3292 8.4900
AST 0.9186 9.0201 0.6815 7.0409 0.4738 5.2647 0.3221 3.9203
SST 0.7166 9.3688 0.5662 7.8868 0.4330 6.5368 0.3292 5.3564
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residuals, we found that our two new proposed models Generalized asymmetric t-dis-
tribution (GAT​) of Baker (2016) and Double t-distribution (TT) of Baker and Jackson 
(2014) provided the best fit, with GAT​ model being overall the best model. Moreo-
ver, surprisingly the Standard t-distribution outperformed many of the more complex 
t-distributions.

Second, the performance of the ES models are dependent on the market and the confi-
dence level, particularly so at the 1-day and 5-day horizons. This result would indicate that 
for short horizons, risk managers and regulators should use a variety of models and check 
the accuracy of each model specific to each index and constantly re-assess the validity of 
each model. For longer horizons we find that our new proposed models GAT​ outperformed 
all the models considered in this study. This would indicate that for longer horizons, risk 
managers should focus on a single model, rather than a number of alternative models.

Third, complex models do not always lead to best fits or back-testing results. For exam-
ple, in many cases the Standardized t-distribution outperforms the more complex Asym-
metric exponential power distribution (AEP) of Zhu and Zinde-Walsh (2009). These 
findings are further reinforced by the outperformance of by our simpler GAT​ and TT distri-
butions across different horizons, confidence levels and markets.

Finally the backtesting results indicates a wide variation of ES values across different 
models and indices. Given that the VaR and ES values form the basis of regulatory capital 
allocation, it is imperative that the most accurate model with the lowest estimated VaR and 
ES are used by both regulators and managers as the wrong model may mean either capital 
is not efficiently used or insufficient capital is set aside. In this regard, our GAT​ model pro-
vides a reliable alternative to many of the existing models in that it is overall the best per-
forming model across different confidence levels, different horizons and different indices.
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