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 ABSTRACT 

In present paper, we simulate the electro-kinetic transport of aqueous solution through a micro-

channel containing porous media. The micro-channel walls are simulated as complex wavy 

surface and are modelled by superimposing the three wave functions of different amplitudes 

but the same wavelength. The micro-channel contains an isotropic, homogenous porous 

medium, which is analysed with a generalized Darcy law. The nonlinear-coupled governing 

equations for mass, momentum and electrical potential conservation are simplified using low 

Reynolds number and long wavelength approximations, and the Debye electro-kinetic 

linearization. Following non-dimensional transformation of the linearized boundary value 

problem, closed-form analytical solutions are presented for the velocity components, pressure 

gradient, local wall shear stress, average flow rate and stream function subject to physically 

appropriate boundary conditions. Validation with a finite difference method is also conducted. 

The effect of permeability parameter, Debye length (i.e. characteristic thickness of electrical 

double layer) and electro-osmotic velocity on flow characteristics is illustrated graphically and 

interpreted at length. The study finds applications in chromatography, hybrid electro-osmotic 

micro-pumps, transport phenomena in chemical engineering and energy systems exploiting 

electro-kinetics. 

Keywords: Axial electric force; Debye length; Permeability; Helmholtz-Smoluchowski 

velocity; Porous Medium; Trapping. 

 

 

mailto:dtripathi@nituk.ac.in
mailto:dtripathi@nituk.ac.in


2 
 

LIST OF SYMBOLS 

Symbols Description  Unit 

1 , 2 ,

3  
Amplitude of waves 

m 

  Wave number Non-dimensional 

  Permittivity 
A2s4/kgm2 

 

  Wavelength m 

 Debye length m 

 Fluid viscosity kg/ms 

 Transverse velocity m/s 

  Axial coordinate m 

 Fluid density kg/m3 

 Local wall shear stress N/m2 

  Electrical potential kg m2 A−1 s−3 

 Stream function m2/s 

η Transverse coordinate m 

a  Half width of the channel m 

c  Average velocity m/s 

 Permeability m2 

 Electro-osmotic parameter Non-dimensional 

n+  Positive ions Non-dimensional 

n−  Negative ion Non-dimensional 

0n  Number density m−3 

 Pressure kg/m.s2 

t  Time s 

 Axial velocity m/s 

z+  Valency of  positive ion Non-dimensional 

z−  Valency of  negative ion Non-dimensional 

Ex Electrical field kg.m/s3A 

L  Channel length m 

 Ionic Peclet number Non-dimensional 

 Volumetric flow rate m3/s 

Re  Reynolds number Non-dimensional 

 Schmidt number Non-dimensional 

 
Helmholtz-smoluchowski 

velocity 

m/s 
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1. INTRODUCTION 

Flow of fluids in channels under the influence of an electrical field is an important area in both 

energy sciences and medical engineering. Both electro-hydrodynamics [1] and electro-kinetics 

(electro-osmotic transport) [2-4] are important aspects of this field. The latter plays a prominent 

role in micro- and nano-channel systems in ionic flow delivery [5-7], petro-chemical sampling 

in low-permeability reservoirs [8], geotechnical remediation and field-based stabilization of 

geological masses [9]. Electrokinetics includes many sophisticated phenomena including 

streaming currents, streaming potentials, ionic deposition, advection, Joule heating and double 

layer effects. It has therefore attracted the attention of engineers and scientists in terms of both 

experimental studies and theoretical investigations. Electro-kinetics can be very successfully 

utilized to transform mechanical energy into electrical energy, to regulate flow delivery, to 

achieve specified mass transfer rates etc. Electro-osmotic flows in porous media are also of 

significance, arise in both biological systems and industrial systems, and have been shown to 

markedly influence transport rates [10]. The classical approach to simulating transport in 

porous media is the Darcy model, which is valid for viscous-dominated, low Reynolds number 

flows. It has been implemented extensively in electro-kinetic modelling for porous media and 

such studied provide a very important compliment to laboratory-based investigations [11]. 

Gupta et al. [12] derived approximate mathematical relations for electro-kinetic flow in porous 

media, valid for general geometries, zeta potentials and electrolyte concentrations and also 

elongated pores, enabling a robust derivation of the electro-osmotic coefficient.  Li et al. [13] 

studied both experimentally and computationally (with a Lattice Boltzmann method) the 

electro-osmotic flow (EOF) in micro-porous media, showing that under constant external DC 

electric field, there is a reduction in flow resistance inside the pores deceases with influx of 

water into the electro-osmosis pumping section. Gupta et al. [14] analysed the electro-kinetic 

flow in porous media micro-channels with Stern layer effects, computing expressions for 

surface charge density, electrical conductivity, and electroosmotic coupling coefficient for 

various porous structures and physico-chemical boundary conditions. Obliger et al. [15] used 

a Pore Network Model (PNM) to investigate numerically the influence of pressure, salt 

concentration, and electric potential gradients on steady-state response of complex charged 

porous media in a cylindrical channel. Fraia et al. [16] used a finite element method with a 

characteristic-based split algorithm to investigate the electro-osmotic flow (EOF) in 

microchannels containing porous media including the influence of electrical charge of solid 

particles. They solved the combined Laplace, Poisson-Boltzmann and Navier-Stokes equations 
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and also considered heat transfer due to electro-osmosis. Tang et al. [17] utilized the 

representative elementary volume scale porous media model and a lattice Boltzmann algorithm 

to simulate the combined pressure-driven and electroosmotic flow of Herschel–Bulkley 

rheological electrolytes in porous media based on the. They evaluated the effects of porosity, 

solid particle diameter, power law exponent, yield stress and also electric parameters on flow 

characteristics. She and Liu [18] used a computational finite volume method to simulate the 

electroosmotic flow in porous media where the solid phase is approximated by cylinders of 

equal diameters arranged in a regular pattern in response to a given porosity. Brož and Epstein 

[19] examined experimentally the electrokinetic flow through fine cylindrical capillaries with 

electrolyte comprising a dilute solution of potassium iodide in purified water. They considered 

non-Darcy porous media effects and quantified the electroviscous retardation effect for high 

electrokinetic radius (low double layer thickness). Wu and Keh [20] mathematically studied 

the steady electrokinetic flow of electrolyte solutions in fibrous porous media, deriving explicit 

expressions for flow rate, electroosmotic velocity, electric current, effective electric 

conductivity, and streaming potential as functions of the porosity of the fiber matrix and other 

electro-kinetic characteristics. Yang et al. [21] have reviewed many applications of electro-

osmotic pumping in porous media, considering dewatering of toxic sludges and extraction of 

poisonous heavy metal ions from contaminated soils. Chai et al. [22] have also investigated 

with a Darcy model, the electro-kinetic dynamics in micro-channels containing variable 

porosity media. 

The above studies have generally considered rigid boundaries for the conduit i.e. micro-

channel. However, recent progress has been made regarding wavy boundaries and peristaltic 

propulsion mechanisms in electro-osmotic systems, which can enhance performance and may 

offer greater efficiencies [23]. Peristalsis is an important biophysical mechanisms arising in 

many natural systems including reptile locomotion, physiological transport, trans-location of 

phloem in plants etc. Peristaltic flows involve moving boundary fluid mechanics and are 

generally analysed with low wavelength and negligible inertial effects. Several mathematical 

studies of peristaltic hydrodynamics in porous media have been communicated, largely aimed 

at elucidating impeded flow in the digestive system. El Shehawey et al. [24] used a Newtonian 

viscous flow model to compute perturbation solutions for stream function and pressure gradient 

in peristaltic propulsion in a tube containing a Darcian porous medium. Hayat et al. [25] 

derived analytical solutions for small amplitude ratio in peristaltic hydromagnetic flow of 

viscoelastic fluids in porous medium with a modified Darcian model. Vajravelu et al. [26] 
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computed perturbation solutions for peristalsis pumping and heat transfer in a vertical porous 

annular region between two concentric tubes. Vasudev et al. [27] computed Darcy number 

effects in peristaltic flow and heat diffusion in a porous medium channel saturated with Jefferys 

viscoelastic fluid. Tripathi and Bég [28] who considered rheological peristaltic pumping in 

porous media conduits using Maxwell’s viscoelastic model and a generalized Darcy 

formulation. Bég et al. [29] used a variational finite element method to investigate species 

diffusion in pulsating blood flow in non-Darcy porous media, considering different wave 

forms. Several researchers have also investigated electro-kinetic peristaltic flows. Cho and 

Chen [30] studied computationally the electroosmotic flow in a microchannel with a complex-

wavy surface under the influence of a time-varying periodic electric field. They observed that 

the phases of the electric field and electroosmotic velocity close to the channel wall are almost 

identical, whereas they differ in the central region of the channel and furthermore that this 

difference is greater at higher Strouhal number. Al Quddus et al. [31] investigated the influence 

of surface waviness of walls on electro-kinetic flows in a cylindrical microchannel of finite 

length, with two reservoirs at the ends, noting that waviness i.e. irregularity in channel wall 

generates higher concentration and potential gradients across the channel. 

In the present investigation, we study the electro-osmotic flow in a finite micro-channel 

containing a porous medium under wavy surface conditions, which are representative of 

complex peristaltic propulsion. A Darcy model is employed to mimic bulk impedance effects 

of the porous medium. We further note that a “wavy surface” is adopted since it is generated 

by the efficient biological peristalsis propulsion mechanism. The micro-channel is deformable, 

and so the wavy surface is induced by peristaltic waves propagating along the micro-channel 

walls. It is not a fixed rigid wavy surface as employed in, for example, solar collectors. This 

geometry avoids the inherent problems encountered in conventional parallel plate geometries 

and provides an additional mechanism for regulating transport phenomena in clinical and 

power-generation systems. Analytical solutions are derived for the transformed, non-

dimensional linearized boundary value problem. The influence of permeability parameter, 

Debye length (i.e. characteristic thickness of electrical double layer) and electro-osmotic 

velocity on pumping characteristics is evaluated in detail. Trapping phenomena are also 

addressed. The study is relevant to further extending simulations of electro-osmotically driven 

peristaltic micropumps of interest in medical and energy engineering sciences [32].  
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2. MATHEMATICAL FORMULATION 

The geometric model for electro-kinetic transport through a finite length ( L ) micro-channel 

containing a porous medium with complex wavy-wall, as depicted in Fig.1, is modelled 

following Cho and Chen [30] as: 

1 2 3

2 4 8
( , ) sin ( ) sin ( ) sin ( )h t a ct ct ct

  
      

  
= + − + − + − ,               (1) 

where a , 1 , 2 , 3 , , , c , t , L  are the half width of the channel, amplitude of three waves, 

wavelength, axial coordinate, wave velocity, time and channel length. a , 1 , 2 , and 3  satisfy 

the condition 

3

1

i

i

a 
=

 . 

 

Fig.1. Geometry for electrokinetic transport through complex wavy microchannel containing porous medium. 

 

The porous medium is assumed to be homogenous, isotropic and comprises a matrix permeated 

by an interconnected network of pores (voids) filled with electrolyte (ionic liquid). Darcy’s law 

is employed which is valid for viscous-dominated flow [33]. High permeability is assumed. An 

electrical field (Ex) is applied along the longitudinal axis of the micro-channel. Under these 

assumptions, the governing equations for unsteady, two-dimensional, incompressible flow with 

an applied electrokinetic body force in the axial (longitudinal) direction through the porous 

medium micro-channel can be shown to take the form: 

 0,
u v

 

 
+ =

 
                                                                                                             (2) 

2 2

2 2
E ,e x

u u u p u u u
u v

t k
   

    

       
+ + = − + + − +  

        
                                (3) 
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2 2

2 2
,

v v v p v v v
u v

t k
  

    

       
+ + = − + + −  

        
                                            (4) 

where , , , , ,u v p k   and xE  denote the fluid density, axial velocity, transverse velocity, 

pressure, fluid viscosity, the permeability of the porous medium and electrokinetic body force. 

It is important to note that porosity relates to the ratio of volume of the voids to the volume of 

the solids. It is not required in a Darcy model. The key porous media parameter in our 

simulation is the permeability (k) which characterizes the hydraulic conductivity of the porous 

medium and this is the approach adopted. It has been employed by numerous other researchers. 

We are not studying geometric porosity effects. Our focus is on how the permeability 

influences transport characteristics.  The positive ions n+  and negative ion n−  are both assumed 

to have bulk concentration (number density) 0n , and a valency of z+  and z−  respectively. For 

simplicity, we consider the electrolyte to be a :z z  symmetric electrolyte, i.e. z z z+ −= − = . The 

charge number density is related to the electrical potential ( ) in the transverse direction via 

the Poisson equation: 

2 e


 = − ,                                                                                                                 (5) 

where   is the permittivity and )( −+ −= nneze . Further, in order to determine the potential 

distribution, charge number density must also be described. For this, the ionic number 

distributions of the individual species are given by the Nernst-Planck equation for each species 

as:  

       
2 2

2 2

B

n n n n n Dze
u v D n n

t k T

 

       
    

 

              
+ + = + +      

              
 ,                 (6) 

where we have assumed equal ionic diffusion coefficients for both the species, and that the 

mobility of the species is given by the Einstein formula. The following non-dimensional 

parameters are now introduced to non-dimensionalize the boundary value problem; 

1 2 3

2

31 2
1 2 3 2

0

, , , , , ,

1 sin 2 ( ) sin 4 ( ) sin8 ( ),

, , , , Re ,k , , ,

ct u v a
t u v

a c c

h
h t t t

a

pa ca k n
p n

a a a c a n

 
  

   

        

   
   

   

= = = = = =

= = + − + − + −

= = = = = = = =

        (7)                                                                                                                                                 
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where   is wave number, Re  is the Reynolds number,   is the zeta potential, and the 

nonlinear terms in the Nernst Planck equations are ( )2O Pe , where Pe Re Sc=  represents 

the ionic Peclet number and Sc D =  denotes the Schmidt number. Therefore, the nonlinear 

terms may be dropped in the limit that Re, Pe, <<1. In this limit, Poisson equation is obtained 

as: 

2
2

2
,

2

n n
m




+ −−  

= −  
  

                                                                                               (8) 

where 
dB

a

TK

n
aezm


== 02

, is known as the electro-osmotic parameter and 
m

d

1
  is 

Debye length or characteristic thickness of electrical double layer (EDL).  

The ionic distribution may be determined by means of the simplified Nernst Planck equations:  

            
2

2
0 ,

n
n



  




   
=  
   

                                                                                             (9) 

subjected to 1n =  at 0 =  and 0n   =  where 0   =  (bulk conditions). These yield 

the much celebrated Boltzmann distribution for the ions:  

              n e 

 = .                                                                                                                  (10) 

Combining equations (8) and (10), we obtain the Poisson-Boltzmann paradigm for the potential 

determining the potential distribution: 

            ( )
2

2

2
sinhm







=


.                                                                                                     (11) 

In order to make further analytical progress, we must simplify equation (11). Equation (11) 

may be linearized under the low-zeta potential approximation. This assumption is not ad hoc 

since for a wide range of pH, the magnitude of zeta potential is less than 25 mV. Therefore, 

equation (11) reduces to:  

            

2
2

2
m







=


,                                                                                                              (12) 

which may be solved subjected to 

0

0





=


=


 and 1

h


=
= , the potential function is obtained 

as: 
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cosh( )

cosh( )

m

mh


 = ,                                                                             (13) 

Under the assumptions of long wave length and low Reynolds number, the governing 

conservation equations reduce to:   

,0=



+







vu
                                                                                                 (14) 

2
2

2
,HS

p u u
m U

k


 

 
= − +

 
                                                                                          (15) 

 0
p




=


                                                                                         (16) 

where 
x

HS

E
U

c




= −    is the Helmholtz-Smoluchowski velocity or maximum electro-osmotic 

velocity. The imposed boundary conditions are: 

0
0

=




=


u
, ,0=

=h
u


0

0
=

=
v , 

t

h
v

h 


=

=
, 00

pp =
=

 and LL
pp =

=
.               (17)                           

Integrating Eq. (15) and using boundary conditions (17), the axial velocity is obtained as: 

2

2

cosh( ) cosh( )
cosh( )

1
1 cosh( )

cosh( ) cosh( )

HSm Up mk k
u k

h h mh
m

kk k

 





   
       

= − + −   
    −

      

.                                  (18) 

Using Eq. (18) and boundary condition (17), the transverse velocity from the continuity 

equation (14) is obtained as: 

2

2

2

2

sinh( ) sinh( ) tanh( )

cosh( ) cosh( )

sinh( ) tanh( )
sinh( ) tanh( )

1 cosh( )
cosh( )

HS

h
k

p p hk k k
v k

h h

k k

h

m U m mh hk k
h mh

m
k k

 


  







  
     

= − − + +  
     

   

 
   

− 
 −

  

                            (19) 

Furthermore, utilizing Eq. (19) and boundary condition (17), the pressure gradient emerges as:  
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2

0
23/2

1 tanh( )
( ) tanh( )

1
tanh( )

HSm Up h h mh
G t d k

h h t mkmk
kk k




 
    

= + − −  
     −−    

 ,        (20) 

where )(0 tG  is arbitrary function of time (t) to be evaluated by using finite length boundary 

conditions. The pressure difference can be computed along the axial length by the expression: 

ds
s

p
tptpp  


=−=




0

),0(),( ,                                                            (21) 

Here )(0 tG is expressed as: 

2

0
23/20

0

3/20

1 tanh( )
( ) tanh( )

1
tanh( )

( )
1

tanh( )

L

HS
l

L

m Uh h mh
p p d k d

h h t mkmk
kk k

G t

d
h h

k
k k

 



 
   

− − − −  
    −−    =

 
− 

 

 



.             (22)                

The local wall shear stress is defined as: 

2

2

tanh( )

tanh( ) tanh( )
1

HS
w

h

h

m Uu h p k
k m mh

k km
k




 

=

 
    

= = − − 
   −

  

.                               (23) 

The volumetric flow rate is defined as: 

2
3/2

2
0

tanh( )
( , ) tanh( ) tanh( )

1

h

HSm Up h h h mh
Q t ud k k

mk k km
k

 


    
= = − + −   

    −
 .             (24) 

The transformations between a wave frame ( , )x y moving with velocity c and the fixed frame (

,  ) are given by : 

, , ,w wx ct y u u c v v = − = = + = ,                                                                 (25) 

where ( , )w wu v  and ( , )u v  are the velocity components in the wave and fixed frame respectively. 
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The volumetric flow rate in the wave frame is given by 

0 0

( 1)

h h

w wq u d y u dy= = −  ,                                                                                         (26) 

which, on integration, yields:  

wq Q h= − .                                                                                                                 (27) 

Averaging volumetric flow rate along one time period, we get: 

1 1

0 0

( )wQ Qdt q h dt= = +  ,                                                                                            (28) 

which, on integration, yields 

1 1wQ q Q h= + = + − .                                                                                                   (29) 

Using Eqs.(18 & 19), the stream function in the wave frame (obeying the Cauchy-Riemann 

equations, wu
y


=


and 
wv

x


= −


) takes the form: 

2

2

sinh( ) sinh( )
sinh( )

1 cosh( )
cosh( ) cosh( )

HS

y y
k k

m Up myk k
k y

h hx m mh
m

kk k



   
       

= − + −   
    −

      

.                           (30)                     

All the above expressions will reduce to the corresponding expressions for viscous flow 

through finite length porous channel with 0=HSU  i.e. for vanishing Helmholtz-Smoluchowski 

velocity (negligible electrokinetic effect). It is also noteworthy that the expressions (18)-(30) 

contract to the case for electro-kinetic peristaltic transport through a very thin electric double 

layer with electro-osmotic parameter →m . Finally for k → , permeability becomes 

infinite and the general model reduces to purely electro-kinetic transport in electrolytic fluid 

media without porous medium drag forces. 

 

4. VALIDATION WITH KELLER BOX FINITE DIFFERENCE METHOD 

To verify the present analytical solutions, an implicit finite difference method originated by 

Keller [34] has also been employed to solve the boundary value problem defined by eqns. (14)-
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(16) under conditions (17). Recent electromagnetic linear and nonlinear problems which have 

employed Keller’s method include magnetized extending cylinder flows [35], Hall magneto-

gas dynamic generator slip flows [36] and radiative-convective Casson slip boundary layer 

flows [37]. Keller’s method provides unconditional stability and rapid convergence for strongly 

non-linear flows. It involves four key stages, summarized below. 

1) Reduction of the Nth order partial differential equation system to N first order equations 

2) Finite difference discretization of reduced equations 

3) Quasilinearization of non-linear Keller algebraic equations 

4) Block-tridiagonal elimination of linearized Keller algebraic equations  

A two-dimensional computational grid (mesh) which is suitable for the micro-channel 

domain is imposed on the -η plane as sketched in Fig.2. The stepping process is defined by:  

0 10, , 1,2,..., ,j j j Jh j J    − = = + =     (31)

0 10, , 1,2,...,n n

nk n N   −= = + =      (32) 

where kn and hj denote the step distances in the ξ (streamwise) and η (spanwise) directions 

respectively.  

 

 

 

 

 

 

 

 

Fig.2. Keller Box element. 

If 
n

jg denotes the value of a general variable e.g. u, v, p, , at ( ), n

j  , then the variables and 

derivatives of Eqns. (14) – (16) at ( )1/2

1/2 , n

j  −

−  are replaced by: 
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( )1/ 2 1 1

1/ 2 1 1

1
,

4

n n n n n

j j j j jg g g g g− − −

− − −= + + +       (33)

 ( )
1/ 2

1 1

1 1

1/ 2

1
,

2

n

n n n n

j j j j

jj

g
g g g g

h

−

− −

− −

−

 
= − + − 

 
         (34)

 ( )
1/ 2

1 1

1 1

1/ 2

1
,

2

n

n n n n

j j j jn

j

g
g g g g

k

−

− −

− −

−

 
= − + − 

 
     (35) 

The finite-difference approximation of equations (14) – (16) for the mid-point ( )1/2 , n

j −  are 

readily obtained. Details are excluded here for brevity. The complete system is formulated as 

a block matrix system, where each element in the coefficient matrix is a matrix itself. Then, this 

system is solved using the efficient Keller-box method. The numerical results are affected by 

the number of mesh points in both directions. After some trials in the η-direction (transverse 

coordinate) a larger number of mesh points are selected whereas in the ξ direction (axial 

coordinate) significantly less mesh points are utilized. ηmax has been set at ±1.0. ξmax is set at 

2.0 for this flow domain. Mesh independence testing is also performed to ensure that the 

converged solutions are correct. The computer program of the algorithm is executed in 

MATLAB running on a PC. The function )(0 tG  is arbitrary function of time (t) and is again 

computed using finite length boundary conditions in the Keller box program. Comparison 

solutions for the analytical and Keller box method (KBM) solutions are provided in Tables 1-

3 for pressure difference values with different m, UHS and k values.  

 

Table 1: Analytical and Keller box solutions for pressure difference ( p ) versus axial 

displacement () at 1 2 30.1, 0.2, 0.3  = = =  for different electro-osmotic parameters (m). 

 

  p  for different m at 1HSU = , 0.1k =  

 Analytical KBM Analytical KBM Analytical KBM 

 m=2 m=4 m→  

0 0 0 0 0 0 0 

0.25 0.9407 0.9409 0.9231 0.9241 0.9007 0.9010 

0.5 0.0987 0.0981 0.0999 0.0994 0.0915 0.0921 

0.75 0.3212 0.3220 0.3152 0.3148 0.3048 0.3051 

1.0 −0.0025 -0.0031 −0.0028 -0.0024 −0.0027 -0.0030 

1.25 0.9546 0.9493 0.9381 0.9377 0.915 0.919 
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1.5 0.08346 0.08351 0.0837 0.0840 0.07595 0.07598 

1.75 0.2475 0.2481 0.2392 0.2388 0.2328 0.2329 

2.0 0 0 0 0 0 0 

 

Table 2: Analytical and Keller box solutions for pressure difference ( p ) versus axial 

displacement () at 1 2 30.1, 0.2, 0.3  = = =  for different H-S velocity parameters (UHS). 

 

  p  for different 
HSU  at 0.1k = , 2m =  

 Analytical KBM Analytical KBM Analytical KBM 

 UHS=-1 UHS=0 UHS=+1 

0 0 0 0 0 0 0 

0.25 0.7977 0.8001 0.8692 0.8696 0.9407 0.9411 

0.5 0.0558 0.0554 0.0773 0.0775 0.0987 0.0989 

0.75 0.2596 0.2592 0.2904 0.2910 0.3212 0.3215 

1.0 −0.00195 -0.00191 −0.0022 -0.0023 −0.0025 -0.0027 

1.25 0.8081 0.8079 0.8813 0.8816 0.9546 0.9548 

1.5 0.04455 0.04452 0.064 0.061 0.08346 0.08349 

1.75 0.20566 0.20559 0.2266 0.2268 0.2475 0.2472 

2.0 0 0 0 0 0 0 

 

Table 3: Analytical and Keller box solutions for pressure difference ( p ) versus axial 

displacement () at 1 2 30.1, 0.2, 0.3  = = =  for different permeability parameters (k). 

 

  p  for different k  at 2m = , 1HSU =  

 Analytical KBM Analytical KBM Analytical KBM 

 k=0.1 k=0.2 k=0.3 

0 0 0 0 0 0 0 

0.25 0.9407 0.9409 0.6811 0.68153 0.5984 0.5981 

0.5 0.0987 0.0984 0.1136 0.11421 0.1203 0.1205  

0.75 0.3212 0.3214 0.2504 0.25061 0.2287 0.2289 

1.0 −0.0025 -0.0026 −0.0025 -0.0027 −0.0025 -0.0028 

1.25 0.9546 0.9549 0.6947 0.69490 0.612 0.61311 
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1.5 0.08346 0.08347 0.09885 0.09886 0.1055 0.10547 

1.75 0.2475 0.2477 0.18144 0.18439 0.1606 0.16058 

2.0 0 0 0 0 0 0 

 

Generally very good agreement has been achieved between the closed-form and Keller box 

computations. Confidence in the present analytical solutions, which are used to plot all graphs, 

is therefore high.  

 

5. RESULTS AND DISCUSSION 

Graphical solutions have been presented in figs. 3-9. The peristaltic electro-kinetic porous 

media boundary value problem is studied for the influence primarily of three hydrodynamic 

parameters - maximum electro-osmotic velocity (UHS), electro-osmotic parameter (m) and the 

porous medium permeability parameter (k)- and also time (t). In all plots default values for 

other parameters are set as 
1 2 30.1, 0.2, 0.3, 1.0, 0, 1

p
x t

x
  


= = = = = =


. 

 

    

 

 

 
 

    

 

 

(a) 
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Fig.3. Velocity profile (axial velocity vs. transverse coordinate at 
1 2 30.1, 0.2, 0.3, 1.0, 0, 1

p
x t

x
  


= = = = = =



and (a) 1, 1HSU k= = (b) 20, 1m k= =  (c) 1, 20HSU m= = . 

 

  
 

 

 

 

 

 

 

 

    

 

 

    

 

 

(b) 

(c) 

(a) t =0.2 

(b) t =0.6 
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Fig.4. Pressure distribution along the length of channel at 1 2 30.1, 0.2, 0.3,  = = =

02, 0, 5, 0.1l HSl p p U k= = = = = . Color lines represent the pressure distribution and Black dotted 

lines show the complex wave propagation. 

 

 

 

  

  

 

Fig.5. Pressure distribution along the length of channel at 
1 2 30.1, 0.2, 0.3,  = = =

02, 0, 2, 0.1ll p p m k= = = = = . Color lines represent the pressure distribution and Black dotted 

lines show the complex wave propagation. 

 

 

 

 

 

 

    

 

 

    

 

 

(a) t =0.2 

(b) t =0.6 
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Fig.6. Pressure distribution along the length of channel at 1 2 30.1, 0.2, 0.3,  = = =

02, 0, 5, 1l HSl p p U m= = = = = . Color lines represent the pressure distribution and Black dotted 

lines show the complex wave propagation. 

 

 

 

  
 

 

 

 

 

 

 

 

 

    

 

 

    

 

 

    

 

 

(b) t =0.6 

(a) t =0.2 

(a)  

(b)  
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Fig.7. Initial flow rate against the time at 
1 2 30.1, 0.2, 0.3, 1

p

x
  


= = = =


and (a) 1, 0.1HSU k= = (b) 

1, 0.1m k= =  (c) 1, 1HSU m= = . 
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Fig.8. Local wall shear stress along the length of channel at 
1 2 30.1, 0.2, 0.3,  = = =

02, 0, 0.6,ll p p t= = = = for (a) 1, 0.1HSU k= = (b) 1, 0.1m k= = (c) 1, 1HSU m= = . Color lines 

represent the Local wall shear stress and Black dotted lines show the train complex wave propagation. 
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(e)  

(f)  

 



24 
 

  

 

Fig.9. Contour plots for stream lines in wave form at 
1 2 30.1, 0.2, 0.3,  = = = 0.9Q =  for  (a) 

1,U 1, 0.1,HSm k= = =  (b) 5,U 1, 0.1,HSm k= = =  (c) 10,U 1, 0.1,HSm k= = = (d) 1,U 1, 0.3,HSm k= = =  (e) 

1,U 1, 0.5,HSm k= = = (f) 1,U 5, 0.1,HSm k= = = (g) 1,U 10, 0.1,HSm k= = = .  

 

Figs.3a-c illustrate the evolution of axial velocity (u) with m, UHS and k, respectively. 

Increasing electro-osmotic parameter (which physically corresponds to decreasing Debye 

length or characteristic thickness of electrical double layer, EDL) is observed to initially 

strongly accelerate the axial flow.  

However, as observed in fig.3a, for infinite values of m there is a subsequent strong deceleration 

in the axial flow (greater negative values of axial velocity) especially near the channel walls. 

The profiles evolve from inverse parabolas about the channel centre line, to inverse plateau-

forms with an initial elevation in m from finite to infinite values. The latter (infinite m) are 

associated with a vanishing Debye layer. Fig.3b reveals that with negative the Helmholtz-

Smoluchowski velocity (UHS), the axial velocity magnitudes are reduced whereas with a 

positive increase in (UHS), the axial flow is accelerated i.e. magnitudes are increased. Inverted 

parabolic profiles are however sustained for all values of the Helmholtz-Smoluchowski 

velocity (UHS) and the maximum magnitudes are computed around the core region i.e. channel 

centre line. With increasing permeability parameter (k), as shown in fig. 3c, there is a 

 

 

(g)  
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significant increase in the axial velocity magnitudes. The profiles are however alternating in 

nature with maximum values computed near the micro-channel walls. In the transformed axial 

momentum conservation eqn. (15), the Darcian porous media drag force term i.e. –u/k, is 

clearly inversely proportional to the permeability. As permeability increases, there is an 

associated depletion in solid fibers in the channel which results in a reduction in bulk drag from 

the porous matrix. This serves to accelerate the flow in the micro-channel. The permeability 

parameter k is infact equivalent to a Darcy number based on the half width of the channel (a). 

The values selected for k represent very sparsely packed porous media i.e. high permeability 

regimes.  

Figs. 4 a-b illustrate pressure difference (p) versus axial distance for different time instants 

and different electro-osmotic parameters (m). The multi-wave form is clearly captured in these 

plots which exhibit three different maxima and minima corresponding to the three distinct 

amplitudes of the three waves simulated in eqn. (1). The pressure distributions are therefore 

irregular. Increasing electro-osmotic parameter with finite values is found to initially elevate 

the pressure difference values at all axial locations i.e. for all values of . However, with further 

increase in m to infinite values, there is a noticeable reduction in pressure difference 

magnitudes. The peaks are displaced further along the axis i.e. further from the micro-channel 

entry, with progression in time i.e. as t increases from 0.2 to 0.6 (figs. 4a and 4b respectively). 

Figs. 5a-b present the collective influence of time (t) and Helmholtz-Smoluchowski velocity 

(UHS) on the axial evolution of pressure difference (p). Increasing negative UHS is found to 

suppress pressure differences whereas increasing positive UHS is observed to accentuate 

pressure differences. The electro-osmotic effect therefore exerts a strong influence on pressure 

difference in the regime along the axis of the micro-channel. With elapse of time, again there 

is a migration in peak pressure differences further along the axial direction, although there is 

no tangible modification in magnitudes for any of the three different waves. 

Figs. 6a-b present the effects of time (t) and permeability parameter (k) on pressure difference 

profiles with axial coordinate, . Increasing permeability is observed to suppress pressure 

magnitudes whereas decreasing permeability increases them. This behaviour is sustained for 

all values of axial coordinate. The decrease in solid fibers present i.e. lower permeability assists 

in generating greater pressures in the regime. The selection of an appropriate permeability of 

the porous medium is therefore an important aspect controlling pressure distributions. With an 

increase in time, the distribution of pressure peaks for different waves is clearly modified with 
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higher amplitude waves being displaced further along the axis and replaced with the smaller 

amplitude peaks.  

Figs 7a-c depict the variation of initial flow rate with time for different hydrodynamic 

parameters. An increase in electro-osmotic parameter (m) in fig. 7a clearly reduces flow rates 

since it is associated with a deceleration in the micro-channel flow. The three wave amplitudes 

are clearly captured in this and the other figures. Positive Helmholtz-Smoluchowski velocity 

(UHS) in fig. 7b clearly enhances initial flow rates (again due to associated flow acceleration in 

the regime) whereas negative Helmholtz-Smoluchowski velocity induces the opposite effect. 

The flow rate profiles are also much more dispersed than in fig. 7a where they are more 

clustered. Fig. 7c shows that with increasing permeability the magnitudes of the initial flow 

rate are increased, again due to acceleration of the flow in the micro-channel with a 

progressively more permeable matrix i.e. decreased Darcy impedance. 

Figs 8a-c illustrate the evolution in local wall shear stress with axial coordinate, for different 

hydrodynamic parameters. An increase in electro-osmotic parameter (m) in fig. 8a results in a 

marked depression in wall shear stress and again this is as a result of deceleration in the 

electrolyte flow in the micro-channel, especially at and near the wall zones. Positive 

Helmholtz-Smoluchowski velocity (UHS) manifests (as seen in fig. 7b) in an acceleration in the 

micro-channel flow near the walls and therefore elevates the local wall shear stress values. The 

converse effect is computed with negative value of Helmholtz-Smoluchowski velocity (UHS). 

The case of vanishing Helmholtz-Smoluchowski velocity (UHS=0) falls in between the other 

two cases. These results concur quite well with other published works including Maier et al. 

[11] and Li et al. [13]. With increasing permeability of the porous medium i.e. greater k values, 

there is slight reduction in the shear stress magnitudes, as seen in fig. 8c. In all the profiles the 

irregularity associated with three different wave amplitudes is clearly visualized. 

Figs. 9a-g present the combined effects of the Helmholtz-Smoluchowski velocity (UHS), 

permeability parameter (k) and electro-osmotic parameter (m) on streamline distributions. In 

these plots, figs. 9a, 9b, 9c correspond to a change in electro-osmotic parameter from 1 to 5 to 

10, respectively. Although in the first two of these plots, very little modification in circulation 

and trapping patterns is observed, there is a change in strength of circulation zones in the third 

plot, in which bolus zones become more constricted and positive streamline magnitudes are 

altered to negative ones in the lower channel half space. Figs 9c,d,e show the respective 

streamline plots for a progressive increase in permeability parameter, k from 0.1, 0.3 to 0.5. 
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There is a progressive expansion in the boluses and a relaxation in streamlines, associated with 

acceleration in the micro-channel as the permeability parameter is increased. A similar 

observation has been made by Obliger et al. [15]. The permeability of the porous medium 

therefore has a significant influence on the electro-kinetic fluid dynamics. Finally in figs. 9 f,g 

the Helmholtz-Smoluchowski velocity (UHS) is systematically increased from 5 to 10 with all 

other parameters held constant. No significant modification in bolus structure is observed and 

the distribution of the circulation zones remains generally unaltered.  

6. CONCLUSIONS  

A mathematical study has been conducted to investigate the electro-osmotic hydrodynamics in 

aqueous solution (electrolyte) pumping via a finite length micro-channel containing an 

isotropic porous medium. Three wave functions of different amplitudes but the same 

wavelength has been used to simulate a complex wavy surface for the micro-channel walls, 

corresponding to a more realistic peristaltic propulsion scenario. The Darcy model has been 

employed for linear porous media drag simulation. The transformed boundary value problem 

has been solved analytically. Validation with a finite difference method has been included. The 

present analysis has shown that higher values of electro-osmotic parameter i.e. lower values of 

electrical Debye length decrease flow rates and decelerate the micro-channel flow. An increase 

in matrix permeability is observed to suppress pressure difference magnitudes for all three 

peristaltic waves. Negative Helmholtz-Smoluchowski velocity suppresses pressure differences 

whereas increasing positive values generate an increase in pressure differences. With progress 

in time, peak pressure differences are displaced along the microchannel axis i.e. the peaks are 

spaced differently along the channel length for the three different waves considered. With 

negative Helmholtz-Smoluchowski velocity (UHS), axial flow is decelerated. Axial flow 

acceleration is also observed with increasing permeability parameter. Trapping phenomena are 

also studied and permeability is observed to have a strong influence on circulation and bolus 

structure. The present work considered axial electrical field effects. Future studies will also 

consider transverse magnetic fields [38] and efforts in this regard are currently underway. 
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