
I 
 

  

 

 

 

Behavioural ecotoxicology of the brown shrimp, Crangon 

crangon: changing colour in polluted environments 

 

 
 

 

ASMA W. ALTHOMALI 

 

This thesis is presented to the School of Environment & Life Sciences, University of Salford, 

in fulfilment of the requirements for the degree of Ph.D. 

 

 

 

 

 

 

Supervised by Dr. Debapriya Mondal and Dr. Chiara Benvenuto 
 

October 2019 
 



II 
 

Table of contents 

Table of contents .................................................................................................................................... II 

List of figures .......................................................................................................................................... VI 

List of tables ............................................................................................................................................ X 

List of abbreviations .............................................................................................................................. XII 

Dedication ............................................................................................................................................ XIII 

Acknowledgments ............................................................................................................................... XIV 

Abstract ............................................................................................................................................... XVI 

1. Chapter One: Introduction and background ................................................................................... 1 

1.1 General introduction ..................................................................................................................... 1 

1.2 The study organism – Crangon crangon L..................................................................................... 3 

1.2.1 Habitat and characteristics .................................................................................................... 3 

1.2.2 Lifecycle .................................................................................................................................. 5 

1.3 Colour change in animals .............................................................................................................. 8 

1.3.1 Physiological colour changes ........................................................................................... 11 

1.3.2 Morphological colour changes ......................................................................................... 12 

1.4 Contaminants - Heavy metals ..................................................................................................... 12 

1.5 Role of antibiotics in aquaculture ............................................................................................... 17 

1.6 Effects of contaminants on the behaviour of crustaceans ......................................................... 19 

1.6.1 Feeding rates and contaminants.......................................................................................... 20 

1.6.2 Colour change and contaminants ........................................................................................ 21 

1.6 Aim and objectives ...................................................................................................................... 23 

2. Chapter Two: Effects of cadmium and antibiotics (Furazolidone and Gentamicin) on feeding 

behaviour and colour change in the brown shrimp (Crangon crangon) .............................................. 24 

2.1 Introduction ................................................................................................................................ 24 

2.3 Methodology ............................................................................................................................... 27 

2.3.1 Study sites ............................................................................................................................ 27 

2.3.2 Sampling ............................................................................................................................... 28 

2.3.3 Experimental design ............................................................................................................. 30 

2.3.4 Pilot experiments ................................................................................................................. 30 

2.3.4.1 Test the antibiotic dose ................................................................................................ 30 

2.3.4.2 Test Cd dose (Mersey experiment) ............................................................................... 31 



III 
 

2.3.5 Main experiment (Dale experiment) ................................................................................... 32 

2.3.6 Behavioural responses ......................................................................................................... 33 

2.3.6.1 Shrimp weight and food intake ..................................................................................... 33 

2.3.6.2 Colour change measurement ........................................................................................ 34 

2.3.7 Brightness/ pigment analysis ............................................................................................... 35 

2.3.8 Heavy metal analysis ............................................................................................................ 35 

2.3.9 Statistical Analysis ................................................................................................................ 36 

2.4 Results ......................................................................................................................................... 37 

2.4.1 Mortality .............................................................................................................................. 37 

2.4.2 Shrimp weight and food intake ............................................................................................ 38 

2.4.3 Dark pigment cover in black and white sediment ............................................................... 42 

2.4.3.1 Dark pigment cover in black sediment ......................................................................... 42 

2.4.3.2 Dark pigment cover in white sediment ......................................................................... 47 

2.4.3 Colour change ability ........................................................................................................... 51 

2.4.4 Heavy metals concentrations............................................................................................... 56 

2.4.4.1 Validation ...................................................................................................................... 56 

2.4.4.2 Heavy metals concentrations in the environment and shrimp tissue .......................... 57 

2.5 Discussion .................................................................................................................................... 61 

2.5.1 Mortality .............................................................................................................................. 61 

2.5.2 Behaviour responses ............................................................................................................ 61 

2.5.2.1 Shrimp weight and food intake ..................................................................................... 62 

2.5.2.1 Colour change ability .................................................................................................... 63 

2.5.3 Heavy metals concentrations in the environment and shrimp tissue ................................. 65 

3. Chapter Three: Effects of cadmium on colour change in the brown shrimp (Crangon crangon) 

from two different populations ............................................................................................................ 67 

3.1 Introduction ................................................................................................................................ 67 

3.2 Methodology ............................................................................................................................... 68 

3.2.1 Study sites ............................................................................................................................ 68 

3.2.2 Sampling ............................................................................................................................... 68 

3.2.3 Chemicals and equipment ....................................................................................................... 69 

3.2.4 Design of the main experiment............................................................................................ 70 

3.2.4.1 Dale experiment ............................................................................................................ 71 

3.2.4.2 Liverpool experiment .................................................................................................... 71 

3.2.5 Colour change measurement ............................................................................................... 71 



IV 
 

3.2.6 Statistical Analysis ................................................................................................................ 72 

3.3 Results ......................................................................................................................................... 74 

3.3.1 Mortality .............................................................................................................................. 74 

3.3.2 Colour change ability ........................................................................................................... 74 

3.3.3 Heavy metals analyses ......................................................................................................... 80 

3.4 Discussion .................................................................................................................................... 83 

3.4.1 Colour change ability ........................................................................................................... 83 

3.4.2 Heavy metals in the environment and shrimp tissue .......................................................... 84 

4. Chapter Four: Effects of arsenic on the brown shrimp, Crangon crangon ................................... 86 

4.1 Introduction ................................................................................................................................ 86 

4.2 Methodology ............................................................................................................................... 88 

4.2.1 Study sites and sampling ...................................................................................................... 88 

4.2.2 Toxicity test .......................................................................................................................... 88 

4.2.3 Experiment 1 - Effect of arsenic on colour change .............................................................. 88 

4.2.4 Experiment 2 - As accumulation and metabolism over time ............................................... 90 

4.2.5 Experiment 3 – Measuring As species and total As in shrimp samples ............................... 91 

4.2.5.1 Extraction of total arsenic ............................................................................................. 91 

4.2.5.2 Extraction for arsenic speciation................................................................................... 92 

4.2.6 Statistical Analysis ................................................................................................................ 95 

4.3 Results ......................................................................................................................................... 96 

4.3.1 Mortality .............................................................................................................................. 96 

4.3.2 Colour change ability ........................................................................................................... 97 

4.3.2.1 Comparison of colour change ability over time in individual groups ........................... 97 

4.3.2.2 Comparison of colour change ability between group ................................................. 100 

4.3.3 Dark pigment cover in black and white sediment ............................................................. 101 

4.3.3.1 Comparison of dark pigment cover in black or white sediment over time ................ 101 

4.3.3.2 Comparison of dark pigment cover in black or white sediment between groups ..... 107 

4.3.4 Arsenic estimation ............................................................................................................. 109 

4.3.5 Total arsenic ....................................................................................................................... 110 

4.3.6 Arsenic speciation .............................................................................................................. 112 

4.4 Discussion .................................................................................................................................. 115 

4.4.1 Mortality ............................................................................................................................ 115 

4.4.2 Colour change and dark pigment cover in black and white sediment ............................... 116 

4.4.3 Quality assurance ............................................................................................................... 117 



V 
 

4.4.4 Total arsenic ....................................................................................................................... 117 

4.4.5 Arsenic speciation .............................................................................................................. 118 

5. Chapter Five: General discussion ................................................................................................ 121 

5.1 Main findings ............................................................................................................................ 121 

5.2 Limitations ................................................................................................................................. 124 

5.3 Implication for ecosystem management .................................................................................. 125 

5.4 Future directions ....................................................................................................................... 126 

5.5 Final conclusion ......................................................................................................................... 126 

References .......................................................................................................................................... 127 

A. Appendix ..................................................................................................................................... 146 

1. Supplementary material for chapter 2 ....................................................................................... 146 

1.1 Initial body weight ................................................................................................................ 146 

1.2 Dark pigment cover in black sediment ................................................................................. 146 

1.3 Dark pigment cover in white sediment ................................................................................. 148 

1.4 Colour change ability ............................................................................................................ 149 

2. Supplementary material for chapter 3 ....................................................................................... 151 

3. Supplementary material for chapter 4 ....................................................................................... 153 

 



VI 
 

List of figures  

Figure 1.1 The brown shrimp, Crangon crangon L. (Eucarida: Caridea: Crangonidae) ........................................... 3 
Figure 1.2 Distribution of the brown shrimp (FAO, 1980) ....................................................................................... 4 
Figure 1.3 Ovigerous Crangon crangon female ...................................................................................................... 6 
Figure 1.4 Morphological differences between male and female in Crangon crangon (Campos & Van der Veer, 
2008) ....................................................................................................................................................................... 7 
Figure 1.5 Summary of the main arsenic species found in the aquatic environment ........................................... 16 
Figure 2.1 The brown shrimp Crangon crangon show different body colouration (pale and dark) depending on 
the colour of the background (white and black sand, respectively) ..................................................................... 26 
Figure 2.2 Sampling pond to the south of Widnes, Cheshire, England. A) Satellite map; B) General map (Google 
Maps, 2019) .......................................................................................................................................................... 29 
Figure 2.3 Sampling site in Dale, Pembrokeshire, South West Wales. A) Satellite map; B) General map (Google 
Maps, 2019) .......................................................................................................................................................... 29 
Figure 2.4 Diffusion assay technique with gut extract from Crangon crangon used to test the resistance of some 
antibiotics ............................................................................................................................................................. 31 
Figure 2.5 Set up of the experiment: A) shrimp were housed individually in a common environment; B, C) shrimp 
were fed in small beakers with white sediment .................................................................................................... 32 
Figure 2.6 Experimental design: blue arrows show the initial steps of the experiment (shrimps were taken from 
the aquaria and a picture of the right exopod was taken using microscope and then the shrimps were measured 
then transferred to a small beaker to be fed and to allow them to change their colour since the sediment in the 
beaker is different from the aquaria); green arrows show the final steps after the shrimp were feed and left in 
different substrate colour for two hours ............................................................................................................... 33 
Figure 2.7 Right exopod in the telson and section showing the inset of the photo used to assess colour change
 .............................................................................................................................................................................. 34 
Figure 2.8 Analysis of photo with ImageJ (version 1.48), the left image showed how the dark pigment was 
selected by using threshold and the right image showed the results from the software ..................................... 35 
Figure 2.9 Initial body weight (wet weight) of each shrimp in gram before feeding over time in both control (top 
panel) and Cd group (bottom panel; Mersey experiment), box plots display minimum, maximum, median and 
first and third quartile; circles show outlier values ............................................................................................... 39 
Figure 2.10 Regression slopes of initial body weight of the shrimp over time in both control and Cd group in the 
Mersey experiment, solid line represents control and dashed line represent Cd group ....................................... 39 
Figure 2.11 Initial body weight (wet weight) of each shrimp in gram before feeding over time in all groups (Dale 
experiment), box plots display minimum, first quartile, median, third quartile and maximum; circles show 
outlier values ........................................................................................................................................................ 40 
Figure 2.12 Regression slopes of initial body weight of shrimp over time in all groups group in Dale experiment, 
black line represent control, red represent Cd, yellow represent antibiotics and green represent antibiotics+Cd 
group .................................................................................................................................................................... 40 
Figure 2.13 Food intake measured by the difference in shrimp’s wet weight in gram before and after feeding 
between groups in Mersey (left panel) and Dale (right panel), box plots display minimum, maximum, median 
and first and third quartile; circles show outlier values and stars show extreme outliers .................................... 41 
Figure 2.14 Dark pigment cover in black sediment in both control (top panel) and Cd (bottom panel) group in 
Mersey, box plots display minimum, maximum, median and first and third quartile; circles show outlier values 
and stars show extreme outliers ........................................................................................................................... 43 
Figure 2.15 Regression slopes of dark pigment cover in black sediment over time in both control and Cd group 
in the Mersey experiment, solid line represents control and dashed line represent Cd group ............................. 43 
Figure 2.16 Dark pigment cover in black sediment in all groups in the Dale experiment, box plots display 
minimum, maximum, median and first and third quartile; circles show outlier values and stars show extreme 
outliers .................................................................................................................................................................. 44 
Figure 2.17 Regression slopes of dark pigment cover in black sediment over time in all groups in the Dale 
experiment, black line represent control, red represent Cd, yellow represent antibiotics and green represent 
antibiotics+Cd group ............................................................................................................................................. 45 
Figure 2.18 Dark pigment cover in black sediment between groups in Mersey (left panel) and Dale (right panel), 
box plots display minimum, maximum, median and first and third quartile; circles show outlier values ............ 46 



VII 
 

Figure 2.19 Dark pigment cover in white sediment between days in both control (top panel) and Cd (right panel) 
group in Mersey, box plots display minimum, first quartile, median, third quartile and maximum; circles show 
outlier values ........................................................................................................................................................ 48 
Figure 2.20 Regression slopes of dark pigment cover in white sediment over time in both control and Cd group 
in the Mersey experiment, solid line represents control and dashed line represent Cd group ............................. 48 
Figure 2.21 Dark pigment cover in white sediment between days in all groups in Dale, box plots display 
minimum, maximum, median and first and third quartile; circles show outlier values ........................................ 49 
Figure 2.22 Regression slopes of dark pigment cover in white sediment over time in all groups in the Dale 
experiment, black line represent control, red represent Cd, yellow represent antibiotics and green represent 
antibiotics+Cd group ............................................................................................................................................. 49 
Figure 2.23 Dark pigment cover in white sediment between groups in Mersey and Dale, box plots display 
minimum, maximum, median and first and third quartile; circles show outlier values ........................................ 51 
Figure 2.24 Colour change ability of the brown shrimp measured by the difference in dark pigment cover in 
black and white sediment in control (top panel) and Cd (bottom panel) group in the Mersey experiment ......... 52 
Figure 2.25 Regression slopes of colour change ability of the brown shrimp measured by the difference in dark 
pigment over time in both control and Cd group in the Mersey experiment, solid line represents control and 
dashed line represent Cd group ............................................................................................................................ 53 
Figure 2.26 Colour change ability of the brown shrimp measured by the difference in dark pigment cover in 
black and white sediment over time in all groups in the Dale experiment, box plots display minimum, maximum, 
median and first and third quartile; circles show outlier values ........................................................................... 53 
Figure 2.27 Regression slopes of Colour change ability of the brown shrimp measured by the difference in dark 
pigment cover in black and white sediment over time in all groups in the Dale experiment, black line represent 
control, red represent Cd, yellow represent antibiotics and green represent antibiotics+Cd group .................... 54 
Figure 2.28 Colour change ability of the brown shrimp measured by the difference in pigment cover in black and 
white sediment between groups in Mersey and Dale, box plots display minimum, maximum, median and first 
and third quartile; circles show outlier values ...................................................................................................... 56 
Figure 3.1 Sampling site to in the Liverpool Bay, England. A) Satellite map; B) General map (Google Maps, 2019)
 .............................................................................................................................................................................. 69 
Figure 3.2 Set up of the experimental boxes (Aquaponics Labs) .......................................................................... 70 
Figure 3.3 Schematic overview of the colour change protocol ............................................................................. 72 
Figure 3.4 Schematic experimental analysis for colour change ability. A) temporal variation within each group 
(control and treatment); B) intrapopulation differences between groups; C) interpopulation differences within 
each group ............................................................................................................................................................ 73 
Figure 3.5 Colour change ability of the brown shrimp measured by the difference in dark pigment cover in black 
and white sediment between groups in both populations (Dale and Liverpool) and in both directions, box plots 
display minimum, maximum, median and first and third quartile of each group; circles show outlier values and 
stars show extreme outliers .................................................................................................................................. 75 
Figure 3.6 Colour change ability of the brown shrimp measured by the difference in dark pigment cover in black 
and white sediment between groups in both populations (Dale and Liverpool) and in both directions, box plots 
display sent minimum, maximum, median and first and third quartile; circles show outlier values and stars 
show extreme outliers .......................................................................................................................................... 76 
Figure 3.7 Regression slopes of dark pigment cover in black sediment in Cd group for W to B direction, solid line 
represent Dale population and dashed line represent Liverpool .......................................................................... 77 
Figure 3.8 Regression slopes of dark pigment cover in white sediment in Cd group between Dale and Liverpool 
for W to B direction, solid line represent Dale population and dashed line represent Liverpool .......................... 78 
Figure 3.9 Dark pigment cover in black sediment between control and Cd group in Dale and Liverpool in both 
directions, box plots display minimum, maximum, median and first and third quartile; circles show outlier 
values and stars show extreme outliers ................................................................................................................ 79 
Figure 3.10 Dark pigment cover in black sediment between control and Cd group in Dale and Liverpool in both 
directions, box plots display minimum, maximum, median and first and third quartile; circles show outlier 
values .................................................................................................................................................................... 80 
Figure 4.1 Experimental design. B to W direction= shrimp moved from black to white substrate; W to B 
direction= shrimp moved from white to black substrate. Sample size: n= 12 in all treatments, except for control 
(n= 10) ................................................................................................................................................................... 90 
Figure 4.2 Digests ready for analysis in the inductively coupled plasma mass spectrometers (ICP-MS) .............. 92 
Figure 4.3 Anion exchange column used in As speciation analysis ....................................................................... 93 



VIII 
 

Figure 4.4 High-performance liquid chromatography-inductively coupled plasma mass spectrometer (HPLC-ICP-
MS) used to analyse arsenic species in the shrimp ............................................................................................... 94 
Figure 4.5 Chromatogram showing the separation of As species using Origin 6.1 software ............................... 94 
Figure 4.6 Survival time of the shrimp in each group during 21 days of the experiment, blue line control group; 
red 5 ppm As(V); green 10 ppm As(V) and orange 20 ppm As(V) ......................................................................... 97 
Figure 4.7 Colour change ability of the shrimp measured by the difference in dark pigment cover in black and 
white sediment over time when they were moved from black to white sediment (B to W) in all groups, box plots 
display minimum, maximum, median and first and third quartile; circles show outlier values............................ 98 
Figure 4.8 Regression slopes of colour change ability of the brown shrimp measured by the difference in the 
dark pigment cover in black and white sediment over time in all groups for B to W direction, black line 
represent control, red represent 5 pp As(V), green represent 10 ppm As(V) and yellow represent 20 ppm As(V)
 .............................................................................................................................................................................. 99 
Figure 4.9 Colour change ability of the brown shrimp measured by the difference in dark pigment cover in black 
and white sediment over time when they were moved from white to black sediment (W to B) in all groups, box 
plots display minimum, maximum, median and first and third quartile; circles show outlier values and stars 
show extreme outliers .......................................................................................................................................... 99 
Figure 4.10 Regression slopes of colour change ability of the brown shrimp measured by the difference in dark 
pigment cover in black and white sediment over time in all groups for W to B direction, black line represent 
control, red represent 5 pp As(V), green represent 10 ppm As(V) and yellow represent 20 ppm As(V) ............. 100 
Figure 4.11 Colour change ability of the brown shrimp measured by the difference in dark pigment cover in 
black and white sediemnt (final – initial in %) between groups in both directions, box plots display minimum, 
maximum, median and first and third quartile; circles show outlier values and stars show extreme outliers ... 101 
Figure 4.12 Dark pigment cover in black sediment in B to W direction for all groups, box plots display minimum, 
maximum, median and first and third quartile; circles show outlier values ....................................................... 103 
Figure 4.13 Regression slopes of dark pigment cover in black sediment in B to W direction for all groups, black 
line represent control, red represent 5 pp As(V), green represent 10 ppm As(V) and yellow represent 20 ppm 
As(V) ................................................................................................................................................................... 104 
Figure 4.14 Dark pigment cover in white sediment in B to W direction for all groups, box plots display minimum, 
maximum, median and first and third quartile; circles show outlier values and stars show extreme outliers ... 104 
Figure 4.15 Regression slopes of dark pigment cover in white sediment in B to W direction for all groups, black 
line represent control, red represent 5 pp As(V), green represent 10 ppm As(V) and yellow represent 20 ppm 
As(V) ................................................................................................................................................................... 105 
Figure 4.16 Dark pigment cover in black sediment in W to B direction for all groups, box plots display minimum, 
maximum, median and first and third quartile; circles show outlier values ....................................................... 105 
Figure 4.17 Regression slopes of dark pigment cover in black sediment in W to B direction for all groups, black 
line represent control, red represent 5 pp As(V), green represent 10 ppm As(V) and yellow represent 20 ppm 
As(V) ................................................................................................................................................................... 106 
Figure 4.18 Dark pigment cover in white sediment in W to B direction for all groups, box plots display minimum, 
maximum, median and first and third quartile; circles show outlier values ....................................................... 106 
Figure 4.19 Regression slopes of dark pigment cover in white sediment in W to B direction for all groups, black 
line represent control, red represent 5 pp As(V), green represent 10 ppm As(V) and yellow represent 20 ppm 
As(V) ................................................................................................................................................................... 107 
Figure 4.20 Dark pigment cover in black sediment in both directions between groups, box plots display 
minimum, maximum, median and first and third quartile; circles show outlier values ...................................... 108 
Figure 4.21 Dark pigment cover in white sediment in both directions between groups, box plots display 
minimum, maximum, median and first and third quartile; circles show outlier values. ..................................... 109 
Figure 4.22 Total As in: A) acid digestion; B) water digestion ............................................................................ 112 
Figure 4.23 Arsenate [As(V)] concentrations in all groups ................................................................................. 113 
Figure 4.24 Dimethylarsinic acid (DMA) concentrations in all groups ................................................................ 113 
Figure 4.25 Arsenobetaine (AsB) concentrations in all groups ........................................................................... 114 
Figure 4.26 AsB/As(V) ratio in the treatment groups; A) all days; B) between day 14 and 21 only ................... 115 
Figure A.1 Mean of pigment cover in black and white sediment........................................................................ 151 
Figure A.2 Difference in pigment cover in black and white sediment between days in Dale in B to W direction 
(A= control, B= Cd) and W to B direction (C= control, D= Cd) ............................................................................. 152 
Figure A.3 Difference in pigment cover in black and white sediment between days in Liverpool in B to W 
direction (A= control, B= Cd) and W to B direction (C= control, D= Cd) .............................................................. 153 
Figure A.4 SPARC poster ..................................................................................................................................... 162 



IX 
 

Figure A.5 SETAC poster ...................................................................................................................................... 163 
Figure A.6 European Society of Evolutionary Biology poster .............................................................................. 164 
Figure A.7 Association for the Study of Animal Behaviour poster ...................................................................... 165 
Figure A.8 Ethical approval ................................................................................................................................. 166 



X 
 

List of tables 

Table 1.1 Effects of Cd and As on some of behavioural and physiological aspects in crustaceans ...................... 14 
Table 1.2 Effect of selected contaminants on colour change of aquatic organisms ............................................. 22 
Table 2.1 Repeated measures ANOVA for initial body weight within group between days for Mersey and Dale 38 
Table 2.2 Descriptive Statistics and ANOVA for food intake measured by the difference in shrimp wet weight 
(after food-before food) between groups for Mersey and Dale ........................................................................... 41 
Table 2.3 Repeated measures ANOVA for dark pigment cover in black sediment within group between days in 
Mersey and Dale ................................................................................................................................................... 42 
Table 2.4 Descriptive Statistics and ANOVA for dark pigment cover in black sediment between groups in Mersey 
and Dale ................................................................................................................................................................ 46 
Table 2.5 Repeated measures ANOVA for dark pigment cover in white sediment within group between days in 
Mersey and Dale ................................................................................................................................................... 47 
Table 2.6 Descriptive Statistics and ANOVA of dark pigment cover in white sediment between groups for 
Mersey and Dale ................................................................................................................................................... 50 
Table 2.7 Repeated measures ANOVA for colour change measured by the difference in dark pigment cover in 
black and white sediment within group between days in Mersey and Dale ......................................................... 51 
Table 2.8 Descriptive statistics and ANOVA for colour change ability between groups in Mersey and Dale ....... 55 
Table 2.9 Pairwise comparisons between the four groups in Dale ....................................................................... 55 
Table 2.10 Recovery values for heavy metals ....................................................................................................... 56 
Table 2.11 ICP-MS results of heavy metals found in the environment (mean±SD ppm) ....................................... 58 
Table 2.12 ICP-MS results of heavy metals found in baseline and control shrimp (mean±SD ppm) ..................... 59 
Table 2.13 ICP-MS results of heavy metals found in dosed shrimp (mean±SD ppm) ............................................ 60 
Table 2.14 Spearman correlation between the whole suite of elements in water, sediment and shrimp in Mersey 
(all data presented in ppm) .................................................................................................................................. 61 
Table 3.1 Actual sample size in Dale and Liverpool experiment that used in the analysis ................................... 74 
Table 3.2 Descriptive statistics and t-test for difference in dark pigment cover in black and white sediment 
between groups in Dale and Liverpool for both directions ................................................................................... 75 
Table 3.3 Descriptive statistics and t-test for difference in dark pigment cover in black and white sediment 
between populations in control and Cd group for both direction ......................................................................... 76 
Table 3.4 Descriptive statistics and t-test for dark pigment cover in black sediment between Dale and Liverpool 
in all groups and both directions .......................................................................................................................... 78 
Table 3.5 Descriptive statistics and t-test for dark pigment cover in white sediment between Dale and Liverpool 
in all groups and both directions .......................................................................................................................... 79 
Table 3.6 ICP-MS results of heavy metals found in the environment. All data presented in (mean±SD ppm) ..... 81 
Table 3.7 ICP-MS results of heavy metals found in shrimp tissue. All data presented in (mean±SD ppm) ........... 82 
Table 3.8 Spearman correlation between the whole suite of elements in water, sediment and shrimp in Mersey
 .............................................................................................................................................................................. 82 
Table 4.1 Survival time of the shrimp in each group during 21 days .................................................................... 96 
Table 4.2 Repeated measures ANOVA for difference in pigment between days in all groups and both directions
 .............................................................................................................................................................................. 98 
Table 4.3 Descriptive Statistics and ANOVA for colour change in all groups for both directions ....................... 101 
Table 4.4 Repeated measures ANOVA for dark pigment cover in black and white sediment within group 
between days for both directions in all groups ................................................................................................... 102 
Table 4.5 Descriptive Statistics and ANOVA for dark pigment cover in black and white sediment for both 
directions in all groups ........................................................................................................................................ 108 
Table 4.6 As species measured in CRM and extraction efficiencies .................................................................... 110 
Table 4.7 HPLC data including total As and As speciation .................................................................................. 111 
Table A.1 Pairwise comparisons for initial body weight before feeding between days in Cd group in Mersey .. 146 
Table A.2 Pairwise comparisons between days for dark pigment cover in black sediment for Mersey experiment
 ............................................................................................................................................................................ 147 
Table A.3 Pairwise comparisons between days for dark pigment cover in black sediment in Dale experiment for 
Cd and antibiotics+Cd group ............................................................................................................................... 148 
Table A.4 Pairwise comparisons between days of dark pigment cover in white sediment for both groups in 
Mersey experiment ............................................................................................................................................. 149 



XI 
 

Table A.5 Pairwise comparisons between days for difference in pigment cover in black and white sediment in 
both group for Mersey experiment ..................................................................................................................... 150 
Table A.6 Pairwise comparisons for difference in pigment cover in black or white sediment between days in 
control group ...................................................................................................................................................... 154 
Table A.7 Pairwise comparisons for difference in pigment cover in black or white sediment between days in 5 
ppm group .......................................................................................................................................................... 155 
Table A.8 Pairwise comparisons for difference in pigment cover in black or white sediment between days in 10 
ppm group .......................................................................................................................................................... 156 
Table A.9 Pairwise comparisons for difference in pigment cover in black or white sediment between days in 20 
ppm group .......................................................................................................................................................... 157 
Table A.10 Pairwise comparisons of dark pigment cover in black and white sediment between days for black to 
white direction in control group ......................................................................................................................... 158 
Table A.11 Pairwise comparisons of dark pigment cover in white sediment between days for white to black 
direction in control group ................................................................................................................................... 159 
Table A.12 Pairwise comparisons of dark pigment cover in white sediment between days for white to black 
direction in 5 ppm group .................................................................................................................................... 159 
Table A.13 Pairwise comparisons in dark pigment cover in white sediment between days for both directions in 
10 ppm group ..................................................................................................................................................... 160 
Table A.14 Pairwise comparisons of dark pigment cover in black sediment for white to black direction between 
days in 20 ppm group ......................................................................................................................................... 161 

 



XII 
 

 

List of abbreviations  

Al = Aluminium  

As(III) = Arsenite 

As(V) = Arsenate 

As = Arsenic 

AsB = Arsenobetaine 

B to W = black to white direction 

Ba = Barium  

BPDH = Black pigment dispersing 

hormone 

Ca = Calcium 

cAMP = Cyclic adenosine monophosphate 

Cd = Cadmium 

cGMP = Cyclic guanosine monophosphate 

Cr = Chromium 

CRM = Certified reference material 

Cu = Copper 

DMA = Dimethylarsinic acid 

Fe = iron 

FZD= Furazolidone 

Gt= Gentamicin 

H2O2 = Hydrogen peroxide  

HNO3 = Nitric acid 

HPLC-ICP-MS = High-performance liquid 

chromatography-inductively coupled 

plasma mass spectrometer 

iAs = Inorganic Arsenic 

ICP-AES = Coupled Plasma Atomic 

Emission Spectrometry 

ICP-MS = Inductively coupled plasma mass 

spectrometry 

ICP-OES = Inductively Coupled Plasma 

Optical Emission Spectrometry  

K = Potassium 

Li = Lithium  

LOD = Limit of detection 

MBC = Mersey Basin Campaign 

MMA = Monomethylarsonic acid 

Mn = Manganese  

Mg = Magnesium 

Na = Sodium 

orgAs = Organic Arsenic 

OTC = Oxytetracycline 

OXA = Oxolinic acid 

Pb = Lead 

PCB = Polychlorinated biphenyl 

ppm = Part per million 

psu = Practical salinity units 

W to B = white to black direction 

Zn = Zinc  

 

 

 



XIII 
 

  

 
 
 
 
 
 
 
 
 
 
 

Dedication 

 
 
 

This thesis is dedicated to my wonderful and supportive parents, brothers and sisters. 



 

XIV 
 

Acknowledgments  

First and foremost, I am grateful to the Almighty Allah for bestowing His blessings on me 

and giving me the strength, knowledge, ability and opportunity to successfully undertaking 

this research study with perseverance, determination and tenacity. 

 

I would like to express my sincere appreciation and thanks to my supervisors Dr Debapriya 

Mondal and Dr Chiara Benvenuto for their help, support, motivation and guidance 

throughout my PhD journey. I would like to thank you for steering me in the right direction 

during my research and for allowing me to grow as a research scientist. Your advice on 

research has been invaluable and inspirational. 

 

My sincere thanks also go to my family, especially Parents, for their continuous support and 

encouragement during my research time. I hope that I have made you proud. Furthermore, I 

extend my thanks to my brother Omar for helping me collect the samples, and his wife 

Wajd for being beside me and cooking for me if needed. Thank you both for everything.  

 

I would also like to acknowledge Dr Chloe James’s contribution to chapters 2. The Arsenic 

speciation part in chapter 4 would not have been possible without the help of Professor 

Jörg Feldmann and Dr Andrea Raab. I greatly appreciate the opportunity they offered me to 

work with them at the University of Aberdeen. I would like also to thank Savarin Sinaviwat 

for her help in the laboratory while I was working at the University of Aberdeen. 

 

I would also like to thank Paulo Marini and Mike Ratcliffe from the Aquaponic laboratory 

for their contribution in building up the new rearing system for the shrimp and Paul Oldfield 

for his help in accessing the Mersey Estuary. 

 

I also take this opportunity to thank Hector A. Velencoso, Andjin Siegenthaler, Michelle 

Santos, Chinedu Ifeoma, Rachael Fraser, and Chayan Munshi for their help in the 

laboratory and collecting the shrimp from the field.  

 



 

XV 
 

My deep appreciation goes out to my best friend ever Sultana Al Harthi for her loving 

support and without her motivation, I would not have had the strength to finish this 

journey. I am also very grateful to all my friends here in the UK and in Saudi Arabia for their 

support. 

 

I would like to thank the UK NHS and especially all those people working in the transplant 

unit in Manchester Royal Infirmary for taking care of me and supporting me back in 2016 

when I was diagnosed with a kidney failure, and when I had a kidney transplanted in 2018 

and until now.  

 

Last but not least, I sincerely thank The Ministry of Higher Education in Saudi Arabia for 

funding my research. 

 

 



 

XVI 
 

Abstract 

The brown shrimp, Crangon crangon has a great ecological value in UK estuaries and coastal 

areas and it is also a commercially important species. It utilizes chromatophores (specialized 

cells containing pigments) to match its background, changing its colour either from pale 

(pigments contracted) to dark (pigments expanded) or vice versa, thus becoming almost 

invisible in its environment. Chromatophores also protect the shrimp (at least in the larval 

stages) from UV light. The control of pigments depends on hormones, secreted by the 

shrimp as a response to different stimuli (e.g., light, temperature and colour of substrate). 

Contaminants are found often and consistently in estuaries, due to human activities along 

the coasts and can potentially affect behavioural responses, acting as anthropogenic 

stressors. The use of colour change as a behavioural marker of pollution is considered here, 

as a potential effective tool to assess the initial stages of biological alteration in aquatic 

organisms. To test the efficiency of this novel technique, brown shrimp have been treated 

with non-lethal concentrations of cadmium (Cd) plus two different antibiotics [Gentamicin 

(Gt) and Furazolidone (FZN)] and arsenic (As). A great interindividual and interpopulation 

variability in response to the use of heavy metals and antibiotics was found. Therefore, 

colour change ability in the brown shrimp is not a sensitive behavioural ecotoxicological 

marker to detect early stages of contaminations in the environment, at least for Cd, As, Gt 

and FZD. Finally, given the high level of total As often detected in seafood, a speciation 

analysis was performed in the dosed specimens. The quantification of the various As species 

through time suggest the possibility of the brown shrimp to bio-transform inorganic arsenic 

(iAs) into the less toxic organic form [arsenobetaine (AsB)]. This has relevant implications for 

aquaculture and fisheries of crustaceans in areas contaminated by inorganic As: shrimp can 

be consumed by humans even if grown in contaminated areas, and potentially could 

detoxify water from iAs. However, more investigations are needed, leaving this field open to 

applied studies in the field.  
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1. Chapter One: Introduction and background 

1.1 General introduction 

It has become imperative to better manage wild caught food sources, due to the gradual 

depletion of natural food resources, including marine, and the requirement to feed the 

ever-expanding global population. The brown shrimp, Crangon crangon L. , which like many 

shrimps is exploited as a valued commercial species, is found in most aquatic environments, 

including the waters of the Atlantic Ocean, White Sea, Baltic Sea, Mediterranean Sea, North 

sea and Black Sea (Chak, Bauer, & Thiel, 2015; Gibson, Yin, & Robb, 1995; Kuipers & Dapper, 

1984; Spaargaren, 2000); more recently its range has expanded to Icelandic waters  

(Gunnarsson, Ásgeirsson, & Ingólfsson, 2007). In the UK, the brown shrimp is one of the 

most important commercial species of caridean shrimp and is considered an important 

source of income (Tulp et al., 2016). It inhabits estuaries and shallow waters, which are 

often subject to environmental or anthropogenic pollution (Buccolieri et al., 2006). Heavy 

metals are often found in trace amounts in estuarine and marine environments and are 

transported to the sea through rivers by erosion of natural sediments and rocks. Cadmium 

(Cd) is a heavy metal with significant acute toxic effects on aquatic life due to its 

bioaccumulation in the food chain (Das & Khangarot, 2010). Another pollutant also detected 

in aquatic environments is arsenic (As), in both inorganic and organic forms (IPCS, 2001). Its 

effect on marine organisms is dependent on its form and certain other factors such as 

salinity and the uptake route (Meharg & Hartley‐Whitaker, 2002; Ng, 2005; Zhang et al., 

2018). 

Not only heavy metals of natural origin but also man-made emerging contaminants threaten 

the marine environment. For example, the excessive application of antibiotics in recent 

years, for a variety of purposes (e.g., in animal husbandry practises to promote growth 

(Meek, Vyas, & Piddock, 2015), have raised concern for the spread of antimicrobial 

resistance, which can be exacerbated by the presence of heavy metals. For instance, the 

combined selection and co-selection of antibiotic-resistant bacteria can occur when 

antibiotics used prophylactically in animal production are discharged and reach the aquatic 

environment where heavy metals are already present (Seiler & Berendonk, 2012). Thus, the 
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agricultural overuse of antibiotics can affect both animal and human health (Goldburg & 

Naylor, 2005; Naylor & Burke, 2005).  

A range of behavioural changes occur in animals exposed to pollutants, which may impact 

on their feeding, reproduction and predator evasion (Scott & Sloman, 2004). A fairly 

common behavioural response is feeding depression, a physiological/behavioural endpoint 

which allows quick examination when animals are subjected to chemical contamination 

(Barata & Baird, 2000; McLoughlin, Yin, Maltby, Wood, & Yu, 2000; Taylor, Baird, & Soares, 

1998). Colour change is another sensitive, yet underused, indicator of response to 

contamination in some aquatic organisms (Meidivanto et al., 2018). The effects of 

contaminants on organisms in the aquatic environment cannot be assessed by mere 

chemical analyses, which can only determine the concentration of selected contaminants in 

the water and/or tissues (Oliveira et al., 2009; Palma et al., 2010; Wang et al., 2014). The 

combined use of biomarkers to detect the effects of contamination on aquatic organisms, 

along with chemical analyses to quantify environmental pollution, is a much more efficient 

strategy, because it can evaluate both the biochemical effects and the primary stage of 

biological alterations, including behavioural, in the organisms (Osman, Heuvel, & Van Noort, 

2007). 

Public awareness of the widespread use of heavy metals and antibiotics and their presence 

in the environment has stimulated interest in addressing the adverse effects, especially on 

commercially valuable species, of concentrations of these pollutants far exceeding 

background levels (Seiler & Berendonk, 2012). 

While some promising advances have been made, very few studies have focused on specific 

behavioural responses that can be easily quantified and linked to physiological pathways, as 

biomarkers of toxicity in crustaceans in general and in C. crangon in particular. This 

multidisciplinary research will thus combine ecotoxicological (analysing natural and dosed 

concentration of Cd and As), behavioural (studying the ability to change colour to match the 

background) and microbiological (investigating the effects of antibiotics) aspects in the 

brown shrimp, C. crangon, using this species as a promising study system for behavioural 

ecotoxicological studies, while considering food safety. 
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1.2 The study organism – Crangon crangon L. 

1.2.1 Habitat and characteristics 

The brown shrimp, Crangon crangon (Figure 1.1), also called the common bay shrimp, is an 

oceanic coastal species which is widely distributed along European coasts from the 

Mediterranean and Black seas to the White Sea in the north of Russia (Gelin, Crivelli, 

Rosecchi, & Kerambrun, 2000; Muus, 1967; Figure 1.2) and has recently reached Iceland 

(Gunnarsson et al., 2007). Together with lobsters, various types of shrimps and prawns, 

crabs and crayfish, it belongs to the order Decapoda, one of the major crustacean groups. 

The name of the order is derived by the presence of five pairs of ambulatory thoracopods 

termed pereiopods, behind three pairs of thoracopods called maxillipeds because they 

serve as mouth parts and before the abdominal pleiopods, which females use to carry their 

eggs  (Brusca & Brusca, 2003; Martin & Davis, 2001; Figure 1.4). The brown shrimp is 

included in the infraorder Caridea, family Crangonidae. 

 

Figure 1.1 The brown shrimp, Crangon crangon L. (Eucarida: Caridea: Crangonidae) 
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Figure 1.2 Distribution of the brown shrimp (FAO, 1980) 

According to studies of its lifecycle, production and landings (Boddeke, 1979; Kuipers & 

Dapper, 1984; Tulp et al., 2016), the brown shrimp has been very heavily exploited by 

coastal fisheries in the North Sea, thus boosting the economy of this region significantly. 

Since 2000, landings have increased 40% compared to the 1980s and 1990s. In 2015, 31,375 

tonnes of C. crangon were caught in the North Sea alone (ICES, 2016). Indeed, C. crangon is 

the basis of a large commercial fishery in northern European waters, particularly in Britain 

(Temming & Damm, 2002), where such fisheries are located in Morecambe Bay, the Solway 

Firth, the Wash, the Bristol Channel and the Thames Basin. The brown shrimp has not yet 

been used for aquaculture (Delbare, Cooreman, & Smagghe, 2015) but it can be used as a 

model system in the laboratory to check for emerging issues in the aquaculture of 

crustaceans. Crangon crangon is categorised as either a carnivorous opportunist (Pihl & 

Rosenberg, 1984), an omnivore (Kühl, 1972; Lloyd & Yonge, 1947; Muus, 1967) or a trophic 

generalist (Evans, 1983; Pihl & Rosenberg, 1984). Recent metabarcoding analyses of its diet 

(Siegenthaler, Wangensteen, Benvenuto, Campos, & Mariani, 2019; Siegenthaler, 

Wangensteen, Soto, et al., 2019) indeed reveal a great variety of items in the gut of this 

opportunistic and generalist predator/scavenger shrimp. 



Chapter 1- Introduction and background 

5 
 

The abundance of C. crangon specimens in European estuaries makes it an essential 

constituent of those ecological units. In addition, it makes it a widespread food source for a 

large number of predators, such as flatfishes (order Pleuronectiformes), cod and other 

gadoids, wading birds, and other crustaceans (Del Norte-Campos & Temming, 1994; 

Henderson, James, & Holmes, 1992; Pihl, 1985; Walter & Becker, 1997). Conversely, 

numerous benthic species, including juvenile plaice and bivalve spat, are key food sources 

for C. crangon (Amara & Paul, 2003; Oh, Hartnoll, & Nash, 2001; Leif Pihl & Rosenberg, 

1984; Siegenthaler, Wangensteen, Benvenuto, et al., 2019; Siegenthaler, Wangensteen, 

Soto, et al., 2019; Van der Veer, Bergman, Dapper, & Witte, 1991). 

Given its life cycle (see section 1.2.2), C. crangon is tolerant of great variations in salinity 

(Mees, 1994; Mouny, Dauvin, & Zouhiri, 2000); it can live in a range of 0 to 35 psu (practical 

salinity units; Practical Salinity Scale 1978 [PSS-78]) and frequently occurs in waters of 

moderately low salinity between 1 and 5 psu (Boddeke, 1976; Criales & Anger, 1986). The 

ability of the brown shrimp to live in water with a wide range of salinity depends on a 

variety of factors, including sex (males are less adaptable than females), age and water 

temperature (Campos, Moreira, Freitas, & Van Der Veer, 2012). Thus, it is described as a 

euryhaline species (Campos & Van der Veer, 2008), even though larval stages do not 

tolerate well salinities below 25 psu (Delbare et al., 2015). 

Jeffery & Revill (2002) and Lloyd & Yonge (1947) have shown that brown shrimp can live at 

temperatures ranging from 6 to 30 °C. In addition, this shrimp expresses an inclination to 

move towards deep waters during adverse winters as it favours high salinity at lower 

temperatures (Campos & Van der Veer, 2008). It is normally found at a depth of 20 m and 

tends to burrow into the sand as self-defence against predators (Lloyd & Yonge, 1947). 

Temperature and salinity also affect the migration and distribution of juvenile and adult 

shrimp in estuaries (Culshaw, Newton, Weir, & Bird, 2002). 

1.2.2 Lifecycle  

Reproduction takes place in more saline waters offshore, about 10 to 20 m deep, commonly 

in muddy or sandy areas (Henderson & Holmes, 1987). Fertilisation is internal and can occur 

only on recently moulted females (Delbare et al., 2015); females keep sperm and host their 

inseminated eggs until they are hatched (Boddeke, 1991). Breeding takes place numerous 
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times each year until the shrimp attain their maximum age of three to five years. Adult 

females are easy to identify when carrying eggs (Figure 1.3; Campos & Van der Veer, 2008; 

Muus, 1967). 

Females migrate back towards coastal areas and estuarine nursery grounds, carrying their 

eggs attached to the pleopods rather than releasing them to float freely in the plankton. The 

size of the eggs depends on the size of the female and the season (Henderson, Seaby, & 

Somes, 2006). The eggs can mature faster at high temperatures. While an increase in 

temperature is thus important for egg development, a high temperature in low salinity 

(below 15 psu) leads to egg loss (Campos & Van der Veer, 2008). 

 

Figure 1.3 Ovigerous Crangon crangon female 

The eggs hatch as a simply-floating planktonic larval stage, then, two to five months later, 

the larvae settle and grow in shallow nursery regions in estuaries (Beukema, 1992; Boddeke, 

Dijkema, & Siemelink, 1976; Campos & Van der Veer, 2008; Heerebout, 1974). As they 

continue to grow, the adults migrate to offshore waters, where they breed. Due to the 

inflexibility of the brown shrimp’s exoskeleton, growth is uneven and occurs through 

numerous moulting cycles, in which the exoskeleton is shed, an expansion in body volume 

follows and a new soft skeleton is formed then quickly toughens with deposition of calcium 

and magnesium carbonate (CaCO3 and MgCO3; Delbare et al., 2015; Smaldon, 1978). In their 

vulnerable soft condition, moulted shrimp can be easily cannibalised by conspecifics 

(Delbare et al., 2015). The status of moult and moulting itself are affected by several factors; 
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moulting increases when the water temperature is high, from an average of 5.9 at 12 °C to 7 

at 18 °C (Criales & Anger, 1986). 

The morphological differences between sexes, especially under 20 mm in length, are not 

instantly noticeable (Meredith, 1952). The three central morphological characteristics of 

pleopods by which the sexes are differentiated in adults are the outer (olfactory) branch of 

the first antenna (shorter in females and with no olfactory hairs) and particularly the 

endopod of the first pairs (longer in females) and second pairs (characterized by an 

appendix masculine in males, not present in females; Figure 1.4; Campos & Van der Veer, 

2008).  

 

 

Figure 1.4 Morphological differences between male and female in Crangon crangon (Campos & Van 

der Veer, 2008) 

Depending on temperature conditions, C. crangon males generally mature in the first year 

between 22 and 43 mm total length, whereas females reach 55 mm (Campos & Van der 

Veer, 2008). All shallow coastal waters such as estuaries serve as nursery grounds for brown 

shrimp throughout the primary stages of life (Amara & Paul, 2003; Cattrijsse, Dankwa, & 

Mees, 1997; Kuipers & Dapper, 1984). Their abundance is affected by seasons and migration 

patterns (Campos et al., 2010). Typically, the quantity of C. crangon in shallow water is 

larger in summer/spring (for juveniles) and smaller in winter/autumn, when adults longer 

than 50 mm in total length migrate to the North Sea (Rudolf Boddeke, Driessen, Doesburg, 

& Ramaekers, 1986; Campos et al., 2012). Their estuarine and shallow-water habitat often 

exposes brown shrimp to environmental or anthropogenic pollution, particularly by heavy 
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metals (Dauvin, 2008). Hence, it is important to investigate the impact of heavy metals 

and/or antibiotics on these crustaceans. 

1.3 Colour change in animals 

In order to avoid being spotted by predators, some species have developed different 

defence techniques involving camouflage and background matching (Booth, 1990; Merilaita, 

Scott-Samuel, & Cuthill, 2017; Price, Green, Troscianko, Tregenza, & Stevens, 2010; Stevens, 

2016; Stevens & Ruxton, 2019). Colour change is one strategy to conceal an animal presence 

in the environment and it is widely used among animals (Figon & Casas, 2018; Stuart-Fox & 

Moussalli, 2009), from arthropods (Umber, Fabricant, Gawryszewski, Seago, & Herberstein, 

2014) to cephalopods (Gonzalez-Bellido, Scaros, Hanlon, & Wardill, 2018), reptiles (Stuart-

Fox & Moussalli, 2008), fish and amphibians (Nilsson, Aspengren, & Wallin, 2013) It is 

ecologically important since it allows animals to adjust with spatial and temporal 

environment changes (Duarte, Flores, & Stevens, 2017). The background of the environment 

changes rapidly, sometimes within 24 hours, or longer (e.g., seasonally) which requires 

change in appearance especially in animals that have less mobility than the ones that can 

move and change their environment (Caro, Sherratt, & Stevens, 2016). Colour change ability 

in animals depends on how fast the environment changes, animal mobility, the presence of 

alternative habitat and the spatial scale of change (Caro et al., 2016). Colour change is not 

only restricted to animal, but also includes plants (Cuthill et al., 2017).  

Hence, studying colour change systems is important to understand camouflage’s adaptive 

value and animals’ diversity, shaped by physiological processes (Duarte et al., 2017).  

Colour change strategies differ among species. Coohill, Bartell and Fingerman (1970) studied 

the pigmentary effectors that impact colour change in crustaceans. The sinus gland is 

considered to be a storehouse for hormones that play a role in colour change when released 

(Fingerman, Jackson, & Nagabhushanam, 1998). Changing light is considered to be a 

stimulus that affects the release of these hormones (Coohill et al., 1970), as does circadian 

rhythm (Brown Jr & Sandeen, 1948; Darnell, 2012), temperature (Silbiger & Munguia, 2008), 

physical activity (Herreid & Mooney, 1984), environmental conditions (Hemmi, Marshall, 

Pix, Vorobyev, & Zeil, 2006), tides (Brown & Sandeen, 1948; Darnell, 2012) and stress (Zeil & 

Hofmann, 2001). 
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Crustaceans have two types of pigmentary effectors which controlled by neurosecretory 

products: retinal cells and chromatophores (Fingerman, 1966). Retinal pigments regulate 

the quantity of light hitting the rhabdom, a transparent crystalline structure located in the 

compound eyes of arthropods and forming the photosensitive part of each ommatidium. 

They perform this regulation by obscuring the rhabdom when the light is strong and 

exposing it in weak light or in the absence of light. Migration of the retinal screening 

pigments occurs as an adaptation to light/dark photomechanical fluctuations in the 

compound eye; this may be limited to photoreceptor cells. In some species, it can include 

distal pigment cells and/or reflecting pigment cells (Rao, 2001). Chromatophores normally 

exist in the external cuticle; they make it possible for an organism to alter its colour as a 

result of the aggregation or dispersal of pigments (Reddy, Nguyen, Obih, & Fingerman, 

1997).  

Crustaceans have been found to have many pigments in their chromatophores: pteridines in 

leucophores (yellow, orange and red), carotenoids in erythrophores and xanthophores 

(yellow, orange and red) and ommochromes in melanophores (black; Czerpak & Czeczuga, 

1969; Grynbaum et al., 2005; Nakagoshi & Negishi, 1992). However, true crabs (Brachyura) 

normally use melanin in their melanophores (Green, 1964). 

Based on the findings reported in many studies, it is now evident that in a broad selection of 

decapod crustaceans, the chromatophores that are responsible for integumentary colour 

modifications are managed by antagonistically-acting pigment-spreading and pigment-

aggregating neurohormones (Fingerman et al., 1998). Changes in the concentrations of 

intracellular couriers, such as cyclic adenosine monophosphate (cAMP), cyclic guanosine 

monophosphate (cGMP) and Ca2+, control the pigment migration in chromatophores. 

However, details of these processes are still unclear (Ribeiro & McNamara, 2007). 

Normally, increases in the cAMP levels result in pigment dispersal, whereas aggregation 

occurs when the cAMP levels decrease (Nascimento, Roland, & Gelfand, 2003). Augmented 

cGMP levels (Ribeiro & McNamara, 2007) and intracellular free Ca2+ stimulate the 

accumulation of red chromatophores in caridean shrimp (Lambert & Fingerman, 1978, 

1979; McNamara & Ribeiro, 2000); this causes blackening in crabs due to pigment 

dispersion (Ranga Rao & Fingerman, 1983). However, aggregation is not always correlated 

with an increase in Ca2+ (Kotz & McNiven, 1994). Another mechanism of colour change 
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ability in some crustaceans occurs as a result of combining morphological and physiological 

mechanisms. Wade et al. (2011) reported expanding in the pigment of Penaeus monodon 

alongside the accumulation of crustacyanin protein connected with free astaxanthin in the 

hypodermal when they were placed in a dark substrate. Whereas, the opposite was 

reported as an adaptation to a white substrate. 

Colour change in organisms is normally influenced by environmental circumstances; for 

example, cloudiness impacts the light spectrum and an animal’s vision in the water. Some 

types of fish such as Perca fluviatilis, which lives in water darkened by algal blooms, have 

been found to have dark body colouration, while the coloration of the same species living in 

experimental water containing clay tends to be lighter (Gusén, 2010; Hidayati, Sulaiman, 

Ismail, Shuhaimi-Othman, & De Bellard, 2017). 

Colour changes can occur in organisms due to the presence of pigments as well as micro-

scale structures. Moreover, colour can play both physiological and signalling roles (Tibbetts 

& Dale, 2004). Some colours are unchangeable and some changes are irreversible, including 

ontogenetic colour changes, which occur in some species as a result of individuals’ normal 

progressive development (Booth, 1990). For the most part, however, it is beneficial for 

animals to have their colours revert to normal after stimulation by external or internal 

factors. An example of reversible change is the camouflage that some species use to conceal 

their location from prey or predators (Umbers et al., 2014). The changing of colour in 

animals is thus a suitable topic to study as it can be easily manipulated experimentally and it 

can cover both behavioural and physiological aspects, including the dynamics of community, 

behavioural ecology and animal physiology (Endler & Mappes, 2017; Gagliano, Depczynski, 

& Siebeck, 2015). 

The range of techniques and roles of reversible colour alteration vary greatly among 

arthropods, more than in any other animal phylum, although all rely mostly on 

chromatophores, perhaps due to their unique possession of an exoskeleton, which may 

constitute an extra substrate where pigmentation can be altered (Umbers et al., 2014). In 

particular, crustaceans have been a valuable study system, and works on C. crangon have 

been pioneer in the field (Bomirski & Klek, 1974; Brown, 1941; Chassard-Bouchaud, 1965; 

Czerpak & Czeczuga, 1969; Elofsson & Kauri, 1971; Fingerman & Fingerman, 1972; Koller, 

1927; Pautsch, 1953; Skorkowski, 1971; Skorkowski, 1973; Skorkowski & Kleinholz, 1973) 
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with a gap till more recent years (Siegenthaler, Mastin, Dufaut, Mondal, & Benvenuto, 2018; 

Siegenthaler, Mondal, & Benvenuto, 2017)  

In all organisms, colour change can be classified into two main types, morphological and 

physiological, less commonly described in the literature as chromomotor and chromogenic 

(Umbers et al., 2014). Physiological colour change does not involve an alteration in pigment 

amounts, but merely their redistribution within the chromatophore. On the other hand, 

morphological colour change entails a quantitative increase or decrease of pigmentation. 

Integumentary pigments are now recognized as having beneficial biological functions which 

include protection against deleterious radiation, thermoregulation, camouflage and 

courtship (Fingerman, 1970). Colour change can be under hormonal control and is also 

affected by external factors such as temperature, colour of the background, time and light 

(Brown & Sandeen, 1948; Fingerman, 1970).  

1.3.1 Physiological colour changes  

Physiological colour changes are quick; they normally occur in a matter of minutes or hours 

after an animal has experienced internal or external stimulation (Filshie, Day, & Mercer, 

1975; Key & Day, 1954; O’Farrell, 1964; Sumner, 1939; Umbers, 2011; Veron, 1973). This 

type of colour change can result from the movement of intracellular reflective granules and 

the dispersal and/or concentration of pigments in chromatophores (Filshie et al., 1975; 

Hadley & Oldman, 1969; Umbers et al., 2014; Vigneron et al., 2007). There are typically 

changes in the location of nanostructures or pigments and in the refractive index of the 

layers of the epidermis. 

In arthropods, physiological colour alteration can be caused by five main factors:  a) 

movement of the granules, as described in stick insects (Carausius morosus), b) hydraulic 

techniques, when water is used to change the refractive index of multiple layers, c) 

amoeboid chromatophore migration, found in tracheal air sacs, d) pigment diffusion and 

aggregation in the chromatophores and e) guanocyte retraction (Umbers et al., 2014). In 

crustaceans, the outlines of the chromatophores vary widely and the pigments aggregate 

and diffuse within their confines (Fingerman, 1970; Josefsson, 1975; Perkins, 1928; 

Stephens, 1962). 
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1.3.2 Morphological colour changes 

Morphological colour change refers to alterations in any of the constituents that are directly 

connected to the visible colour of an animal by catabolism or anabolism. It occurs when one 

or more of the layers of the structures or pigments that are responsible for the colour of the 

animal are modified (Grether, Kolluru, & Nersissian, 2004). In general, morphological colour 

changes take place when the colour constituents are altered, for instance by minimising the 

oxidation of ommochrome pigments or by modifying the concentration of these 

constituents via combination, sequestration, deposition or even collapse. Morphological 

colour change tends to take a longer time to occur than physiological colour change; in fact, 

it can take a few days and, in some cases, weeks. Animals that undergo morphological 

colour change usually have the corresponding ability to retain their colour for a longer time 

than those that use physiological colour change (Umbers et al., 2014). 

1.4 Contaminants - Heavy metals 

Heavy metals, either essential in trace quantities or non-essential, are important pollutants 

in various aquatic systems, where they are introduced partially through natural and mainly 

through anthropogenic sources (for instance mining and industrial outputs; Marsden & 

Rainbow, 2004). Essential metals [manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), cobalt 

(Co), molybdenum (Mo), vanadium (V) and nickel (Ni)] are important micronutrients for 

many organisms because they are integrated into cofactors and enzymes (Matyar, Kaya, & 

Dinçer, 2008). However, since they bind to enzymes and DNA and produce oxygen radicals 

through the Fenton reaction, they are often poisonous in high concentrations. Non-essential 

toxic metals (As, Cd, etc…) are called instead ‘heavy metals’ (based on their high atomic 

weight; López‐Maury, García‐Domínguez, Florencio, & Reyes, 2002; Matyar et al., 2008). 

According to Nies (1999), Mo, Mn and Fe are physiologically essential with partial toxicity. 

The toxicity of trace elements often essential for metabolic purposes, such as Cu, Zn, 

chromium (Cr), Ni, Co, tungsten (W) and V, is highly dependent on concentration. On the 

other hand, the non-essential metals, such as mercury (Hg), Cd, As, silver (Ag), lead (Pb), 

uranium (U) and antimony (Sb), are toxic even at trace levels and some heavy metals (Hg, As 

and Cd) can generate harmful complexes (Fakhri et al., 2018; Nies, 1999). Thus, the excess 

presence in the environment of anthropogenic heavy metals is a considerable issue. The 

various uses of metals in anti-fouling products, pesticides, inorganic and organic fertilizers, 

https://en.wikipedia.org/wiki/Manganese
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and in feed additives for agricultural (Han et al., 2002; Nicholson, 2003) and aqua cultural 

purposes (Burridge, Weis, Cabello, Pizarro, & Bostick, 2010) contribute to the increased 

contamination of the environment. The bioaccumulation and stability of heavy metals make 

them a very serious threat to aquatic animals (Fakhri et al., 2018). 

Cadmium, one of the heavy metals investigated in the present study, is a major toxic threat 

to aquatic organisms. It is a non-essential toxic trace element, with naturally low 

concentrations of 0.001 to 0.0001 ppm near coastal areas and between 0.00025 to 0.0003 

ppm in estuaries and rivers (Pavlaki, Morgado, Soares, Calado, & Loureiro, 2018). It occurs 

naturally and one of the most important natural sources that releases significant amount of 

Cd into the water environment is non-ferrous metal mines (Rainbow, 2007).  

Normally, living creatures absorb Cd from the environment in two different ways: directly 

from the water and/or by consuming contaminated food. Gardner & Yevich (1969) and 

Jennings & Rainbow (1979) report that Cd has a negative impact on some marine animals. 

Most recent study has reported that Cd affect antioxidant enzymes of mud shrimp 

Austinogebia edulis (Das et al., 2019). 

Earlier studies found that Cd affected the nervous system and sensory ganglia in mammals 

(Gabbiani, Baic, & Deziel, 1967). Jacobson & Turner (1980) report that Cd, Hg and Pb 

accumulate in the brain and that these metals prevent the release of sulfhydryl group-

containing enzymes. Reddy & Fingerman (1995) found that when fiddler crabs were 

exposed to 10 ppm Cd for 10 days, the neurosecretory cells in the brain and the eyestalk 

ganglia were damaged. 

Owing to its acute toxicity and potential bioaccumulation in invertebrates, especially 

molluscs, Cd is perceived to be one of the main risks to organisms’ health (Das & Khangarot, 

2010). While LC50 (the concentration that could kill 50% of a sample population) values are 

variable between freshwater and marine benthic species, Cd is lethal to all crustaceans at 

specific doses (Guner, 2010). In experiments studying the effect of Cd on C. crangon, it has 

been observed that increased levels of dissolved Cd in the water correlate with increased 

concentration of Cd in tissues and with increased mortality (Szaniawska, 1985). Jung & 

Zauke (2008) have shown that C. crangon is sensitive to the increase of external 

concentrations of Cd and Pb. Some studies have used Cd to examine different behavioural 
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changes in crustaceans (Table 1.1Error! Reference source not found.) and report negative 

effects on marine organisms.  

Table 1.1 Effects of Cd and As on some of behavioural and physiological aspects in crustaceans 

Species Heavy 

metal 

Concentrations Physiological and behavioural 

endpoint 

Atyaephyra 
desmarestii  

Cd + 
Zn 

0.042 ppm Cd 
5.43 ppm Zn  

Feeding behaviour1 

Echinogammarus 
meridionalis 

Cd + 
Zn 

0.036 ppm Cd  
4.61 ppm Zn 

Macrobrachium 
sintangese 

Cd 0.086 ppm Structure of gills and 
hepatopancreas2 

Balanus 
amphitrite 
(larvae) 

Cd Range from 0.20 to 1.36 ppm Development and swimming 
behaviour3 

Macrobrachium 
dayanum 

Cd Acute concentration: 0.15 ppm for 
male and 0.16 ppm for female 
Sub-acute concentration: 0.0375 
ppm for male and 0.04 ppm for 
female 

Behaviour, scaphognathite 
oscillation and heart rate4 

Daphnia, 
Bosmia, 
Eudiauptomus 
and cyclopoid 
copepods 

Cd 0.010–0.100 ppm Feeding5 

Hippolyte inermis Cd 1, 2, 3.5 ppm Locomotory activity6 

Acartia tonsa, 
Palaemon 
varians 

Cd Range from 0.00059 to .00957 ppm Adult survival, hatching success 
and larval development ratio7 

Macrobrachium 
sintangense 

Cd 0.00001 and 0.00002 ppm 
 

Survival, osmoregulation and gill 
structure8  

Crangon crangon As(V) Range from 0.1 to 20 0 ppm Survival and metabolisms9 

Artemia 
franciscana 

As(V) 4, 8, 15, 31 and 56 ppm Growth, survival, and 
reproduction10 

Gammarus pulex Cd and 
As(V) 

Cd: 0.028 and 0.054 ppm 
As(V): 1.12 and 1.65 ppm 

Ventilatory, locomotor and iono-
regulation of [Na+] and [Cl–] in 
haemolymph11 

Scylla serrata 
 

As(lll) 1, 2 and 3 ppm Avoidance, hypersecretion of 
mucoid element and release of 
excess excretory products12 

1Pestana, Ré, Nogueira & Soares, (2007); 2Soegianto, Winarni, & Handayani, (2013); 3Lam, Wo, & 

Wu, (2000); 4Tripathi & Pandey, (2014); 5Gulati, Bodar, Schuurmans, Faber, & Zandee, (1988); 

6Untersteiner, Gretschel, Puchner, Napetschnig, & Kaiser, (2005); 7Pavlaki et al., (2016); 8Putranto, 
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Andriani, Munawwaroh, Irawan, & Soegianto, (2014); 9Madsen, (1992); 10Brix, Cardwell, & Adams, 

(2003); 11Vellinger et al., (2012); 12Saha, Ray, & Ray, (2018) 

However, no study has investigated the effect of Cd, either as a single contaminant or in 

combination with other contaminants like antibiotics, on the behavioural responses of the 

brown shrimp. Therefore, Cd was used in the present study, as reported in Chapters 2 and 3.  

Another pollutant present in aquatic environments alongside Cd is As (Ji et al., 2016; 

Smedley & Kinniburgh, 2002), which is widely distributed and ranked 22nd in terms of its 

abundance in seawater (Azizur Rahman, Hasegawa, & Peter Lim, 2012; Neff, 1997; Smedley 

& Kinniburgh, 2002). Arsenic can be found in both sea and freshwater, but its average 

concentration in seawater, at around 0.0017 to 0.002 ppm (Madsen, 1992; Neff, 1997), is 

more consistent than in freshwater, the average in river water being 0.0008 ppm (Azizur 

Rahman et al., 2012). 

There are many sources of As, both natural and anthropogenic. Among the latter, As is used 

as an agent for drying cotton, preserving food or wood, and in smelting and coal burning 

(Hutton & Symon, 1986; Madsen, 1992; Sanders, 1985). In the United Kingdom, the primary 

source of As is industrial riverine waste discharged into estuaries, where concentrations 

range from 0.00054 to 0.0041 ppm, followed by the emissions of coal-burning power 

stations into the air (Murcott, 2012). As most factories’ waste is released into the water, 

aquatic organisms are exposed to high levels of As. While As has been detected in land 

animals, levels in marine animals are higher (Doyle & Spaulding, 1978). This may be due to 

the ability of aquatic organisms to accumulate As in their bodies, regardless of its form (De 

Gieter et al., 2002). 

Figure 1.5 depicts some of the main species of As in the aquatic environment, showing a 

fundamental distinction between organic As (orgAs) and inorganic As (iAs) forms. Inorganic 

As is found mainly in natural water and sediment as arsenate [As(V)] or arsenite [As(III)], 

which are both highly toxic species with the potential to cause cancer, especially in humans 

(Foulkes, Millward, & Rattanachongkiat, 2004; Francesconi, Hunter, Bachmann, Raber, & 

Goessler, 1999; Petursdottir et al., 2012). In contrast, most orgAs is less toxic than iAs and 

typically predominates in marine organisms, mainly as arsenobetaine (AsB), beside some 

fractions of dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) (Madsen, 1992; 

Ng, 2005; Smedley & Kinniburgh, 2002). Organic As may be found in water that is 
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profoundly affected by industrial pollution (Smedley & Kinniburgh, 2002), while it is possible 

to find it in surface water due to biological activities (Smedley & Kinniburgh, 2002).  Organic 

As species (particularly AsB) that could be in the water can be transformed into arsenate if 

present in oxic sediment and seawater (Neff 1997). Arsenite is more likely to occur where 

the environment is less oxidative, whereas As(V) is often present in more oxic waters (Azizur 

Rahman et al., 2012). Thus, As has a complex cycle in water and in the biota (Hasegawa et 

al., 2001). It has known for phytoplankton and marine macroalgae the ability of 

transforming iAs to orgAs and since it is a food source for some higher trophic level 

organisms (Al Mamun et al., 2019; Azizur Rahman et al., 2012), this may explain to the high 

level of orgAs found in aquatic organisms. Nevertheless, the metabolism, accumulation and 

toxicity of As varies, depending on several factors: the route of absorption, the presence 

and concentrations of various As species in the environment, temperature, salinity, moult 

status and the organisms’ body size (Fowler & Yaşar Ünlü, 1978; Hasegawa et al., 2001; 

Madsen, 1992; Ng, 2005; Zhang, Chen, Zhou, Wu, & Zhang, 2016). 

 

 

Figure 1.5 Summary of the main arsenic species found in the aquatic environment 
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Consumption of seafood is considered the main source of As for humans, especially in areas 

where it is not present naturally in drinking water or the food chain. The United States Food 

and Drug Administration (US FDA, 1993) reports that 90 % of the As in humans comes from 

consuming seafood, except in areas where drinking water is contaminated (Gao et al., 

2018). Thus, As may affect human health indirectly through the food chain. 

Some researchers have studied the effects of As at different concentrations on aquatic 

animals’ behaviour and physiology. Erickson et al. (2010) report that As affected the growth 

of rainbow trout (Oncorhynchus mykiss) when they were exposed to iAs at 26–77 µg dm-3 

through their diet for 30 days.  Another study, conducted by Madsen (1992), found that 

survival of brown shrimp could be significantly affected if they were kept in a concentration 

over 25 ppm of As(V). It also found that smaller shrimp were more affected by iAs in terms 

of As accumulation, survival and respiration level. Hunter, Goessler and Francesconi (1998) 

evaluated the ability of C. crangon to accumulate As when exposed to iAs or orgAs. They 

found that As absorption depended on its chemical form and on route of exposure, whether 

through water or diet. These studies indicate that As toxicity experiments in aquatic 

organisms can be considered of great importance. It is also important to study As speciation 

in order to determine which species are toxic and which are less toxic to them (Zhang et al., 

2018).  

Although the toxicity of arsenic in aquatic organisms has been studied extensively, its 

ecotoxicity and especially its effects on colour change and its bio-transformation in Crangon 

crangon have not yet been investigated. 

1.5 Role of antibiotics in aquaculture 

Alongside the heavy metals discussed above, antibiotic-resistant bacteria are found in 

marine and freshwater environments, aquaculture, and in the soil (Kang, Shin, Yu, Kim, & 

So, 2018). The excessive use of antibiotics, including their use as growth promoters in 

animal husbandry, has raised concern for the spread of antibiotic resistance in the marine 

environment, since this can be exacerbated in the presence of heavy metals. For example, 

the combined effect of selection and co-selection of antibiotic-resistant bacteria may occur 
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when antibiotics from animal production and agriculture are released into the aquatic 

environment alongside heavy metals (Seiler & Berendonk, 2012). 

In several developing and developed countries, industrial aquaculture is a fast-expanding 

industry (Cabello, 2006). It is anticipated that this development will intensify at a more rapid 

rate in the future, inspired by the market forces that globalize the food supply sources and 

the exhaustion of fisheries (Goldburg, Elliott, & Naylor, 2001; Goldburg & Naylor, 2005). 

There has been a quadruple increase in industrial aquaculture globally over the last 20 years 

(Naylor & Burke, 2005). This remarkable industrial growth has resulted in the release of 

large quantities of veterinary medicines into the ecosystem (Boxall et al., 2004); these 

prophylactic practices can negatively affect animal and human health (Cabello, 2006; 

Goldburg & Naylor, 2005; Naylor & Burke, 2005). The use of antibiotic prophylaxis in shrimp 

and fish aquaculture has led to an increased environmental presence of antibiotic-resistant 

bacteria (Alcaide, Blasco, & Esteve, 2005; Miranda & Zemelman, 2002b, 2002a; Petersen, 

Andersen, Kaewmak, Somsiri, & Dalsgaard, 2002). Increasing antimicrobial resistance in fish 

pathogens then stimulates the overuse of antibiotics in aquaculture, since their 

effectiveness decreases with increasing resistance (Davies et al., 1999). Thus, the 

occurrence of resistance to antibiotics in fish pathogens thwarts the success of the 

prophylactic application of antibiotics in aquaculture (L’Abée-Lund & Sørum, 2001; Sørum, 

2006). Those present in aquatic systems can transmit their resistance by horizontal gene 

transfer to bacteria infecting humans and terrestrial animals (Kruse & Sørum, 1994; L’Abée-

Lund & Sørum, 2001; Sørum, 2006). Vibrio cholerae, responsible for the Latin American 

epidemic of cholera that began in 1992, for example, seems to have developed antibiotic 

resistance due to interaction with antibiotic-resistant bacteria selected by means of the 

intensive use of antibiotics in the Ecuadorian shrimp industry (Weber et al., 1994). 

Industrialised nations have regulated the use in aquaculture of quinolones, a class of 

artificial antibiotics used to treat bacterial infections, since each member of this group has 

the capacity to stimulate cross-resistance with other antibiotics, with the risk of creating a 

highly active group of antibiotic-resistant bacteria for human infections (Cabello, 2006; 

Gorbach, 2001; Moellering, 2005; Sørum, 2006). Flaherty, Szuster, & Miller (2000) assert 

that as many commercial shrimp feeds are supplemented with antibiotics, there is a strong 
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possibility that antibiotics are contained in some of the commercial feeds used in 

aquafarms.  

In recent years, shrimp farming has become a major part of tropical aquaculture and this 

achievement has amplified the need to improve farming practices to capitalize on profits 

(Suzuki & Nam, 2018; Tendencia & Dela Peña, 2002). These developments have often been 

accompanied by increased risk of infections, as ecological conditions have declined and the 

impulse to increase production has led to dependence on antibiotics. Diverse medications 

are usually prescribed to farmed shrimp to enhance development and to prevent or treat 

diseases (Ali, Rico, Murshed-e-Jahan, & Belton, 2016; Tendencia & Dela Peña, 2002). In 

Philippine grow-out ponds, for example, synthetic feeds have been supplemented with 

furazolidone (FZ), oxolinic acid, chloramphenicol and oxytetracycline (Cruz-Lacierda, De la 

Peña, & Lumanlan-Mayo, 2000). Antimicrobial agents are generally employed in aquaculture 

throughout the production phases, both in hatcheries and grow-out processes.  

In the European Union, the antibiotics permitted for use in aquaculture are trimethoprim, 

quinolones, tetracyclines, sulphonamides and penicillin, whereas the nitrofuran 

antimicrobials (FZ), chloramphenicol, nitrofurantoin, nitrofurazone and furaltadone have 

been barred from use in food manufacture for several years, because of their effects 

associated with drug resistance and aplastic anaemia, mutagenicity and severe 

nephrotoxicity (Conti et al., 2015). 

1.6 Effects of contaminants on the behaviour of crustaceans 

Behavioural responses constitute a sensitive biomarker in crustaceans. A possible biomarker 

is any measurable alteration resulting from stressors, such as disease states, xenobiotics and 

environmental changes (e.g. in temperature or salinity), which provoke an organism to 

adapt to cope with such conditions (Allen, Awasthi, & Rana, 2004). 

A number of biomarkers are not sufficiently sensitive to distinguish contaminant contact or 

to reflect the effects of stressors that are present in the environment (Tu, Silvestre, Phuong, 

& Kestemont, 2010). It is worth mentioning that every broad-spectrum biomarker of 

pollution has some specific constraints; thus, it can be more efficient and successful to use a 

set of biomarkers (Smolders, Bervoets, Wepener, & Blust, 2003). The presence of several 

toxic compounds is specifically and quickly detected through physiological or biochemical 
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indicators (Tu et al., 2010). Using such behavioural responses can combine exogenous and 

endogenous aspects and therefore, provide a better understanding of the effects of 

environmental contamination not only at the individual level but at the community level as 

well (Little, Dwyer, Fairchild, Delonay, & Zajicejk, 1993). Many studies have investigated the 

behavioural effects of heavy metals on crustaceans. Those summarised in Table 1.1 are 

particularly concerned with Cd and As, being the target metals of the study reported in 

Chapters 2, 3 and 4. 

When exposed to pollutants, animals exhibit a range of behavioural changes which affect 

predator evasion, reproduction and feeding, including avoidance of the contamination 

(Scott & Sloman, 2004). Behavioural analyses offer organically significant endpoints to 

assess sub-lethal contact effects and to complement standard toxicity tests. There are 

currently no adequate explanations of the connections between many exposure-related 

behavioural changes detected in the laboratory and significant ecological effects observed 

in the field. Numerous studies have shown that penaeid shrimp subjected to sub-lethal 

levels of pesticides display a number of behavioural changes, including hyper-excitability 

and restlessness, uncoordinated swimming motions, tremor in the appendages, sudden 

movements of chelate legs and spasms (García-de la Parra, Bautista-Covarrubias, Rivera-de 

la Rosa, Betancourt-Lozano, & Guilhermino, 2006; Reddy & Rao, 1990). In general, these 

changes are more obvious at higher concentrations of pesticides and are believed to result 

directly from the effects of pesticides on the nervous system. The following section 

examines further the effects of pollutants on behavioural responses. 

1.6.1 Feeding rates and contaminants 

A significant endpoint for estimating the response of an organism to chemical exposure has 

been found to be feeding depression, which can be rapidly assessed (Barata & Baird, 2000; 

McLoughlin et al., 2000; Taylor et al., 1998). Food is an essential requirement for 

development and other bodily processes (McWilliam & Baird, 2002). Many studies have 

found changes in feeding rate to be a sensitive marker of toxic stress in both marine and 

freshwater species (Maltby, Naylor, & Calow, 1990; McLoughlin et al., 2000). 

Contamination causes stress, which produces nutritional changes leading to serious effects 

on many vital  ocesses. It has been shown that deviations in the amounts of digestivepr
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 .(Perera et al., 2008)to external factors and developmental cycles  relatedbe  mayenzymes 

 Therefore, alterations in the rate of utilization of reserves or in the concentration of

partially explain the major changes in feeding rate resulting from may tive enzymes gesdi

that  have foundnumber of studies  On the other hand, acontact with contamination. 

be be increased by exposure to contaminants, although this reaction may  canfeeding rate 

to the necessity for more energy to manage  insteaddue not to stimulatory effects but 

and  Jensen, Forbes. (Bodar, Van Leeuwen, Voogt, & Zandee, 1988)metabolic impairment 

me feeding rate at the individual level in so a reducedhave shown that  Parker (2001)

Cd pollution.  dgastropod species is related to increase  

Food reserves constitute a significant environmental endpoint, as persistent energy 

shortage can cause a decrease in egg laying activity after starvation of 1 to 7 days in the 

snail Lymnaea stagnalis (Das & Khangarot, 2010).  

1.6.2 Colour change and contaminants 

Another sensitive biomarker of response to contaminants in some aquatic organisms is 

colour change. Its purpose varies among animals, which may use it as camouflage in order 

to evade predators (Llandres, Figon, Christidès, Mandon, & Casas, 2013), or conversely to 

warn them of their toxicity (Stevens & Ruxton, 2011), as a signal in social interactions 

(Tibbetts & Dale, 2004) and in some animals as a means of sexual attraction (Allen, Zwaan, 

& Brakefield, 2011).  

The outer surfaces of marine animals tend to be anatomically and physiologically sensitive, 

especially in comparison to land-based animals (Akarte & Agnihotri, 2013). The colour of 

shallow-water shrimp is shaped by chromatophores (cells containing pigments responsible 

for body colouration) often combined in larger structures normally referred to as 

chromatosomes), which are found under the transparent exoskeleton (Siegenthaler et al., 

2017). The alterations in colour are linked to the animal’s age and gender. In addition, 

colour is articulated by chromatosome pigment diffusion, compactness and the order of the 

pigments (Bauer, 1981). 

Brown & Wulff (1941) have reported that the chromatophore in C. crangon is one of the 

most complex components in terms of function and structure in crustaceans. Indeed, it has 

been found that even the same type of pigment in the same species under the same 
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experimental conditions can react differently if located in different parts of the body (Brown 

& Wulff, 1941). 

Hormones in crustaceans have been found to be affected by organic or inorganic pollutants 

and contaminants in the environment. Pigmentary effectors, which are among the functions 

regulated by hormones, are also affected by heavy metals (Fingerman et al., 1998). Some 

studies have used the brown shrimp as a model organism to examine the toxicity of heavy 

metals, but none has studied the effects of As or Cd on colour change. Therefore, the effects 

of Cd and As on colour change in the brown shrimp are of interest.  

Table 1.2 Effect of selected contaminants on colour change of aquatic organisms 

1Reddy & Fingerman, (1995); 2Fingerman & Fingerman, (1978); 3Hanumante, Fingerman, & 

Fingerman, (1981);  4Ahmad et al., (2018); 5Akarte & Agnihotri, (2013); 6Allen et al., (2004) 

 

 

Contaminant Species Results 

Cadmium 

chloride 

Fiddler crab, 

Uca pugilator1 

Exposure by injection (8.5 ppm) or immersion (10 ppm) prevents 

the expansion of black pigments, because Cd affects the 

neuroendocrine complex in the eyestalk, reducing the release of 

black pigment dispersing hormone 

Polychlorinated 

biphenyls 

(PCBs) 

Fiddler crab, 

Uca pugilator2 

Exposure to PCB preparation, Aroclor 1242 (2, 4 and 8 ppm) 

reduced the ability to disperse black pigments, due to the effects 

of PCB on the level of melanin-dispersing hormone in the 

eyestalk 

Polychlorinated 

biphenyls 

(PCBs)  

Fiddler crab, 

Uca pugilator3 

Fiddler crabs exposed to PCB were paler than the control group, 

because they were unable to disperse black pigments 

Cadmium 

chloride 

Catfish, 

Heteropneustes 

fossilis4 

Chromatophores decreased significantly in number and the fish 

became paler when exposed to acute and sub-acute doses of 

CdCl2 (392.92 and 98.23 ppm) for four days 

Arsenic trioxide Spotted 

snakehead, 

Channa 

punctatus5 

Arsenic trioxide affected the body colouration of freshwater fish 

at a concentration of 6 ppm for 30 days by causing pigment 

aggregation 

Arsenic trioxide Channa 

punctatus6 

Exposure to 1 ppm of As trioxide reduced the melanophore index 

in freshwater fish for the first 30 days only when they were 

exposed for 90 days 
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Previous studies have investigated the impact of contaminants in the environment on colour 

change in aquatic organisms, focusing mainly on fish and the fiddler crabs (Table 1.2). The 

ability to swiftly classify harmful chemicals in water supplies can be a pivotal aspect of early 

warning systems that detect chemical pollutants (States, Scheuring, Kuchta, Newberry, & 

Casson, 2003). 

All studies in Table 1.2 report the same effect on body colouration, irrespective of the 

organisms tested and the contaminants used: shrinkage in the chromatophores, which 

resulted in paleness in the animals. 

1.6 Aim and objectives  

The aim of this research is to determine the effects of heavy metals on the behavioural 

responses in the brown shrimp, C. crangon  

The objectives are: 

• To assess the individual and combined effects of Cd and antibiotics on the feeding 

rate of the brown shrimp (Chapter 2) 

• To determine the individual and combined effects of Cd and antibiotics on the ability 

to change colour in the brown shrimp (Chapter 2) 

• To compare two different populations of C. crangon to determine whether the effect 

of Cd on colour change is influenced by their natural habitats, as different sites can 

have different contamination profiles (Chapter 3) 

• To determine effect of As on colour change and evaluate how arsenic metabolism 

(the bio-transformation of iAs to organic arsenicals) governs behavioural response 

in the brown shrimp (Chapter 4)  
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2. Chapter Two: Effects of cadmium and antibiotics 

(Furazolidone and Gentamicin) on feeding behaviour and 

colour change in the brown shrimp (Crangon crangon) 

2.1 Introduction 

The brown shrimp (Crangon crangon), is an oceanic coastal species which is widely 

distributed along the European coast from the Mediterranean and Black Seas to the White 

Sea in the north of Russia (Gelin et al., 2000; Muus, 1967). Crangon crangon is a key 

component in the aquatic ecosystem and one of the most important commercial species in 

many countries, especially in the UK and North Sea (Temming & Damm, 2002). Besides 

being easy to catch in high number, it can adapt easily to the lab conditions. Although it has 

not been yet used for aquaculture (Delbare et al., 2015), it can be used as a model system in 

the laboratory to check for emerging issues in aquaculture of crustaceans. The brown 

shrimp inhabits estuaries and shallow waters, which are often subject to environmental or 

anthropogenic pollution. One of the main toxic heavy metals to aquatic organisms is 

cadmium, Cd, a non-essential toxic trace element, with naturally low concentrations in 

ponds, lakes and rivers (see section 1.4 Contaminants - Heavy metals for more detail; Thorp 

& Gloss, 1986). Besides being present in the environment even recently (Enya, Lin, & Qin, 

2019) and threat to organisms’ life (Mahmood, Asif, Shaheen, Hayat, & Ali, 2019), Cd in this 

study has been selected over other based on the previous studies that have been proved its 

effect on behaviour of crustaceans including colour change and feeding rate in some 

animals (See Table 1.1, Table 1.2). 

Furthermore, another emerging pollutant risk that could affect marine organisms is the 

increase of incorrect use of antibiotics (from clinical and agricultural overuse). High use of 

antibiotics may lead to the spread of drug resistant bacteria. 

For more than 30 years, Furazolidone (FZD), specifically 3-(5-nitrofurfurylideneamino)-2-

oxazolidinone, has been administered as an antibacterial and anti-protozoal drug for human 

and animals (Zhang, Niu, Yin, Liu, & Chen, 2013). Aqua cultured animals can be protected 

against red skin disease, bacterial gill-rot disease and protozoiasis using FZD (Meng, Mangat, 

Grudzinski, & Law, 1998). The World Health Organization (WHO) recognized FZD as an 
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essential human medication during its Expert Consultations in 2005 in Canberra, Australia 

and in 2007 in Copenhagen, Denmark on “Critically Important Antimicrobials for Human 

Medicine” (WHO, 2005, 2007). In terms of human usage, FZD is prescribed to patients who 

suffer from Helicobacter pylori suppression (Zhang et al., 2013).  

Furazolidone, which has been broadly used in the form of premix food additives for the 

treatment of gastrointestinal infections in poultry, pigs and cattle and has also been 

extensively used in aquaculture for the cure of fish diseases or other diseases caused by 

bacteria, and it falls under the class of nitrofuran antibacterial agents (Balizs & Hewitt, 2003; 

Hoogenboom et al., 2002). It can potentially cause genotoxic and carcinogenic effects (Jin et 

al., 2011) and it can be removed from contaminated systems using Acinetobacter 

calcoaceticus T32, which is likely to degrade 99% of FZD successfully from the environment 

(Zhang et al., 2013).  

Gentamicin (Gt) is an aminoglycoside antibacterial drug that hinders bacterial protein 

production: this agent possesses a wide range of activities on Gram-negative bacteria. In 

spite of the fact that Gt is used commonly at therapeutic doses, the regular use of it may 

cause severe nephrotoxicity (Augusto, Smith, Smith, Robertson, & Reimschuessel, 1996).  

The presence of resistant bacteria to both heavy metals and antibiotics has a significant 

impact on human health (Sharma, Agrawal, & Marshall, 2007). The multiple antibiotics 

resistance (MAS) hypothesis was proposed since 1983 to indicate the overall environment 

polluted with multiple antibiotics, and then it has been used also to assess their influence on 

human health (Krumperman, 1983). Hence, the combination of heavy metal and antibiotics 

resistance should be studied especially in marine organisms. It has been detected that Vibrio 

parahaemolyticus strains isolated from oysters (Crassostrea gigas) have a predominant 

tolerance to heavy metals with two or more antibiotics resistant phenotypes (Kang et al., 

2018).  

One way to understand the negative impact of environmental pollutants on organisms is to 

study the effects of them on organisms' behaviour. The excess presence of both heavy 

metals and antibiotics could affect negatively the behaviour of aquatic animals. Indeed, only 

a few studies have illustrated the effect of antibiotics on the behaviour of crustaceans (Tu et 

al., 2010, 2009). Thus, it is important to address the impact of heavy metals and antibiotics 

on the brown shrimp and in particular their combined effects, which have not been fully 

investigated yet. 
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A sensitive biomarker in some marine animals against any external stresses is colour change 

(Umbers et al., 2014). The integument of caridean shrimp is feebly calcified (Hung, Chan, & 

Yu, 1993) and the low sclerotization results in a transparent exoskeleton (Flores & Chien, 

2011). Colour change in many crustaceans and fishes occurs as a result of reflection, 

absorption and scattering of the light on the body due to the distribution of the 

chromatophores on the surface of the body (Flores & Chien, 2011). In addition, the spread 

or contraction of pigments, as well as the alteration in the density of chromatophores, play 

a role in the change of colour (Tume, Sikes, Tabrett, & Smith, 2009). However, 

morphological and physiological adaptations control the time needed for these changes to 

happen. The brown shrimp uses colour change (Figure 2.1) as a camouflage to escape from 

the predators through its ability to match the substrate of its environment (see section 1.5.2 

in Chapter 1; Pinn & Ansell, 1993). 

 

 

Figure 2.1 The brown shrimp Crangon crangon show different body colouration (pale and dark) 

depending on the colour of the background (white and black sand, respectively) 
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In addition to colour change, feeding behaviour in marine animals is another biomarker that 

can be used to assess the contamination of the aquatic environment (García-de la Parra et 

al., 2006; Gulati et al., 1988; Pestana et al., 2007; Pynnonen, 1996; Santos, Troca Da Cunha, 

& Bianchini, 2000). By studying these two biomarkers (colour change and feeding), it would 

be possible to have an important insight into how the brown shrimp reacts in response to 

the contaminant in the environment.  

The aim of this chapter was to investigate the effect of Cd and two selected antibiotics (FZD 

and Gt) on feeding rate and colour change ability of the brown shrimp. The combination of 

heavy metal and antibiotics in this study was considered because of the recent concern 

about co-selection of heavy metal and antibiotics resistance bacteria which have an 

influence on aquatic organisms’ health. Some recent studies have been investigated co-

selection resistance bacteria in different organisms (Ding, 2019; He et al., 2017; & Lloyd, 

Janssen, Reinfelder, & Barkay, 2016), however none have been conducted to illustrate the 

effect of them on the behaviour of marine animals (Dual stress was expected for the use of 

both Cd and antibiotics). Our hypothesis was that the brown shrimp form Mersey pool 

would not be able to consume the normal food rate, and they would not be able also to 

change colour to match the substrate when they were exposed to heavy metal and 

antibiotics separately or in combination. In addition, the Mersey population would be less 

affected by Cd and antibiotics than the Dale population, considering being in contaminated 

water for a long time in their environment (see 2.3.1 Study sites below).  

2.3 Methodology 

2.3.1 Study sites 

For this experiment two study sites were considered: a) Upper Mersey Estuary and b) Dale 

Cleddau Ddu estuary. In North West England, the Mersey Estuary runs from Warrington, 

where the Mersey River drains freshwater into it, to Liverpool Bay (47 kilometres 

westwards; Figure 2.2). The Mersey Estuary is separated into four regions: The Inner, Upper 

and Outer Estuary and the Narrows. For long time, the Mersey Estuary has been considered 

as one of the most contaminated estuaries in Europe (Burton, 2003). The Mersey Basin was 

contaminated to such a level that in 1985 a corporation composed by the local and central 

government, the Mersey Basin Campaign (MBC) was founded with the goal to raise the 
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quality of water inherited from the area’s previous industrialization (Mersey Strategy, 1996). 

Over the last two decades, there has been some positive actions put in place to resolve the 

perpetual problem of pollution in Mersey, which has been a cause for distress in Liverpool 

over the last 150 years (Burton, 2003). This site, a semi-isolated pool, was chosen based on 

its historical past, as it was assumed to be highly contaminated (see 2.3.2 Sampling). 

In South West Wales, Dale is located in the south west tip of Pembrokeshire (51.708284, -

5.168316; Figure 2.3), in the Pembrokeshire Coast National Park. The site was supposed to 

be a “clean” site even though the area faced a major ecological disaster in 1996 when the oil 

tanker "Sea Empress” spilled 73,000 tons of crude oil in the water. However, it was 

supposed to be less contaminated than the Mersey pool since it is an open area.  

2.3.2 Sampling 

Crangon crangon specimens were collected from the two above mentioned sites. The first 

collection was from a semi-isolated pool in Widnes, Cheshire (Figure 2.2), Upper Mersey 

Estuary in February 2016. This is important because it implies that some shrimp stay in here 

and do not go in and out the estuary (at least not too easily): this will make them more 

resistant to salinity changes (if it rains the pool becomes less saline than the river), and if 

there is historical contamination, this population might be more used to high levels of 

contaminants, more than in Liverpool estuary. 

The second collection was performed in the Cleddau Ddu estuary (Lower Waterway) close 

to Dale (Figure 2.3), Pembrokeshire in April 2016. The samples were collected by using push 

nets (mesh size: 6mm). Water and sediment samples (at least two replicates per site) were 

also gathered from each location, labelled and stored in the fridge for heavy metal analysis. 

Water salinity and temperature for each site were also measured using salinity meter. All 

the shrimp were kept in a bucket with seawater and a portable oxygenator while being 

transferred to the lab. Then, all the shrimp were placed in glass aquaria with artificial 

seawater and a 2 cm thick layer of black or/and white sand (Pettex Roman Gravel), gently 

aerated, to be acclimated to the lab environment for one week. A specific code was given to 

each sample (e.g. WP1: Widnes Pool 1; D1: Dale 1). 

 



Chapter 2 

29 
 

 

Figure 2.2 Sampling pond to the south of Widnes, Cheshire, England. A) Satellite map; B) General 

map (Google Maps, 2019) 

 

Figure 2.3 Sampling site in Dale, Pembrokeshire, South West Wales. A) Satellite map; B) General map 

(Google Maps, 2019) 

 

 

 

B 

A 
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2.3.3 Experimental design  

To prepare the artificial seawater, 160 and 213 grams of aquarium systems instant ocean 

salts respectively were added to 10 litres of deionised water to obtain a salinity of 15 psu 

(shrimp from Mersey) and 20 psu (shrimp from Dale) corresponding to the salinity in their 

original environment. Salinity and temperature (~17˚C) were maintained constant 

throughout the experiment. Four glass aquaria containing 12 sterile polystyrene petri dishes 

surrounded by a cylindrical mesh to avoid cannibalism were used as experiment vessels 

(Figure 2.5 A). Each one was filled with 1 cm thick layer of black sediment, air bubblers and 

artificial seawater.  Twenty-four small beakers (600 ml beakers, Ø: 10.4 cm), filled with clean 

artificial seawater 1 cm of white sediment and aerated were also prepared for feeding time 

(Figure 2.5 B, C). 

Depending on the treatment, the following solutions were prepared: 

- 0.04 ppm of Cd (prepared dissolving 0.4 g of Cd chloride in 10 litres artificial 

seawater) 

- 10 ppm FZD (prepared dissolving 0.1 g of FZD into 10 litres of artificial seawater) 

- 2 ppm Gt (prepared dissolving 400 l of Gt into 10 litres of artificial seawater) 

2.3.4 Pilot experiments 

Two pilot experiments were performed, one to test the dose of antibiotics (based on 

literature) and the other one to determine the dose of Cd. 

2.3.4.1 Test the antibiotic dose 

The choice of antibiotics and concentrations were established by a pilot study performed in 

collaboration with Dr Chloe James (presented at Salford Postgraduate Annual Research 

Conference (SPARC) 2016, Appendix Figure A.4). We tested the growth of bacteria obtained 

from the dissected gut of C. crangon on microbiology discs having 10 ppm FZD and 2 ppm Gt 

(
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Figure 2.4). These concentrations have been used with fish, molluscs and crustacean to 

identify antibiotics resistance (Guo, Chou, & Chiu Liao, 2003; Manjusha & Sarita, 2013). 

 

 
Figure 2.4 Diffusion assay technique with gut extract from Crangon crangon used to test the 

resistance of some antibiotics 

 

2.3.4.2 Test Cd dose (Mersey experiment) 

Twenty-four shrimp from Mersey pool were randomly divided into two groups (12 shrimp 

each) and placed individually into labelled chamber with 1 cm thick layer of black sediment 

(Figure 2.5 A). 

Control group: 12 shrimp were kept individually in a glass aquarium filled with 10 litres of 

artificial seawater for 3 weeks. 

Cd group:  12 shrimp were exposed to 0.02 ppm of Cd in a glass aquarium filled with 10 

litres of artificial seawater for two weeks and the concentration in the last week was 

increased to 0.04 ppm. A dose of 0.04 ppm Cd is known to affects colour fading and other 

behavioural aspects such as scaphognathite oscillation and heart beat rate in the prawn 

Macrobrachium dayanum (Tripathi & Pandey, 2014). However, due to the small size of the 

brown shrimp that collected, the initial test was done with a decreased dose of 0.02 ppm. 

After two weeks of the experiment, the dose was increased to 0.04 ppm because no 

causality was observed, and we wanted to go closer to the dose used in literature. 
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Figure 2.5 Set up of the experiment: A) shrimp were housed individually in a common environment; 

B, C) shrimp were fed in small beakers with white sediment 

2.3.5 Main experiment (Dale experiment) 

Prior to the acclimatization period (one week), about 10 to 12 shrimp were sacrificed, 

labelled and frozen to assess the initial baseline concentration of heavy metals in the field. 

The level of the water in the aquaria was checked carefully during the experiment and clean 

artificial seawater added if needed (to account for evaporation) to ensure that the shrimp 

were exposed to the same level of the Cd and antibiotics every day.  

In this experiment, 32 adult shrimp from Dale were divided randomly into 4 groups (8 in 

each) and placed individually into labelled chamber with black sediment (Figure 2.5). The 

experiment lasted 3 weeks. 

All solutions were prepared in the day one of the experiment to avoid change in 

concentrations by evaporation. 

- Control group: 8 shrimp were kept in 10 litres of artificial seawater. 

- Cd group:  8 shrimp were exposed to 0.04 ppm of Cd in 10 litres of artificial 

seawater. 

- Antibiotics group: 8 shrimp were exposed to 10 ppm FZD and 2 ppm Gt in 10 litres of 

artificial seawater. 

- Antibiotics+Cd: 8 shrimp were exposed to 0.04 ppm of Cd plus 10 ppm FZD and 2 

ppm Gt in 10 litres of artificial seawater.  

C B A 
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Figure 2.6 Experimental design: blue arrows show the initial steps of the experiment (shrimps were 

taken from the aquaria and a picture of the right exopod was taken using microscope and then the 

shrimps were measured then transferred to a small beaker to be fed and to allow them to change 

their colour since the sediment in the beaker is different from the aquaria); green arrows show the 

final steps after the shrimp were feed and left in different substrate colour for two hours 

2.3.6 Behavioural responses 

2.3.6.1 Shrimp weight and food intake 

Every other day of the experimental period, all shrimp were moved individually from the 

glass aquaria (with black sediment) to a small beaker (600 ml) that contained non-treated 

artificial seawater and different sediment colour (white sediment) in order to feed them and 

to assess their colour change ability (Figure 2.6). Shrimp’s wet weight was measured before 

offering the food and then one piece of known-weight fish muscle was given to each shrimp 

individually. All shrimp were kept in the feeding beakers for two hours following 

(Siegenthaler et al., 2018), to allow them to eat and at the same time to change colour. 

After two hours, all remaining food was re-measured and then disposed. Wet weight of the 

shrimp was measured again after feeding. All shrimp were then transferred to the main 

glass aquaria (Figure 2.5 A). Initial body weight was used to determine the effect of Cd 

or/and antibiotics on body weight over time and the difference between shrimp’s wet 

weight before and after feeding (final- initial) was used to assess the amount of food intake. 

Due to the difficulties in taking all the food out of the beakers and in measuring them, the 

weight of given food was not used in the analysis.  

 

After two hours feeding, the same 
procedures were repeated 
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2.3.6.2 Colour change measurement  

Colour change measurement in animals is often conducted by measuring the dark pigment 

in a specific part of the body instead of the whole animal (Darnell, 2012; Siegenthaler et al., 

2017; Stevens, Rong, & Todd, 2013). In fish, the scales can be separated from the animal 

before measuring the colour change to reduce the stress that could affect the 

measurements (Nguyen, Sugimoto, & Zhu, 2006). In caridean shrimp, the fan tail was found 

to be the most appropriate part of the body to assess colour change, as it is flat and 

transparent thus allowing a precision and standardization identification of the pigments 

(Brown & Wulff, 1941; Flores & Chien, 2011; Siegenthaler et al., 2017). Besides that, it is 

harmless to the shrimp. Before transferring shrimp from the glass aquaria to the small 

beaker (to be fed), a photo of the right exopod in the telson (Figure 2.7) for each individual 

shrimp was taken by placing the shrimp on a white background, to see the dark pigment 

clearly, under a Leica DFC295 camera using a dissecting microscope (Leica S6D). Two led 

spotlights (JANSJÖ; 88 lm; 3000 Kelvin) were provided in both side of the microscope. A 

second photo of the same area was taken again in two hours’ time, after feeding was over.  

All shrimp were then returned back to the divided aquaria (Figure 2.5 A). The same protocol 

was performed every other day for every individual shrimp. At the end of the experiment, 

all the shrimp that still alive from Cd group and some from control group were sacrificed by 

freezing and placed individually in labelled bag. 

 

 

Figure 2.7 Right exopod in the telson and section showing the inset of the photo used to assess 

colour change 
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2.3.7 Brightness/ pigment analysis 

All pictures collected from individual shrimp were analysed with ImageJ software (version 

1.48, https://imagej.nih.gov/ij/plugins/color-space-converter.html; Schneider, Rasband, & 

Eliceri, 2012) using a protocol established by Siegenthaler et al. (2017). Briefly, the exact 

right exopod was cropped from the original picture and the area of interest was selected (1-

mm2; Figure 2.7). Dark pigments were selected by using threshold function in ImageJ, which 

segments the image based on pixel values (default thresholding algorithm was chose based 

on Siegenthaler et al. (2017); Figure 2.8). The contrast between the background and the 

pigment should be high and it could be achieved by choosing “enhance contrast” function in 

the software.  The manual adaptation was performed if needed, otherwise it should be kept 

at a minimum. To minimize bias, all the pictures were analysed without knowing the 

treatment.  

 

Figure 2.8 Analysis of photo with ImageJ (version 1.48), the left image showed how the dark pigment 

was selected by using threshold and the right image showed the results from the software 

2.3.8 Heavy metal analysis 

Metal analysis was outsourced and was conducted by SOCOTEC group 

(https://www.socotec.co.uk), instead of the inhouse Inductively Coupled Plasma Optical 

Emission Spectrometry (ICP-OES) at the University of Salford. This is due to the low 

concentrations of Cd in the shrimp tissue which was beyond the detection limit of our 

instrument at the university. The following protocol was used as was provided by the 

https://www.socotec.co.uk/
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company: the samples were weighed into acid-cleaned beakers and ultra-pure (trace) nitric 

acid (HNO3) was added.  One reagent blank was added per 20 samples, which was a beaker 

containing only trace HNO3. Also, one Method-Quality Control was added per 20 samples, 

which consisted of various elements spiked at a known concentration. The samples were 

put on a hotplate, at moderate heat, and heated for approximately 3 hours. Once the 

samples were digested, they were made to a known volume with deionised 

water (18.2MΩcm-1 resistivity). Certified reference material (CRM) used was ERM- CE278k 

(mussel tissue). The digested samples were then analysed via both Coupled Plasma Atomic 

Emission Spectrometry (ICP-AES) and Inductively Coupled Plasma Mass Spectrometers (ICP-

MS). The dilution factors were applied to the raw data prior to reporting. Missing values 

that were below the limit of detection (LOD) was replaced by 50 % of LOD for each element 

(Płotka-Wasylka, Frankowski, Simeonov, Polkowska, & Namieśnik, 2018; Shrivastava & 

Gupta, 2011). 

2.3.9 Statistical Analysis    

The aims of the experiment were to test the change in body weight and colour change 

ability of the brown shrimp dosed with Cd and/or antibiotics for three weeks. The initial 

body weight (before feeding) and the difference between the wet weight before and after 

food (referred as food intake in this chapter) were used to assess the effect of the 

treatment on feeding behaviour. The difference between the dark pigment cover in black 

and white sediment (dark pigment cover in the final sediment colour – dark pigment cover 

in the initial sediment colour) was used to assess the ability of changing colour in the brown 

shrimp. Negative values suggested that the shrimp became paler and positive values 

suggested that the shrimp became darker. The average of dark pigment cover in either black 

or white sediment was also used in the analysis to detect the starting and ending point of 

dark pigment over time. These changes were tested using two treatments (control and Cd) 

in Mersey shrimp and four treatments (control, Cd, antibiotics and antibiotics+Cd) in Dale 

shrimp. 

The comparison within treated group was performed using repeated measures ANOVA for 

all outcomes (Verma, 2015), followed by pairwise comparisons if the ANOVA was 

statistically significant. The pairwise comparisons based on multiple paired t-tests, with a 

Bonferroni correction to keep the type one error at 5% overall, was used to compare each 
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pair of days. The comparison between groups (control and Cd in Mersey and control, Cd, 

antibiotics and antibiotics+Cd in Dale) was performed using one-way ANOVA and t-test 

between independent groups for each outcome. Boxplots were used to display minimum, 

first quartile, median, third quartile and maximum of each data across time. Regression 

slopes were also performed to see the overall trend during the time of the experiment. 

Normality assumptions were checked using K-S test, skewness and kurtosis for each group, 

and all data were found to be approximately normally distributed. For repeated measures 

ANOVA, another assumption checked was sphericity using Mauchly’s test (testing for equal 

population variances of all possible difference changes in day 1, 4, 6, 8, 11, 13, 15, 18, 20 

and 22; Field (2009). This assumption was violated in all groups, hence, F test based on 

Greenhouse-Geisser (Epsilon<0.75) was used (O´Brien & Kaiser, 1985).  

Missing values were frequently encountered in data and can undermine the reliability of the 

data and cause a bias in the results. Data missing can be at random (such as death) without 

being influenced by other specific factors. This was tested using a chi-square test (Roderick, 

2010). As the missing data were indeed random (since chi-square was not significant), 

imputation analysis was used to replace missing values with estimated values, computed 

using an expectation maximization algorithm of the likelihood distribution (Enders, 2010).  

Spearman correlation and non-parametric t-test (Mann-Whitney) were used to check the 

relationship and the difference of the heavy metal elements among water, sediment and 

shrimp in both sites.  All analyses were performed with IBM SPSS 24. 

2.4 Results 

In this chapter, we have looked at the responses of C. crangon to contaminants and 

antibiotics from two different angles: food intake and colour change ability. 

2.4.1 Mortality 

In the pilot study (Mersey experiment), one dead shrimp was recorded in the Cd group and 

4 in control group out of 12 during the 22-day experiment. In the Dale experiment, there 

was no mortality in control group. In the Cd group and antibiotics+Cd group, there were 3 

dead shrimp during the experiment in each group. The highest number of mortalities was 

found in the antibiotics group (4 out of 8). 
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2.4.2 Shrimp weight and food intake 

Regarding initial body weight between days in each group, only the shrimp in Cd group in 

Mersey experiment appeared to have a significant decrease (Greenhouse-Geisser: F= 2.746; 

p-value=.043; Table 2.1) in body weight between some days (Table 2.1, Figure 2.9; Appendix 

Table A.1 for pairwise comparison). In Dale experiment, all treatment group including 

control had similar body weight over 22 days (Table 2.1, Figure 2.11). 

The regression slopes showed that the overall trend in initial body weight of the shrimp 

decreased over time compared to the control group (Figure 2.10), in Dale experiment, 

shrimp in Cd group seemed to lose weight more than other group over time as well (Figure 

2.12). 

 

Table 2.1 Repeated measures ANOVA for initial body weight within group between days for Mersey 

and Dale 

Site Group  F (Greenhouse-Geisser) p-value  

Mersey  Control  2.937 .067 

Cd group 2.746 .043 

Dale Control  1.638 .212 

Cd group  2.337 .114 

Antibiotics  1.594 .230 

Antibiotics+Cd 1.752 .190 

• Bold values were significant (p-value<.05) 
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Figure 2.9 Initial body weight (wet weight) of each shrimp in gram before feeding over time in both 

control (top panel) and Cd group (bottom panel; Mersey experiment), box plots display minimum, 

maximum, median and first and third quartile; circles show outlier values 

 

 
Figure 2.10 Regression slopes of initial body weight of the shrimp over time in both control and Cd 

group in the Mersey experiment, solid line represents control and dashed line represent Cd group 
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Figure 2.11 Initial body weight (wet weight) of each shrimp in gram before feeding over time in all 

groups (Dale experiment), box plots display minimum, first quartile, median, third quartile and 

maximum; circles show outlier values 

 
Figure 2.12 Regression slopes of initial body weight of shrimp over time in all groups group in Dale 

experiment, black line represent control, red represent Cd, yellow represent antibiotics and green 

represent antibiotics+Cd group 
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In terms of food intake (difference in body weight of shrimp after feeding – before feeding), 

results in Table 2.2 showed no difference in food intake between groups in Mersey and Dale 

(F=.285, p-value=.594 and F=1.520, p-value=.210 respectively, Table 2.2). The box plots 

showed that the change in body weight of the shrimp in Mersey experiment was less and 

much more consistent over time than in Dale experiment (Figure 2.13). 

 

Table 2.2 Descriptive Statistics and ANOVA for food intake measured by the difference in shrimp wet 

weight (after food-before food) between groups for Mersey and Dale 

                                 group  Mean Std. Error F  p-value  

Mersey  Control .010 .003 .285 .594 

Cd group .008 .003 

Dale  Control .048 .011 1.520 .210 

Cd group .050 .013 

Antibiotics .056 .012 

Antibiotics+Cd .080 .013 

 
Figure 2.13 Food intake measured by the difference in shrimp’s wet weight in gram before and after 

feeding between groups in Mersey (left panel) and Dale (right panel), box plots display minimum, 

maximum, median and first and third quartile; circles show outlier values and stars show extreme 

outliers 
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2.4.3 Dark pigment cover in black and white sediment 

2.4.3.1 Dark pigment cover in black sediment 

With regards to dark pigment cover in black sediment in both experiments, repeated 

measures ANOVA between days was significant in all groups (p-value<.002), with exception 

of control and antibiotics group in Dale experiment (Table 2.3). This indicates that the 

shrimp were not be able to control their pigment (getting darker in Mersey experiment; 

Figure 2.14 and Figure 2.15 but getting less dark in Dale experiment compared to day 1 of 

the experiment; Figure 2.16 and Figure 2.17) during 22 days. 

 

Table 2.3 Repeated measures ANOVA for dark pigment cover in black sediment within group 

between days in Mersey and Dale 

 Group F (Greenhouse-Geisser) p-value  

Mersey 

 

Control 10.731 .000 

Cd group 12.292 .000 

Dale Control 2.212 .098 

Cd group 9.609 .000 

Antibiotics  3.104 .050 

Antibiotics+Cd 4.322 .012 

• Bold values were significant (p-value<.05) 
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Figure 2.14 Dark pigment cover in black sediment in both control (top panel) and Cd (bottom panel) 

group in Mersey, box plots display minimum, maximum, median and first and third quartile; circles 

show outlier values and stars show extreme outliers 

 

Figure 2.15 Regression slopes of dark pigment cover in black sediment over time in both control and 

Cd group in the Mersey experiment, solid line represents control and dashed line represent Cd group 
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Figure 2.16 Dark pigment cover in black sediment in all groups in the Dale experiment, box plots 

display minimum, maximum, median and first and third quartile; circles show outlier values and 

stars show extreme outliers 
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Figure 2.17 Regression slopes of dark pigment cover in black sediment over time in all groups in the 

Dale experiment, black line represent control, red represent Cd, yellow represent antibiotics and 

green represent antibiotics+Cd group 

 
Concerning the difference between groups in dark pigment cover in black sediment, the 

results present in Table 2.4 showed a significant increase in the average of dark pigment 

cover in black sediment (p-value=.001) between control and Cd group in Mersey 

experiment. Indicating that the shrimp became even darker in black sediment compared to 

the shrimp in control group (Figure 2.18). However, in Dale experiment, the average of dark 

pigment cover in black sediment was similar in all groups (Figure 2.18).  
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Table 2.4 Descriptive Statistics and ANOVA for dark pigment cover in black sediment between 

groups in Mersey and Dale 

                             group  Mean Std. 

Error 

F  p-value  

Mersey  Control 57.85 2.20 11.602 .001 

Cd group 67.19 1.67 

Dale  Control 68.66 1.67 2.291 .079 

Cd group 69.10 1.91 

Antibiotics 63.94 2.12 

Antibiotics+Cd 64.21 1.66 

• Bold values were significant (p-value<.05) 

 

 
Figure 2.18 Dark pigment cover in black sediment between groups in Mersey (left panel) and Dale 

(right panel), box plots display minimum, maximum, median and first and third quartile; circles show 

outlier values 
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2.4.3.2 Dark pigment cover in white sediment 

With respect to dark pigment cover in white sediment in Mersey experiment, repeated 

measure test showed significant changes in dark pigment cover in white sediment between 

days in control and Cd group (p-value<.01; Table 2.5). Whereas, the average of dark pigment 

cover in white sediment in Dale shrimp were similar between days in all groups (Table 2.5). 

 

Table 2.5 Repeated measures ANOVA for dark pigment cover in white sediment within group 

between days in Mersey and Dale 

Site Group  F (Greenhouse- Geisser) p-value  

Mersey  Control 5.954 .001 

Cd group 3.827 .006 

Dale Control 0.773 .511 

Cd group 1.230 .324 

Antibiotics  2.201 .142 

Antibiotics+Cd 1.136 .350 

• Bold values were significant (p-value<.05) 

 

It appeared that Mersey shrimp in both control and Cd group had difficulties to contract 

their pigment when they were placed in white sediment at the beginning of the experiment, 

however, they get better at the end of the experiment (Figure 2.19, Appendix Table A.4 for 

pairwise comparison). With regards to Dale shrimp in all groups, there was no trend in the 

average of dark pigment cover in white (Figure 2.21). Overall slope showed a decrease in all 

groups in both experiment indicating that the shrimp were getting paler when they were 

placed in white sediment compared to their performance at the begging of the experiment 

(Figure 2.20 and Figure 2.22) 
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Figure 2.19 Dark pigment cover in white sediment between days in both control (top panel) and Cd 

(right panel) group in Mersey, box plots display minimum, first quartile, median, third quartile and 

maximum; circles show outlier values 

 

 
Figure 2.20 Regression slopes of dark pigment cover in white sediment over time in both control and 

Cd group in the Mersey experiment, solid line represents control and dashed line represent Cd group 
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Figure 2.21 Dark pigment cover in white sediment between days in all groups in Dale, box plots 

display minimum, maximum, median and first and third quartile; circles show outlier values 

 
Figure 2.22 Regression slopes of dark pigment cover in white sediment over time in all groups in the 

Dale experiment, black line represent control, red represent Cd, yellow represent antibiotics and 

green represent antibiotics+Cd group 
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The ANOVA test conducted between groups showed significant difference in dark pigment 

cover in white sediment in between control and Cd in Mersey (Table 2.6; Figure 2.23). In 

Dale experiment, shrimp that treated with Cd alone or with antibiotics seemed to have 

higher average of dark pigment cover in white sediment compared to control and antibiotics 

group (p-value<.001; Table 2.6, Figure 2.23). This indicates that Cd may affect the ability of 

the brown shrimp to contract their pigment when they were place in light substrate.  

 

Table 2.6 Descriptive Statistics and ANOVA of dark pigment cover in white sediment between groups 

for Mersey and Dale 

 

 

 

 

 

 

 

 

 

 

• Bold values were significant (p-value<.05) 

 

 

 

 

                                 group Mean Std. Error F  p-value  

Mersey  Control 50.48 1.16 4.61 .033 

Cd group 33.86 1.72 

Dale  Control 42.20 2.01 17.78 .000 

Cd group 60.04 2.28 

Antibiotics 44.01 2.74 

Antibiotics+Cd 56.70 1.55 
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Figure 2.23 Dark pigment cover in white sediment between groups in Mersey and Dale, box plots 

display minimum, maximum, median and first and third quartile; circles show outlier values 

2.4.3 Colour change ability 

Results of colour change ability measured by the difference between pigment cover in black 

and white sediment showed significant difference between days in Mersey experiment 

(both control and Cd group; p-value<.002; Table 2.7), whereas, no difference was found in 

all groups for Dale experiment (Table 2.7).  

 

Table 2.7 Repeated measures ANOVA for colour change measured by the difference in dark pigment 

cover in black and white sediment within group between days in Mersey and Dale 

Site Group  F (Greenhouse-Geisser) p-value  

Mersey Control  20.177 .000 

Cd group 5.090 .001 

Dale Control  2.311 .091 

Cd group 2.002 .139 

Antibiotics  3.048 .061 

Antibiotics+Cd  1.457 .254 

• Bold values were significant (p-value<.05) 
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In general, colour change ability in Mersey experiment was increasing over time in both 
control and Cd group (Figure 2.24), indicating that the shrimp were getting better in 
changing colour. However, the regression slopes showed that control group was performing 
better than Cd group ( 
Figure 2.25) 

Whereas, in Dale experiment, the colour change ability of the shrimp in each group were 

fluctuated during 22 days (Figure 2.26). Overall trend showed that control group was almost 

steady over time while Cd and antibiotics+Cd group were getting worse, indicating that the 

shrimp were less able to change colour over time (Figure 2.27). 

 

 

Figure 2.24 Colour change ability of the brown shrimp measured by the difference in dark pigment 

cover in black and white sediment in control (top panel) and Cd (bottom panel) group in the Mersey 

experiment 

 



Chapter 2 

53 
 

 
Figure 2.25 Regression slopes of colour change ability of the brown shrimp measured by the 

difference in dark pigment over time in both control and Cd group in the Mersey experiment, solid 

line represents control and dashed line represent Cd group 

 

Figure 2.26 Colour change ability of the brown shrimp measured by the difference in dark pigment 

cover in black and white sediment over time in all groups in the Dale experiment, box plots display 

minimum, maximum, median and first and third quartile; circles show outlier values 
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Figure 2.27 Regression slopes of Colour change ability of the brown shrimp measured by the 

difference in dark pigment cover in black and white sediment over time in all groups in the Dale 

experiment, black line represent control, red represent Cd, yellow represent antibiotics and green 

represent antibiotics+Cd group 

 

With regard to between group analysis, no significant difference was found between control 

and Cd group in Mersey experiment in colour change ability measuring by the difference in 

pigment cover in black and white sediment (Table 2.8). This indicates that the shrimp in 

both groups were changing colour as it supposed to be when they were moved from black 

to white sediment Figure 2.28). In Dale experiment, there was significant difference (p-

value<.001) between groups in the difference in pigment cover in black and white sediment 

(Table 2.8). Pairwise comparison showed that the difference in colour change ability of the 

shrimp in Dale experiment was between control group and both Cd group and 

antibiotics+Cd group (p-value<.001; Table 2.9) as well as between antibiotics and both 

groups treated with Cd either alone or with antibiotics. This indicates that the shrimp dosed 

with Cd, either alone or alongside antibiotics, were changing colour less when they were 

moved to different sediment (Figure 2.28).  
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Table 2.8 Descriptive statistics and ANOVA for colour change ability between groups in Mersey and 

Dale 

                         group Mean Std. 

Error 

F  p-value  

Mersey Control -23.99 2.70 .951 .331 

Cd group -27.47 2.36 

Dale  Control -26.47 2.64 13.541 .000 

Cd group -9.06 2.72 

Antibiotics -19.93 2.86 

 Antibiotics+Cd -7.51 1.94 

• Bold values were significant (p-value<.05) 

 
Table 2.9 Pairwise comparisons between the four groups in Dale 

p-values using post-hoc test for groups   

 Group  

C
o

n
tro

l 

C
d

 gro
u

p
 

A
n

tib
io

tic

s A
n

tib
io

tic

s+C
d

 

 

Dale 

Control  .000 .075 .000  

Cd group   .005 .671  

Antibiotics    .001  

Antibiotics+Cd      

• Bold values were significant (p-value<.05) 
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Figure 2.28 Colour change ability of the brown shrimp measured by the difference in pigment cover 

in black and white sediment between groups in Mersey and Dale, box plots display minimum, 

maximum, median and first and third quartile; circles show outlier values 

2.4.4 Heavy metals concentrations 

2.4.4.1 Validation  

Heavy metals measured in the CRM showed good recovery compared to the certified value 

(between 80-120%; Table 2.10).  

 

Table 2.10 Recovery values for heavy metals 

Heavy 

metals 

As  Ca  Cd  Cr  Cu  Fe  K  Mg  Mn  Na  Pb  Zn  

Certified 

values (ppm) 

6.7 1830 0.33 0.73 5.98 161 5370 1510 4.9 13900 2.18 71 

Measured 

values (ppm) 

5.5  1900  0.3  0.8  5.2  130  5000  1600  4.1  13000  1.9  72  

Recovery (%) 82 104 92 110 86 81 93 105 85 94 87 101 
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2.4.4.2 Heavy metals concentrations in the environment and shrimp tissue 

Due to the ICP protocol requirement of 0.2 g dry weight of each sample and the small size of 

the shrimp, only a few composite samples from Mersey in both control and Cd group were 

analysed. Water and sediment samples were analysed using the same protocol.  

Most of heavy metals concentrations measured in water and sediment samples from 

Mersey and Dale were similar (Table 2.11). Iron concentration in water samples for both 

sites was below the limit of detection (0.04 ppm), as well as Ba and Pb (Table 2.11) in some 

water samples collected from both sites. Cadmium level was relatively low in both Mersey 

and Dale water samples (0.0006 and 0.0003 ppm respectively).  

In terms of heavy metals found in shrimp tissue, Cd concentration in baseline shrimp 

(sacrificed immediately after sampling) was significantly high in Mersey shrimp at about 

2088% compared to Dale. In control shrimp sacrificed after the experiment, Cd 

concentration was found to be slightly higher in both sites compared to their baseline (Table 

2.12). On the contrary, baseline arsenic level in the shrimp was higher in Dale shrimp 

(18.91±3.83 ppm; Table 2.12). For the other metals, Mersey baseline shrimp seemed to 

have similar level of most of the heavy metals compared to Dale apart from Al, Ba and Mn.  

Dale shrimp that were exposed to 0.04 ppm Cd for three weeks accumulated more Cd than 

Mersey shrimp (14.85 (n=13) and 7 (n=1) ppm respectively) but samples size was small. In 

respect of both groups that were treated with Cd alone or with antibiotics, the latter 

accumulated less Cd compared to the once that were treated with Cd alone (Table 2.13).  
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Table 2.11 ICP-MS results of heavy metals found in the environment (mean±SD ppm) 
W

at
e

r 

Heavy 

metals 

Mersey (n=2) Dale (n=3) 

Se
d

im
e

n
t 

Heavy 

metals 

Mersey 

(n=2) 

Dale (n=3) 

Al 0.024±0.01 0.007±0.01 Al  15500±4950 2367±643 

As 0.057±0.0 0.074±0.01 As 55±4.24 2.5±0.4 

Ba  0.055±0.01 0.0045±0.0 Ba 530±283 3±1.3 

Ca  190±0.0 187±42 Ca  7350±3041 1200±0.0 

Cd  0.0006±0.0001 0.0003±0.0004 Cd  1.17±0.47 0.01±0.009 

Cr  0.005±0.00 0.006±0.001 Cr  130±14 4.8±1.6 

Cu 0.03±0.001 0.008±0.002 Cu  170±28 0.01±0.009 

Fe  0.02±0.0 0.02±0.0 Fe  33000±4243 4433±1012 

K  120±0.0 177±40 K  3400±1131 327±73.7 

Li  0.065±0.0 0.08±0.02 Li  44±11.31 7.3±1.3 

Mg  375±7.1 560±121 Mg  10800±1697 1967±379 

Mn 0.0041±0.002 0.014±0.01 Mn  795±49.5 69±4.7 

Na  3250±212 7200±755 Na  3150±212 2733±351 

Pb 0.00025±0.0 0.0005±0.0004 Pb  310±28.3 5.6±0.7 

Zn  0.02±0.014 0.087±0.006 Zn  775±120 22±5.5 
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Table 2.12 ICP-MS results of heavy metals found in baseline and control shrimp (mean±SD ppm) 
B

as
el

in
e

 s
h

ri
m

p
 

Heavy 

metals 

Mersey (n=2) Dale (n=11) 

C
o

n
tr

o
l s

h
ri

m
p

 

Heavy 

metals 

Mersey (n=2) Dale (n=2) 

Al* 101.5±19 48.64±18.2 Al  19±11.3 6.4±3.25 

As* 3.8±0.0 18.91±3.83 As  18.6±21.8 31±16.97 

Ba* 24±0.0 3.52±2.2 Ba  6.5±1.1 3.65±0.92 

Ca 635000±91924 255636±246003 Ca  291500±337290 38500±106.7 

Cd*  3.55±3.04 0.17±0.1 Cd  4±0.3 0.4±0.2 

Cr 0.61±0.0 0.54±0.49 Cr  0.17±0.1 0.4±0.28 

Cu  46.5±23.3 63±22.95 Cu  115±7.1 41.5±12.02 

Fe  125±21.21 69.09±42.47 Fe  60.5±47.4 60.5±54.4 

K 103000±24042 40645±35502 K  103500±9192 7700±4667 

Li  0.24±0.02 0.4±0.16 Li  0.092±0.04 0.14±0.06 

Mg  23000±2828 18773±19065 Mg  26000±2828 3000±848.5 

Mn* 46.5±3.54 6.62±2.5 Mn  2.95±0.1 2.6±1.84 

Na  94500±21920 154455±151989 Na  170000±42426 24500±7778 

Pb  1.4±0.14 1.02±2.24 Pb  0.77±0.5 0.74±0.37 

Zn 985±21.21 374.6±377 Zn  1430±665 78.5±30.4 

* showed significance at p<0.05 
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Table 2.13 ICP-MS results of heavy metals found in dosed shrimp (mean±SD ppm) 
D

o
se

d
 s

h
ri

m
p

 

Heavy metals Cd Antibiotics Antibiotics+Cd 

Mersey (n=1) Dale (n=3) Dale (n=5) Dale (n=4) 

Al  8.6 11.13±4.25 7.86±3.3 12.5±9.95 

As  2.6 28.5±10.34 43.8±17.95 24.5±9.4 

Ba  7.6 4.9±0.63 6.36±2.67 4.93±0.95 

Ca  550000 52500±8888 164800±226753 46250±12997 

Cd  7 14.85±3.66 0.322±0.29 8.30±3.85 

Cr  0.09 0.18±0.1 0.28±0.31 0.36±0.24 

Cu  110 79±30.63 65.2±17.7 73.5±26.04 

Fe  15 37±20.41 25.6±8.2 42.5±34.39 

K  110000 13000±1414 17840±16001 10200±2971 

Li  0.9 0.19±0.12 0.14±0.05 0.17±0.09 

Mg  27000 3000±356 3360±838.5 3300±1219 

Mn  2.4 3.7±0.94 3.5±1.01 4.25±2.86 

Na  190000 25250±8655 22400±5899 23750±7365 

Pb  0.42 0.41±0.09 1.46±2.26 0.66±0.52 

Zn  900 97.5±73.09 140±55.2 186±105.3 

 

Based on all elements together, it was noticed that the suite of elements in Mersey shrimp 

was correlated to water (r=0.5760) and had stronger correlation with sediment (r=0.7793) 

(Table 2.14), but no relationship was found between water and sediment at the tested 

confidence level in Mersey (Table 2.14). Whereas, Dale shrimp were more correlated to 

water (r=0.8036) than to sediment, but Dale water and sediment was also correlated (Table 

2.14). 

 

 

 

 

 



Chapter 2 

61 
 

Table 2.14 Spearman correlation between the whole suite of elements in water, sediment and 

shrimp in Mersey (all data presented in ppm) 

 Matrix Water Sediment  Shrimp 

Mersey Water  1.0000 - - 

Sediment - 1.0000 - 

Shrimp  0.5760* 0.7793* 1.0000 

Dale  Water 1.0000 - - 

Sediment 0.5929* 1.0000 - 

Shrimp 0.8036* 0.6286* 1.0000 

- Values were only present if significant at p <.01 and * showed significance at p<0.05 

2.5 Discussion 

2.5.1 Mortality 

Crangon crangon was found to be sensitive to Cd (Jung & Zauke, 2008), and can accumulate 

high levels of Cd. Jung & Zauke (2008) reported 25 % of dead brown shrimp (15 out of 60) 

during 8 days of exposure to 0.005 ppm Cd. Similar results have been reported by (Pestana 

et al., 2007); they recorded a mortality rate of 30% in Atyaephyra desmarestii when they 

were exposed to 0.006 ppm Cd (calculated as LC10) for 6 days, when the mortality was 

predicted in their experiment not to exceed by 10%. These results supported our findings 

regarding the mortality of the brown shrimp in Dale experiment (37 %).  

2.5.2 Behaviour responses  

The overall results showed no effect of Cd or antibiotics on body weight or daily food intake 

between the control and treatment group in the brown shrimp (at least not at the dosage 

used in this experiment), either in the Mersey or Dale population. Accumulation of Cd from 

water by the shrimp varied. This could be due to on the background profile of the heavy 

metals. Shrimp from Mersey had high baseline Cd concentration from the environment and 

accumulated less Cd than the shrimp from Dale (which had lower Cd in the tissue in the 

beginning but accumulated more Cd during the experiment compared to Mersey shrimp).  

In terms of the colour of the shrimp, Mersey shrimp that were treated with Cd appeared to 

get darker in black sediment compared to the control. However, their ability to change 

colour from black to white was not significantly different between Cd and control group. In 
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the Dale population, the shrimp treated with Cd alone or alongside antibiotics were not able 

to become as pale as it was supposed to be when they were moved from black to white 

sediment. Hence, there was a sign that Cd could affect either the colour itself (by making 

them even darker in black sediment) or the colour change ability when they were moved 

from black to white sediment. Therefore, the experiment was performed again (see Chapter 

3) with a slightly bigger sample size, in the attempt to overcome the high inter-individual 

variations.  

 

2.5.2.1 Shrimp weight and food intake 

Feeding behaviour has been reported to be one of the most important and useful 

bioindicators toward Cd in aquatic snails (Alonso & Valle-Torres, 2018). The sensitivity of 

feeding behaviour against some contaminants was described as sensitive as other 

physiological changes (Pestana et al., 2007). Hence, the effect of contaminants on 

populations and even on the ecosystem can be explained by the effect of them at the 

individual level (Forrow & Maltby, 2000; Pestana et al., 2007). In this study, no change was 

observed in body weight of the treated shrimp between days except for shrimp dosed with 

Cd in Mersey experiment. This could be because of the high inter and intra individual 

variations noticed among the shrimp, and/or the small sample size used in this experiment. 

Another explanation could be the low Cd concentration used in this study. Previous study 

has shown that the Cd has a negative effect on pond snails Lymnaea luteola L. by reducing 

the growth and feeding rate after exposure to 1 ppm Cd for 7 weeks (Das & Khangarot, 

2010). However, they reported no effect of Cd on feeding when the dose was 0.001 ppm, 

and low effect was observed with 0.032 ppm Cd. Therefore, the lack of any change in body 

weight may be attributed to low Cd concentration used in the experiment and exposure 

time. Pestana et al. (2007) reported a reduction in feeding rate (measured by the difference 

between the dry weight of the leaf discs that used to feed the organisms before and after 

the experiment) in snails after 6 days of exposing to Cd (0.006 ppm). 

On the other hand, no effect was observed in growth based on wet and dry weight mass of 

juvenile samples from channel catfish, fathead minnow and rainbow trout when they were 

fed dosed food with Cd for 30 days (Erickson et al., 2010). Therefore, Cd toxicity could 

depend on the type and time of dosage. 
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The shrimp in antibiotics+Cd group in Dale experiment showed higher average of food 

intake (p-value=.05, borderline maybe due to high individual variation) compared to the 

control group. This could be a sort of adaptation associated with the contamination in the 

environment. Blockwell, Taylor, Jones and Pascoe (1998) reported a significant increase of 

feeding rate in Gammarus pulex (L.) exposed to lindane. However, a very recent study 

conducted to evaluate the effect of antibiotic (sulfamethazine) on feeding and body weight 

(Yan et al., 2019) in zooplankton (Brachionus calycifloru) showed feeding inhibition, due to 

the effect of sulfamethazine on neurotransmission which influences the digestive enzymes. 

 

2.5.2.1 Colour change ability 

Chromatophores are specialized cells containing pigment that can be found in dermis, and 

they can change the colour of the animals by being aggregated or dispersed as a result of 

signals from the central nervous system and they have been used as a biomarker to assess 

the environmental pollution (Ahmad et al., 2018). The results recorded in this experiment 

showed that there were significant differences in dark pigment cover either in black 

sediment or white sediment between some days in Dale and Mersey populations. This could 

be due to the high individual variability in the brown shrimp (Siegenthaler et al., 2018). 

Shrimp in Cd group and antibiotics+Cd group in Dale experiment appeared to change colour 

less than control group when they were moved from black to white sediment. This was due 

to the high percentage of dark pigment measured when the shrimp in these groups were 

placed in white sediment compared to control group. This might suggest that Cd and/or 

antibiotics may affect the contraction ability in the brown shrimp when they were exposed 

to them. The effect of Cd on colour change might be indirectly altering black pigment-

dispersing hormone (BPDH) which control the pigment as it was reported before with 

different species, mainly fiddler crabs and fish. A previous study conducted by Reddy and 

Fingerman (1995) to evaluate the effect of Cd on fiddler crab Uca pugilator. Treated crabs, 

both in vitro and in vivo, were transferred from white to black substrate and failed to match 

the background colour. They have found that Cd has no direct effect on the melanophores, 

however it has an effect on the neuroendocrine regulatory process that play a major role in 

controlling the pigments. Also, Cd was found to inhabit BPDH synthesis in the eyestalk. 

Reddy and Fingerman (1995) have reported aggregation in the chromatophores in fiddler 

crab that were exposed to Cd. The crabs that were treated with Cd in the water (in vitro) 
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were found to be paler than the ones injected with Cd, despite the fact that the injected 

crabs (in vivo) reacted faster to the Cd (the chromatophores started to aggregate after 24 

hours whereas the crabs that were in treated in water changed colour after 48 hours). Thus, 

the exposure route can play an important role in the toxicity of the Cd on colour change 

ability.  

Another study was performed to determine the effect of polychlorinated biphenyl (PCB) 

Aroclor 1242 on U. pugilator. It was described that the reduction of the dispersion pigment 

in the treated crabs was due to the role of PCB in inhibiting the release of the BPDH from 

the sinus gland (Fingerman & Fingerman, 1978). It has been found that the expansion of the 

pigments in the chromatophores is regulated by the pigment-dispersing and concentrating 

neurohormones (Carlson, 1935; Fingerman, 1965; Sandeen, 1950). 

Another study showed significant change in chromatophores of catfish, Heteropneustes 

fossilis by increasing in the number of the chromatophores, after one day of exposing to 

392.92 ppm (subacute) and after 20 days of exposing to 98.23 ppm (acute) of Cd (Ahmad et 

al., 2018). However, by the end of the experiment (30 days for subacute and 96 hours for 

acute experiment), significant decrease in the number of the chromatophores compared to 

the control was noticed. This indicate that the fish became paler when they were treated 

with Cd. Meidivanto et al. (2018) published that the increase of cAMP or/and Ca2+ which 

induced by treated the fish with Cd cause aggregation in pigment of tilapia fish. 

There is another external factor that can also influence the colour change ability of shrimp, 

fish and other animals besides contaminants such as temperature, salinity, light, and water 

quality (Ahmad et al., 2018). Meidivanto et al. (2018) reported negative impact in 

melanocyte-stimulating hormone and the number of melanophores of Tilapia Oreochromis 

niloticus with low water salinity in the presence of Cd. 

From this study, it is not possible to definitely concluded the effect of Cd on the colour 

change ability in some aquatic animals by causing either darkness or paleness appearance. It 

has been known for some animals including fish and crustaceans that they change their 

colour to avoid predator in the environment and in some cases, they change colour to adapt 

to any changes in the environment happen over time (Duarte, Flores, & Stevens,  2018). 

Hence, being in contaminated environment could lead to lose this ability in aquatic 

organisms and then being hunted by predators and even being vulnerable to UV light 

(Meidivanto et al., 2018). 
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2.5.3 Heavy metals concentrations in the environment and shrimp tissue 

Cadmium is one of most ecotoxic metals and it is accumulated easily by many aquatic 

animals (Sornom et al., 2012). Continued exposure of marine organisms to Cd even in small 

concentrations can result in transferring the toxic metal to the human through food chain 

(Untersteiner et al., 2005). 

Culshaw et al. (2002) reported an average of 0.21 ppm Cd in sediment samples collected 

from nine sites in Severn Estuary and Bristol Channel which was lower than the Cd 

measured in Mersey sediment (1.17±0.47 ppm), whereas, Cd concentration in Dale 

sediment was less than the concentrations reported in some estuaries in the UK (Bryan & 

Langston, 1992; Culshaw et al., 2002). The highest Cd concentration in sediment that has 

been published was 2.17 ppm collected form the Tyne (Bryan & Langston, 1992). 

In terms of baseline Cd concentration in water samples in both sites (Mersey=0.0006 and 

Dale=0.0003 ppm), it was slightly high compared to the average level reported in the UK 

costal water (0.00001 - 0.00017 ppm; Bryan & Langston, 1992), however, it was lower than 

Cd level found in Bristol Channel (above 0.001 ppm; Morris, 1984).  

Cadmium level in the brown shrimp collected from Mersey was similar to the level found in 

the shrimp collected from Lydney (4.82±0.68 ppm) and Barry Island (4.49±0.65 ppm) which 

both were high compared to the shrimp collected from other sites in the Severn estuary and 

Bristol channel (ranging from 1.4 to 2.2 ppm; Culshaw et al., 2002). Regarding Cd level found 

in Dale shrimp (0.17±0.1 ppm), it was lower than the concentration measured in the brown 

shrimp (ranged from 15 to 1.4 ppm) reported by Culshaw et al. (2002). Cadmium 

concentration measured in Dale shrimp was in the same range of Cd concentration 

(between 0.23 to 0.5 ppm) reported by Bat et al. (2013) in the same species which were 

collected from Black Sea (Turkey). Considering the habitat of the brown shrimp, benthic 

near the sediment, they are more susceptible to metal pollution. Since the level of the 

heavy metals measured in the sediment of Mersey was high and the correlation between 

heavy metals in the shrimp and water and sediment was found, these could explain the high 

level of the heavy metal found in the shrimp collected from Mersey, besides being exposed 

to the toxic metals through water. 

Control group that was sacrificed after the experiment showed similar Cd concentration in 

their body compared to the baseline, indicating that the depuration of Cd in the brown 
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shrimp could be slow. Szaniawska (1985) reported that the brown shrimp were 

accumulating Cd easily from the water, however, they seemed to have difficulties in 

excreting it during the depuration period.  

The level of Cd accumulated by the brown shrimp throughout the experiment was different 

in Mersey and Dale. In our experiment Dale shrimp accumulated more than Mersey shrimp. 

This could be due to the concentration of Cd in the shrimp previously accumulated from the 

environment and/or inter-individual variations since the shrimp that sacrificed after the 

experiment were different from those sacrificed after sampling. 

Accumulation of Cd by marine organisms is affected by different factors. One is the 

accumulation of Cd is associated with Ca level in the body (Rainbow, 1997). Wright (1977) 

reported that there was considerable inverse relationship between Cd and Ca in shore crab 

when they were dosed with Cd and this was attributed to the competition between Cd and 

Ca for deposition sites. This hypothesis seems to be somewhat supported by our results 

which also showed an increase in Cd and a decrease in Ca concentration in dosed shrimp 

compared to control/baseline. However, this is not conclusive as it cannot be verified since 

no significant negative correlation was found between Cd and Ca, which could be due to the 

small sample size and the high individual variations.  

The other factor that could affect the accumulation of Cd in marine animals is salinity 

(Szaniawska, 1985; Wright, 1977; Wu & Chen, 2004). Low salinity causes high Cd 

accumulation. This is because the reduction in salinity causes a high number of toxic free 

ions in the water especially in the winter (Culshaw et al., 2002). In this study, the two 

populations were kept at different salinity levels, matching their original environment.   
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3. Chapter Three: Effects of cadmium on colour change in 

the brown shrimp (Crangon crangon) from two 

different populations 

3.1 Introduction 

Some animals use a wide range of techniques to hide from predators, from camouflage to 

colour change to match the background, and disruptive colouration. Some crustaceans are 

transparent, others change their colour to match the background (Siegenthaler et al., 2018). 

Thus, changing colour is one of the common techniques used by many crustacean species. It 

allows them to cope with the spatial and temporal changes in the environment. Colour 

change is a complex strategy and it links cells physiology, animal behaviour, vision 

perception and external factors. Understanding these factors and how they can participate 

in animal concealment is necessary to understand the development of the ability to change 

colour in animals. Colour change in animals involves two different mechanism: physiological 

changes (which take seconds to hours) and morphological changes (which take days to 

months), and it can be affected by some external factors such as temperature, 

contaminations, tide and circadian rhythm (see chapter 1 for more details). The effect of 

some of these factors has been studied mainly on colour change ability of crabs. However, 

studying the effect of heavy metals on the colour change ability in the brown shrimp has not 

been tested yet. 

Following the previous chapter, there was some promising trends suggesting that Cd could 

have an effect on the colour change of the brown shrimp possibly interfering with their 

ability to contract the dark pigment in the chromatophores. However, there was no 

evidence that show an interaction between Cd and antibiotics. Hence, the aim of this 

chapter was to focus on testing the effect of Cd on colour change ability of the brown 

shrimp. In this chapter, Liverpool Bay was considered instead of Mersey pool due to the lack 

of shrimp in the pool. 

The aim of this chapter was to determine the effect of Cd on two different populations and 

testing two different substrate directions (from black to white sediment and vice versa) for 

short term (7 days). Our hypotheses were that the shrimp from Liverpool would be affected 
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by Cd more than shrimp from Dale as we assumed that Liverpool is cleaner than Dale and 

the brown shrimp would still be able to expand and contract their pigment even if they 

were moved from white to black sediment instead of black to white sediment.  

3.2 Methodology 

3.2.1 Study sites 

The first sampling site, Dale, is located in South West Wales, in the south west tip of 

Pembrokeshire (51.708284, -5.168316; Chapter 2 Figure 2.3), in the Pembrokeshire Coast 

National Park. The area faced a major ecological disaster in 1996 when the oil tanker "Sea 

Empress” spilled 73,000 tons of crude oil in the water. Hence, this site was assumed to have 

high contamination (Law & Kelly, 1998). 

The second sampling site is located in the Liverpool Bay, Wallasey (53.437667, -3.035417; 

Figure 3.1), positioned at the north-eastern tip of the Wirral Peninsula, on the Irish Sea. This 

location was chosen instead of Mersey pool because of the lack of the shrimp in the latter. 

3.2.2 Sampling 

Crangon crangon specimens were collected from the sites and the first collection was 

performed in Dale, Pembrokeshire in April 2017. The second collection was from the estuary 

of the river Mersey on the Irish Sea in Liverpool Bay in May 2017. The samples were 

collected by using push nets (mesh size: 6mm). Water and sediment samples (at least two) 

were also gathered from each site, labelled and stored in the fridge for heavy metal 

analyses. Water salinity and temperature for each site were also measured. A specific code 

was given to each sample (e.g., D1: Dale 1; L1: Liverpool 1). 
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Figure 3.1 Sampling site to in the Liverpool Bay, England. A) Satellite map; B) General map (Google 

Maps, 2019) 

3.2.3 Chemicals and equipment 

To prepare the artificial seawater, 210 grams of Instant Ocean salt were added to 10 litres of 

deionised water (20 psu). Two tanks (commissioned to Aquaponics Labs) containing 24 

chambers each were used, half of them were filled with a layer of black sediment, 1 cm 

thick, and the other half with a layer of white sediment, 1 cm thick. Air bubblers and 

artificial sea water were provided in each tank. The shrimp were maintained in the 

individual chambers to avoid cannibalism and to keep track of their ID (Figure 3.2).  

A solution of 0.04 ppm of Cd was prepared dissolving 0.4 g of Cd chloride in 10 litres 

artificial seawater, following Tripathi and Pandey (2014), who have found that 0.04 ppm Cd 

affects colour changing and other behavioural aspects in prawns (Macrobrachium 

dayanum).  
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Figure 3.2 Set up of the experimental boxes (Aquaponics Labs) 

3.2.4 Design of the main experiment  

The shrimp were brought to the lab and since they were brought from two different areas, it 

was envisaged that heavy metal contamination profile in them including cadmium would be 

different. Hence, 8 animals were sacrificed to assess the baseline concentration of the heavy 

metals. In addition, water and sediment samples collected from the field were also analysed 

using ICP-MS and ICP-ES. This part was conducted by SOCOTEC group (see section 2.3.8 

Heavy metal analysis, Chapter 2). 

The shrimp were acclimatized for three days before starting the experiment which lasted 

one week. The reason behind reducing the time of the experiment compared to that in the 

last chapter we found the major changes in colour change was happened in the first week 

(Appendix Figure A.1). With regards to water evaporation, the level of the water in the 

aquaria was checked carefully each day during the experiment to ensure that the shrimp 

were exposed to the same level of the Cd every day. The shrimp were fed three times a 
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week after the colour change measurements. At the end of the experiment, all shrimp were 

sacrificed by freezing and placed individually in labelled bag.  

3.2.4.1 Dale experiment 

Forty-eight adult shrimp from Dale were divided randomly into 2 groups, control and 

treatment (n=24 each) and placed individually into labelled chamber (Figure 3.2). For the 

control group, 24 shrimp were kept in 10 litres of clean artificial seawater; 12 of them were 

kept in black sediment and the other 12 were in white sediment. In the treatment group 

(dosed with Cd) 24 shrimp were exposed to 0.04 ppm of Cd in 10 litres of artificial seawater; 

12 of them were kept in black sediment and the other 12 were in white sediment. 

Shrimp in each group were moved from a chamber with a certain colour substrate to 

another, of the opposite colour for two hours (Figure 3.2). The shrimp in direction 1 (B to W) 

were moved from black to white sediment and direction 2 (W to B) were moved from white 

to black sediment (Figure 3.3) to check how well they could change colour in both directions 

(from back to white and vice versa). 

3.2.4.2 Liverpool experiment 

The same setup described above repeated with shrimp from Liverpool Bay. Forty-eight adult 

shrimp were divided randomly into 2 groups, control and Cd, and placed individually into 

labelled chamber (Figure 3.2). To increase the sample size, a second batch of the same 

experiment was repeated again with 96 shrimp (48 in control and 48 in Cd group). Hence, 

the total sample size in this experiment was 72 (24+48) in each group. The same protocol 

described above was followed (see section 3.2.4.1 Dale experiment). 

3.2.5 Colour change measurement 

During the experimental period of 7 days, each day all the shrimp in each group were 

moved individually from their initial chamber into another with opposite coloured (the ones 

that were in black were transferred to white and vice versa) for two hours (Figure 3.3). 

Before transferring them, a photo of the right exopod in the telson (Figure 2.7, Chapter 2) 

for each individual shrimp was taken by using a dissecting microscope (Leica S6D). After two 

hours, a second photo of the right exopod in the telson was taken again and was used to 

assess colour change ability. All shrimp were then returned to the original sediment in the 

chamber. As mentioned above in section 3.2.4.1 Dale experiment, the colour change was 
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measured from B to W and from W to B (Siegenthaler et al., 2018), to control for the ability 

of the shrimp to contract and expand dark pigments in their chromatophores. All pictures 

were analysed by using ImageJ software and an established protocol (see section 2.3.7 for 

more details). 

 

Figure 3.3 Schematic overview of the colour change protocol 

3.2.6 Statistical Analysis 

The aim of the experiment was to test for the effect of Cd on the ability of the brown shrimp 

to change colour by calculating the difference in dark pigment cover (surface of the 1mm2 

section photographed covered by dark pigments) in black and white sediment. This change 

was tested using two treatments (control and Cd) and two directions (from B to W and from 

W to B sediment) in two different populations (Dale & Liverpool; Figure 3.4). All dead shrimp 

were excluded from the analysis (Table 3.1). 

The comparison within groups was performed using repeated measures ANOVA (Verma, 

2015), followed by pairwise comparisons if the ANOVA was statistically significant. Pairwise 

comparisons based on multiple paired t-tests, with a Bonferroni correction to keep the type 

one error at 5% overall, was used to compare each pair of days. The comparison between 

groups (control and Cd in Dale and Liverpool) was performed using paired t-test between 

the two independent groups. For repeated measures ANOVA, the assumption of sphericity 

was checked using Mauchly’s test (Field, 2009), which test equality of population variance at 

all possible changes (day 1, 2, 3, 4, 5, 6 and 7). This assumption was violated in all groups, 

hence, F test based on Greenhouse-Geisser (Epsilon<0.75) was used (O´Brien & Kaiser, 
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1985). Normality assumptions were checked using the K-S test, skewness and kurtosis for 

each group, and all data were found to be approximately normally distributed. Boxplots 

were used to display minimum, first quartile, median, third quartile and maximum of each 

data across time. Regression slopes were also performed to see the overall trend during the 

time of the experiment. 

Spearman correlation and non-parametric t-test (Mann-Whitney) were used to check the 

relationship and the difference of the heavy metal elements among water, sediment and 

shrimp in both sites.  All analyses were performed with IBM SPSS 24. 

 

 

 

Figure 3.4 Schematic experimental analysis for colour change ability. A) temporal variation within 

each group (control and treatment); B) intrapopulation differences between groups; C) 

interpopulation differences within each group 

 

Figure 3.5  Figure 3.5  Figure 3.5 Figure 3.5 

A 

B 

C 

Figure 3.6 

Figure 3.6  

Figure 3.6  

Figure 3.6  

(Appendix Figure A.2, Figure A.3) 
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3.3 Results 

3.3.1 Mortality 

In the Dale experiment, there was one dead shrimp in control (W to B direction) and three 

in the treatment group (2 from B to W direction and 1 was from W to B direction). In the 

Liverpool experiment, there were three dead shrimp in the control group (B to W direction) 

and 15 dead shrimp in the treatment group (four from B to W direction and 11 from W to B 

direction). Total sample size that was alive till the end of the experiment is summarised in 

Table 3.1. 

 

 Table 3.1 Actual sample size in Dale and Liverpool experiment that used in the analysis 

 

3.3.2 Colour change ability  

Colour change ability was measured by the difference in dark pigment cover in black and 

white sediment either from B to W or from W to B direction. It was noticed high inter 

individual variability in colour change ability either in control or Cd group in both 

populations and both directions (Appendix Figure A.2, Figure A.3). 

With regards to colour change ability between groups, t-test results showed no significant 

change between control and Cd group in both directions and for both populations (Table 

3.2, Figure 3.5), which was not consistent with the results in Chapter 2 especially regarding 

Dale populations where a significant difference was noticed between Cd groups and the 

control. 

 

 

 

 

Population  Dale Liverpool 

Direction B to W (n=12) W to B (n=12) B to W (n=36) W to B (n=36) 

Control  12 11 33 36 

Cd 10 12 32 25 
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Table 3.2 Descriptive statistics and t-test for difference in dark pigment cover in black and white 

sediment between groups in Dale and Liverpool for both directions 

Population  Direction Group  Mean  Std.Error t-test p-value 

Dale B to W Control -16.25 2.08 -1.423 .157 

Cd -11.63 2.54 

W to B Control 16.67 2.49 1.136 .258 

Cd 12.95 2.13 

Liverpool B to W Control -16.82 1.21 -.916 .360 

Cd -15.24 1.23 

W to B Control 20.30 1.13 .300 .764 

Cd 19.77 1.36 

 

 
Figure 3.5 Colour change ability of the brown shrimp measured by the difference in dark pigment 

cover in black and white sediment between groups in both populations (Dale and Liverpool) and in 

both directions, box plots display minimum, maximum, median and first and third quartile of each 

group; circles show outlier values and stars show extreme outliers 

 
With regards to comparing two populations, there was no significant difference in colour 

change ability between control groups in Dale and Liverpool in both directions and between 

Cd groups in Dale and Liverpool in B to W direction (Table 3.3, Figure 3.6). The only 

significant difference was found between Dale and Liverpool in Cd group in W to B direction 

(Table 3.3, Figure 3.6 D), indicating that the shrimp that exposed to Cd in the water in Dale 

experiment changed colour less than the ones from Liverpool.  
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Table 3.3 Descriptive statistics and t-test for difference in dark pigment cover in black and white 

sediment between populations in control and Cd group for both direction 

Direction  Group population  Mean  Std.Error t-test p-value 

B to W Control  Dale -16.25 2.08 .240 .810 

Liverpool -16.82 1.21 

Cd Dale -11.63 2.54 1.383 .168 

Liverpool -15.24 1.23 

W to B Control Dale 16.67 2.49 -1.471 .142 

Liverpool 20.30 1.13 

Cd Dale 12.95 2.13 -2.736 .007 

Liverpool 19.77 1.36 

• Bold values were significant (p-value<.05) 

 

 

 
Figure 3.6 Colour change ability of the brown shrimp measured by the difference in dark pigment 

cover in black and white sediment between groups in both populations (Dale and Liverpool) and in 

both directions, box plots display sent minimum, maximum, median and first and third quartile; 

circles show outlier values and stars show extreme outliers 
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Based on the results in Table 3.3, the only group that showed significant change in colour 

change ability was Cd group in W to B direction between Dale and Liverpool. Hence, 

regression slopes were drawn to see the overall trend over time. Both populations showed 

similar increasing trend in the dark pigment cover in black sediment in Cd group (Figure 3.7). 

However, when the shrimp in Cd group returned back to the original sediment colour (white 

in this case), they become darker with time in the Dale than in to the Liverpool one (Figure 

3.8). 

 

 
Figure 3.7 Regression slopes of dark pigment cover in black sediment in Cd group for W to B 

direction, solid line represent Dale population and dashed line represent Liverpool 
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Figure 3.8 Regression slopes of dark pigment cover in white sediment in Cd group between Dale and 

Liverpool for W to B direction, solid line represent Dale population and dashed line represent 

Liverpool 

 

Dale population in general have significantly high average of dark pigment either when they 

were place in black or white sediment and wither or not treated with Cd compared to 

Liverpool population (Table 3.4, Table 3.5, Figure 3.9, Figure 3.10). That is might indicate 

that the darkness appearance in Dale shrimp might not due to the effect of Cd. 

 
Table 3.4 Descriptive statistics and t-test for dark pigment cover in black sediment between Dale and 

Liverpool in all groups and both directions 

Direction Group Place  Mean Std. 

Error 

t-test p-value 

B to W 

 

Control 

 

Dale 63.78 1.37 9.381 .000 

Liverpool 44.17 1.16 

Cd 

 

Dale 59.79 1.50 4.925 .000 

Liverpool 47.89 1.27 

W to B 

 

Control 

 

Dale 64.98 1.36 8.844 .000 

Liverpool 46.92 1.05 

Cd 

 

Dale 61.74 1.55 6.655 .000 

Liverpool 44.62 1.56 

• Bold values were significant (p-value<.05) 
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Figure 3.9 Dark pigment cover in black sediment between control and Cd group in Dale and 

Liverpool in both directions, box plots display minimum, maximum, median and first and third 

quartile; circles show outlier values and stars show extreme outliers 

 
Table 3.5 Descriptive statistics and t-test for dark pigment cover in white sediment between Dale 

and Liverpool in all groups and both directions 

Direction Group Place  Mean Std. 

Error 

t-test p-value 

B to W 

 

Control 

 

Dale 47.53 2.13 9.603 .000 

Liverpool 27.35 1.00 

Cd 

 

Dale 48.15 2.36 6.340 .000 

Liverpool 32.39 1.18 

W to B 

 

Control 

 

Dale 48.31 2.09 9.159 .000 

Liverpool 26.61 1.14 

Cd 

 

Dale 48.79 2.43 9.143 .000 

Liverpool 24.85 1.37 

• Bold values were significant (p-value<.05) 
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Figure 3.10 Dark pigment cover in black sediment between control and Cd group in Dale and 

Liverpool in both directions, box plots display minimum, maximum, median and first and third 

quartile; circles show outlier values 

3.3.3 Heavy metals analyses 

Based on Table 3.6, heavy metals measured in water and sediment samples in both sites 

were similar apart from Zn in water samples between Dale and Liverpool. Shrimp from Dale 

and Liverpool showed low Cd concentration in both sites. With regard to baseline shrimp 

samples, the heavy metals measured in the tissue were not different between two sites 

with exception of Ba, Ca, K and Zn (Table 3.7). It was also noticed that Ca concentration was 

decreased when the shrimp were dosed with Cd compared to the baseline level (Table 3.7), 

similar to what was noticed in Mersey and Dale in Chapter 2, however, the variations 

between individuals were high and no relationship was found. Spearman correlation 

showed a similar positive correlation between water and sediment in Dale and Liverpool 

(r=.5929 and .5295 respectively; Table 3.8). The correlation between water and shrimp was 

higher in Dale than in Liverpool, whereas, the correlation between sediment and shrimp 

was higher in Liverpool (Table 3.8). 
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Table 3.6 ICP-MS results of heavy metals found in the environment. All data presented in (mean±SD 

ppm) 

W
at

e
r 

Heavy 

metals 

Dale (n=3) Liverpool (n=3) 

Se
d

im
e

n
t 

Heavy 

metals 

Dale (n=3) Liverpool 

(n=2) 

Al  0.007±0.01 0.002±0.002 Al  2367±643 885±35 

As  0.074±0.01 0.07±0.01 As 2.5±0.4 5.2±0.21 

Ba  0.0045±0.0 0.0082±0.0032 Ba  3±1.3 3.6±0.28 

Ca  187±42 183±31 Ca  1200±0.0 16000±0.0 

Cd  0.0003±0.0004 0.00008±0.00004 Cd  0.01±0.009 0.02±0.007 

Cr  0.006±0.001 0.005±0.001 Cr  4.8±1.6 3.2±0.14 

Cu  0.008±0.002 0.006±0.002 Cu  0.01±0.009 0.02±0.0 

Fe  0.02±0.0 0.02±0.0 Fe  4433±1012 4000±141 

K  177±40 163±30.6 K  327±73.7 225±35.4 

Li  0.08±0.02 0.08±0.005 Li 7.3±1.3 2.3±0.0 

Mg  560±121 533±93 Mg  1967±379 1600±141.4 

Mn  0.014±0.01 0.002±0.001 Mn 69±4.7 135±7.1 

Na 7200±755 7000±700 Na  2733±351 1750±354 

Pb  0.0005±0.0004 0.00025±0.0 Pb  5.6±0.7 4.7±0.14 

Zn* 0.087±0.006 0.03±0.0 Zn  22±5.5 26±3.54 

* showed significance at p<0.05 
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Table 3.7 ICP-MS results of heavy metals found in shrimp tissue. All data presented in (mean±SD 

ppm) 

B
as

el
in

e
 s

h
ri

m
p

 

Heavy 

metals 

Dale (n=11) Liverpool (n=4) 

C
d

 d
o

se
d

 s
h

ri
m

p
 

Heavy 

metals 

Dale (n=12) Liverpool (n=38) 

Al 48.64±18.2 106±82 Al  20.92±8.21 10.73±16.04 

As  18.91±3.83 18.5±3.11 As  21.25±6.4 20.94±5.93 

Ba*  3.52±2.2 5.7±0.67 Ba  5.47±2.65 6.58±2.1 

Ca*  255636±246003 640000±102307 Ca  50167±9104 63474±11633 

Cd  0.17±0.1 0.11±0.06 Cd  3.97±1.69 3.41±2.1 

Cr  0.54±0.49 0.34±0.15 Cr  1.35±0.74 0.87±2.78 

Cu  63±22.95 44±12.4 Cu  87.58±29.41 60.66±15.31 

Fe  69.09±42.47 133±92 Fe  24.83±10.25 37.42±51.97 

K*  40645±35502 109750±22066 K  11225±1194 10632±1731 

Li  0.4±0.15 0.43±0.18 Li  0.089±0.04 0.14±0.05 

Mg  18773±19065 31500±6557 Mg  2567±267 3003±590 

Mn  6.62±2.5 9.13±4.05 Mn  4±1.24 2.53±1.28 

Na  154455±151989 190000±68313 Na  16250±2563 18471±4.77 

Pb  1.02±2.24 0.76±0.24 Pb  1.16±1.87 2.04±6.26 

Zn*  374.6±377 950±208 Zn  86.08±16.62 67.89±34.43 

* showed significance at p<0.05 

 
Table 3.8 Spearman correlation between the whole suite of elements in water, sediment and shrimp 

in Mersey 

 Matrix Water  Sediment  Shrimp 

Dale  Water (ppm) 1.0000 - - 

Sediment (ppm) 0.5929* 1.0000 - 

Shrimp (ppm) 0.8036* 0.6286* 1.0000 

Liverpool Water (ppm) 1.0000 - - 

Sediment (ppm) 0.5295* 1.0000 - 

Shrimp (ppm) 0.7239* 0.8240* 1.0000 

• Values were only present if significant at p<0.1, * showed significance at p<0.05  
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3.4 Discussion 

In general, From the results in both Chapter 2 and 3, we cannot conclude that Cd cause a 

major effect in colour change ability in the brown shrimp since the results were not 

consistent, thus not providing strong support to the initial hypothesis. Thus, colour change 

ability in the brown shrimp may not be the right biomarker to be used to detect Cd in the 

environment, at least at the concentration used. 

3.4.1 Colour change ability  

Following the initial study in Chapter 2, a decision was made to mainly focus on Cd to cover 

short term (7 days) effect of Cd on colour change ability of the brown shrimp as well as to 

test any effect on different directions, i.e. from B to W and from W to B. The purpose was to 

investigate if the shrimp were capable of contracting or expanding its pigment depending on 

the substrate colour. 

The results in this study suggested that the shrimp from different populations may react 

differently in response to Cd. Dale population was changing less in colour compared to 

Liverpool and the difference was significant in W to B direction, suggesting that Dale shrimp 

were getting darker and they were not able to contract their pigment. This might be caused 

by the effect of Cd inhibiting the contraction of the pigment in paler background. The 

difference in behaviour of the two populations might attributed to the background level of 

heavy metals in general and Cd in particular found in the shrimp. However, Cd level found in 

the shrimp collected from both sites was similar as well as in water and sediment samples. 

Hence, these differences between population could be due to interindividual variability. 

From the results of the previous study (Chapter 2) and these results, it can be concluded 

that Cd may affect the colour change ability of the brown shrimp, at least in part, as it has 

been reported for some fish and crab as well (Table 1.2). As discussed in chapter 2, there 

was an observed effect of Cd on pigment in other animals even though the effect of Cd was 

not similar to our results. For the fiddler crab that were exposed to Cd, they got paler unlike 

our brown shrimp, which became darker when exposed to Cd (Reddy & Fingerman, 1995). 

The same paleness in appearance has been reported using fish dosed with Cd (Ahmad et al., 

2018). 

The reason could be due to the difference in circadian rhythm, fiddler crab showed darkness 

in appearance during the day and paleness appearance during the night (Caro, 2018). 
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However, the opposite has been reported in the brown shrimp, which were getting darker 

in the night and paler during the day (Siegenthaler et al., 2018) and some other crustaceans 

such as horned ghost crab Ocypode ceratophthalmus (Stevens et al., 2013). Also, it was 

interesting to notice the high interindividual variation in response in the shrimp (highlighted 

by high confidence intervals). Such high variation could be interpreted as behavioural 

“noise”, but more probably could represent high plasticity, which might play a role on the 

background matching abilities of these shrimp (Duarte et al., 2016, 2018; Appendix Figure 

A.2, Figure A.3). Since there were no published studies regarding the effect of Cd on the 

brown shrimp neither in one population nor in different populations, more studies are 

needed to clarify the results. 

3.4.2 Heavy metals in the environment and shrimp tissue  

Heavy metals concentration results showed similar level in water and sediment samples in 

Dale and Liverpool. Regarding Cd level found in water samples from Dale and Liverpool 

(0.0003 and 0.00008 ppm respectively), it was similar to what has been reported by Andres, 

Ribeyre, Tourencq, and Boudou (2000) & Roast, Widdows, and Jones, (2001) for natural Cd 

concentrations in rivers and estuaries (0.00025 to 0.0003 ppm). That means both sites were 

cleaner than we assumed. Especially for Dale, it was assumed to be less in clean than 

Liverpool considering the spill oil disaster back in 1996. There was a positive correlation in 

heavy metals between water and shrimp and sediment and shrimp in Dale and Liverpool, 

suggesting that if the level of the heavy metals increased in water or sediment, it would 

increase in the shrimp too. This may indicate that the heavy metals that was found in the 

shrimp tissue were coming from either water of sediment which can be ingested by the 

brown shrimp.  

The results showed that after dosing the shrimp with 0.04 ppm Cd for one week, both 

shrimp from Dale and Liverpool accumulated similar concentration of Cd (an increase of 

23335 % and 3100 % respectively compared to the baseline level in both populations). 

Crangon crangon like some decapods, including crayfish, prawn Palaemon serratus and crab 

Carcinus maenas, cannot regulate Cd in their body, which make it harmful, unlike essential 

metals such as Zn and Cu (Culshaw et al., 2002). It was also noticed, in this chapter, the 

same relationship that found in shrimp samples from Chapter 2 between Cd and Ca, the 

higher Cd level in the body, the lower Ca will be found in the same samples. However, the 
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inter individual variations were high and the sample size was not equal, thus, more 

investigations are needed. 

In conclusion, colour change ability in the brown shrimp is not a sensitive biomarker to 

detect Cd in the environment, thus, we considered in the next chapter another heavy metal, 

inorganic As, to assess the colour change ability in our shrimp. 
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4.  Chapter Four: Effects of arsenic on the brown shrimp, 

Crangon crangon  

4.1 Introduction 

Researchers have recently begun focusing on aquatic organisms as bioindicators to assess 

environmental contamination and have found that, among aquatic animals, fish and shrimp 

are both considered good biomarkers (Copat et al., 2013; Fakhri et al., 2018; Herreros, Iñigo-

Nuñez, Sanchez-Perez, Encinas, & Gonzalez-Bulnes, 2008; Mol, Karakulak, & Ulusoy, 2017; 

Yi, Yang, & Zhang, 2011). The accumulation of heavy metals in marine organisms varies 

depending on their concentrations in the water and sediment, salinity of the water, 

chemical form of the contaminants, as well as the species, sex and age of the animal (Fakhri 

et al., 2018; Smedley & Kinniburgh, 2002). High levels of environmental contamination can 

cause an accumulation of contaminants within aquatic organisms, which can be then 

transferred to humans through the food chain as seafood is a valuable source of vitamins 

and protein (Husain et al., 2017). Contaminants in general, and heavy metals in particular, 

can lead to significant health issues in humans, such as cancers caused by arsenic (As) and 

cadmium (Cd) (Koedrith & Seo, 2011). Hence, it is essential to monitor the levels of heavy 

metals in the aquatic environment and their accumulation in marine animals. Equally 

important is the study of single or multi-biomarkers in animals to understand the health of 

aquatic environments (Dalzochio, Rodrigues, Petry, Gehlen, & da Silva, 2016). Recent 

studies (Kohler, Parker, & Ford, 2018; Scott & Sloman, 2004) have used behavioural 

responses in marine animals to understand and to link the biological and biochemical effects 

of contamination at the ecosystem level. On the contrary to LC50 studies, organisms’ 

behavioural changes can provide an early warning of contamination, when contaminants 

are present at low concentrations (Sharma, 2019). For some marine animals, colour change 

is a sensitive bioassay to determine the presence of toxicants and has been used in previous 

studies (Chapter 1, Table 1.2), but no attempt has been made to investigate the activity of 

chromatophores in shrimp due to arsenic (As).   

Within aquatic environments, As is one of the more prevalent heavy metals found in 

organisms, water and sediment, irrespective of its chemical form (Chapter 1, Figure 1.5). 
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The inorganic forms of As (iAs) are primarily found in water and sediment, while the organic 

forms, along with small quantities of iAs, are found in organisms (Francesconi et al., 1999). 

Aquatic animals usually have higher levels of As in their bodies compared to terrestrial 

animals (up to 100 ppm vs. less than 1 ppm, respectively; Phillips, 1990). Arsenic is known to 

be toxic, although its toxicity to marine animals has not been fully investigated (Madsen, 

1992). 

Allen et al. (2004) have illustrated changes in chromatophores’ activity in the fresh water 

fish, Channa punctatus, treated with 1 ppm of As trioxide for 90 days. A similar study was 

conducted by Akarte and Agnihotri (2013) using the same fish species, but by exposing them 

to a higher dose of As trioxide (6 ppm) for 30 days. Both studies found that the fish became 

paler after 30 days of exposure to iAs. Since toxicity of As is highly dependent on its 

chemical form, there is a need to investigate the As species in marine animals (Zhang & 

Wang, 2018) both under natural conditions and during laboratory experiments. There are 

very few studies that have examined how iAs is metabolised, for example in bivalves and 

fish (Zhang et al., 2016; Zhang, Guo, Song, et al., 2018; Zhang, Wang, & Zhang, 2016). Thus, 

considering the risk for humans to intake As from seafood consumption, it is important to 

distinguish the As species present in marine organisms and understand how those forms 

could have been accumulated or produced by the organism due to metabolism. For these 

two reasons, As was selected in this study to illustrate its effect on colour change and its 

bio-transformation in the brown shrimp. 

The aim of this chapter was to investigate if different iAs concentrations interfere with the 

ability to change colour in Crangon crangon and further determines the accumulation and 

the possible transformation of iAs to orgAs species. Hence As speciation (the differentiation 

and quantification of the various As species; Nearing, Koch, & Reimer, 2014) was used to 

indicate metabolic processes in the shrimp. Although the levels of As used in this study were 

much higher that the levels found in the environment, this study serves as a compromise 

between actual environmental exposure and the effective experimental dosage that leads 

to a measurable increase of heavy metals (in this case iAs and its metabolites) in the 

organism. 
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4.2 Methodology 

4.2.1 Study sites and sampling 

Crangon crangon specimens were collected in June 2018 from the estuary of the river 

Mersey in Liverpool Bay, Irish Sea (53.437667, -3.035417; Figure 3.1). All the sampling 

procedures used in this experiment have been described in more detail in chapter 3. Ethical 

approval number ST1617-64 for this study was obtained by the University of Salford 

(appendix Figure A.8). 

4.2.2 Toxicity test 

Following Madsen (1992), 25 ppm As(V) were used for a toxicity experiment to test the 

survival of 5 adult specimens of brown shrimp, held in a small glass aquarium with 2 cm 

layer of black sediment and 2 L of aerated artificial dosed seawater (20 psu).  

The stock solution [100 ppm As(V)] was prepared using Sodium arsenate dibasic 

heptahydrate (Na2HAsO4 · 7H2O, Alfa Aesar; molecular weight 312.01 g/mol). The molecular 

weight of As is 74.92 g/mol, thus, 0.415 g were added to 1 L of artificial seawater to prepare 

the stock solution. A 2 L solution of 25 ppm As(V) was prepared adding 500 ml of 100 ppm 

stock solution to 1500 ml of artificial seawater. The experiment was planned for three 

weeks, however, after one week all the shrimp were dead. Hence, a decision was made to 

reduce the As(V) dose to 20, 10 and 5 ppm instead of 25 ppm as used by Madsen (1992). 

Although the concentrations used in this experiment were higher than the level found in the 

natural environment (see section 1.3 in Chapter 1), the goal was to observe a response in a 

short period of time. 

4.2.3 Experiment 1 - Effect of arsenic on colour change  

All the shrimp were brought from the field and acclimatised to lab conditions (temperature: 

~17˚C; salinity: 20 psu) for three days before starting the experiment. A total of 92 adult 

shrimp were used in this experiment. The specimens were divided randomly into 4 groups: 

three treatments groups (5 ppm, 10ppm and 20 ppm As(V) with 24 shrimp each) and a 

control group of 20 shrimp (Figure 4.1). The 24 shrimp in each treatment groups were kept 

in 1 cm layer of black sediment and then moved to white sediment for two hours (n=12; B to 
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W) or in white sediment and then moved to black sediment for two hours (n=12; W to B) for 

dark pigment measurements, before being returned to the initial substrate.  

Shrimp were kept in individual chambers (to avoid cannibalism) and fed every other day 

with a piece of raw chicken instead of fish to minimise the arsenic that could come from 

seafood (Francesconi et al., 1999). The level of the water, temperature and salinity were 

monitored regularly to ensure that conditions remained the same throughout the 

experiment (for the overall duration of 21 days). Dark pigment cover in black or white 

sediment was measured every other day, alternating control and 5ppm in a day and 10 ppm 

and 20 ppm the following day, due to the time required to process the large sample size; 

Figure 4.1). Colour change measurements and analyses of pictures have been described in 

detail in Chapter 2 (2.3.6.2 and 2.3.7). All the shrimp were sacrificed at the end of the 

experiment and kept frozen for further analyses. 
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Figure 4.1 Experimental design. B to W direction= shrimp moved from black to white substrate; W to 

B direction= shrimp moved from white to black substrate. Sample size: n= 12 in all treatments, 

except for control (n= 10) 

4.2.4 Experiment 2 - As accumulation and metabolism over time 

The same set up as was duplicated with 45 adult shrimp for experiment 2, run 

simultaneously with experiment 1. The shrimp were divided randomly into three treatment 

groups (5, 10 and 20 ppm As(V) in 10 L of artificial aerated seawater; n= 15 in each group) 

and kept in individual chambers with 1 cm layer of black sediment. The same feeding regime 

was applied as experiment 1. In day 7 and 14, between seven to eight shrimp of each group 

were sacrificed to measure the amount of As bioaccumulated in the shrimp and test for 

potential bio-transformation. In day 21, shrimp were sacrificed from experiment 1 (Figure 

4.1). The samples from the control group were also obtained from experiment 1. All shrimp 

were labelled and frozen for speciation analyses.  
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4.2.5 Experiment 3 – Measuring As species and total As in shrimp samples  

Arsenic speciation analyses were performed in collaboration with Prof Jörg Feldmann, the 

director of trace element speciation laboratory (TESLA) and his team at the University of 

Aberdeen, Scotland following their protocol (Marschner et al., 2019). 

Once the shrimp were sacrificed, they were freeze dried for two days (Heto, PowerDry 

LL3000). The wet weight of all samples was recorded before freeze drying. The dry weight 

was measured twice to ensure that the samples were completely dry. The samples were 

ground into a fine powder using mortar and pestle. If individuals were too small, more than 

one from the same day was used (combined sample) to reach the minimum amount 

required for the analysis (0.05 g dry weight). A total of 21 samples were used for the arsenic 

speciation study, sacrificed from experiment 1 and 2. The CRM BCR-627 (obtained from 

dried, homogenised tuna fish muscle tissue) was used. 

4.2.5.1 Extraction of total arsenic 

Empty vials (50 ml) were weighted and filled with 50 mg of the fine powder from each 

sample, to which 1 ml of nitric acid (HNO3) was added. The homogenate was left overnight 

to allow the HNO3 to digest the samples and to release the bound materials. Then, 2 ml of 

hydrogen peroxide (H2O2) was added to the mixture. The full vial weight was recorded after 

every step to calculate the dilution factor. All samples were extracted using microwave 

technique (MARS) with open vial system. The microwave power, temperature and exposure 

time used were: 800w, 50 °C for 5 mins, 800w, 75 °C for 5 mins and 1600w, 95 °C for 30 

mins. After cooling, 10 ml of deionised water was added to dilute the digest and the final 

vial weight was recorded again. All digests were transferred to 15 ml plastic vial to fit 

perfectly in the Inductively coupled plasma mass spectrometry (ICP-MS) tray (Figure 4.2). 

The blank and three replicates of CRM samples were prepared in the same way as the rest 

of the samples.  

The standard solutions concentrations used in this experiment for calibration were 1, 5, 10, 

25, 50, 100 and 500 ppb As(V). This wide range of concentrations was used to cover all the 

As(V) concentrations that could be present in the samples. Two stock solutions (10 ppm and 

100 ppm; AccuStandard) were used to prepare these concentrations. All the standards were 

diluted with 15 ml of 1% HNO3. Rhodium (5 ppb) was used as an internal standard solution. 
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ICP-MS (8800 ICP-MS Triple Quad, Agilent Technologies) was used to measure the total 

arsenic in the samples. 

 

Figure 4.2 Digests ready for analysis in the inductively coupled plasma mass spectrometers (ICP-MS) 

 

4.2.5.2 Extraction for arsenic speciation 

To extract and measure the arsenic species in the shrimp, 50 mg of each fine powdered 

samples was placed into weighted 15 ml vial. For digestion, 5 ml of Milli-Q water was added 

to the samples and it was mixed in a vortex mixer for two minutes. All the samples were left 

overnight. Then, they were transferred to the centrifuge (VWR, Mega star 1.6R) to separate 

the solution from the small particles. The centrifuge was set for 3000 revolutions per minute 

(rpm), at 18°C for 10 minutes. After, 1 ml of the supernatant was taken and added to a new 

15 ml vial (empty weight was measured before). Hydrogen peroxide was added (100 µl) to 

the solution. All samples were mixed again. A sample of 300 µl was taken from the extracted 

solution and the remaining aliquot was kept for total As analysis for each of the samples 

(performed by Dr Andrea Raab, University of Aberdeen). The whole batch of samples 

involved blank and three replicates of CRM along with the shrimp samples. After each step, 

the weight of the vial was recorded. One litre of ammonium carbonate ((NH4)2CO3), pH= 9.0, 

was used as a mobile phase, prepared on the same day of the analysis by adding 19.218 g of 

(NH4)2CO3 into 500 ml Milli-Q2 water. The solution was mixed to allow the salt to dissolve in 

the water (heating should not be used to dissolve ((NH4)2CO3) otherwise, it will become 
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ammonia gas, carbon dioxide gas, and water vapour). An extra 500 ml of the water was 

added to reach 1 L of the solution and pH was checked. Dimethylarsinic Acid Sodium Salt 

was used as a standard solution. The concentrations of the standard solution used were 0.1, 

0.5, 1, 5, 10, 25, 50, 100 and 250 ppb of DMA diluted with 1% HNO3. All these 

concentrations were made using two stock solutions (10 ppm and 100 ppm) diluted with 

Milli-Q water.  

All samples were transferred to the high-performance liquid chromatography-inductively 

coupled plasma mass spectrometer (HPLC-ICP-MS; Agilent technologies 1290 infinity) as the 

arsenic-specific detector. This instrument has a Hamilton PRP x100 anion exchange column 

(dimensions 250 x 4.1 mm, particle size= 10 µl; Figure 4.3). PEEL tubing was used to connect 

the HPLC system with the nebulizer of ICP-MS (Figure 4.4). The software program Origin 6.1 

was used to convert and integrate the chromatograms (Figure 4.5). Missing values that were 

below LOD was replaced by 50 % of LOD for each element (Płotka-Wasylka et al., 2018; 

Shrivastava & Gupta, 2011). 

 

 

Figure 4.3 Anion exchange column used in As speciation analysis 
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Figure 4.4 High-performance liquid chromatography-inductively coupled plasma mass spectrometer 

(HPLC-ICP-MS) used to analyse arsenic species in the shrimp 

 

Figure 4.5 Chromatogram showing the separation of As species using Origin 6.1 software 

 

AsB 

As(V) 
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4.2.6 Statistical Analysis 

Experiment 1 was based on examining changing in behaviour of the brown shrimp at 

different concentrates of As(V) (5ppm, 10ppm and 20ppm) and control group.  The change 

in colour (dark pigment cover in white and black sediment, final -initial) for the two 

directions (B to W, from black to white sediment and W to B, from white to black sediment 

for each group were measured for three weeks (day 1, 4, 6, 8, 11, 13, 15, 17 and 21). For 

repeated measures ANOVA, the assumption of sphericity was checked using Mauchly’s test 

(Field, 2009), which test that the population variances of all possible difference changes 

(day 1, 4, 6, 8, 11, 13, 15, 17 and 21) are equal. The second assumption was violated, hence 

F test based on Greenhouse-Geisser (Epsilon<0.75) was used (O´Brien & Kaiser, 1985). The 

comparison within treated group was performed using repeated measures ANOVA (Verma, 

2015) for three outcomes (colour change, dark pigment cover in black sediment and dark 

pigment cover in white sediment) followed by pairwise comparisons if the ANOVA was 

statistically significant. The pairwise comparisons based on multiple paired t-tests, with a 

Bonferroni correction to keep the type 1 error at 5% overall, was used to compare each pair 

of days. The comparison between groups (control, 5, 10 and 20ppm), was performed using 

one-way ANOVA between independent groups for each outcome. Normality assumption 

was checked using the K-S test, skewness and kurtosis for each group and all data were 

found to be approximately normally distributed. Boxplots were used to display minimum, 

first quartile, median, third quartile and maximum of each data across time. Regression 

slopes were also performed to see the overall trend during the time of the experiment, 

together with survival analysis. 

Missing values were frequently encountered in the dataset. These can undermine the 

reliability of the data and cause a bias in the results. Missing values can be random (such as 

death) without being influenced by other specific factors. This was tested using a chi-square 

test (Roderick, 2010). As missing data were indeed random (since chi-square was not 

significant) imputation analysis was used to replace missing values with estimated values, 

computed using an expectation maximization algorithm of the likelihood distribution 

(Enders, 2010). With regard to total arsenic and arsenic speciation analysis, no advance 

statistical analyses were provided because all the data were obtained from a single sample, 

thus, only a descriptive analysis is reported.  All analyses were performed with IBM SPSS 24. 
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4.3 Results 

4.3.1 Mortality  

In the control group, only 8 shrimp out of 20 were still alive at the end of the experiment. 

However, the highest mortality rate was observed in the group treated with 5 ppm As(V), 

where only two out of 24 shrimp survived till the end of the experiment (one housed in 

black sand and one in white (Table 4.1). Whereas, in 10 and 20 ppm As(V), there were 5 and 

7 shrimp alive out of 24 respectively on day 21 (end of experiment). Most of the mortalities 

happened between day 13 and day 21 (Figure 4.6).  

 

Table 4.1 Survival time of the shrimp in each group during 21 days 

group Total 

sample 

Number of 

dead 

shrimp 

Censored Median survival 

time (Day) Number 

of alive 

shrimp 

Percent 

control 20 12 8 40.0% 17 

5 ppm As(V) 24 22 2 8.3% 13 

10 ppm As(V) 24 19 5 20.8% 17 

20 ppm As(V) 24 17 7 29.2% 10 

Overall 92 70 22 23.9% 15 

 



Chapter 4 
 

97 
 

 
Figure 4.6 Survival time of the shrimp in each group during 21 days of the experiment, blue line 

control group; red 5 ppm As(V); green 10 ppm As(V) and orange 20 ppm As(V) 

4.3.2 Colour change ability 

4.3.2.1 Comparison of colour change ability over time in individual groups 

In each treatment, there was significant difference between days in the performance of the 

same group of shrimp in their colour changing ability (measured by the difference between 

dark pigment cover in black and white sediment) for both B to W and W to B directions 

(Table 4.2; Appendix Table A.6-9). This indicates there was high inter individual variation. A 

general trend for all groups, including control, was a decreased ability in matching the 

background as the experiment progressed (Figure 4.7, Figure 4.9, Figure 4.9, Figure 4.10)  
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Table 4.2 Repeated measures ANOVA for difference in pigment between days in all groups and both 

directions 

Direction Group  F (Greenhouse-Geisser) p-value  

B to W Control  6.119 .001 

5ppm As(V) 5.845 .002 

10 ppm As(V) 5.126 .004 

20 ppm As(V) 4.573 .005 

W to B Control  6.292 .002 

5 ppm As(V) 5.632 .002 

10 ppm As(V) 8.291 .000 

20 ppm As(V) 3.963 .019 

• Bold values were significant (p-value<.05)  

 

 

Figure 4.7 Colour change ability of the shrimp measured by the difference in dark pigment cover in 

black and white sediment over time when they were moved from black to white sediment (B to W) 

in all groups, box plots display minimum, maximum, median and first and third quartile; circles show 

outlier values 
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Figure 4.8 Regression slopes of colour change ability of the brown shrimp measured by the 

difference in the dark pigment cover in black and white sediment over time in all groups for B to W 

direction, black line represent control, red represent 5 pp As(V), green represent 10 ppm As(V) and 

yellow represent 20 ppm As(V) 

 

Figure 4.9 Colour change ability of the brown shrimp measured by the difference in dark pigment 

cover in black and white sediment over time when they were moved from white to black sediment 

(W to B) in all groups, box plots display minimum, maximum, median and first and third quartile; 

circles show outlier values and stars show extreme outliers 
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Figure 4.10 Regression slopes of colour change ability of the brown shrimp measured by the 

difference in dark pigment cover in black and white sediment over time in all groups for W to B 

direction, black line represent control, red represent 5 pp As(V), green represent 10 ppm As(V) and 

yellow represent 20 ppm As(V) 

4.3.2.2 Comparison of colour change ability between group 

When shrimp were moved from black to white sediment or vice versa, the average of colour 

change ability in all treatments in both directions were close to the average in control group 

(Table 4.3). Based on the ANOVA test, there was no significant difference between groups 

(F=.083, p-value=.969; Table 4.3), in colour change ability and this was clearly shown in box 

plot (Figure 4.11). 
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Table 4.3 Descriptive Statistics and ANOVA for colour change in all groups for both directions 

Direction                          group  Mean Std. 

Error 

F  p-value  

B to W control -16.9 2.0 .325 .808 

5 ppm  -16.6 1.7 

10 ppm  -18.4 1.5 

20 ppm  -16.4 1.7 

W to B control 12.9 2.3 2.094 .100 

5 ppm  16.8 1.6 

10 ppm  19.3 2.0 

20 ppm  14.6 1.7 

 

 
Figure 4.11 Colour change ability of the brown shrimp measured by the difference in dark pigment 

cover in black and white sediemnt (final – initial in %) between groups in both directions, box plots 

display minimum, maximum, median and first and third quartile; circles show outlier values and 

stars show extreme outliers 

4.3.3 Dark pigment cover in black and white sediment 

4.3.3.1 Comparison of dark pigment cover in black or white sediment over time 

The previous measures were useful to test how well the shrimp would match their 

background in each and among treatments when moved from one type of substrate (black 

or white) to the opposite (ability to change colour). Another measurement relevant to see 

any potential effect of As is how dark animals are in black sediment (dark pigment cover in 
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black sediment) and how pale they are in white sediment (dark pigment cover in white 

sediment) across days. Based on Table 4.4, dark pigment cover in black sediment was 

significantly different in the control group between days in B to W direction (p-value=.030). 

In addition, dark pigment cover in white sediment was significantly different between days 

when control shrimp were placed in white sediment in both directions (Table 4.4). With 

regard to 5 ppm As(V) group, only dark pigment cover in white sediment in W to B direction 

was significant between days (Table 4.4). In 10 ppm group, the mean in dark pigment cover 

in white sediment was significant in B to W direction (p-value=.001) and W to B direction (p-

value<.001). Shrimp in 20 ppm group appeared to have significant difference in dark 

pigment cover in black sediment when the shrimp were moved from white to black 

sediment (Table 4.4). Pairwise comparison showed high inter individual variability between 

days in all groups in both directions (Appendix Table A.10-14). 

Table 4.4 Repeated measures ANOVA for dark pigment cover in black and white sediment within 

group between days for both directions in all groups 

Direction                           Group F (Greenhouse-

Geisser) 

p-value  

B to W Dark pigment 

cover in black 

sediment 

control 
4.185 

.030 

5 ppm 
2.101 

.155 

10 ppm 
.758 

.533 

20 ppm 
.103 

.103 

Dark pigment 

cover in white 

sediment 

control 
3.183 

.041 

5 ppm 
3.619 

.051 

10 ppm 
5.557 

.001 

20 ppm 
2.570 

.075 

W to B Dark pigment 

cover in white 

sediment 

control 
4.369 

.014 

5 ppm 
5.109 

.003 

10 ppm 
6.102 

.000 

20 ppm 
2.193 

.126 

Dark pigment 

cover in black 

sediment 

control 
2.573 

.086 

5 ppm 
1.669 

.202 

10 ppm 
2.756 

.051 

20 ppm 
2.984 

.044 

• Bold values were significant (p-value<.05) 
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In general, the dark pigment measured in the shrimp either in black or white sediment 

fluctuated during 21 days (Figure 4.12, Figure 4.14, Figure 4.16, Figure 4.18). The overview 

trend of dark pigment cover in black sediment in both directions slightly decreased over 

time compare to day 1 in all groups (Figure 4.13, Figure 4.17) apart from 5 ppm As(V) group 

in B to W direction (Figure 4.13), indicating that the shrimp were not as dark as they were at 

the beginning of the experiment. However, regression slopes showed an increase in the 

dark pigment cover in white sediment in all groups and both directions (Figure 4.15, Figure 

4.19), compared to day 1, suggesting that the shrimp were slightly darker in white sediment. 

 

 

Figure 4.12 Dark pigment cover in black sediment in B to W direction for all groups, box plots display 

minimum, maximum, median and first and third quartile; circles show outlier values 
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Figure 4.13 Regression slopes of dark pigment cover in black sediment in B to W direction for all 

groups, black line represent control, red represent 5 pp As(V), green represent 10 ppm As(V) and 

yellow represent 20 ppm As(V) 

 

Figure 4.14 Dark pigment cover in white sediment in B to W direction for all groups, box plots display 

minimum, maximum, median and first and third quartile; circles show outlier values and stars show 

extreme outliers 
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Figure 4.15 Regression slopes of dark pigment cover in white sediment in B to W direction for all 

groups, black line represent control, red represent 5 pp As(V), green represent 10 ppm As(V) and 

yellow represent 20 ppm As(V) 

 

 

Figure 4.16 Dark pigment cover in black sediment in W to B direction for all groups, box plots display 

minimum, maximum, median and first and third quartile; circles show outlier values 
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Figure 4.17 Regression slopes of dark pigment cover in black sediment in W to B direction for all 

groups, black line represent control, red represent 5 pp As(V), green represent 10 ppm As(V) and 

yellow represent 20 ppm As(V) 

 

Figure 4.18 Dark pigment cover in white sediment in W to B direction for all groups, box plots display 

minimum, maximum, median and first and third quartile; circles show outlier values 
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Figure 4.19 Regression slopes of dark pigment cover in white sediment in W to B direction for all 

groups, black line represent control, red represent 5 pp As(V), green represent 10 ppm As(V) and 

yellow represent 20 ppm As(V) 

 

4.3.3.2 Comparison of dark pigment cover in black or white sediment between groups  

The average of dark pigment cover in black or white sediment in both directions were 

similar between control and treatment groups (Table 4.5). Although the median of dark 

pigment cover in black or white sediment in some treatment groups appeared to be slightly 

lower than the control group, there was high variation between individuals (Figure 4.20, 

Figure 4.21). One-way ANOVA test showed no significant difference in dark pigment cover 

either in black or white sediment between control and three treatment groups (Table 4.5), 

indicating that As(V) did not affect the colour of the shrimp. 
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Table 4.5 Descriptive Statistics and ANOVA for dark pigment cover in black and white sediment for 

both directions in all groups 

Direction                                          Group Mean Std. 

Error 

F  p-value  

B to W Dark pigment 

cover in black 

sediment 

control 59.79 1.40 1.153 .327 

5 ppm  57.44 1.96 

10 ppm  55.85 1.47 

20 ppm  55.97 1.61 

Dark pigment 

cover in white 

sediment 

control 42.92 42.92 1.679 .171 

5 ppm  40.85 40.85 

10 ppm  37.40 37.40 

20 ppm  39.61 39.61 

W to B Dark pigment 

cover in white 

sediment 

control 40.08 40.08 .842 .471 

5 ppm  41.35 41.35 

10 ppm  37.38 37.38 

20 ppm  38.06 38.06 

Dark pigment 

cover in black 

sediment 

control 54.23 1.92 .810 .489 

5 ppm  54.15 1.99 

10 ppm  57.37 1.69 

20 ppm  54.26 1.50 

 

 
Figure 4.20 Dark pigment cover in black sediment in both directions between groups, box plots 

display minimum, maximum, median and first and third quartile; circles show outlier values 
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Figure 4.21 Dark pigment cover in white sediment in both directions between groups, box plots 

display minimum, maximum, median and first and third quartile; circles show outlier values 

4.3.4 Arsenic estimation 

Three different dilution concentrations of CRM (BCR-627) were prepared following the same 

preparations of the samples using both HNO3 and water as a solvent. The CRM results (n=3) 

obtained from acid digestion showed an average of 4.270.15 ppm for total As with hence 

recovery of 89.02 % (corresponding to the certified value 4.80.3 ppm As). The total As 

measured in the CRM digested with water (4.43 0.04) showed a recovery of 92.29 %. Based 

on these results, it appeared that the recovery of total As was higher in the water digestion 

compared to acid digestion. The extraction efficiencies in the CRM samples of all As species 

compared to the total As digested with water were ranged from 54 to 67 % (Table 4.6). 
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Table 4.6 As species measured in CRM and extraction efficiencies 

*Total As in CRM=4.8±0.3 ppm   

 

4.3.5 Total arsenic 

Due to time limitation, most of these results, except for the control and baseline (n=3), were 

obtained from single sample in each time point. All treatment groups showed an increase in 

total arsenic after one week of being exposed to different concentrations of As(V) in both 

types of digestion compared to the baseline (Figure 4.22). However, over three weeks, only 

the lowest concentration group (5 ppm in both types of digestion) seemed to continue 

accumulating further As. The other two groups stopped accumulating and started to lose 

(possibly depurate) the internal As, after two weeks (10 ppm group) and after one week (20 

ppm group; Figure 4.22). Whereas, in water digestion, the total internal As increased during 

three weeks in 10 ppm but decreased after a week in 20 ppm (Figure 4.22). The extraction 

efficiency of As species in shrimp samples was calculated using the ratio between the sum of 

all As species that were found in water-extracted samples and the total As measured in the 

same samples. The results showed that the extraction efficiencies for CRM samples 

calculated in all groups ranged between 17 to 54 % compared to total arsenic found in the 

same extraction solution (Table 4.7).  

 

 

 

 

 

Samples AsB 

ppm 

DMA 

ppm 

As(V) 

ppm 

Sum of 

As 

species 

Total As 

ppm 

(acid 

digestion) 

Total As 

ppm 

(water 

digestion) 

Water Extraction 

efficiency (%) 

Extracted with water  

CRM 1 2.46 0.05 0.34 2.85 4.29 4.48 63.62 

CRM 2 1.90 0.25 0.24 2.39 4.41 4.41 54.20 

CRM 3 2.06 0.42 0.50 2.98 4.12 4.42 67.42 
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Table 4.7 HPLC data including total As and As speciation 

Samples AsB 

ppm 

DMA 

ppm 

As(V) 

ppm 

Sum of 

As 

species 

Total As 

ppm 

(acid 

digestion) 

Total As 

ppm 

(water 

digestion) 

Water 

Extraction 

efficiency 

(%) 

Extracted with water  

Baseline 1.75 0.37 2.98 3.35 8.51 10.48 31.96 

Baseline 4.82 0.02 0.45 5.22 9.08 9.72 53.70 

Baseline 4.85 0.02 0.32 5.12 9.30 9.87 51.91 

Control 4.73 0.02 0.12 4.89 8.38 9.89 49.47 

Control 4.56 0.02 0.12 4.61 9.37 9.65 47.72 

Control 4.62 0.02 0.03 4.65 9.22 9.56 48.69 

5 ppm As(V)*  4.49 0.02 0.30 4.78 17.71 15.73 30.41 

5 ppm As(V)** 3.50 0.02 2.75 6.25 22.10 18.08 34.59 

5 ppm As(V)*** 5.41 0.04 3.57 9.02 24.48 21.49 42.71 

10 ppm As(V)* 7.85 0.24 5.31 13.40 31.26 25.51 52.55 

10 ppm As(V)** 5.66 0.16 5.80 11.62 50.53 36.03 32.25 

10 ppm As(V)*** 4.72 0.16 3.87 8.75 27.41 38.07 30.51 

20 ppm As(V)* 7.82 0.02 12.69 20.51 71.06 66.78 30.72 

20 ppm As(V)** 4.56 0.17 8.38 13.10 48.20 38.06 34.42 

20 ppm As(V) 

*** 

4.75 0.15 6.90 11.80 45.15 31.69 37.23 

Chicken (food) 0.14 0.14 0.23 0.52 0.16 0.04 1457.90 

LOD for DMA<0.04, *day 7, **day 14 and ***day 21 
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Figure 4.22 Total As in: A) acid digestion; B) water digestion 

4.3.6 Arsenic speciation 

The shrimp in 5 ppm showed a decrease in the level of As(V) in the first week of exposure 

and then they started to accumulate iAs in their body between day 7 and 21 (Figure 4.23). 

However, the samples in 10 ppm group accumulated As(V) in day 7 and day 14, the increase 

was about 425 % between day 7 and the baseline. After two weeks of exposure to 10 ppm 

As(V) in the water, the shrimp started to lose the internal As(V). The results in Figure 4.23 

showed a reduction in As(V) concentration after a week of increasing the internal As(V) in 

the shrimp in 20 ppm group.  
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Figure 4.23 Arsenate [As(V)] concentrations in all groups 

With regard to DMA, it was not detected in 5 ppm group in day 7 and day 14, however, it 

was detected in day 21 but in a level less than the baseline (Figure 4.24). In 10 ppm group, 

DMA was recorded throughout the experiment and the highest concentration was found in 

day 7 (0.24 ppm). However, in the 20 ppm group, DMA was not detected in day 7, but it was 

detected in day 14 and 21. DMA was the less dominant species in the brown shrimp 

compared to AsB and As(V). 

 

Figure 4.24 Dimethylarsinic acid (DMA) concentrations in all groups 
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Arsenobetaine in 5 ppm group that measured in the shrimp decreased during two weeks of 

treatment compared to the baseline and then increased in the last week of the experiment 

to be higher than the baseline level (Figure 4.25). Nevertheless, AsB seemed to elevate in 

the first week in 10 and 20 ppm groups, then it decreased again to almost the same level as 

the baseline (Figure 4.25).  

 

 

Figure 4.25 Arsenobetaine (AsB) concentrations in all groups 

 
The ratio between As(V) and AsB in the treatment groups decreased in between day 7 and 

14 compared to the day 0 due to the high level of As(V) accumulated by the shrimp (Figure 

4.26). There was an increase in the ratio between day 14 and 21 in all group except the 

highest As group. This may strongly suggest that the brown shrimp were able to transform 

As(V) to AsB and this was efficient when the external As was low (Figure 4.26). 
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Figure 4.26 AsB/As(V) ratio in the treatment groups; A) all days; B) between day 14 and 21 only 

 

4.4 Discussion  

4.4.1 Mortality  

In this study, highest mortality was found in the lowest treatment group (As (V)=5 ppm). It 

was also noticed that in the control group there were some casualties during the 

experiment although not as many as the treatment groups. This indicates that the mortality 

may not just be caused by As and could be due to the fact that shrimp were at the end of 

their life cycle when they were collected, or they reached the end of their life cycle faster 

under the experimental conditions (Brix et al., 2003). It has been reported that brine shrimp 

died faster when they were exposed to contaminants (Brix et al., 2003; Gillespie & 

Stephens, 1977). Mortality rates were similar between a treated As(V) group and a control 

group in the amphipod Gammarus pulex exposed to different As(V) concentrations and 

temperature degrees (Vellinger et al., 2012). Also, 100% mortality rate has been reported in 

the marine clam Asaphis violascens exposed to 10 ppm and 20 ppm As(V) after 8 and 4 days 

of exposure (Zhang, Guo, Wu, Qiao, & Zhang, 2018a). 

On the other hand, Madsen (1992) reported that the survival of the Crangon crangon was 

dose dependent. Thus, the mortality was due to external As, when the brown shrimp were 

exposed to concentrations of As(V) higher than 25 ppm. 
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4.4.2 Colour change and dark pigment cover in black and white sediment 

The mechanism of colour changes of brown shrimp has been studied extensively for a long 

time (Czerpak & Czeczuga, 1969; Pautsch, 1953; Skorkowski, 1971, 1973) and is connected 

to a black pigment dispersing hormone. 

In this study, we focused on the effect of As(V) on the ability to change colour in the brown 

shrimp, which have not been investigated yet. The results showed no significant difference 

in colour change (final – initial dark pigment cover) between control and treatment groups. 

In addition, there was no significant difference in the average of dark pigment measured in 

black or white sediment between control and treatment groups. Thus, it appeared that 

As(V) did not affect the ability to change colour in the brown shrimp if they were placed in 

different substrates or even if they were kept in the same sediment colour. The reason 

behind this could be due to the ability of some marine invertebrates and fish to metabolise 

As(V) to orgAs. Zhang and Wang (2018) published work showing that clams and polychaetes 

transformed iAs to orgAs when they were fed with As-spiked sediments (30 ppm AsV). 

Similar results were reported when rabbitfish and seabass were fed spiked fresh prey diets 

contained different concentrations of iAs (Zhang et al., 2016). Therefore, As could be 

similarly bio-transformed in C. crangon. 

With regards to dark pigment cover in black or white sediment during the duration of the 

experiment (three weeks), significant differences were noticed between some days 

especially between day 1 and day 21 even in the control group. Hence, the decrease of 

mean of difference in pigment cover in black and white sediment may not due to As since 

control group was performing similarly to the treated group. However, this could be due to 

also to inter-individual variations (Siegenthaler et al., 2018; Stevens & Ruxton, 2019). 

Possibly, a bigger sample size could help to reduce these variations, but plasticity in colour 

change might be a strategy (Siegenthaler et al., 2018). 

The only few studies that can be compared with this study, consider the effect of As on the 

colour change of the fish Channa punctatus. Allen et al. (2004) have studied the colour of C. 

punctatus scales when treated with a sublethal dose of As trioxide (1 ppm) every other day 

for 7, 14, 30, 60 and 90 days. The melanophores in the scale showed reticulated shapes, 

however, they decreased after 7 days of exposure to be all punctuated shapes in day 14. 

These results suggest that the pigments were contracted and the fish looked paler. After 90 
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days of exposure, the melanophores shape was similar to the control group and the fish 

stopped accumulating As in their scale.  Thus, iAs affect fish to some extent (between 7 to 

60 days) by causing paleness of the fish before they develop mechanisms to adapt against 

its toxicity. A similar study has been conducted by (Akarte & Agnihotri, 2013) using the same 

fish species with higher As dose (6 ppm) for only 30 days. The authors have reported that As 

trioxide cause paleness in the fish due to aggregation of the pigment. These results contrast 

with our results: we have found that As(V) does not affect the colour of the brown shrimp. 

One explanation could be that C. punctatus is not able to bio-transform iAs to the less toxic 

organic form (at least for 30 days of exposure). As none of these studies (Akarte & Agnihotri, 

2013; Allen et al., 2004) or other studies have investigated the metabolism of As in C. 

punctatus, this hypothesis cannot be verified. The other reason could be due to high toxicity 

of the species of As used in these studies. Jiang, Chen, Zhao and Zhang (2013) have been 

reported a sever DNA damage in the cells treated with arsenic trioxide compared to those 

treated with sodium arsenite.  

4.4.3 Quality assurance 

The total arsenic recovery for CRM samples using water for digestion was 92% and 

extraction efficiencies were ranged from 54.2 to 67 % for speciation which is in good 

agreement with CRM values. Extraction efficiency in our samples was relatively low. Hirata 

et al. (2006) reported that the low extraction efficiencies found in some marine organisms 

was because of the difficulties of completing the extraction in organisms. Using acid 

digestion was noticed to work less in extracting total As compared to water digestion. 

Besides, water as an extractor has been reported to extract AsB effectively from marine 

animals (Jia, Wang, Ma, & Yang, 2018). As we interested in AsB thus water digestion has 

been used in this study to extract As species. However, some of the orgAs such as DMA and 

arsenocholine (AsC) are more extractable with methanol (Jia, Wang, Ma, & Yang, 2018). This 

could explain the differences found in total As between water and acid digestion. 

4.4.4 Total arsenic 

Based on total As results, C. crangon started to accumulate As slightly in their body over 

time when they were exposed to low concentration of external As(V). In contrast, when the 

external As(V) was high (10 and 20 ppm), As was accumulated very rapidly in the first week 
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then it stopped, as it reached saturation or possibly was depurated by the shrimp. This may 

indicate that the accumulation of As in the brown shrimp was proportional to the external 

As(v) concentrations but also dependent on the time needed to reach a saturation point 

(this was not reached with 5 ppm).  

It has been noted that the As level in the shrimp Lysmata seticaudata increased when the 

animals were exposed to high level of external As(V) (Fowler & Yaşar Ünlü, 1978). Also, 

benthic shrimp who ingested As(V) from food had more retention period than the ones 

exposed to it in the water (Fowler & Yaşar Ünlü, 1978), indicating that the shrimp could not 

keep As in their body for a long time when they were exposed to iAS in the water. This was 

comparable to the result in this study where the shrimp in 10 and 20 ppm lost As after a 

certain time. One possible mechanism that could also allow the shrimp to get rid of iAs is 

moulting. (Fowler & Yaşar Ünlü, 1978) reported 50 % reduction in accumulated As in 

Lysmata seticaudata because of the moult. 

Kuroiwa, Yoshihiko, Ohki, Naka and Maeda (1995) reported that the total As accumulated 

by Macrobrachium resenbergii increased with the increase of external As(V). However, at 

concentration of 30 and 100 g As cm-3, the total As decreased slightly (note that these 

concentrations correspond to LC50).  

In contrary, Hunter et al. (1998) have published that no As was accumulated by the brown 

shrimp when they were exposed animals to As(V) in seawater. This could be due to the low 

As(V) concentration that were used (0.1 ppm) compared to the concentrations (5, 10 and 20 

ppm) used in this study. Other factors that could affect As accumulation in crustaceans are 

temperature and body size: in L. seticaudata there is a relationship between high As 

accumulation and larger body size (Fowler & Yaşar Ünlü, 1978). In addition, salinity is 

another factor that can affect the As accumulation: crustaceans tend to accumulate more 

when the salinity is low (Fowler & Yaşar Ünlü, 1978). 

4.4.5 Arsenic speciation 

The brown shrimp accumulation of As(V) from water in their body corresponded to the 

external As(V) concentration. However, reaching a saturating point was dependent on the 

time and external As(V) concentration. The brown shrimp appeared to accumulate As(V), 

but the retention time of As(V) decreased with the increase of time and external As(V) dose. 

A similar study that has investigated the uptake of As(V) in the brown shrimp has reported 
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that accumulation of ingested As(V) decreased after 16 days to reach similar level of the 

control group after 24 days (Hunter et al., 1998). Subsequently, the brown shrimp seemed 

not to deal with high concentrations of As(V) after a certain time or after they reached the 

saturation limit. 

On the other hand, Hunter et al., (1998), have found that exposing the brown shrimp to 

As(V) or trimethylarsine oxide (TMAO) in the water result in no accumulation of these 

species in any tissue of the shrimp i.e. tail, midgut, gills, exoskeleton and the rest of the 

body. The low dose of As(V) used in their experiment (0.1 ppm), compared to this study 

where 5, 10 and 20 ppm of As(V) were used, could be the reason why the shrimp could not 

accumulate it in their body. Previous study has been reported that the fish T. mossambica 

can accumulate As(V) in their body when they were exposed to it in the water and the 

accumulation increased with the increase of the external dose (Suhendrayatna, Ohki, 

Nakajima, & Maeda, 2002).  

With regard to DMA, it was the less abundant species in term of its abundance in the brown 

shrimp compared to AsB and As(V). It was not detected in the 5 ppm group in the first two 

weeks of the experiment. Nevertheless, it was recorded in the other two groups in this 

experiment apart from day 7 in 20 ppm group. This suggest that the bio-transformation of 

As(V) to DMA in the brown shrimp might not be sufficient when the external iAs is low or 

converted to other species of iAs.  

The same observation has been published by (Suhendrayatna et al., 2002). They have 

reported that DMA was detected in trace amounts (not measurable) in T. mossambica 

exposed to a low concentration of As(V) in the water (0.1 ppm) for one week. However, with 

the high external As(V), T. mossambica biomethylated the iAs to DMA.  This indicated that 

external iAs species could play a role in transforming iAs to DMA as it was reported with 

clams (Zhang, Guo, Wu, et al., 2018a). The latter could biosynthesise As(III) to DMA more 

than when they were exposed to As(V). They have also suggested that DMA perform as a 

precursor of AsB. Therefore, the clam might be accumulating As(V), which is then reduced 

to As(III), methylated to MMA and DMA, and then transformed to AsB.  

Regarding the AsB, it has reported as major As species found in fish and crustaceans (Hirata 

et al., 2006; Zhang, Guo, Wu, et al., 2018). However, it is often not detected in seawater, 

sediment and algae. Some studies have been carried out to establish the origin of AsB 

present in aquatic animals. It seems that AsB can be transformed within the animal 
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(Goessler et al., 1997). This was tested by a field experiment with molluscs fed on algae. 

They found that molluscs contain AsB as a major As compounds, although the AsB was not 

detected in the algae (Goessler et al., 1997). Another laboratory study reported that the 

brown shrimp converted part of ingested trimethylated arsenosugar to AsB (Francesconi et 

al., 1999). Therefore, some marine organisms can bio-transformed and generate AsB in their 

body. More studies need to be conducted with bigger samples size to understand the 

mechanisms of transforming iAs to AsB.   

In this study, C. Crangon appeared to metabolise part of the iAs to AsB. This was noticed 

when the shrimp were treated with low concentration of As(V) in the water (5 ppm) after 

two weeks of exposure, indicating that the brown shrimp can be more efficient in bio-

transforming the iAs to organic form at lower external As(V). This result was comparable to 

former research (Zhang, Guo, Wu, et al., 2018a), where AsB concentration decreased 

proportionally with the increase of external iAs in clams.  

In another study, brown shrimp was noticed to transform the trimethylated arsenosugar 

into AsB efficiently at low doses (Francesconi et al., 1999).  

The other possible explanation of increasing the level of AsB, if not from converting iAs, was 

from the food (Francesconi et al., 1999): food need to be the main source of AsB found in 

the brown shrimp. Since the shrimp in this experiment was fed with chicken and HPLC result 

in showed a total of 0.14 ppm AsB in the chicken which was very low compared to the AsB 

found in the shrimp, this hypothesis was rejected. Thus, the brown shrimp can be consumed 

by human even if grown in a polluted area. 
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5. Chapter Five: General discussion  

5.1 Main findings 

Crangon crangon has great ecological value in European estuaries and is one of the most 

commercially important shrimp for fisheries in northern European waters (Tulp et al., 2016). 

For a great part of the year, the brown shrimp inhabits estuaries and shallow waters, which 

are often subject to environmental or anthropogenic pollution. These contaminants, in 

particular heavy metals produced by human activities, can have a detrimental effect on the 

aquatic ecosystems. Cadmium and As, for instance, are toxic metals and found ubiquitously 

in the aquatic systems. In previous studies, both were tested for their effects on some 

behavioural change in aquatic organisms and on biomarkers of such changes and were 

found to have some effect/s, therefore they have been used in this project for eco-

toxicological assessment using C. crangon as the study organism.  

In order to asses environmental contamination, the use of behavioural markers (behavioural 

ecotoxicology) has been proposed, as organisms’ behaviour can be very sensitive even to 

small-non-lethal concentrations of contaminants (Pestana et al., 2007, Stevens & Ruxton, 

2011). Hence, after considerable literature research (as elaborated in chapter2), two 

behaviour biomarkers have been chosen in this work: feeding rate and colour change ability. 

Colour change for background matching for instance increases survival as it helps animals to 

hide from predators (Duarte et al., 2017; Smithers, Rooney, Wilson, & Stevens, 2018). It is 

an important ecological biomarker among animals that have the ability to change colour 

and could be affected by pollutants. This project thus focused on one of the main 

behavioural traits that characterize C. crangon: colour change ability besides feeding rate. 

Feeding rate has been studied using different organisms and has been found to be sensitive 

biomarker to detect even small concentration of contaminants including heavy metals like 

Cd (Chapter 1; table 1.1). In the literature, only a few studies have considered colour change 

of aquatic animals to detect environmental stressors, such as contaminants, but none have 

been conducted on the brown shrimp. Since the brown shrimp show a high ability to match 

their background (Siegenthaler et al., 2018) and they use it often to avoid predators, colour 

change ability was used to test the effect of Cd and As. The toxicity of As depends on its 

chemical form and it has been found that the majority of the As in aquatic organisms is 
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organic in nature which is less toxic than iAs (Du, Wang, Yang, Liu, & Li, 2019). However, 

there is a lack of knowledge whether aquatic animals bio-transform iAs into orgAs or they 

absorb mainly orgAs from the environment. Another concerning issue that could affect the 

health of aquatic organisms is the presence of antibiotics in the water (Kang et al., 2018). 

The excessive use of antibiotics, including their use as growth promoters in animal 

husbandry, has raised concern for the spread of antibiotic resistance in the marine 

environment, since this can be exacerbated in the presence of heavy metals. For example, 

the combined effect of selection and co-selection of antibiotic-resistant bacteria may occur 

when antibiotics from animal production and agriculture are released into the aquatic 

environment alongside heavy metals (Seiler & Berendonk, 2012).  

The aim of this project was to illustrate the effects of heavy metals on the behavioural 

responses in the brown shrimp. To achieve that, three experiments were conducted. The 

first experiment was to assess individual and combined effect of Cd and antibiotics on 

feeding rate and colour change. Second experiment was performed to assess the effect of 

Cd on colour change ability of the brown shrimp collected from different populations and if 

that could influence their behaviour, as different sites could have different contamination. 

The hypothesis was that the Cd, As and/or antibiotics would affect colour change ability and 

feeding rate. 

In this study when brown shrimp were exposed to 0.04 ppm of Cd and two antibiotics (10 

ppm FZD and 2 ppm Gt) in the water for 21 days to test colour change ability and feeding 

rate (Chapter 2), the results showed no change in body weight or food intake (measured by 

the difference in body weight before and after feeding), suggesting either the concentration 

of Cd and antibiotics used did not affect the feeding rate in the brown shrimp or the 

concentration of Cd used was not sensitive enough to produce any measurable change. 

With regard to colour change, there were some trends that suggested some changes in the 

ability of the brown shrimp to match the background when the shrimp were exposed to Cd 

alone or in combination with antibiotics; however, the trends reported in the treatment 

group were not significantly different from the control group. Said that this experiment 

included multiple factors (Cd, antibiotics and combination of both) and hence too variables 

were analysed at one point in time making it difficult to interpret the results. Hence, the 

following experiment was focused one only effect of Cd on colour change ability. The same 

experimental protocol as in Chapter 2 was used again in Chapter 3 with a larger sample size 
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and two different populations but for a shorter period of time (7 days). The results showed 

no consistent change in the ability of the brown shrimp to change colour across two 

populations when they were exposed to 0.04 ppm Cd (see Chapter 2 and 3). In addition, 

there was a high intra- and inter- individual variability in the ability of the brown shrimp to 

change colour. These variabilities are important to many aquatic animals that can change 

colour to be concealed by matching different and unpredictable habitats (Hughes, Liggins, & 

Stevens, 2019). The different populations used in this experiment showed significant 

differences in their baseline colour (Dale was always darker than Liverpool), however, more 

investigations are needed to confirm any such appreciable difference. When As was used to 

test the colour change ability of the brown shrimp (Chapter 4), no effect of As was noted. In 

this experiment, brown shrimp were exposed to various concentrations of As (5, 10 and 20 

ppm AsV) for 21 days and along with total As the concentration of different As species were 

measured in the tissue of the shrimp to evaluate the As bio-transformation ability in the 

shrimp. In both experiment with Cd and As, the baseline concentrations of Cd and As in the 

shrimp tissue was analysed before dosing (Chapter 2 and 3) to determine any difference 

between the different populations (Mersey vs Dale vs Liverpool). The results showed that 

the concentrations of some elements found in shrimp tissue were significantly different 

including Cd between Mersey and Dale. These differences in the baseline concentrations of 

heavy metals could be one reason for the differences found between populations in 

behaviours (the darkness in appearance in Mersey shrimp could be caused by prolonged 

exposure to high concentration of Cd and other heavy metals in the sediment). However, 

concentration of different elements found in water and sediment samples collected from 

Mersey, Dale and Liverpool were mostly similar except for Zn which was found to be 

significantly different in water samples between Dale and Liverpool. 

In terms of As speciation results, dosed shrimp showed evidence of bio-transformation of 

iAs (AsV) into orgAs in form of AsB as suggested by the increase of AsB in return of decrease 

of AsV. The results in Chapter 2, 3 and 4 showed overall high concentration of total As in the 

shrimp. However, this does not necessary reflect the toxicity of the brown shrimp: the 

majority of the total As accumulated in the shrimp was in organic form (AsB). Indeed, 

shrimp dosed with different concentrations of iAs, bio-transformed it into the less toxic 

organic form, AsB (Chapter 4), which makes them more tolerant to As compared to other 

species. This has relevant implications for aquaculture and fisheries of crustaceans in areas 
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contaminated by inorganic As, as they can be consumed by human even if grown in 

contaminated area. 

To summarise, based on the three experiments described in Chapter 2,3 and 4, it is not 

possible to definitely conclude that Cd, and/or As administered at the concentrations 

specified, had any significant effect on the colour change ability and feeding rate in the 

study species. However, certain trends observed might be further investigated after careful 

consideration of the limitations discussed below. 

5.2 Limitations 

Colour change abilities in the brown shrimp was not consistent and presented high 

individual variation also within the control group; such variability cannot be easily reduced, 

even increasing the sample size of the experiment (Dalzochio et al., 2016). Behavioural 

ecotoxicology relies on the consistent response to non-toxic concentration of pollutants. In 

the case of high individual variations (Dalzochio, Rodrigues, Petry, Gehlen, & da Silva, 2016), 

which naturally occur in many crustaceans including the brown shrimp (Siegenthaler et al., 

2018), this response is not an effective indicator of pollutants (Blockwell et al., 1998). 

Another limitation in this study was the difficulties to maintain a big sample size, lacking a 

proper rearing system. We started with very basic rearing tanks, which could hold a small 

sample size (8 to 12 shrimp), then we developed (in collaboration with Aquaponic Lab) a 

new recirculating system, able to hold a bigger sample size (24 chambers per compartment). 

Studying behaviour toxicology responses of aquatic organisms in the laboratory is 

challenging (Nagelkerken & Munday, 2016). Most of the work that have been done in 

related to colour change ability was conducted to address the background matching ability 

and substrate choice as a camouflage tool (for example: Siegenthaler et al., 2018; Smithers 

et al., 2018; Stevens, Lown, & Wood, 2014), but little has been done to assess the effect of 

environment contaminations on the colour change ability (Ahmad et al., 2018; Akarte & 

Agnihotri, 2013; Allen et al., 2004; Fingerman & Fingerman, 1978; Hanumante et al., 1981; 

Reddy & Fingerman, 1995). Hence, measuring colour change and food intake of the brown 

shrimp in lab condition was challenging.  
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5.3 Implication for ecosystem management 

This thesis has focused on the brown shrimp, which is exploited as a valued commercial 

species and represent one of the main components in the aquatic ecosystems of many 

countries, including the UK (Temming & Damm, 2002). However, due to the level of 

anthropogenic pollution in European waters and following the European Water Framework 

Directive (Baattrup-Pedersen, Larsen, Rasmussen, & Riis, 2019), there is a serious need to 

develop effective biomarker to allow a quick and efficient assessment to evaluate water 

quality in the marine ecosystem (Pestana et al., 2007). We tested the efficiency of colour 

change ability in the brown shrimp as a sensitive biomarker, as it has been reported for 

some fish and crabs (Ahmad et al., 2018; Allen, Singhal, & Rana, 2004; Fingerman & 

Fingerman, 1978; Reddy & Fingerman, 1995).  The results obtained do not provide strong 

evidence on the effect of Cd on the colour change ability of the brown shrimp. Therefore, 

the investigated behaviours of the brown shrimp in this work (colour change and food 

intake) may not be the right tools to effectively assess the effects of environmental 

pollution on marine organisms. However, colour change ability could be used to investigate 

other environmental stressors such as global warming. A pilot project has tested the effect 

of high-water temperature (25 ± 0.5°C) on the ability of the brown shrimp to match its 

background. The results have shown that, in the high temperature treatment group, the 

shrimp were significantly paler when they were moved to different sediment colour 

compared to the control group, regardless the direction of change (from black to white or 

vice versa). Hence, colour change could still be used as a biomarker for other environmental 

stressors (Dalzochio et al., 2016), and could potentially provide information on whether 

these changes could be applied in polluted environments not only at the individual level, but 

also at the community level (Blockwell et al., 1998). 
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5.4 Future directions 

Future studies could use other environmental stressors such as temperature or change in 

salinity to address the colour change ability in the brown shrimp or other species. Using 

natural substrate and water from the original environment to study the effect of different 

heavy metals (other than Cd and As) in the lab could be considered in a future study as well. 

In addition, studying the effect of contaminants on colour change in the brown shrimp could 

be applied in naturally contaminated environment.  

More research can also be done with different species that inhabits naturally contaminated 

environments, to investigate the ability to bio-transform iAs to orgAs, as they might be able 

to detoxify the environment. The mechanisms of transforming the iAs should be 

investigated.  

The use of antibiotics in Chapter 2 was a pilot study to address the potential role of these 

substances, often found in increasing concentrations in the environment. A follow up 

project stemming from the pilot is currently looking at microbiome changes (using 

molecular metabarcoding) in shrimp dosed with different concentrations of As.  

5.5 Final conclusion 

Colour change ability in the brown shrimp is not the most effective biomarker to detect 

effect of environmental pollution (at least for Cd and As). It could be tested for other 

environmental stressors such as high temperature. By studying As speciation, this work 

provides fundamental information on the potential ability of C. crangon to bio-transform iAs 

to orgAs: thus this shrimp could be consumed by humans even if grown in contaminated 

areas.  
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A. Appendix  

1. Supplementary material for chapter 2  

1.1 Initial body weight  

Based on the results shown in Table A.1, the significant difference in initial body weight was 

found to be of the shrimp between day 1 and day 13, 15, 18, and 20. This indicated that the 

shrimp lost weight slightly in some days when they were exposed to 0.04 ppm Cd. 

Table A.1 Pairwise comparisons for initial body weight before feeding between days in Cd group in 

Mersey 

    p-values using post-hoc test for days 

 day Mean Std. Error 4 6 8 11 13 15 18 20 22 

Cd group 

1 .418 .052 .679 .239 .596 .109 .007 .009 .013 .029 .233 

4 .412 .046  .206 .879 .212 .000 .010 .011 .015 .178 

6 .390 .036   .274 .596 .636 .832 .313 .397 .822 

8 .410 .044    .204 .005 .013 .012 .015 .362 

11 .399 .045     .017 .074 .004 .107 .741 

13 .383 .045      .461 .313 .740 .407 

15 .386 .046       .260 .473 .537 

18 .371  .043        .603 .252 

20 .380 .042         .245 

22 .394 .045          

• Bold values were significant (p-value<.05) 

1.2 Dark pigment cover in black sediment 

Pairwise comparison test (Table A.2) showed that the significant change in dark pigment 

cover in black sediment was between day 1 and the other days starting from day 11 in 

control group of Mersey experiment. With regard to Cd group in the same experiment, the 

lowest mean of dark pigment cover in black sediment was recorded in day 1 (Table A.2), and 

it was significantly different from all other days apart from day 15 and day 22. 
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Table A.2 Pairwise comparisons between days for dark pigment cover in black sediment for Mersey 

experiment 

    p-values using post-hoc test for days 

 day Mean Std. Error 4 6 8 11 13 15 18 20 22 

Control  

1 36.74 5.78 .065 .048 .192 .027 .005 .008 .002 .000 .019 

4 50.75 4.19  .424 .749 .626 .169 .029 .000 .000 .394 

6 55.90 7.51   .356 .792 .782 .839 .035 .000 .966 

8 48.57 6.97    .487 .196 .150 .006 .000 .407 

11 53.58 4.76     .370 .413 .004 .000 .678 

13 58.17 2.87      .884 .036 .000 .646 

15 57.48 4.15       .004 .000 .850 

18 76.74 6.61        .035 .038 

20 93.14 1.91         .000 

22 56.30 4.49          

Cd group 

1 47.91 4.91 .001 .001 .011 .003 .000 .054 .001 .000 .182 

4 69.17 4.86  .877 .949 .257 .664 .050 .047 .000 .012 

6 68.36 5.31   .860 .161 .851 .118 .078 .000 .067 

8 69.60 3.00    .170 .701 .051 .115 .001 .009 

11 63.21 2.55     .209 .365 .007 .000 .176 

13 67.58 3.43      .016 .064 .000 .016 

15 59.42 3.67       .008 .000 .403 

18 81.86 5.43        .054 .002 

20 92.38 2.67         .000 

22 56.99 3.41          

• Bold values were significant (p-value<.05) 

In Dale experiment, pairwise test for Cd group showed that the changes in dark pigment 

cover in black sediment was between day 1 and day 8, 11 and 13 (Table A.3), this suggested 

that the shrimp were less darker in the black sediment in those days compared to day 1. 

However, the significant decrease in dark pigment cover in black sediment was found 

between day 1 and day 22 of the experiment in shrimp dosed with Cd alongside antibiotics 

(Table A.3). 
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Table A.3 Pairwise comparisons between days for dark pigment cover in black sediment in Dale 

experiment for Cd and antibiotics+Cd group 

    p-values using post-hoc test for days 

Group day Mean Std. Error 4 6 8 11 13 15 18 20 22 

Cd group 

1 74.26 2.12 .596 .457 .005 .001 .004 .066 .525 .064 .073 

4 76.88 3.62  .931 .265 .000 .008 .031 .039 .078 .002 

6 77.06 2.50   .172 .000 .001 .032 .121 .049 .005 

8 83.21 3.59    .000 .001 .007 .118 .016 .013 

11 49.00 2.76     .080 .008 .005 .012 .059 

13 57.33 3.95      .109 .100 .057 .502 

15 66.51 3.70       .533 .785 .301 

18 69.90 5.06        .517 .022 

20 65.63 4.09         .474 

22 61.23 5.30          

Antibiotics+Cd 

 

 

1 75.37 3.66 .923 .173 .052 .008 .031 .006 .002 .061 .006 

4 75.71 4.31  .068 .007 .007 .033 .011 .012 .039 .003 

6 70.24 4.15   .026 .012 .143 .051 .061 .063 .005 

8 64.05 4.57    .109 .647 .261 .777 .423 .015 

11 55.71 3.96     .228 .988 .286 .624 .564 

13 61.07 3.87      .395 .813 .838 .234 

15 55.79 5.79       .358 .732 .629 

18 62.46 4.26        .617 .231 

20 59.40 6.31         .397 

22 53.02 5.24          

• Bold values were significant (p-value<.05) 

1.3 Dark pigment cover in white sediment  

The results presented in Table A.4 showed that the average of dark pigment cover in white 

sediment in control shrimp of Mersey reduced significantly in day 15 and 18 compared to 

day 1. Whereas, shrimp in Cd group were much darker in white sediment in day 4, 6, 8 and 

11 compared to their colour in day 1 (Table A.4). 
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Table A.4 Pairwise comparisons between days of dark pigment cover in white sediment for both 

groups in Mersey experiment 

    p-values using post-hoc test for days 

Group day Mean Std. Error 4 6 8 11 13 15 18 20 22 

Control 

1 39.71 4.64 .469 .043 .859 .496 .209 .007 .006 .150 .172 

4 43.69 5.31  .088 .272 .197 .040 .003 .002 .052 .096 

6 52.44 4.63   .010 .028 .006 .000 .000 .002 .013 

8 38.41 5.84    .522 .111 .010 .006 .103 .267 

11 34.46 4.03     .374 .004 .005 .169 .380 

13 30.46 4.95      .040 .015 .566 .738 

15 21.90 2.17       .474 .075 .284 

18 20.93 2.43        .016 .172 

20 28.01 4.42         .97 

22 29.74 6.09          

Cd group 

1 28.97 5.32 .000 .022 .015 .030 .194 .577 .483 .400 .914 

4 59.10 5.67  .004 .070 .008 .004 .000 .010 .004 .001 

6 45.62 4.96   .893 .545 .240 .060 .291 .225 .068 

8 46.58 7.33    .494 .359 .041 .301 .033 .024 

11 41.94 5.21     .602 .071 .451 .371 .061 

13 38.86 5.78      .234 .692 .685 .211 

15 31.03 5.45       .581 .537 .824 

18 35.33 7.78        .971 .374 

20 35.66 7.50         .159 

22 29.74 6.09          

• Bold values were significant (p-value<.05) 

1.4 Colour change ability  

Based on Table A.5, it was noticed that shrimp in day 18 and 20 were performing better in 

terms of changing colour from black to white sediment compared to other days in both 

control and Cd group in Mersey experiment. 
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Table A.5 Pairwise comparisons between days for difference in pigment cover in black and white 

sediment in both group for Mersey experiment 

    p-values using post-hoc test for days 

 day Mean Std. Error 4 6 8 11 13 15 18 20 22 

Control  

1 2.971  6.902 .260 .438 .099 .049 .012 .001 .001 .000 .002 

4 -7.057 4.284  .660 .628 .077 .010 .000 .000 .000 .019 

6 -3.462 5.116   .386 .065 .018 .000 .000 .000 .001 

8 -10.155 4.649    .189 .015 .000 .000 .000 .012 

11 -19.127 5.211     .150 .004 .000 .000 .136 

13 -27.710 4.685      .220 .003 .000 .950 

15 -35.582 3.388       .003 .000 .111 

18 -55.805 6.690        .217 .002 

20 -65.135 4.779         .000 

22 -28.090 4.189          

Cd group 

1 -18.93 4.37 .216 .623 .652 .677 .185 .140 .039 .000 .285 

4 -10.07 4.74  .059 .098 .121 .003 .044 .003 .000 .014 

6 -22.74 5.00   .978 .841 .389 .582 .084 .003 .657 

8 -23.02 8.10    .845 .536 .517 .130 .000 .624 

11 -21.28 4.74     .282 .361 .060 .001 .481 

13 -28.72 4.94      .965 .177 .001 .823 

15 -28.38 6.94       .188 .004 .841 

18 -46.53  10.86        .390 .101 

20 -56.72 7.15         .000 

22 -27.25 6.93          

• Bold values were significant (p-value<.05) 
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2. Supplementary material for chapter 3 

 

 
 

Figure A.1 Mean of pigment cover in black and white sediment  
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Figure A.2 Difference in pigment cover in black and white sediment between days in Dale in B to W 

direction (A= control, B= Cd) and W to B direction (C= control, D= Cd) 
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Figure A.3 Difference in pigment cover in black and white sediment between days in Liverpool in B 

to W direction (A= control, B= Cd) and W to B direction (C= control, D= Cd) 

3. Supplementary material for chapter 4 

Pairwise comparison showed that the significant changes happened between day 1 and day 

6, 11, 15, 17 and 21 in B to W direction (Table A.6). Whereas in W to B direction, the 

difference in pigment cover in black and white sediment was between day 1 and all other 

days except for day 15 (Table A.6). It appears that the average of colour change in B to W 

direction at the last day of the experiment was positive while it was expected to be negative 

(mean difference: final-initial cover =2.983), suggesting that the shrimp got darker instead 

of becoming paler when they were moved to white sediment from the black sediment (). In 

addition to that, in W to B, the mean of difference in pigment was negative (mean=-12.8) in 

day 21, indicating that the shrimp got paler instead of becoming darker when they were 

moved from white to the black sediment. 

 

D C 

A B 
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Table A.6 Pairwise comparisons for difference in pigment cover in black or white sediment between 

days in control group 

    p-values using post-hoc test for days 

Direction day Mean Std. Error 4 6 8 11 13 15 17 21 

B to W 

1 -36.956 5.773 .076 .025 .045 .000 .162 .005 .000 .002 

4 -21.011 4.646  .901 .884 .148 .479 .116 .085 .024 

6 -19.972 5.584   .813 .220 .465 .368 .029 .013 

8 -21.910 4.762    .111 .321 .037 .015 .027 

11 -9.717 5.117     .010 .646 .566 .140 

13 -26.737 4.582      .001 .001 .004 

15 -12.082 3.303       .267 .078 

17 -6.470 3.542        .225 

21 2.983 5.809         

W to B 

1 41.356 6.795 .040 .004 .002 .001 .018 .070 .002 .005 

4 13.788 6.533  .544 .489 .579 .397 .506 .416 .064 

6 9.177 2.779   .770 .970 .022 .239 .558 .057 

8 7.361 4.928    .675 .020 .108 .964 .050 

11 9.346 2.931     .009 .228 .645 .079 

13 22.893 3.918      .563 .003 .009 

15 17.686 6.091       .169 .008 

17 7.079 3.312        .099 

21 -12.800 10.029         

• Bold values were significant (p-value<.05) 

 

In the 5 ppm As(V) group, in day 1 and day 4 the overall performance was better (-30, -28.4) 

compared to the other days in B to W (Table A.7). The significant difference was determined 

between day 1 and other days started from day 15 (p-value<.001). Day 17 was noticed to be 

significantly different from all other days with exception of day 13 and 21 (p-value<.05). 

Shrimp in day 17 and 21 performed less well in matching their background (mean= -2.5 and 

1.4 respectively; Table A.7) compared to day 1. Colour change in day 21 was positive when it 

was supposed to be negative indicating that the shrimp became darker in white sediment. 

In W to B a significant difference was found between day 1 and other days started from15 

(p-value=.002; Table A.7). 
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Table A.7 Pairwise comparisons for difference in pigment cover in black or white sediment between 

days in 5 ppm group 

• Bold values were significant (p-value<.05) 

 

In the 10 ppm As(V) group, the shrimp in B to W were matching their background better in 

day 1, 4, 6 and 8 (mean=-30.89, -24.85, -24.51 and -26.36 respectively) compared to the 

other days (Table A.8). However, the ability to change colour became significantly low in day 

11, 15, 17 and 21 compared to day 1 (Table A.8).  

For the shrimp in W to B, only day 21 showed a negative value (mean= -5.24), indicating that 

overall, in the other days the shrimp were getting paler in black sediment. The pairwise 

comparisons showed a significant difference between day 1 and day 13, 15, 17 and 21 

(Table A.8). A significant difference was found between day 21 and all other days apart from 

day 15 (Table A.8): shrimp in day 21 were getting even more darker in white sediment than 

in black sediment (mean= -5.24).  

    p-values using post-hoc test for days 

Direction day Mean Std. 

Error 

4 6 8 11 13 15 17 21 

B to W 

1 -30.0 4.2 .796 .160 .154 .160 .097 .000 .000 .000 

4 -28.4 5.9  .266 .282 .127 .179 .128 .000 .002 

6 -19.4 5.1   .773 .916 .148 .534 .006 .007 

8 -21.5 3.4    .543 .374 .388 .000 .002 

11 -18.9 4.3     .445 .692 .001 .010 

13 -14.0 6.3      .790 .096 .044 

15 -16.0 3.6       .009 .006 

17 -2.5 1.4        .398 

21 1.4 3.9         

W to B 

1 21.5 4.7 .185 .884 .521 .806 .969 .002 .004 .003 

4 30.9 4.2  .287 .062 .072 .209 .002 .000 .000 

6 22.7 6.0   .345 .560 .885 .063 .010 .004 

8 17.8 3.7    .670 .572 .131 .004 .001 

11 19.6 3.7     .629 .100 .001 .002 

13 21.9 5.7      .101 .007 .013 

15 9.4 3.6       .168 .151 

17 3.7 .8        .845 

21 3.3 1.9         
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Table A.8 Pairwise comparisons for difference in pigment cover in black or white sediment between 

days in 10 ppm group 

• Bold values were significant (p-value<.05) 

In the 20 ppm group, colour change ability of shrimp in day 1 was significantly better 

compared to their performance in day 13 and day 21 in B to W (Table A.9). In day 21, the 

mean change in colour was very small (mean= -0.167), meaning that the brown shrimp was 

struggling to change colour from black to white.  

With respect to W to B, there was no clear trend colour change between days. However, the 

difference in pigment cover in black and white sediment in day 21 was statistically less than 

day 1 (p-value<.002) indicating that the brown shrimp were performing less well (Table A.9). 

In day 13 for both directions, colour change ability in the shrimp was significantly lower than 

most other days (Table A.9). 

 

    p-values using post-hoc test for days 

Direction day Mean Std. 

Error 

4 6 8 11 13 15 17 21 

B to W 

1 -30.89 5.28 .434 .453 .495 .005 .021 .013 .009 .011 

4 -24.85 4.46  .942 .776 .161 .095 .018 .070 .005 

6 -24.51 4.81   .737 .271 .249 .006 .066 .001 

8 -26.36 3.41    .077 .119 .007 .002 .001 

11 -16.33 3.17     .912 .158 .556 .094 

13 -16.81 3.35      .093 .548 .067 

15 -7.10 3.56       .086 .449 

17 -14.19 1.14        .031 

21 -4.99 3.56         

W to B 

1 40.00 5.09 .179 .054 .002 .156 .028 .000 .000 .000 

4 31.90 5.78  .263 .160 .500 .093 .004 .006 .001 

6 20.58 6.76   .799 .423 .923 .056 .309 .000 

8 22.66 5.07    .476 .756 .019 .040 .000 

11 28.56 4.96     .166 .002 .010 .001 

13 19.58 5.85      .019 .330 .009 

15 3.19 2.90       .017 .063 

17 12.56 1.63        .000 

21 -5.24 3.11         
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Table A.9 Pairwise comparisons for difference in pigment cover in black or white sediment between 

days in 20 ppm group 

• Bold values were significant (p-value<.05) 

 

In the control group and based on pairwise comparison given in Table A.10, dark pigment 

cover in black sediment was significantly different between day 1 and day 15, 17 and 21 (p-

value= .033, .023 and .022 respectively). This indicted that the shrimp got less dark in day 

15, 17 and 21. The difference in dark pigment cover in white sediment was found between 

day 1 (mean= 34.20) and day 17 and 21 (mean= 52.77 and 53.54 respectively; Table A.10). In 

white to black direction, the mean of dark pigment cover in white sediment was significantly 

less (p-value <.05) than any other day (Table A.11). 

 

 

    p-values using post-hoc test for days 

Direction day Mean Std. 

Error 

4 6 8 11 13 15 17 21 

B to W 

1 -28.769 5.618 .159 .234 .136 .201 .000 .126 .051 .004 

4 -19.587 4.609  .636 .990 .893 .004 .866 .131 .009 

6 -22.024 5.125   .701 .651 .001 .268 .079 .006 

8 -19.675 4.912    .924 .010 .876 .447 .021 

11 -19.008 2.819     .013 .954 .220 .013 

13 -5.770 2.620      .016 .107 .325 

15 -18.573 6.252       .428 .039 

17 -13.702 4.125        .004 

21 -.167 3.390         

W to B 

1 23.069 6.781 .466 .070 .216 .920 .006 .043 .328 .032 

4 27.802 4.775  .024 .171 .271 .001 .026 .002 .000 

6 12.778 4.466   .771 .195 .008 .444 .661 .118 

8 14.799 6.564    .480 .086 .532 .969 .123 

11 22.176 4.071     .008 .145 .081 .001 

13 3.385 2.450      .081 .019 .755 

15 10.638 4.997       .485 .239 

17 15.15 2.976        .000 

21 1.902 2.559         
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Table A.10 Pairwise comparisons of dark pigment cover in black and white sediment between days 

for black to white direction in control group 

• Bold values were significant (p-value<.05) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    p-values using post-hoc test for days 

Sediment 

colour 

day Mean Std. 

Error 

4 6 8 11 13 15 17 21 

Black 

sediment  

1 71.16 4.73 .101 .056 .125 .047 .479 .033 .023 .022 

4 65.28 2.03  .064 .256 .047 .889 .044 .019 .011 

6 51.60 5.53   .776 .008 .229 .198 .859 .776 

8 61.44 3.18    .077 .147 .850 .485 .024 

11 52.20 4.89     .004 .197 .177 .755 

13 65.92 3.73      .251 .114 .002 

15 60.73 2.56       .530 .045 

17 59.24 2.56        .097 

21 50.56 3.27         

White 

sediment 

1 34.20 7.10 .326 .795 .593 .360 .586 .075 .006 .030 

4 44.27 4.01  .025 .289 .664 .283 .335 .205 .108 

6 31.63 5.44   .214 .151 .286 .030 .010 .005 

8 39.53 3.69    .510 .884 .045 .056 .072 

11 42.48 4.95     .499 .216 .161 .143 

13 39.18 2.75      .003 .023 .034 

15 48.64 1.55       .230 .270 

17 52.77 2.68        .844 

21 53.54 3.75         
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Table A.11 Pairwise comparisons of dark pigment cover in white sediment between days for white 

to black direction in control group 

• Bold values were significant (p-value<.05) 

In terms of 5 ppm As(V) group, the difference between days was found in the dark pigment 

cover in white sediment between day 1 and day 15 and 17 in white to black direction (Table 

A.12). 

 

Table A.12 Pairwise comparisons of dark pigment cover in white sediment between days for white 

to black direction in 5 ppm group 

• Bold values were significant (p-value<.05) 

Regarding 10 ppm group and as mentioned in Table 4.4, there was significant difference in 

dark pigment cover in white sediment in both directions. Pairwise comparison test showed 

    p-values using post-hoc test for days 

Direction day Mean Std. 

Error 

4 6 8 11 13 15 17 21 

White 

sediment 

1 20.31 3.66 .010 .017 .030 .039 .019 .029 .000 .000 

4 47.48 5.27  .580 .322 .081 .034 .295 .767 .743 

6 45.44 6.51   .544 .292 .231 .552 .609 .544 

8 41.64 6.29    .415 .541 .869 .338 .415 

11 38.87 5.48     .913 .654 .199 .164 

13 38.33 3.30      .522 .020 .034 

15 41.04 5.86       .233 .229 

17 49.57 2.85        .981 

21 49.49 2.60         

    p-values using post-hoc test for days 

Sediment 

colour 

day Mean Std. 

Error 

4 6 8 11 13 15 17 21 

White 

sediment  

1 38.63 5.38 .075 .045 .278 .257 .912 .009 .119 .149 

4 29.41 3.87  .192 .752 .707 .182 .000 .000 .013 

6 22.97 4.98   .065 .496 .036 .001 .000 .015 

8 30.73 4.65    .559 .333 .009 .001 .035 

11 27.26 7.17     .065 .012 .003 .021 

13 37.74 6.49      .065 .068 .078 

15 49.18 3.74       .897 .776 

17 48.64 1.70        .740 

21 51.89 10.16         
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a significant increase in dark pigment cover in white sediment starting from day 13 of 

exposing to 10 ppm As(V) till day 21 in black to white direction and starting from day 15 in 

white to black direction (Table A.13). This indicated that the shrimp was struggling to 

contract the pigment when they were placed in white sediment. 

 

Table A.13 Pairwise comparisons in dark pigment cover in white sediment between days for both 

directions in 10 ppm group 

• Bold values were significant (p-value<.05) 

In white to black direction in 20 ppm group, there was a slight decrease in dark pigment 

cover in black sediment in day 21 compared to day 1 (p-value=.001; Table A.14). 

 

 

 

 

 

    p-values using post-hoc test for days 

Direction day Mean Std. 

Error 

4 6 8 11 13 15 17 21 

black to 

white 

1 25.78 3.50 .269 .142 .073 .070 .002 .001 .004 .000 

4 30.86 4.08  .482 .228 .360 .244 .012 .037 .017 

6 33.48 4.26   .491 .662 .581 .058 .024 .021 

8 36.21 4.15    .647 .944 .049 .039 .030 

11 34.52 3.67     .642 .021 .026 .013 

13 36.58 4.09      .044 .181 .019 

15 44.98 3.22       .891 .277 

17 44.35 3.19        .112 

21 49.86 2.93         

white to 

black 

1 25.25 5.23 .998 .181 .033 .599 .430 .006 .002 .003 

4 25.26 5.17  .122 .062 .468 .365 .009 .004 .004 

6 34.27 4.55   .311 .455 .782 .071 .002 .009 

8 38.48 5.00    .196 .432 .109 .007 .029 

11 29.81 5.76     .722 .009 .008 .002 

13 32.22 7.03      .046 .043 .018 

15 47.86 3.86       .229 .153 

17 56.70 5.12        .470 

21 52.67 2.83         
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Table A.14 Pairwise comparisons of dark pigment cover in black sediment for white to black 

direction between days in 20 ppm group 

• Bold values were significant (p-value<.05) 

 

    p-values using post-hoc test for days 

Sediment 

colour  

day Mean Std. 

Error 

4 6 8 11 13 15 17 21 

Black 

sediment 

1 58.88 3.81 .836 .029 .135 .617 .600 .347 .807 .001 

4 57.95 4.23  .031 .409 .528 .650 .674 .962 .010 

6 44.92 4.91   .197 .010 .067 .040 .003 .197 

8 52.72 3.79    .076 .772 .530 .193 .012 

11 62.69 5.47     .051 .323 .302 .002 

13 54.49 5.88      .913 .452 .070 

15 55.25 4.81       .527 .021 

17 57.73 2.88        .000 

21 43.68 1.03         
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Effects	of	cadmium	and	antibiotics	on	food	intake	
and	colour	change	in	the	brown	shrimp	(Crangon	

crangon)

A.	Althomali,	H.	Abarca,	C.	Benvenuto, C.	James	and	D.	Mondal

Introduction
Heavy metal contamination due to human activity is affecting terrestrial and aquatic
environments. In addition, the increase of incorrect use of antibiotics (clinical and agricultural
overuse) may lead to the spread of drug resistant bacteria. The effects of heavy metals on
marine organisms have been investigated but little is known about the combined effects of
heavy metals and antibiotics.

Aim:
• Evaluate the effects of cadmium and the antibiotics

(furazolidone (Fz) and gentamicin (Gt)) on
physiological and behavioural responses (food intake
and colour change) in C. crangon.
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The	choice	of	the	antibiotics	was	made	using	the	diffusion	
assay	technique	with	the	gut	extract	from	the	shrimp.

Assessment	of	colour change	
using	Siegenthaler et	al.	protocol

Measurement	of	food	intake

 

Figure A.4 SPARC poster 
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Figure A.5 SETAC poster 
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Figure A.6 European Society of Evolutionary Biology poster 
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Figure A.7 Association for the Study of Animal Behaviour poster 
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