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Abstract: Quantum neural network (QNN) is developed based on two classical theories 

of quantum computation and artificial neural networks. It has been proved that quantum 

computing is an important candidate for improving the performance of traditional 

neural networks. In this work, inspired by the QNN, the quantum computation method 

is combined with the echo state networks (ESNs), and a hybrid model namely quantum 

echo state network (QESN) is proposed. Firstly, the input training data is converted to 

quantum state, and the internal neurons in the dynamic reservoir of ESN are replaced 

by qubit neurons. Then in order to maintain the stability of QESN, the particle swarm 

optimization (PSO) is applied to the model for the parameter optimizations. The 

synthetic time series and real financial application datasets (Standard & Poor’s 500 

index and foreign exchange) are used for performance evaluations, where the ESN, 

autoregressive integrated moving average (ARIMAX) are used as the benchmarks. 

Results show that the proposed PSO-QESN model achieves a good performance for the 

time series predication tasks and is better than the benchmarking algorithms. Thus, it is 

feasible to apply quantum computing to the ESN model, which provides a novel method 

to improve the ESN performance. 

Keywords: quantum computation; echo state network; particle swarm optimization; 

time series; financial applications 

1. Introduction 

Quantum computing is an emerging technique. By using the quantum properties 

e.g. quantum superposition, interference and entanglement, etc., some difficult 

problems existing in classical computers can be addressed [1]. Research shows that a 

computational model, quantum neural network (QNN), that is based on quantum 

mechanics and neural networks [2], is able to take the advantages of many features from 

quantum theory to overcome certain inherent drawbacks of traditional neural networks, 

such as the limited memory capacity, and the catastrophic forgetting while learning new 

information [3]. The quantum neural computing was initially proposed in the approach 

of [4], and then the quantum artificial neural networks was reported in the approach of 
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[5]. Then, the quantum associative memory model was proposed, which combined the 

advantages of both neural networks and quantum computing. However, these models 

require quantum computers as the computing platforms [6]. A qubit neural network was 

proposed in the approaches of [7–9] where a single bit rotation gate and the two-bit 

controlled NOT gate were stimulated. Based on this, the quantum McCulloch-Pitts 

neural network and the quantum perceptron network were proposed [10, 11], which 

implemented an XOR function. In addition, the QNN is also used for the real 

applications, e.g. the quantum Elman neural network was designed and used to predict 

the short-term electricity load [12]. 

As a typical recurrent neural network model, the echo state network (ESN) has a 

sparse reservoir, simple linear output and has been used in many applications [13], e.g. 

power load forecasting [14], short-term traffic flow forecasting [15], pattern recognition 

[16], etc. However, the ESN has some inherent drawbacks, e.g. the parameters of 

dynamic reservoir are normally empirically set [17], the reservoir properties are 

difficult for analysis [18], and the initial connection and weight structure of the reservoir 

are unlikely to be optimal due to that the reservoir is created randomly before the 

training. Thus it is a challenge to create a highly efficient reservoir for a given task. 

Some solutions have been proposed to address this problem, including (a). the 

optimization of reservoir structure. A deterministic reservoir topology was proposed in 

the approach of [19], which achieved a better performance than the conventional ESN. 

A scale-free highly-clustered ESN was proposed in [20], which used a small world 

network and scale-free network topology to create a reservoir. A growing ESN was 

proposed in the approach of [21], which could set the size and topology of the reservoir 

automatically. The simulation results showed that the growing ESN is better than the 

original ESN (with fixed size and topology) in predictive performance and learning 

speed; (b). the optimization of reservoir neurons. A wavelet neuron was used in the ESN 

and the experimental results showed that the wavelet hybrid ESN is more robust 

compared to the network using traditional neurons [22]. The leak integral neurons were 

used in the approach of [23] to perform pattern recognition, where filter neurons and 

two factors of delay and readout were used to construct the network structure, and the 

performance is better than standard ESN [24]; (c). the optimization of ESN parameters. 

The swarm intelligence algorithms such as particle swarm optimization (PSO) are often 

used to optimize the key parameters of the ESN model [25, 26]; and (d). the 

optimization of the ESN output connection. It can simplify the model structure and 

improve the generalization ability of the model [27, 28].  

The aforementioned approaches optimized the ESN model from different aspects. 

Quantum computing is a potential candidate to improve the computational efficiency 

of neural networks, and qubit neuron has a stronger information processing capability 

than classical neuron model [7]. This paper aims to explore the feasibility and utility of 

the quantum echo state network. Specifically, in the proposed work the advantages of 

ESN dynamic reservoirs and quantum computing are combined together in order to 

achieve a good excellent performance. In this work, the quantum echo state network 

(QESN), is proposed where the sigmoidal transfer function is replaced by quantum 

logic gates, and the internal state information is also converted into the quantum state. 
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In addition, the PSO is used to optimize the QESN model parameters. The synthetic 

and financial datasets are used for performance evaluation and results show that the 

proposed PSO-QESN has more powerful performance than the original ESN model. 

The rest of this paper is organized as follows. Section 2 briefly introduces the ESN 

structure and model. In Section 3, the quantum theory is applied to the ESN and the 

details of the proposed QESN are provided. Meanwhile, the PSO algorithm is used to 

optimize the model parameters. Section 4 provides the performance analysis and 

experimental results and Section 5 concludes the papers. 

2. Echo state network 

As a member of the neural network family, the ESN has greatly improved the non-

linear system identification capability, compared with the conventional neural networks 

[13]. The ESN contains a feedback connection with a delay factor that can reflect the 

dynamic system characteristics and evolutionary behaviors. As a special type of 

recurrent neural network, the ESN is different from the traditional recurrent neural 

network in both modelling and learning processes, which will be described briefly 

below. 

2.1 The topological structure of ESN 

As shown by Figure 1, the ESN uses a reservoir of large scale random connections 

to replace the middle layer in the traditional neural networks and simplify the training 

process.  
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Figure 1. The basic structure of ESN. Bi-directional black arrows indicate the connection of 

neurons in the reservoir, which are generated randomly in the initial stage and remain 

unchanged during training. The wide arrows indicate the driving process of data, where the 

dotted arrow indicates the feedback connection. 

In Figure 1, assuming that the network has 𝑀 input units, 𝑁 internal processing 

units (i.e. internal neurons), and 𝐿 output units. The ESN can be modelled by 

 

 𝑥(𝑛 + 1) = 𝑓(𝑊𝑥(𝑛) + 𝑊𝑖𝑛𝑢(𝑛) + 𝑊𝑏𝑎𝑐𝑘𝑦(𝑛)), (1) 
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𝑦(𝑛 + 1) = 𝑓𝑜𝑢𝑡(𝑊𝑜𝑢𝑡[𝑥(𝑛 + 1), 𝑢(𝑛 + 1), 𝑦(𝑛)] + 𝑊𝑏𝑖𝑎𝑠
𝑜𝑢𝑡 ), (2) 

 

where 𝑢(𝑛) = [𝑢1(𝑛), 𝑢2(𝑛), … , 𝑢𝑀(𝑛)]𝑇 , 𝑥(𝑛) = [𝑥1(𝑛), 𝑥2(𝑛), … , 𝑥𝑁(𝑛)]𝑇 , 

𝑦(𝑛) = [𝑦1(𝑛), 𝑦2(𝑛), … , 𝑦𝐿(𝑛)]𝑇 and they represent the activation of input, internal 

neurons and output at time step 𝑛, respectively. 𝑊𝑖𝑛 is the connection weight matrix 

between the input units and the reservoir, 𝑊 is the connection weight matrix of the 

neurons in the reservoir, 𝑊𝑜𝑢𝑡 is the connection weight matrix from the reservoir to 

the output units, 𝑊𝑏𝑎𝑐𝑘 is the connection weight matrix from the output units to the 

reservoir, and 𝑊𝑏𝑖𝑎𝑠
𝑜𝑢𝑡  is the bias term. It should be noted that the ESN without output 

feedback can only perform single-step prediction, and the ESN with output feedback 

can perform multi-step circular prediction. 𝑓 and 𝑓𝑜𝑢𝑡 are the activation functions of 

the reservoir and output units, respectively. The 𝑡𝑎𝑛ℎ () is a widely used activation 

function, and it is used in this work. The initial 𝑊, 𝑊𝑖𝑛 and 𝑊𝑏𝑎𝑐𝑘 are generated 

randomly and they remain unchanged after generation. The 𝑊𝑜𝑢𝑡 is the only weight 

matrix that needs to be trained, and it can be obtained by linear regression. 

2.2 Training process 

The ESN training process can be divided into two phases: the sampling phase and 

the weight calculation phase. Firstly, in the sampling phase, the initial state of the 

network is arbitrarily selected. Here we assume that the initial state of the network is 

zero, i.e., 𝑥(0) = 0 . The training sample 𝑢  is added to the reservoir via the input 

connection weight matrix 𝑊𝑖𝑛. According to (1) and (2), the calculation of the system 

state and output 𝑦 can be completed. In order to calculate the output connection weight 

matrix 𝑊𝑜𝑢𝑡, the internal state variables need to be collected from a certain moment 

𝑚 and stored in the matrix 𝑃. At the same time, the corresponding output 𝑦 is also 

collected and stored in the column vector 𝑇. Based on the state variable 𝑃 and the 

target matrix 𝑇  collected during the sampling phase, the output connection weight 

matrix 𝑊𝑜𝑢𝑡 is calculated, which is described by 

 

 𝑊𝑜𝑢𝑡 = 𝑃−1𝑇. (3) 

 

It can be seen that the training of ESN is simple and effective. Compared with the 

traditional recurrent neural network and feed forward neural network, the ESN is also 

more computationally powerful due to that it has a large reservoir and does not need to 

train the synaptic weights of hidden layer. The ESN is a complex non-linear dynamic 

filter, but in general, it has an “echo state” only when its spectral radius approaches 1 

but less than 1. 

3. PSO-QESN 

Quantum computing is essentially different from the traditional computing. 

Because of a various of properties in quantum field, some interesting effects appear 

when it combines with neural networks. Firstly, this section introduces the basic theory 
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of quantum and the qubit neuron. Then the QESN model is proposed with a detailed 

discussion. Finally, the PSO algorithm will be used to optimize the QESN model. 

3.1 Quantum 

In classical information processing, the basic unit of information is bit, however 

in quantum computing, the basic unit is qubit. The state of a qubit is a vector of two-

dimensional complex space, and its two polarization states (i.e. |0⟩  and |1⟩ ) 

correspond to binary state 0 and 1, respectively. In addition to the two polarization states, 

the qubit can take superposition state, i.e. |∅⟩ = 𝑐0|0⟩ + 𝑐1|1⟩ . The 𝑐0  and 𝑐1  are 

referred to the probability amplitude of the qubit, which means the |∅⟩ either collapses 

to |0⟩ with the probability of |𝑐0|2, or collapses to |1⟩ with the probability of |𝑐1|2. 

In addition, they satisfy the conditions of |𝑐0|2 + |𝑐1|2 = 1. 

Quantum logic gate is one of the most basic structural units in quantum computing. 

It consists of the single bit rotation gate in Figure 2(a) and the two-bit controlled NOT 

gate in Figure 2(b).  

ξ

a

b

a

a b

(a) The single bit rotation gate

(b) The two-bit controlled NOT gate

 

Figure 2. The universal quantum gates. 

These gates are the universal quantum gates, which can construct arbitrary 

quantum gates. The rotation gate can change the phase of the qubit, and the controlled 

NOT gate can do the XOR operation. In order to facilitate the calculation, the complex 

number is used to express the quantum state. The probability magnitude of |0⟩ is taken 

as the real part, and the probability magnitude of |1⟩ is taken as the imaginary part. 

The complex forms of quantum states with phase 𝜃 can be described by 

 

 𝑓(𝜃) = 𝑒𝑖𝜃 = 𝑐𝑜𝑠 𝜃 + 𝑖 · 𝑠𝑖𝑛 𝜃, (4) 

 

where 𝑖 is the imaginary unit √−1. Based on (4), the rotation gate and the controlled 

NOT gate can be better represented. For the rotation gate, it completes the operation of 

transforming the phase of the quantum state in the complex plane, and conforms to  

 

 𝑓(𝜃1 + 𝜃2) = 𝑓(𝜃1) · 𝑓(𝜃2) = 𝑒𝑖(𝜃1+𝜃2). (5) 

 

where 𝜃1 and 𝜃2 are different quantum state phases. For the controlled NOT gate, it 
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performs the phase reverse operation, and can be controlled by the parameter 𝛾, i.e. 

 

 𝑓 (
𝜋

2
· 𝛾 − 𝜃) = {

𝑠𝑖𝑛 𝜃 + 𝑖 · 𝑐𝑜𝑠 𝜃 , 𝛾 = 1
𝑐𝑜𝑠 𝜃 − 𝑖 · 𝑠𝑖𝑛 𝜃 , 𝛾 = 0

. (6) 

 

According to this operation, when 𝛾 = 1, the quantum state accomplishes reverse 

rotation, and 𝛾 = 0  corresponds to nonrotation. In the case of 𝛾 = 0 , although the 

phase of the probability amplitude of |1⟩ is reversed, the probability that it is observed 

remains the same, so this case is considered as not rotating [7]. 

 

3.2 Qubit neuron model 

Based on the quantum theory, the qubit neuron model [7] simulates the quantum 

rotation gate and the controlled NOT gate, and its structure is shown in Figure 3.  
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Figure 3. Qubit neuron model. 

Figure 3 shows that similar to the traditional artificial neuron model, the qubit 

neuron model also has a series of input signals, and each input is represented by 𝑥𝑖  (𝑖 =

1,2 … 𝐾). 𝑓(𝜃𝑖) is a complex number, where 𝜃𝑖 is the phase parameter in the form of 

weight connection, and 𝑂  is the output of the qubit neuron. The rotation gate and 

controlled NOT gate form a basic computational unit, which is used as the activation 

function of the qubit neuron. The internal state of the neuron changes when the 

superposition of stimulation from other K neurons is received, and its phase and 

argument are adjusted by the quantum logic gates. After the compound operation, the 

neuron output 𝑂 can be described by 

 

 𝑂 = 𝑓(𝑦), (7) 

and 

 𝑦 =
𝜋

2
· 𝑔(𝛿) − 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝐼𝑚(𝑢)

𝑅𝑒(𝑢)
), (8) 

 

where  𝛿 is inversion parameter. 𝑔(𝛿) =
1

1+ exp(−𝛿)
, which is in the range of [0, 1]. 

The 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐼𝑚(𝑢)

𝑅𝑒(𝑢)
)  is the argument of the complex number, where 𝐼𝑚(𝑢)  and 

𝑅𝑒(𝑢) represent the imaginary and the real parts of the complex number, respectively. 

The parameter 𝑢 is given by 
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 𝑢 = ∑ 𝑓(𝜃𝑖) · 𝑥𝑖

𝐾

𝑖=1

. (9) 

 

3.3 QESN model 

In the proposed quantum ESN (QESN) model, the neurons in the reservoir are 

based on the qubit neuron model. The QESN is shown in Figure 4. There are three 

layers of QESN, i.e. input layer, quantum reservoir and output layer. The sets of {𝑄𝑐} , 

{𝐻𝑚} , and {𝐿𝑛}  represent neurons in the input layer, quantum reservoir and output 

layer, respectively, where 𝑐 ∈ [1, 𝐶], 𝑚 ∈ [1, 𝑀], 𝑛 ∈ [1, 𝑁], and C, M and N are the 

number of neurons in the input, quantum reservoir and output layer. 
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Figure 4. The basic structure of QESN. Circle represents traditional neuron, and special circle 

with triangle inside represents qubit neuron. 

The input data of the QESN model is usually real number, which is scaled to the 

range of [0, 1]. When the input data goes through the input layer, it is converted from a 

real state to a quantum state. The output 𝑧𝑐 of the input layer can be described by 

 

 𝑧𝑐 = 𝑓(
𝜋

2
· 𝑥𝑐 + 𝜃𝑐), (10) 

 

where 𝑥𝑐 is the input variable from neuron, and 𝑓 denotes the function of (4) which 

can convert input signal to quantum state, 𝜃𝑐 is a phase parameter which is randomly 

initialized before training. 

After these conversions, the input data is changed to phase domain with range of 

[0, π / 2]. All the neurons in the reservoir are based on the qubit neurons, see (7)-(9). 

The reservoir of QESN also remains sparsely connected and maintains the rate of 

connectivity between 1% and 5%. Since the input of the reservoir is complex number, 

the internal state matrix collected is a complex matrix. It is hypothesized that the 

quantum state of activated neurons is |1⟩, and non-activated neurons is |0⟩. Therefore, 

the real output, 𝑃′ , corresponding to the collected internal state matrix 𝑃  is the 
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observed amplitude of |1⟩, which is represented by 

 

 𝑃′ = |𝐼𝑚(𝑃)|2. (11) 

 

Then the target matrix is collected, and the output weight 𝑊𝑜𝑢𝑡 can be obtained 

from (3). 

3.4 Using PSO to optimize the QESN 

The parameter 𝛿  in (8) is the key parameter in the QESN model. Before 

optimization, it is set manually when the model is initialized and it is not changed 

during the training. The performance of the model may be greatly degraded due to 

improper parameter setting. Hence in this paper, the PSO algorithm is used to optimize 

the QESN by finding the optimal value of 𝛿. 

The PSO is an effective intelligent algorithm, which is inspired from the study of 

bird feeding behaviour [29]. It can find the optimal solution through the collaboration 

and information sharing between individuals in a group. Each particle in the algorithm 

represents a potential solution to the problem. It corresponds to a fitness value 

determined by the fitness function. The particle velocity determines the direction and 

distance of particle movement. The velocity is dynamically adjusted according to the 

movement experience of itself and other particles, leading to the optimization process 

of individual. In detail, the PSO firstly initializes a group of particles in a solvable space. 

Each particle represents a potential optimal solution. The fitness value indicates the 

quality of the particles which is calculated from the fitness function. The particle moves 

in the solution space and updates the individual position by tracking the individual 

extremum (𝑃𝑏𝑒𝑠𝑡 ) and the population extremum (𝐺𝑏𝑒𝑠𝑡 ). The 𝑃𝑏𝑒𝑠𝑡  refers to the 

position of optimal fitness value, and is calculated in the position experienced by an 

individual. The 𝐺𝑏𝑒𝑠𝑡 refers to the position of optimal fitness value, and is searched by 

all the particles in the population. The fitness value is calculated once every time with 

the particle updating, and 𝑃𝑏𝑒𝑠𝑡 and 𝐺𝑏𝑒𝑠𝑡 are updated depends on the fitness values 

of new particles. 

Supposing that the population 𝑋 = (𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛)  consists of 𝑛  particles, 

where 𝑋𝑖  denotes the position of the 𝑖𝑡ℎ  particle in the search space, and it also 

indicates a potential solution to the target problem. According to the objective function, 

the fitness value corresponding to each particle position 𝑋𝑖  can be calculated. The 

speed of the 𝑖𝑡ℎ  particle is defined by 𝑉𝑖 , the individual extremum is 𝑃𝑖 , and the 

global extremum of the population is 𝑃𝑔. At each iteration, the velocity and position of 

the particle are updated based on the individual and the population extremums, which 

can be described by 

 

 𝑉𝑖
𝑘+1 = 𝜔𝑉𝑖

𝑘 + 𝑐1𝑟1(𝑃𝑖
𝑘 − 𝑋𝑖

𝑘) + 𝑐2𝑟2(𝑃𝑔
𝑘 − 𝑋𝑖

𝑘), (12) 

and 

 𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1, (13) 
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where 𝜔 is inertia weight, 𝑘 is the current number of iterations, 𝑉𝑖 is the velocity of 

the particle, 𝑐1 and 𝑐2 are acceleration factors which are non-negative constants, 𝑟1 

and 𝑟2 are the random numbers between 0 and 1. 

The advantage of PSO is that it is easy to implement and does not have many 

parameters to tune. Using PSO to optimize the parameter 𝛿 can improve the reliability 

and effectiveness of the QESN model. In this work, the parameter 𝛿 is considered as 

an individual, and the test error is considered as a fitness function. The fitness function 

is used to evaluate the particle’s fitness. The minimum error value is taken as the target. 

The pseudocode and optimization process of PSO-QESN are provided by 

Algorithm 1 and Figure 5, respectively. 

 

Algorithm 1. PSO-QESN algorithm. 

Input: training data (X,Y), reservoir size M, iterations 𝑁𝑖𝑡𝑒𝑟, population size S; 

Output: trained PSO-QESN. 

1.  Generate new training data X by Eq.(10); 

2.  Set 𝜹 to individual particle; 

3.  For j=1:S do 

4.     update the velocity and position of the particle by Eq.(12) and Eq.(13); 

5.     # ESN initialization 

6.     generate 𝑾𝒊𝒏, 𝑾 and 𝑾𝒃𝒂𝒄𝒌 randomly; 

7.     for i = 1:nDataPoints do 

8.        put (𝑿(𝑖), 𝒀(𝑖)) into reservoir layer; 

9.        compute 𝑂 by Eq.(7), Eq.(8) and Eq.(9); 

10.        upate 𝑷′ by Eq.(11); 

11.    endfor 

12.    compute 𝑾𝒐𝒖𝒕 by Eq.(3); 

13.    evaluate particle fitness values; 

14.    update individual and the population extremums; 

15.  EndFor 

13.  Obtain optimal 𝑾𝒐𝒖𝒕; 
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Figure 5. Using PSO to optimize the QESN model. 

Figure 5 shows that the initial particle position and velocity are set randomly. The 

individual and population extremums are determined according to the fitness value of 

initial particles, and the particle velocity and position are updated by (12) and (13). 

During the optimization process, the individual and population extremums are 

continually adjusted until the PSO obtains the optimal solution. Then the best particle 

(which represents the QESN parameter 𝛿) is used for the QESN. Compared with the 

ESN, although the structure of the QESN is same, it includes the quantum computing 

process. The input is converted into the quantum state and then goes into reservoir of 

QESN model. The sigmoidal transfer function of the reservoir is replaced by quantum 

logic gates (i.e. rotation and controlled NOT gates as shown in Figure 2). By adjusting 

the phase, argument of reservoir internal state of quantum logic gates, the state of QESN 

can be changed. 

4. Results 

In this section, the performance of the PSO-QESN model is evaluated by different 

experiments, which will demonstrate the performance improvement by using the 

quantum reservoir based on quantum logic gates. The experiments cover a wide 

spectrum of datasets including non-linear synthetic data, the daily Standard & Poor's 

500 index (covering more than 20 years), and the minute-sampling level of high 

frequency foreign exchange data. The original ESN, QESN are used as the benchmarks 

for the performance evaluations under these datasets. The experimental environment is 

the Matlab 2018a using a computer with an i3-6100 CPU @ 3.70GHz and 8.0GB RAM. 

4.1 Synthetic data 

The synthetic data is widely used for the performance evaluation [28]. Two 

experiments are carried out including the prediction of nonlinear autoregressive moving 

average (NARMA) and mackey–glass (MG) time series. 

1) NARMA prediction: NARMA is a widely used benchmark [30]. It is dynamic 

and has strong dependencies. As it is coupled with high degree of confusion, it is 

difficult for predication [31]. It can be described by 
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𝑗(𝑡 + 1) = 𝑐1𝑗(𝑡) + 𝑐2𝑗(𝑡) ∑ 𝑗(𝑡 − 𝑖)
𝑘−1

𝑖=0
+ 𝑐3𝑠(𝑡 − (𝑘 − 1))𝑠(𝑡) + 𝑐4, (14) 

 

where 𝑗(𝑡) and 𝑠(𝑡) are the output and input at time 𝑡, respectively. The parameters 

are set as 𝑐1 = 0.3 , 𝑐2 = 0.05 , 𝑐3 = 1.5 , 𝑐4 = 0.1 , 𝑘 = 10  according to the 

approaches of [17, 32]. The output is scaled to the range of [0, 1]. A total of 10,000 data 

are generated, where 7,000 of them are used for training, and the remaining 3,000 are 

used for testing. The sparseness of the quantum reservoir is set to 5% and the size is set 

to 1,000. In addition, the number of particles in the population is set to 30 and the 

maximum iterations of the PSO algorithm is 100. To ensure the performance of the ESN, 

the first 100 training or test data are used to warm-up the PSO-QESN and the remaining 

data is used to generate a reservoir state matrix. The normalized root mean squared 

error (NRMES) is used for performance evaluation, which is given by 

 

 𝑁𝑅𝑀𝑆𝐸 = √∑
(𝑜(𝑡) − �̂�(𝑡))2

𝑈 ⋅ 𝜎2

𝑈

𝑡=1

, (15) 

 

where 𝑈  is the total number of samples,  �̂�(𝑡)  and 𝑜(𝑡)  are the target and actual 

values, 𝜎2 is the variance of 𝑜(𝑡). 

Figure 6 shows the output results of the PSO-QESN model, which match the target 

values. Three methods of ESN, QESN and PSO-QESN are tested for ten times to 

evaluate the performances. Table I gives the comparison results. 

 

 

Figure 6. A part of the NARMA predication. The blue and brown represent the target and 

predicated values of the PSO-QESN. 

 

Based on the results from ten experiments, the average NRMSEs of the ESN, 
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QESN, and PSO-QESN are 4.97e-002, 4.74e-002, and 3.44e-002, respectively. The 

prediction accuracy of QESN and PSO-QESN is improved by 5% and 30% compared 

to the ESN, and the PSO-QESN has an improvement of 27% than the QESN. This is 

because that in the PSO-QESN model, the parameter 𝛿 is automatically set by the PSO, 

which can find the optimal value to achieve a better performance. In addition, the largest 

NRMSE of the PSO-QESN in ten experiments is 3.79e-002, which is still less than the 

lowest NRMSEs of ESN (4.39e-002) and QESN (3.99e-002). 

 

Table I. NRMSEs of ESN, QESN and PSO-QESN under the NARMA predication task. 

Experiment ESN QESN PSO-QESN 

# 1 4.80e-002 3.99e-002 3.43e-002 

# 2 5.14e-002 4.81e-002 3.27e-002 

# 3 4.96e-002 5.32e-002 3.70e-002 

# 4 4.39e-002 4.93e-002 3.33e-002 

# 5 5.36e-002 4.62e-002 3.10e-002 

# 6 5.10e-002 4.74e-002 3.79e-002 

# 7 5.21e-002 4.70e-002 3.21e-002 

# 8 4.86e-002 4.35e-002 3.56e-002 

# 9 5.15e-002 4.95e-002 3.40e-002 

# 10 4.75e-002 5.01e-002 3.65e-002 

Average 4.97e-002 4.74e-002 3.44e-002 

 

2) MG time series prediction: The MG time series is a model known for its chaotic 

nonlinear behaviour [17]. It is one of the common benchmarks for time series 

forecasting and is very representative. It has been used to test the ESN performances 

[17, 32]. Its dynamic system is described by 

 

 
𝑑𝑥(𝑡)

𝑑𝑡
=

𝛼 · 𝑥(𝑡 − 𝜏)

1 + 𝑥𝛾(𝑡 − 𝜏)
− 𝛽 · 𝑥(𝑡), (16) 

 

where 𝛼 = 0.2, 𝛽 = 0.1 and 𝛾 = 10. 𝜏 is a delay where the most used values are 

𝜏 = 17 and 𝜏 = 30. The MG has some periodicity and chaotic properties. When 𝜏 <

16.8, the system has periodicity. When 𝜏 > 16.8, it has chaotic characteristics. Here, 

we set 𝜏 = 17 (this value is widely used in most literatures on the MG time-series [17, 

32]). The number of internal state units is set to 200, and the sparseness of the reservoir 

is set to 5%. In addition, the number of particles in the population is set to 20 and the 

maximum iterations of the PSO algorithm is 100. Based on the MG system, 3,000 

input/output data are randomly obtained, where 1,500 of them are used as the training 

data, and the remaining 1,500 are used to test the fitting performance of the PSO-QESN 

model. Figure 7 shows the results of the PSO-QESN model outputs and the 

corresponding targets. The outputs of proposed method match the targets.  
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Figure 7. A part of the MG time series predication. The blue and brown represent the target 

and predicted values of the PSO-QESN, respectively. 

 

In addition, three models of ESN, QESN, PSO-QESN are tested for the MG time 

series prediction. The comparison results of the NRMSEs are shown in Table II. It can 

be seen that the PSO-QESN gets the best performance with average NRMSE of 4.71e-

002. In addition, the prediction accuracy of QESN and PSO-QESN is improved by 13% 

and 16% compared to the original ESN, where the PSO-QESN has an improvement of 

3% than the QESN. Thus Figure 7 and Table II show that the proposed PSO-QESN 

model can achieve a good performance for the MG time series prediction. 

 

Table II. NRMSEs of ESN, QESN and PSO-QESN under the MG time series predication 

task. 

Experiment ESN QESN PSO-QESN 

# 1 5.63e-002 4.92e-002 4.64e-002 

# 2 5.20e-002 4.81e-002 4.65e-002 

# 3 5.89e-002 4.89e-002 4.65e-002 

# 4 5.51e-002 4.97e-002 4.80e-002 

# 5 5.36e-002 4.77e-002 4.76e-002 

# 6 5.41e-002 4.85e-002 4.79e-002 

# 7 5.45e-002 4.84e-002 4.68e-002 

# 8 6.15e-002 4.98e-002 4.64e-002 

# 9 5.91e-002 4.84e-002 4.88e-002 

# 10 5.79e-002 4.76e-002 4.65e-002 

Average 5.63e-002 4.86e-002 4.71e-002 

 

Experimental results in this subsection show that the proposed PSO-QESN has 

good nonlinear approximation ability. At the same time, it also performs well under the 

NARMA and MG time series predication tasks and has a good dynamic memory ability, 
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i.e. a better performance is achieved than the ESN and QESN. In next subsection, the 

real financial datasets will be used for the performance evaluations. 

4.2 Real financial datasets 

To further test the proposed method, financial datasets are used in this experiment. 

Compared to synthetic datasets, financial datasets have a stronger nonlinear 

relationship, and are more difficult to be accurately predicted. The Standard & Poor’s 

(S&P) 500 index dataset and a high-frequency foreign exchange dataset are used for 

the performance evaluations. The root mean squared error (RMSE) is used as the 

evaluation metric, which is widely used in the financial data analysis [33]. It is given 

by 

 𝑅𝑀𝑆𝐸 = √∑
(𝑃𝑖 − 𝑇𝑖)2

𝐸

𝐸

𝑖=1

, (17) 

 

where 𝑃𝑖 is the predicted value, 𝑇𝑖 is the target value, and 𝐸 is the total number of 

data samples. The RMSE reflects the deviation of the predicted values from the targets. 

The smaller the RMSE, the better the prediction is. 

1) S&P 500 index dataset: The S&P 500 is a stock index that records the 500 U.S. 

companies. The 17,150 data samples are used in this experiment, where the first 16,000 

are used for training and the remaining are used for testing. This experiment is a one-

step prediction: the four financial variables of open, high, low, and close prices are used 

as inputs, and the opening price of the next day is the output. Hence the input layer of 

the network has four nodes and the output layer has one node. The ESN, QESN and 

PSO-QESN models are used to predict the next day’s opening price of the S&P 500 

index. The input data is normalized to [0, 1]. The size of the quantum reservoir is set to 

200. The sparse degree is set to 5%. The control parameter 𝛿 of the quantum logic gate 

is optimized by PSO. In the PSO algorithm, the size of particle swarm is 20, and the 

maximum number of iterations is 100.  

Figure 8 shows the actual opening price, and the outputs of the ESN, QESN and 

PSO-QESN. All of three methods have the similar changing trends as the actual S&P 

500 index. To further evaluate the performances of different methods, the 

autoregressive integrated moving average (ARIMAX) model [34] is also used for the 

predication task. The ARIMAX is a widely used method for multivariate time series 

prediction in the financial applications. It can learn a pattern of change over time from 

historical data, and then use this pattern for prediction [34]. The experimental results 

are shown in Table III. 
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Figure 8. Results of opening prices, S&P 500 index using ESN, QESN and PSO-QESN 

methods. 

 

Table III shows that the ESN has the highest RMSE of 71.9147, whereas the 

proposed PSO-QESN achieves the best performance with RMSE of 4.3858. Meanwhile, 

the QESN has 60% and 88% increases in accuracy over the ARIMAX and ESN models, 

respectively. Compared to QESN, the PSO-QESN achieves a better prediction accuracy, 

which is improved by 47%. Obviously, the PSO-QESN substantially improves the 

performance and this is due to the optimized parameter settings by the PSO algorithm. 

 

Table III. RMSEs of different methods for S&P 500 index predication. 

Method RMSE 

ARIMAX [34] 20.7129 

ESN 71.9146 

QESN 8.2267 

PSO-QESN 4.3858 

 

2) Forex dataset: The foreign exchange market is characterized by its complexity, 

dynamics, and variability. It is a typical nonlinear system. In this experiment, 

EURO/USD exchange dataset is used where the data is sampled every one minute. The 

ESN, QESN and PSO-QESN models are used for one-step prediction. A total of 20,000 

data samples are used in this experiment, where the first 15,000 are used for training, 

and the remaining are used for testing. The four financial variables of open, high, low, 

and close prices are used as model inputs, and the opening price of the next minute is 

the output. The internal neurons of ESN, QESN and PSO-QESN are set to 200, the 

sparseness of the quantum reservoir is set to 2%, and the input data is scaled to [0, 1]. 

Figure  shows the target opening price and the prediction values of ESN, QESN and 

PSO-QESN models. The ARIMAX and original ESN are also evaluated under this 

dataset and the experimental results are shown in Table IV. 
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Figure 9. Opening prices of EURO/USD forex using ESN, QESN and PSO-QESN methods. 

 

Table IV. RMSEs of ARIMAX, ESN, QESN and PSO-QESN methods for EURO/USD forex 

predication. 

Method RMSE 

ARIMAX [34] 6.02e-04 

ESN 2.2e-04 

QESN 1.66e-03 

PSO-QESN 1.59e-04 

 

Figure 9 and Table IV show that the proposed PSO-QESN achieves the best 

performance with RMSE of 1.59e-04 which has an improvement of 74%, 28% and 90% 

compared to the ARIMAX, ESN and QESN, respectively. The prediction accuracies of 

ARIMAX and ESN are better than the QESN in this experiment. This is mainly because 

the key parameter 𝛿 in QESN is not set properly and the randomization of the reservoir. 

This is the first time that the ESN can be extended and optimised from a perspective of 

quantum. The research of the PSO-QESN can potentially become a novel computing 

system and model for further explorations, and combining artificial neural networks 

with quantum theory such as linear superposition, probability interpretation, etc., have 

potential significant contributions to improve the model performance. 

5. Conclusion 

In this paper, a hybrid model that combines the ESN, qubit neurons and PSO 

algorithm is proposed. Firstly, the QESN is proposed, which uses the quantum logic 

gates to replace the sigmoidal activation function in the original ESN to improve the 

performance of the model. Then the PSO is employed for parameter optimizations. The 

hybrid model, namely PSO-QESN, is evaluated by predicting time series. Experimental 

results show that the proposed PSO-QESN model has strong capability of nonlinear 
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approximation, dynamic memory and prediction performance. In particular, results 

demonstrate a significant increase in the forecasting of the S&P 500 index and forex 

datasets. In the future, we will further explore how to properly combine quantum theory 

with reservoir computing to create a novel computing system and model.  
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