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A generic envelope equation is proposed for describing the evolution of scalar pulses in systems
with spatiotemporal dispersion and cubic-quintic nonlinearity. Our analysis has application, for

instance, in waveguide optics where the physical origin of the dielectric response lies in the X(

3)

and x® susceptibilities. Exact analytical bright and gray solitons are derived by coordinate trans-
formations and methods of direct integration. Known solitons of conventional pulse theory (based
on nonlinear-Schrédinger prescriptions) are shown to emerge asymptotically as subsets of the more
general spatiotemporal solutions, and simulations test the stability of the latter through a class of

perturbed initial-value problem.
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I. INTRODUCTION

Understanding the formation, propagation, and inter-
actions between solitons is a fundamental objective in
many branches of nonlinear science [1, 2]. These self-
localizing and self-stabilizing wavepackets are elementary
excitations that may emerge in essentially any system
possessing both linear and nonlinear dispersive elements
[3]. Since solitons and solitary-wave phenomena are fre-
quently described by amplitude equations that anticipate
slowly-varying wave envelopes, a key question to address
is their properties beyond this prevailing (if often justifi-
able) level of approximation.

In a set of earlier papers, we proposed [4] and ana-
lyzed [5, 6] a model for describing the longitudinal evolu-
tion of scalar wavepackets in systems with linear disper-
sion [both temporal (group-velocity) and spatial forms]
and cubic nonlinearity. The governing equation was not
bound by the ubiquitous slowly-varying envelope approx-
imation (SVEA), and its structure was thus rendered
fully-second-order in laboratory time ¢ (the coordinate
in which pulses are typically localized) and space z (the
evolution coordinate). A consequence of deploying such a
symmetrized model is that a Galilean boost to local-time
coordinates zioc = 2z and tioc = ¢t — z/v, (which define
a reference frame moving relative to the laboratory at
group velocity vy in the +z direction) obscures the equal
status of space and time: when expressed in terms of
derivatives with respect to zjo. and t).¢, the transformed
wave equation is not interpreted quite so intuitively due
to the appearance of a mixed partial differential operator
82/8Z10C8tloc [7]

The Galilean-boost procedure may be safely discarded
because its introduction is, in any case, arbitrary and
usually made for convenience [4]. Without it, and in
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the absence of the SVEA, a compact framework emerges
for modelling pulse phenomena in wave-based systems
with spatial and temporal dispersion. The spirit of our
more geometric formalism (viz., frame-of-reference con-
siderations, transformations in the space-time plane, co-
variance of the wave equation, invariant quantities, and
Lorentz-like combination rules for velocities) has strong
connections to Einstein’s special theory of relativity [8].
Moreover, all the results of conventional pulse theory are
recoverable asymptotically (when simultaneous multi-
parameter expansions are applied to the spatiotemporal
solutions) in much the same way as Newtonian dynamics
appears in the low speed limit of relativistic mechanics.

The spatiotemporal description of wave propagation
is rather general. Previously, we have applied it in the
arena of waveguide optics when the nonlinear polariza-
tion of the host medium is dominated by the x®) suscep-
tibility [9]. Such a simple configuration has been studied
extensively for over four decades [10] through the prism of
slowly-varying envelopes and Galilean boosts, with many
classic analyses based on nonlinear Schrédinger (NLS)
equations [11-13]. With space-time symmetry firmly in
mind, it may be seen that the seminal work of Bian-
calana and Creatore [14] can play an important role in
certain physical regimes. They identified that in some
semiconductors (e.g., ZnCdSe/ZnSe superlattices), spa-
tial material dispersion (an effect connected to photon-
exciton coupling [15]) may be described by a contribution
to the envelope equation that is proportional to the sec-
ond longitudinal derivative, %/922. Related phenomena
cannot be adequately described within the SVEA, and
0%/02? considerations hence underpin modern contexts
for research into new classes of generic relativistic- and
pseudorelativistic-type propagation problems [4].

Here, we generalize our earlier analyses from cubic [4—
6] to cubic-quintic systems. In wave optics, the quin-
tic term might arise from excitation of the higher-order
x®) susceptibility. The combined x®) — x(®) response,
proposed by Pushkarov et al. [16], has come to play an



important role in photonics and is crucial for modelling
a wide range of materials: liquid carbon disulfide [17],
ultraviolet-grade fused silica [18], AlGaAs semiconduc-
tors operating just below the half bandgap [19], some
semiconductor-doped glasses [20, 21], the polydiacetey-
lene para-toluene sulfonate m-conjugated polymer [22],
chalcogenide glasses [23], and some transparent organic
materials [24].

Decades after its proposal, the cubic-quintic nonlin-
earity continues to pique the interest of researchers. For
instance, Stegeman et al. [25] have provided an in-depth
analysis of the tensor character of y(® in order to ac-
curately quantify constitutive relations in optical mate-
rials beyond the well-understood Kerr regime. More re-
cently, Besse et al. [26] generalized the standard Lorentz
model (routinely used for introducing phenomenological
descriptions of nonlinear dynamical effects [9]) to account
for a sextic term in the potential energy well of a one-
dimensional oscillator.

The conventional cubic-quintic envelope equation [in
its equivalent spatial (beam) and temporal (pulse) guises]
has well-known exact analytical solutions, principally the
bright soliton of Gatz and Herrmann [27] and its dark
counterpart derived by Herrmann [28] (both of which
are exponentially-localized states). Gagnon [29] and oth-
ers [30] have considered a broader spectrum of solutions
(including antidark solitons, partially-delocalized ampli-
tude kinks, and cnoidal waves) that may exist depend-
ing upon the interplay between group-velocity dispersion
(GVD) and nonlinearity. The stability of, and inter-
actions between, these excitations have been addressed
through detailed simulations [31]. Cubic-quintic models
also admit the possibility of algebraic solitons (weakly-
localized states with slower power-law asymptotics that
correspond to a boundary separating localized hyperbolic
excitations and periodic wavetrains) [32].

The layout of this paper is as follows. In Sec. II, the di-
mensionless cubic-quintic spatiotemporal model is intro-
duced and a generic separation-of-variables technique is
deployed to derive a pair of coupled equations describing
the intensity and phase quadratures of an arbitrary solu-
tion. The properties of key operator combinations used
throughout the analysis are also discussed. In Secs. ITI
and IV, we derive exact bright and dark (gray) solitons
by direct integration of the quadrature equations subject
to appropriate boundary conditions (families of algebraic
and amplitude-kink waves are presented in appendices
A and B, respectively). More general solutions accom-
modating a finite frequency shift are detailed in Sec. V,
which are arrived at on the basis of coordinate transfor-
mations. Asymptotic analysis in Sec. VI demonstrates
the recovery of known solitons in the limit of slowly-
varying envelopes (a feature that is required both phys-
ically and mathematically), and numerical simulations
test the robustness of spatiotemporal solitons via a class
of perturbed initial-value problem in Sec. VII. We con-
clude, in Sec. VIII, with comments about the potential
applications of our work.

II. SPATIOTEMPORAL MODEL
A. Envelope equation

As an example, we consider a cw electric field defined
by E(t,z) = A(t, z) exp [i(koz — wot)] + c.c., where “c.c.”
denotes complex conjugation of the preceding quantity,
wo and kg = nowp/c are the angular frequency and prop-
agation constant, respectively, for a wave travelling in
a host medium with linear refractive index ng = no(wp),
and c is the vacuum speed of light. By adopting the stan-
dard Fourier decomposition to accommodate leading-
order temporal dispersion [9, 33], the complex amplitude
A(t,z) can be shown to satisfy the following envelope
equation that is symmetric in space and time:
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Here, k1 = (0k/0w)., = 1/vg is the inverse of the group
velocity v, and ko = (8%k/0w?),, the GVD coefficient,
where k is related to the mode eigenvalue (obtained by
solving Maxwell’s equations for the transverse distribu-
tion of the guided field [33]). Coefficients ny and ny are
directly related to the third- and fifth-order susceptibili-
ties [17, 25, 26]. The self-induced refractive-index change
nxw(]A]?), well-described by nny, = ng|A|? + ny|A|* in
scalar cubic-quintic regimes, is then assumed to be a
small perturbation compared to the dominant linear part
no (and, typically, n4|A|* is much weaker than ng|A|? in
these contexts) [16].

With reference to a conventional Gaussian pulse of full-
width 2t, and dispersion length L = #2/|ky| [9, 33], one
can introduce dimensionless coordinates ( = z/L and 7 =
t/t,. By substituting A(r,{) = Aou(r, () into Eq. (1), a
governing equation for the dimensionless envelope u may
be obtained:

%u . (Ou ou s 0%u 9 4 0
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(2)
where o = kqt,/|k2| is a ratio of group speeds and s =
—sgn(ke) = £1 flags the sign of the GVD coefficient (+1
for anomalous, —1 for normal). When the electric field
is measured in units of Ay = (ng/|n2|koL)'/?, it follows
that vo = sgn(ny) while v4 = nyA3/|ns| parametrizes the
strength of quintic to cubic nonlinear phase shifts. Note
that by setting @ = 0 and interpreting 7 as a (normalized)
transverse spatial coordinate, Eq. (2) is formally identical
to the scalar Helmholtz equation describing bright [34]
and dark [35] cw beams in two-dimensional cubic-quintic
systems. The propagation contribution to spatial disper-
sion, arising from the confined electromagnetic mode, is
parametrized by k£ = 1/2koL = c|ka|/2nowot; < O(1)
[4]; the material contribution [14] can be included within
the definition of k to give a lumped parameter which we
take to be positive here without loss of generality.
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Since k0%u/0¢? is potentially small, it is tempting to
either neglect it completely (the essence of the SVEA) or,
slightly more satisfactorily, consider it as an O(k) per-
turbation using a generalization of the methods applied
to cw beams in cubically-nonlinear systems [36]. Such
an approach is unnecessary and actually increases model
complexity. As we will show, Eq. (2) can be treated ex-
actly (i.e., without further approximation).

B. General quadrature equations

We begin by seeking solutions to Eq. (2) that can be
represented by the Madelung-type ansatz

u(r,¢) = p*?(r, ¢) explit(r, C)], (3a)

where p(7,() and ¥(7,() are the intensity and (total)
phase quadratures, respectively (and, hence, are taken
to be real functions). By substituting the decomposition
for uw into Eq. (2) and collecting the real and imaginary
parts, one obtains
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respectively. These equations are somewhat symmetrical
in p and v derivatives, being a direct spatiotemporal gen-
eralization of those typically considered in conventional
pulse theory. They can be expressed in a more conve-
nient form by eliminating the longitudinal rapid-phase
contribution associated with the background carrier wave
according to ¢¥(7,¢) = V(7,({) — (/2k. It follows that p
and W are then coupled through
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To find particular (i.e., soliton) solutions, Eqgs. (4a) and
(4b) must be supplemented by appropriate boundary
conditions on p and V.

C. Space-time coordinate transformation

Analysis is most easily facilitated by introducing a
lumped space-time coordinate £ = £(7, (), defined as

T*V()C

V14 2skVZ

One might interpret £ as a time coordinate in the rest
frame of the pulse under consideration (that is, in the
frame where the pulse is stationary) [4]. Although the
status of Vj corresponds to a velocity-like parameter in
the theory of beams [34, 35], in the context of pulses it is,
strictly, related to the inverse velocity in unscaled units.

The advantage of introducing ¢ is that it allows one to
simplify combinations of partial derivatives. On the one
hand, operators 9/91 and 9/9¢ may be recast as

§(r,¢) = (5a)
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On the other hand, combinations of operators appearing
in Egs. (4a) and (4b) transform according to
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oror Sacac T dEde (5)
and
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where ¢ - 7 symbolizes a place reserver. With careful

deployment of transformation (5a)—(5d), the quadrature
equations in both spatiotemporal and conventional [27,
28] formalisms can be shown to map onto each other in an
essential way. For example, the functional form of pulse
shapes is determined by the interplay between dispersion
and nonlinearity, and should not be dependent upon the
choice of reference frame.

IIT. BRIGHT SOLITON PULSES

We begin our analysis of solitary states by considering
bright solitons (bell-shaped profiles that exist on top of a
modulationally-stable zero-amplitude background wave).
These solutions may be expected to possess an intrinsic
velocity proportional to « since they are moving with
respect to the (stationary) waveguide. Throughout the
rest of the paper, we denote the intensity distribution by
pb(7,¢). The phase has a more subtle decomposition.



A. Symmetry reduction

In the anomalous dispersion regime (where s = +1),
Egs. (4a) and (4b) can be integrated exactly. By setting
U(r,¢) = Uy(r, () + Kp(¢, where K}, is the soliton propa-
gation constant and Wy, = 0 (so there is no phase change
across the temporal extent of the wavepacket), one can
show that py, must satisfy the pair of simultaneous equa-

tions:
2 (9%py >y 1| (9p)\° >
il 2 R — 2 —_—
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1
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According to the transformation detailed in Sec. I, where
s = +1 and the velocity parameter is labelled as Vi,
Egs. (6a) and (6b) simplify to

d dpn\”
T

dpr,

(a — QHKb%b) df =

0. (7b)
Equation (7a) is parametrized by B, = xK{ — 1/4k,
which is quadratic in K}, and thus yields two branches:
Ky, = +(1+4kpy)"/? 2k, where the 4 (—) sign describes
wavepackets travelling in the forward (backward) longi-
tudinal sense.

B. Intensity quadrature

Direct integration of Eq. (7a) with respect to py, yields

dpy \ 2
(dp;) =—4 (’72 + 374Pb> P?ﬁ + Sﬁbpg + canpp, (8a)

where c¢op, is a constant to be determined from the so-
lution boundary conditions. As £ — +o00o, one has that
pr — 0 and (dpy,/d€)? — 0. Applying these conditions
to Eq. (8a) shows that cg, = 0. Similarly, when & — 0,
one has that p, — po and (dpy,/d€)? — 0, giving rise to

2 Po

B = (72 + 57400 | = (8b)
3 2

The physical interpretation of 8, will become apparent

later on. To facilitate a second integration, it is conve-

nient to factorize the right-hand side of Eq. (8a) so that

2
<ciip;> = 4/’12) (po — pv) (916Pb + gob) (8c)
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where g11, = (2/3)74 and gob = Y2 + (2/3)v4p0. Separa-
tion of Eq. (8¢) and deployment of a standard integral
results in the intensity quadrature

_ 45y
B cosh (2v/2Bp€) + 72

where B = [y3 + (16/3)745p])"/2. The solution is self-
consistent since p(0) = 48,/(B + v2) = po also gives
rise to the result for By, in Eq. (8b). We also note that
B can be expressed as a function of pg, such that B =
~v2 + (4/3)yapo. The existence of a localized bell-shaped
solution requires both 8, > 0 and B > 0.

We note that the spatiotemporal intensity profile in
its rest frame [see Eq. (9)] maps directly onto the solu-
tion derived by Gatz and Herrmann [27] in the local-time
frame, as it must. Such a result is not altogether sur-
prising mathematically since we have deliberately con-
structed a coordinate transformation [c.f. Eq. (5a)] to
draw out such a symmetry. In terms of a fundamental
physical principle, the form of the pulse shape must be
insensitive to the coordinate system one chooses (since,
as mentioned previously, any such choice is arbitrary).
Linear boosts to take observers between different frames
of reference result in a contraction or dilation of the pro-
jected pulse width but these geometrical operations can-
not change its structure [4-6].

(9)
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C. Intrinsic velocity

In order for Eq. (7b) to hold for arbitrary gradients
dpy,/d€, it must be that a—2k K}, Vo, = 0 or, equivalently,
Vob = «/2kKy,. Substituting for K}, then gives rise to

e}
\/1 + 4I€:ﬂb.

Later it will be convenient to release the + sign (which
is determined by the longitudinal propagation sense) di-
rectly into the argument of the cosh function [5, 6].

Equation (10) reveals that pulse-type solutions to
Eq. (2) are associated with an intrinsic velocity param-
eter that has a weak dependence on the peak inten-
sity. Since ), increases with pg, one may conclude that
pulse speeds in the laboratory frame (which are propor-
tional to 1/Vpp) increase with pp. In contrast, solitons
(and, more generally, arbitrarily-shaped pulses) of con-
ventional NLS-type theory [i.e., Eq. (2) in the absence
of the first term] do not tend to exhibit such a nonlinear
phenomenon although amplitude-dependent speeds are
common in other universal wave equations (such as that
of Korteweg and de Vries [1]).

Finally, we address existence criteria. For purely-
positive nonlinearity coefficients, the solution continuum
has B, > 0 for all pg > 0 while no bell-shaped solu-
tion exists in the purely-negative case. For the com-
peting nonlinearity 72 > 0 and v4 < 0, it follows from
B > 0 (the dominant inequality) that 0 < 8y, < Sbmax;

Vob = £ (10)



where SBpmax = (3/16)73/v4. Hence, from Eq. (8b),
there exists a maximum peak intensity pomax such that
0 < po < pomax = (3/4)y2/|v4]. In the complementary
regime v < 0 and 4 > 0, solutions with 3, > 0 possess a
minimum intensity pomin determined from the inequality

Po > pomin = (3/2)|72|/74-

IV. DARK SOLITON PULSES

We now turn our attention to dark solitons (whose in-
tensity and phase quadratures are denoted by pq and ¥4,
respectively) which comprise a phase-topological gray
‘dip’ travelling across a cw background whose stability
against any such disturbance is crucial for ensuring the
existence of the localized state. Attention is thus first
paid to cw modulational instability (MI).

A. Continuous-wave solutions

The cw solutions of Eq. (2) are those states uey that
are uniform in space and time:

tew (7€) = pg* exp [i(—07 + Kew()] exp (i) ,

(11a)
where |ucy|? = po is the wave intensity, (2 represents a
frequency shift (treated here as a free parameter), K.y, =
+[1 + 4k Bew + 46Q(a — 5Q/2)]1/2 /25 is the propagation
constant, and Bew = (72 + 7400)po-

Applying a generalization of the perturbative method
developed in Ref. [6] to Eq. (2), we disturb u by a small
amount and derive a linearized equation describing the
short-term evolution of the perturbation field. One then
seeks Fourier mode solutions of that linear problem at
frequency €),, whereupon it can be shown that cw so-
lution (11a) becomes unstable against long-wavelength
modulations whenever

2
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2

=25 (72 + 271p0) po < 0. (11b)

Here, we are predominantly interested in the normal-
GVD regime (where s = —1).

When both the cubic and quintic nonlinearity coeffi-
cients are positive (72 > 0 and 4 > 0), the cw solution
is absolutely stable since condition (11b) can never be
satisfied. For 752 > 0 and 4 < 0, MI appears when
po > v2/2|v4|- Analysis of the long-wavelength insta-
bility spectrum (the familiar bow-tie structure that is
symmetric in €2,) shows that the most-unstable frequen-
cies Qo are obtained from Q2, = 2(2]v4|po — 72) po-
For the opposite choice of signs (y2 < 0 and 4 > 0),
MI occurs for pg < |72|/274 and we have that Q2 =

2 (|2 = 2v4p0) po-

B. Symmetry reduction

To facilitate the integration of the quadrature equa-
tions, one expresses the desired solution phase as
U(1,¢) = Uq4(r,¢) + Kew(, where ¥q4(7, () describes the
phase distribution across the soliton component while the
cw phase (with © = 0) has been included explicitly at the
outset. Substitution of the decomposition for ¥4 into
Egs. (4a) and (4b) then yields
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One now introduces the lumped space-time variable &
from Eq. (5a), where the intrinsic velocity parameter is
labelled as Vg (the ‘d” subscript refers to dark solitons).
Equations (12a) and (12b) then reduce to
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where the cw dispersion relation for solutions with 2 = 0,
namely kK2, — 1/4k = By, has been introduced into
Eq. (13a).

Direct integration of Eq. (13b) yields an ordinary dif-
ferential equation for the soliton phase,

A _ (a%KCWVOd) on

+ —, 14a
dg V12V (142)

Pd
where c¢14 is a constant of integration to be determined
later (through an application of the solution boundary



conditions). Substitution of Eq. (14a) into Eq. (13a)
eliminates the phase gradient d¥/d¢ yielding an ordinary
differential equation for pq:

2
da |1 <dpd>2 - 4Cid 4 &= 26K ewVoa
dpa | pa \ d§ I V1 =26V,
-8 {ﬂcw — (2 + 74Pd)ﬂd]- (14b)

System (13), comprising two coupled partial differential
equations (in both space and time) has thus been reduced
to system (14).

C. Intensity quadrature

The boundary conditions on the intensity quadrature
are that pq — po and (dpq/d€)? — 0 as & — +oo, while
pa — p1 and (dpq/d€)? — 0 as & — 0 with 0 < p; < po
for an intensity ‘dip’. Direct integration of Eq. (14b) with
respect to pq leads to

dpa\® _8 3
_re — 4
<d§> 374pd+ Y204

2
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+ Coqpa — 4c34, (15a)
where coq is a second constant to be determined. The
derivation can be further facilitated by introducing a fac-
torization to simplify the right-hand side of Eq. (15a).
By respecting the solution asymptotics and recalling that
(dpq/d€)? cannot be negative, we write

(dd/?> =4(po — Pd)2 (pa — p1) (g1apa + goa), (15b)

where pg is a double root, p; is a single root, and g14
and goq are constants. Comparing Eqgs. (15a) and (15b)
leads to a system of five algebraic equations obtained by
equating the powers of pq:

2
1a = 57 (15¢)
god — P191d — 2g1aP0 = V2, (15d)
Pag1d — Prgod — 2p0(god — P191d) = Cad, (15e)
4[2pop1goa + (goa — p191a)P5] = 24, (15f)
Popigoa = cias  (15g)

where we have introduced the lumped parameter

2
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for compactness. Solving Egs. (15d)—(15f) leads to

A2
god = V2 + 274p0 (1 - 3> ; (16a)
2 3 2 A?
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4
c2a = 4pj {Wz (3 -24%) + 2yapo (2 - Az)g} , (160

where we have introduced the notation A2 4+ F? =1 and
with F'2 = p;/pg being the contrast parameter. Separat-
ing and integrating Eq. (15b), with dpq/d¢ > 0 in the
domain ¢ > 0, it can be shown that

484
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pal&) = po D cosh (2v/2B4€) + (72 + 3700) (172)
where
A2 2
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and
4 2
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Note that the shape of the dark soliton pulse in
Egs. (17a)—(17c) is identical to that of its conventional
counterpart [28], as must be the case (see Sec. IIIB).

D. Intrinsic velocity

To obtain an algebraic expression for the dark soli-
ton intrinsic velocity Vjq, we consider the asymptotic
behaviour of the phase distribution in Eq. (14a). As
¢ — +oo, one has that pg — po (the intensity of
the solution approaches the cw background limit) and
d¥4/d¢ — 0. Hence, it follows that

o — 26K Voa __Cud (18a)

V1-2kVE po’

where c%d is related to solution parameters through
Eq. (16b). One can then show that Vpq must satisfy the
following general quadratic equation:

2
[(%KCW)? + 2 (Cld> VZ — 20(26 K ew) Vod

Po

(18b)

An identical equation for determining Vpgq can be ob-
tained from Eq. (15e). One must, of course, choose the
root for Vpq that respects the signs in Eq. (18a). Combin-
ing with forward- and backward-propagating solutions,
after some algebra it can be shown that



Voa =%
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(as with the bright solution, it will later prove convenient
to release the =+ sign into the definition of £ to provide a
more compact representation). Equation (19) combines
into a single geometrical parameter the contribution from
two distinct sources of motion: (i) the velocity relative
to the laboratory frame due to the group speed (terms
in «), and (ii) the additional velocity change (relative to
the black solution) due to finite grayness (terms in F).

Inspection of Egs. (17a)—(17¢) and (19) shows that a
localized solution always exists for the purely-focusing
nonlinearity with py > 0 across the entire contrast range
0 < F? < 1. For the competing nonlinearity v, > 0
and 4 < 0, the solution requires 0 < pg < pPomax(F?) =
3potn/ (3 + F?) (where poin = Y2/2|74| is the cut-off in-
tensity above which the cw background becomes modu-
lationally unstable—see Sec. IV A). Similarly, the regime
with 2 < 0 and 4 > 0 has pg > pomin(F?) = 3poen/(2 +
F?) (where potn = |72|/274 is the cut-off below which the
cw background is unstable).

E. Phase quadrature

It now only remains to find an expression for the phase
distribution. Combining Eqgs. (14a) and (18a) leads to
the quite general result

dWa _ (Cld> (Po - Pd>

d¢ Po pd 7
which, after substituting for pq(€) can be integrated ex-
actly in closed form to yield

_ A Yo + 2y4p0 (2 + F2
Wa(€) = tan”! (F) R
Y2 + 372p0 (3 + F2)

x tanh (\/ﬁg) }

(20a)

(20b)

As with the intensity quadrature, the phase distribution
also possesses the same functional form as Herrmann’s
conventional dark soliton [28]. Tt is straightforward to
show that the phase change across the pulse, defined as
ATq = P4(+00) — Ug(—00), is

F 2 34 F?
AUy =71 — 2tan"* <) Y2 + 37400( + 2) )
A) N v2+ 57ap0 (24 F2)
(21)
so that for F' = 0 (black solutions) we recover AUy = 7.

1+ 26p0 [(2+ F2) 2 + 57ap0 (F* + 2F + 3)]

(19)

V. MORE GENERAL SOLUTIONS
A. Frequency-velocity relations

So far, we have considered only those solitary solu-
tions that are centered on the carrier frequency (in the
Fourier domain). However, by deploying the invariance
laws detailed in Refs. [4-6], it is possible to find more
general soliton families that are characterized by a finite
frequency shift 2. Such a geometrical procedure natu-
rally brings out a connection between 2 and the velocity
V' parametrizing the coordinate transformation:

1+ 4’15b cw 1
QV)=Vy| ———5 —_— 1
V) 1+ 2sxV?2 +a< 14 2s5xV?2 )7
(22a)
where we select s = +1 for the bright solution and s = —1

for the dark.
After some algebra, it can be shown that V' must cor-
respond to whichever branch of

[1 + 460 cw — 28K (o + Q)Q} V2
+ 20/1 + 46Bp eV — 2Q (a4 3Q) = 0

vanishes when ©Q = 0 (thereby ensuring that a non-zero
V can appear only in the presence of a non-zero §2). The
frequency-shifted bright (see Fig. 1) and dark (see Fig. 2)
solitons may then be stated as:

(22b)
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FIG. 1: (color online) Bright soliton intensity profiles [see
solution (23a)] for increasing frequency shift 2 when the
peak intensity is po = 1.0. The pulse broadening effect (in
essence, a Lorentz-like dilation in the presence of anomalous
GVD [4]) is clearly visible. System parameters: v2 = +1,
ya=—0.15, s =41, a = 1.0, and £ = 1.0 x 10~3. Note that
when plotting |up,|? as a function of ¢ [see solution (9)], the
profiles are universal (that is, independent of k, «, and Vo)
and there is no dilation effect.
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2 )2k 2K
respectively (see also Appendix C), where
TF W
Ob,a(7,¢) = —b’dcz , (23¢)
V1+2s6Wy 4
Vob,od + Vb a
= : : 23d
Wo.a 1 —2skVob,0aVoa’ (23d)
and
O+ 1+ 458y o — 4562 (o + Q/2) — oy /T + 4K6Bp
W.a(Q) = ( @) \/ o llC /2) 5 a\/ Bb.c . (23e)

The parameter V4, 4(€2), obtained from Eq. (22a), is anal-
ogous to the transverse velocity parameter from the the-
ory of nonlinear beams [34, 35]. For bright solitons, one
can derive a compact expression for W}, such that

B a+Q
\/1+4Hﬂb—4I€Q (oz—l—%Q)

Wy (23f)

We note that bright solitons are assigned a frequency
shift such that w, o exp(i27) whereas dark solitons
have uq o exp(—iQ27). Introducing such antisymme-
try is somewhat arbitrary, but it allows the structure
of Egs. (22a) and (22b) to be preserved for both solu-
tion classes and that sign changes are most conveniently
captured in the frequency-velocity relations solely by s
(rather than s and Q).

Formally, one may recover the bright [5] and dark [6]
spatiotemporal solitons of the cubically-nonlinear system
by setting v2 = +1 and |y4]po < O(1).

B. Non-degenerate bistability

By inspecting the solution continuum, one can search
for parameter regimes where each wave class exhibits a

14+ 4kPp,cw — 25K (2 + )

(

non-degenerate bistability characteristic [27, 28]. This
property is distinct from other types of bistable response,
such as the familiar S-shaped input-output curve of non-
linear cavities (present due to feedback modelled by ring-
resonator or Fabry-Pérot boundary conditions) [9] and
from the case of degenerate solitons (where the integrated
wave intensity can become a multi-valued function of the
propagation constant if the derivative of the system non-
linearity functional satisfies certain constraints) [37].

Recalling that |up|? = pp, for bright solitons (23a)
the non-degenerate bistability condition p (O, = vA) =
po/2 [27] gives rise to the implicit equation

1 1 3y, + &
P(1)/2 = (2 A) cosh™! <72 374%)7
v \/ Y2+ 274p0

Y2 + %’on

(24a)
where 2v parametrizes the duration of the pulse (in its
rest frame) in units of A = sech™!(271/2) ~ 0.8814. For
the competing nonlinearity with v > 0 and v4 < 0,
there exist pairs of solitons that have the same full-width-
at-half-maximum (FWHM) but different peak intensities
(see Fig. 3). When |v4|po — 0, the lower-branch solution
in the (|74],po) plane tends to py = 1/v%yy while the
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FIG. 2: (color online) Gray soliton intensity profiles [see
solution (23b)] for increasing frequency shift 2 when F' = 0.4
and the cw intensity is po = 1.0. Note the pulse narrowing
(contraction) effect in the presence of normal GVD (in
contrast to the contraction for anomalous GVD [4]—c.f.
Fig. 1). System parameters: v2 = +1, 74 = —0.15, s = —1,
a=1.0, and k = 1.0 x 1073, Like its bright counterpart,
pa(€) [see (17a)] is universal so there is no dilation.

upper-branch diverges. Equation (24a) shows that other
regimes for v and 74 tend to be monostable (i.e., there
is no hysteresis in pg).

Similarly, one can consider particular dark solitons in
the continuum of solution (23b) that are prescribed by
pa(©4 = vA) = (pg + p1)/2 [28], which corresponds to
the condition

= (o) ()
2= il
2va 4 \/’72 + %74%70(4 - A?)

32 + §74p0(3 — A?)

x cosh™?
"2 + 574p0(2 — A?)

. (24b)

Pairs of non-degenerate bistable gray solutions shar-
ing a common FWHM but with different cw intensi-
ties exist for the competing-nonlinearity v, > 0 and
v4 < 0. Analysis of Eq. (24b) shows that in the
(|v4l, po) plane, the lower-branch solution tends to py =

8.0

6.0

0 0.1 0.2 0.3 0.4 0.5
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FIG. 3: (color online) Non-degenerate bistablity curves for
bright solitons as predicted by Eq. (24a) for anomalous
GVD (s = +1) in the competing-nonlinearity regime
~v2 = +1 and 4 < 0 (other regimes tend to be monostable so
that po is a single-valued function).

1/v? A2+, while the upper-branch possesses a cut-off at
point (|74|crita Pocrit), Where pocri = (4 — AQ)/V2(VA)2A4
and |Vslerie = 3(72vA)2A%/2(4 — A2)2. Typical bistable
curves are given in Fig. 4 for black and gray solitons.

VI. SLOWLY-VARYING ENVELOPES
A. Envelope equation

The physical predictions of conventional pulse theory,
viz. the parabolic envelope equation

u U s 0%u
; <g< i ag) F O ol u ~ 0, (250)
must emerge asymptotically from the spatiotemporal
model in the limit of slowly-varying envelopes. The
multi-faceted nature of that limit makes clear that stip-
ulating k ~ 0 by itself is not a sufficient condition for
the validity of Eq. (25a). Rather, one requires that all
contributions from xk9%u/d¢? must be negligible simulta-
neously when compared to those arising from the other
terms in Eq. (2). One performs Taylor expansions on the
exact solutions, all up to second-order smallness, so as
the linear phase profile (which involves a ratio of small
quantities) is handled correctly.

Under a Galilean boost to the local-time frame with
coordinates Tioc = 7 — al and (o = (, it is straightfor-
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FIG. 4: (color online) Non-degenerate bistability curves for
dark solitons [(a) black (A = 1) and (b) gray (with v = 1.0)
solutions] as predicted by Eq. (24b) for normal GVD
(s = —1) in the competing-nonlinearity regime with 2 = +1
and 4 < 0.



ward to show that Eq. (25a) transforms into the standard
cubic-quintic NLS-type model [27, 28],

. Ou L8 0%u oyl -+ vl 0
i - ul u ul*u ~ 0.
aCIOC 287’2 02 T

loc

(25b)

Equation (25b) thus describes pulses in a unique frame
of reference (the one moving relative to the laboratory at
the group velocity of pulses with slowly-varying envelopes
in the z direction).

B. Intrinsic, transverse, and net velocities

We begin by considering the behaviour of the various
velocity parameters under the SVEA. For bright solitons,
the limit k8, < O(1) (corresponding to a near-negligible
nonlinear phase shift) leads to Vo ~ o = Vopsvea. Ap-
plying the same limit yields a more involved result for
dark solitons:

VOd ~ p(l)/QF\/’}/Q + %74p0 (2 + F2)+Oé = VOdSVEA~ (26)

Both classes of solution thus have a contribution to the
intrinsic velocity that is independent of frequency shift
and (for dark solitons) grayness due to the fact that the
pulses are always propagating with respect to the labora-
tory frame. The additional limit |kQ(a 4+ ©/2)| < O(1)
(near-negligible frequency shift) gives transverse veloc-
ities Vo, ~ Q = Vgyga and, from Eq. (19), the net
velocities become Wi, qsvea =~ Vob,od svEa + Vsvea.-

For slowly-varying envelopes, one may now draw two
conclusions about the properties of velocity parame-
ters: (i) velocities combine additively (with Galilean-type
rules) rather than geometrically (relativistic- or pseudo-
relativistic-type rules [4]), and (ii) transverse velocities
and frequency shifts are interchangeable in the sense that
they have the same mathematical status and are numer-
ically equal to one another [a situation that is clearly
distinct from the predictions of Egs. (22a) and (23e)].

In the local-time frame, the term at « in Vjp oasvea
is transformed away and local velocities take on more fa-
miliar forms. On the one hand, bright solitons are char-
acterized by Wpioe = Vavea = € so that pulses with
Q = 0 are strictly stationary in that frame. On the other
hand, dark solitons have Wqi0c = Vodioc + Vsvea, where
Vod1oc is defined to be the first term in Eq. (26). Black
solutions (having F' = 0 = Vpq1oc) with Q = 0 thus have
zero local net velocity and are also stationary.

It is now worth re-examining the linear boost described
in the previous subsection. While introducing that coor-
dinate change into the spatiotemporal model is always
possible, it is problematic here for two principal reasons.
Firstly, a mixed-derivative term must appear in the gov-
erning equation in order to retain an exact framework.

10

That is, Eq. (2) becomes

u . Ou 1 912 0u
"9, "o T2 ) g
2 u 2 =0 (27
Ko g+ el ful'u =0 (27
and since ‘preservation of exactness’ is the central objec-
tive motivating our approach, simply ignoring or approx-
imating the awkward fourth term is rather self-defeating.
Secondly, and perhaps more importantly, the coordinates
Tioe and (joc can no longer have quite the same signifi-
cance now as they did previously because group veloc-
ities in the spatiotemporal formulation tend to have an
inherent intensity dependence (a notable exception is the
algebraic soliton discussed in Appendix A, which corre-
sponds to the threshold for linear wave propagation [32]).
That is, 1/« is strictly the (normalized) group velocity
of a bright soliton with zero amplitude [c.f. Eq. (10)
with © = 0 and k8, = 0] and of a black soliton on a
zero-amplitude cw background [c.f. Eq. (19) with Q@ =0
and kfey = 0]. Hence, there can be no advantage (ei-
ther physical or mathematical) in forcing the standard
Galilean boost onto Eq. (2) and its solutions [though one
can immediately write down the solitons of Eq. (27) di-
rectly from Egs. (23a)—(23f)].

C. Asymptotic solutions

Solitons with slowly-varying envelopes in the labora-
tory and local-time frames [governed by Egs. (25a) and
(25b), respectively] can be obtained by applying the
same limiting procedure to solutions (23a) and (23b).
The asymptotic properties of velocity parameters are al-
ready known (see Sec. VIB), and in those same limits
it follows that ﬁWﬁd < O(1). Hence, one has that
Ob,a(7,¢) ~ 7 F Wy aC.

By expanding the propagation constants in a similar
way, one can immediately write down the bright and dark
solitons of Eq. (25a). Wavepackets propagating in the
forward direction are well-behaved since all k-dependent
contributions vanish: the approximated solutions to the
exact equation are exact solutions to the approximated
equation. However, wavepackets travelling in the back-
ward direction retain a rapid-phase factor exp(—i2¢/2k)
leading to the conclusion that Eq. (25a) has no analogue
of backward spatiotemporal waves (being only parabolic
rather than elliptic or hyperbolic, it supports propaga-
tion in a single longitudinal sense only [4]).

When considering the approximated forward solitons
of Eq. (25a), one can boost to the local-time frame where-
upon one recovers (generalizations of) known bright [27]
and dark [28] solutions,
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where Wqloc = Vodloe + 2 and

Vodloc = P(l)/zF\/% + 2y4po (2 + F?) (28¢)
are the local net and local intrinsic velocities, respec-
tively. Wavepackets (28a) and (28b) satisfy Eq. (25b)
exactly, reducing to their well-known cubic counterparts
[10, 11] when 5 = +1 and |y4|po < O(1).

VII. SOLITON STABILITY

Finally, the behaviour of the new spatiotemporal soli-
tons against perturbations to their local temporal shape
is investigated through conventional stability criteria
alongside supporting simulations. Numerical integration
of Eq. (2) is facilitated through a generalization of the
difference-differential algorithm [38] that accommodates
the iad/OT operator through fast Fourier transforms.

A. Vakhitov-Kolokolov criterion

The stability of localized excitation (28a) of Eq. (25b)
has been discussed in detail by Gatz and Herrmann [27]
within the context of the Vakhitov-Kolokolov (VK) inte-
gral criterion [39]. If P is the pulse power defined by

(29a)

then an arbitrary solution up = ub(Tioc, Cloc) is predicted
to be stable against small perturbations provided that
the derivative of P satisfies the inequality

d
%P(ﬂb) >0, (29b)

(

where f, is the propagation constant given by Eq. (8b).
Physically-meaningful predictions from Egs. (29a) and
(29b) must be insensitive to frame-of-reference consid-
erations since one evidently cannot have a wave that is
both stable in the local-time frame and simultaneously
unstable in any other frame [such as the laboratory—
c.f. Eq. (25a)]. The x9?/9¢? operator in Eq. (2) tends
to be predominantly geometrical in nature, and it typi-
cally introduces only a small correction to the solutions of
Eq. (25a). We thus expect to find spatiotemporal solitons
sharing very similar stability properties to their conven-
tional counterparts, as demonstrated previously for the
case of cubic systems [5].

Symmetry principles have also been deployed in the
spatial domain to describe the stability characteristics of
nonparaxial bright soliton beams beyond the cubic ap-
proximation using quasi-paraxial analyses [34, 40]. By
recognizing that off-axis (Helmholtz-type) and on-axis
(NLS-type) solutions are connected by a simple geomet-
rical operation (a rotation of the observer’s coordinate
axes), it follows that oblique propagation effects can
be eliminated for a single scalar beam with a careful
choice of reference frame. One is then free to use estab-
lished NLS-based methods [41, 42] for identifying frame-
independent regions of stability in parameter space.

For the purely-positive nonlinearity, it is straightfor-
ward to show that solution (28a) has an integrated pulse
intensity given by

= o (1),

which always has a positive gradient [43]. Analytic con-
tinuation allows one to immediately find the correspond-
ing power in the competing-nonlinearity regime where
Yo >0 and v4 < 0:

3 1 1 /16|48y
tanh —\ — |, 30b
274l (72 3 (30)

P(By) =
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FIG. 5: (color online) Evolution of the bistable bright
soliton peak amplitude when the initial waveform [as defined
in Eq. (31)] resides on the (a) lower branch (pg = 1.310) and

(b) upper branch (po = 4.141)—c.f. Fig. 3 with v = 1.0.

System parameters: v2 = +1, 74 = —0.15, s = +1, a = 1.0,
k= 1.0 x 1073, Blue circle: Q = 4. Green square: { = 8.
Red triangle: 2 = 12. Black diamond: 2 = 16.

which also possesses a positive slope in the range 0 <
Bb < 373/16|y4| [43]. Solutions for the complementary
regime v < 0 and 4 > 0 have

3 |7 _ 3
P(py) = \/2774 {2 +tan™! (|72| 1674510)] , (30c)

which tends to have a negative gradient in the allowed
range of B,. Such waves are expected to be unstable
according to the VK criterion [42], a prediction that
has been confirmed numerically across a wide parame-
ter space (we do not consider these solitons further).

B. Perturbed bright solitons

The numerical perturbative technique deployed here
involves launching a pulse with the form

1/2

4, exp (iQ7), (31)

,0) =
un(7,0) B cosh (2 2Bb7') + Yo

and observing propagation effects under the action of
the system’s internal dynamics. Initial data (31) cor-
responds to an exact soliton of Eq. (25a), or equiva-
lently a spatiotemporal solution where the width factor
(1 4+ 26W2)1/2 has been omitted. The frequency shift

12

Q =4,8,12, and 16 thus controls the strength of distur-
bance to the local temporal pulse shape.

We first consider a competing nonlinearity with vo =
+1 and 4 = —0.15, which supports bistable solutions
for v = 1.0 with lower- and upper-branch peak intensi-
ties given by pg ~ 1.310 and pg ~ 4.141 (see Sec. V B).
Simulations have demonstrated that evolution is gener-
ally adiabatic, with the pulse shape being maintained in
¢. Parameters such as the peak amplitude (see Fig. 5),
width, and area tend to undergo monotonically-decaying
oscillations as the reshaping pulse evolves gradually to-
wards a stationary state as ( — oco. A small amount of
energy is shed in the form of radiation, and low-amplitude
broad ’shoulders’ can emerge at the base of the reshap-
ing pulse in the presence of strong perturbations. The
upper-branch solutions typically exhibit the same type of
behaviour, except that the oscillations occur over a much
shorter longitudinal scalelength and the early stages of
propagation can involve an initial increase in the peak
amplitude. If the radiation is regarded as a local loss
mechanism (while the system remains globally conser-
vative [5]), then the stationary states of Eq. (2) may be
interpreted as attracting fixed points surrounded by wide
basins of attraction [34].

For a purely positive nonlinearity, where v = +1 and
~va = +0.15, Eq. (24a) shows that there is a monostable
solution with pg =~ 0.865 when v = 1.0. Simulations
have revealed self-reshaping oscillations that are quali-
tatively similar to those encountered in the competing
regime (compare the results in Fig. 6 to those in Fig. 5).

C. Renormalized-momentum criterion

The stability of conventional dark solitons in the local-
time frame has previously been quantified by using an in-
tegral criterion that considers the renormalized momen-
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FIG. 6: (color online) Evolution of the peak amplitude
when initial waveform (31) has po = 0.865 and v = 1.0.
System parameters: v2 = +1, 74 = —0.15, s = +1, a = 1.0,
% = 1.0 x 1073, Blue circle: Q = 4. Green square: {2 = 8.
Red triangle: 2 = 12. Black diamond: 2 = 16.



tum Mo [44, 45], where
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(32a)
Here, the formally-infinite contribution to the momen-
tum integral from the cw background has been sub-
tracted to leave a finite value, given by Mye,, that is
associated with the localized excitation in uq. A dark so-
lution to Eq. (25b) is then predicted to be stable against
small disturbances if

d

mSMren(VOd loc) > 0

(32b)

is satisfied, where the derivative is taken with respect to
the local intrinsic velocity parameter [given by Eq. (28¢)].
Pelinovsky et al. [45] have applied the renormalized-
momentum approach (in parallel with asymptotic meth-
ods and numerical analyses) to study the stability proper-
ties of conventional dark solitons in the presence of com-
peting, saturable, and transiting nonlinearities. As in the
case of bright pulses, such predictions must be frame-
independent if they are to be truly meaningful and hence
one expects Eqgs. (32a) and (32b) play a key role in quan-
tifying dark pulses in spatiotemporal contexts [6].

Extensive simulations have shown that the exact dark
solitons of Eq. (2) tend to propagate with invariant pro-
file, and they demonstrate robustness as predicted by
Egs. (32a) and (32b).

D. Perturbed dark solitons

To test the stability of spatiotemporal dark solitons, we
launch pulses of the form given by Eq. (23b) but where
the factor (1 — 2.W2)'/2 is omitted from Oq(, ¢):

1/2
4Bq
D cosh (2y/2Ba7) + (72 + $7apo0)

X exp |itan~?! <A> Y2 + 37ap0 (2 + F?)
F)\ v2+ 57apo (3+ F?)
X tanh (\/Zﬂdr) H

x exp (—i827) . (33)

ug(T,0) = {Po -

Such an input wave corresponds to an exact solution
of Eq. (25a). To accommodate the linear phase ramp
associated with finite-{) considerations, simulations are
performed in a frame of reference wherein the factor
exp(—i€d7) is eliminated. Results from simulations are
then transformed back to (7,() coordinates. We begin
by considering perturbed black solitons (where A = 1).
For consistency, parameters v = +1 and 4 = —0.15
are retained in which case Eq. (24b) shows there are two
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FIG. 7: (color online) Evolution of the bistable black
soliton full width when the initial waveform [as defined in
Eq. (33)] resides on the (a) lower branch (po = 1.4866) and
(b) upper branch (po = 3.0183)—c.f. Fig. 4 (horizontal bars

indicate theoretical predictions). System parameters:

v2 =41, 74 =-015s=—-1,a=1.0, kK = 1.0 x 107, Blue
circle: 2 = 4. Green square: 2 = 8. Red triangle: 2 = 12.
Black diamond: © = 16.

solutions for ¥ = 1 with cw intensities py ~ 1.486 and
po ~ 3.018 (see Fig. 4). The temporal full-width of the
initial waveform, denoted by wo = (284) /2, is broader
than that for the exact solution. Numerical analyses
demonstrate that as ( — oo, the reshaping pulse sheds
radiation in the form of low-amplitude ripples across the
cw background (an effect that becomes slightly more pro-
nounced with increasing 2). The localized component
otherwise tends to evolve adiabatically towards a sta-
tionary state, preserving its blackness and with a gen-
eral shape prescribed by solution (23b). The pulse width
can be seen to decrease smoothly towards the asymptotic
value wo, = wo(1 — 26W2)1/2 (see Fig. 7).

Gray solitons perturbed in the same way share similar
stability properties to those of their black counterparts.
One key distinction is that, for F' # 0, the grayness of the
solution is not quite preserved as ( — oo. These small
changes in F', embodied by F' — F((), are connected
to variations in Vpq(F') so that the evolving waveform is
subject to a slight drift instability (though the trajectory
is still predominantly linear). That is, the center of the
Gray pulse travels (approximately) along the character-
istic 7 — Wq(¢)¢ = const., where the functional form of
Voa(F) is preserved [c.f. Eq. (19)] but F(¢) must be com-
puted from the numerical solution (illustrative results are
shown in Fig. 8). As ( — oo, stationary states tend to
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FIG. 8: (color online) Evolution of the gray soliton
contrast parameter when the initial waveform [as defined in
Eq. (33)] has po = 2.0 and F?(0) = 0.5. System parameters:
vo =41, 74 =—-0.15, s = —1, a = 1.0, K = 1.0 x 1073, Blue

circle: €2 = 4. Green square: {2 = 8. Red triangle: = 12.
Black diamond: = 16.

emerge with F' values that are slightly greater than the
initial value.

VIII. CONCLUSIONS

We have considered in some detail a spatiotempo-
ral scalar wave equation with cubic-quintic nonlinear-
ity, deploying a combination of methods (direct integra-
tion and coordinate transformations) to derive exact an-
alytical bright and dark solitons. These new classes of
wavepacket are localized in the time domain, and com-
prise distinct solution branches describing propagation
in the forward and backward longitudinal directions rel-
ative to the laboratory frame of reference. We have rigor-
ously proved that in the limit of slowly-varying envelopes
and after transformation to the local-time frame, bright
[27] and dark solitons [28] of the NLS-type model emerge
asymptotically from the forward-travelling spatiotempo-
ral solutions. We also recover the corresponding soli-
tons of the cubic system [5, 6] in the limit of a negli-
gible quintic response. Established analytical methods
[42, 45] have been used to assess the stability properties
of the new solitons, with results from simulations fully
supporting theoretical predictions. The spatiotemporal
solutions reported here have generally been found to be-
have as robust attractors that tend to be highly stable
against perturbations to the local temporal pulse profile.

To date, we have considered exact bright and dark spa-
tiotemporal solitons for cubic [5, 6], cubic-quintic, and
saturable—see companion article [46]—dispersive sys-
tems. Together these simple nonlinearity models have
played an important role in developing our understand-
ing of wave physics and envelope propagation, largely be-
cause in each case the governing equations can be solved
analytically. There remains another fundamental solu-
tion class of particular interest in cubic-quintic systems,
namely that of antidark solitons [47]. We have recently
discovered that Eq. (2) supports such excitations that
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deserve careful attention.

Our latest research is concerned with more general dis-
persive nonlinearities, identifying connections between
spatiotemporal envelope models similar to Eq. (2) and
their (real) Klein-Gordon counterparts. Deducing a map-
ping between these two universal types of governing equa-
tion is potentially useful as it provides a platform for the
direct interchange of solitary solutions between, for ex-
ample, the fields of optics and particle physics. It would
also be fascinating to extend our spatiotemporal consid-
erations beyond the standard solitary structures (bright,
dark, boundary, and antidark waves), e.g., to seek gen-
eralizations of the Peregrine soliton [48] and develop
relativistic- and pseudorelativistic-type formulations of
rogue- [49, 50] and shock-wave [51] phenomena.

Appendix A: Algebraic solitons
1. Exact solutions & asymptotics

A class of weakly-localized nonlinear wave can be ob-
tained from solution (23a) in the competing-nonlinearity
regime v < 0 and 4 > 0. Spatiotemporal algebraic
solitons correspond to the case of a vanishing propa-
gation constant (obtained by setting S, — 0), and for
the cubic-quintic system possess much slower Lorentzian
(rather than exponential) asymptotics [32, 42]. By
considering binomial expansions to leading-order in Sy,
namely cosh (2v/28,0) ~ 1 + (45,)0} and B =~
[v2| [1+ (274/373)(4Bb)], it can be shown that there ex-
ists finite-amplitude forward- and backward-propagating
wavepackets

_[3hel [(3%) 42 e
wir =32 (32 e +1]
iQTj:i\/l Y <a+2>2i
X exp <—22i) ,

A
N

(the ‘a’ subscript denotes algebraic solitons), and the net
velocity parameter W, is identical to W, in Eq. (23f)
but with the factor 4x(p, omitted. The intensity of
these Lorentzian-shaped solutions falls off according to
an inverse-square law, ~ 1/02 so the tails are relatively
broad (it is in this sense that algebraic excitations are
weakly localized—see Fig. 9).

By taking the forward-propagating algebraic soliton
and applying the multiple-limit procedure as described
in Sec. VI, one can subsequently transform to the local-
time frame and hence find the corresponding solution of

X exp

(Ala)

where

(Alb)
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FIG. 9: (color online) Algebraic soliton intensity profile
according to solution (Ala). The tails of the distribution are
Lorentzian, falling off like 1/7% as 7 — 400, while
anomalous GVD leads to a broadening of the pulse width.
System parameters: v2 = —1, 74 = +0.15, s = +1, o = 1.0,
k=1.0x 1073

Eq. (25b):

3 3 2 —1/2
ua(ﬂoc;(loc) = “ 2|121| |:<2ZZ> (Tloc - QC]OC)2 + 1:|

QQ
X exp (iQTloc - izgloc) . (A2)

From Eq. (30c), it is easy to see that the integrated power
in solution (A2) remains finite and assumes the value of
P(0) = (3/2y4)"/?w. The absence of any free internal
parameter (such as fp) has implications for the algebraic
soliton stability problem.

2. Instability of algebraic solitons

Since the integrated pulse power of the hyperbolic soli-
ton with v9 < 0 and 74 > 0 retains a negative gradient
dP,/dpy as B, — 0 [see Eq. (30c)], one can infer that

0D w
KR =)

Soliton amplitude
=

0 4 8§ 12 16 20

G

FIG. 10: (color online) Instability of spatiotemporal
algebraic solitons. Initial conditions correspond to exact
solution (Ala), and where the peak intensity is
po = 3|y2|/4va. System parameters: v = —1, s = +1,
a=1.0,x=1.0x 1073, Blue circle: ~v4 = 0.15. Green
square: v4 = 0.25. Red triangle: v4 = 0.35. Black diamond:
Y4 = 0.45.
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algebraic solution (A2) must be always unstable since
it does not satisfy the VK inequality of Egs. (29a) and
(29b). Analysis of these conventional weakly-localized
states (in terms of both multiple-scale perturbation the-
ory and supporting simulations) [32, 42] connects that
instability to resonant interactions with infinitely-long
linear waves.

Numerical integration of Eq. (2) with exact solutions
(Ala)—(Alb) as initial conditions has provided com-
pelling evidence that such instability persists in the spa-
tiotemporal regime. Typical evolution of an algebraic
soliton is shown in Fig. 10 for 75 = —1 and 74 = +0.15.
The weakly-localized state survives largely intact for a
short distance in ¢ before starting to transform into a
plateau-type structure accompanied by the emission of a
ripple-type radiation pattern. Increasing 74 reduces the
peak intensity of the initial algebraic soliton, and delays
(but does not suppress) the onset of a qualitatively sim-
ilar dispersive-broadening instability (see Fig. 9).

Appendix B: Boundary solitons
1. Exact solutions & asymptotics

Equation (2) supports a class of partially delocalized
wave in the form of a spatiotemporal kink or bound-
ary soliton for anomalous GVD (s = +1) and the
competing-nonlinearity regime vy, > 0 and 74 < 0. Such
solutions connect (modulationally stable) plateau re-
gions of zero amplitude to regions of constant amplitude
(372/4]74])*/?. Boundary solitons are thus amplitude-
topological excitations rather than phase-topological
(since there is no phase change across the temporal ex-
tent of the wave), and are given by

Uk+ (Ta C) =

—~1/2
| /451‘{ exp [i2\/2ﬁk®k(r, <)} + 1}
"2
QT £ i\/l + 4k Py — 4k (a + 2) ;J

(Bla)

X exp

7 F Wil

N

and the net velocity parameter Wy is identical in form to
Wy given in Eq. (23f) but with 8y replaced by g =
3v2/16|74]. The =+ sign in the argument of the real-
exponential function (which can be selected indepen-
dently of the sign flagging the propagation direction in
the complex-exponential function) determines the parity
of the wave [classified as kink (—) or antikink (+)], where
|ukg+| — 0 as O — +oo (see Fig. 11).

O(7,¢) = (B1b)
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FIG. 11: (color online) Boundary (antikink) soliton
intensity profile according to solution (Bla), which plateaus
towards the constant value 40x/v2 as 7 — —oo and falls off

exponentially toward zero as 7 — +o00. Anomalous GVD
also leads to a broadening of the transition region (taken to
be a measure of the pulse duration). System parameters:
y2 =41, 74 =-015s=+1,a =10,k =1.0 x 1073

By taking the forward-propagating boundary soliton
and applying the multiple-limit procedure as described
in Sec. VI, one can subsequently transform to the local-
time frame and hence find the corresponding solution of
Eq. (25b) first proposed by Gagnon [29]:

Uk+ (Tloca Cloc) ~

., —-1/2
\/E{ exp |:Z|Z2 2ﬂk (Tloc - Q<10c>:| + 1}
2

Q2
X exp |:iQTlOC +1 <ﬂk - 2) Cloc:| . (B2)

Computational studies by Kim and Moon [31] have pre-
viously found that these wavepackets are typically very
robust entities that tend to be resilient even to strong
perturbations (such as collisions with bright solitons).

2. Perturbed boundary solitons

In the spatial domain, amplitude kinks of a general-
ized cubic-quintic Helmholtz equation have been reported
and their stability demonstrated numerically [40]. Using
the same symmetry principles discussed in Sec. VII, one
would expect the corresponding solutions in the time do-
main [that is, Eq. (Bla)] to demonstrate a similar degree
of robustness.

For completeness, simulations with Eq. (2) are now
used to test boundary soliton stability against local (tem-
poral) shape fluctuations. We consider the antikink
initial-value problem defined by

s (7,0) = ﬁ fexp (2v/28c7) 1] exp (ic2r).

(B3)
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which corresponds to a perturbed solution of Eq. (2) but
satisfies Eq. (25a) exactly [the geometry of initial data
(B3) is thus equivalent to that used throughout the pre-
ceding computations]. As in the case of dark solitons,
numerical calculations are most conveniently performed
in a frame of reference where the linear phase ramp from
the exp(i€27) factor is eliminated and datasets are trans-
formed back to the (7, () frame when necessary.

The characteristic width of the initial condition (quan-
tifying the size of the transition region between the
zero- and finite-amplitude domains) is defined as wy =
(2Bi)"'/2. Since wy is less than that needed for the
exact spatiotemporal solution, we expect the waveform
to transform smoothly into a stationary state of Eq. (2)
whose asymptotic width is predicted to be ws = wo(1+
2kW2)'/2. The evolution is predominantly adiabatic (see
Fig. 12) aside from a small-amplitude radiation ripple
pattern that tends to develop on top of the high-intensity
portion of the solution.

Appendix C: Alternative representations

Solitons of the cubic nonlinearity are perhaps the best
known [10], where the fundamental bright and dark so-
lutions are expressed in terms of hyperbolics sech and
tanh, respectively. It is thus instructive to couch the
cubic-quintic solutions in terms of these same functions.

To that end, one can show that bright soliton (23a) has
an alternative representation that involves a combination
of sech functions:

up(7,¢) = (26)"/*
sech [v/23,0y, (7, ()]

X
V2 + Fra0 — Zraposect? [VIB8 (7,0
x exp (1Q7)

:i:i\/l + 4k By — 4k (a + 2) 2?4]

X exp

X exp (—l;,;) , (C1)
where the cubic solution [5],
un(7,0) o py *sech [(12p0) %01, (7,0)] . (€2)

is an obvious limit when |vy4|po/|72| < O(1) and 7o >
0. Similarly, dark soliton (23b) can be described by a
solution where the intensity-phase contribution appears
as a complex number in Cartesian form,

Py 2(7,¢) exp [iWa(,C)] = R(7,¢) +iZ(r,C),  (C3)

where R and Z are real functions to be determined. Since
pa = R?+I? and tan ¥4 = /R, it follows that



1/2 12 + 2yapo (3 — 42)]'/*
0
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Atanh [3Ba0a(r, Q)] =i [y + 2vapo (4 — A2)]'° F

ud(Tv C) =P

\/72 + 240 (4 — A2) — 274pg A2 tanh® [v/28404(7, ()]

X exp [—iQT + i\/l + 4K By + 4K8) (a + (22) ;ﬂ] exp (—zi) , (C4)
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FIG. 12: (color online) Evolution of the boundary
(antikink) soliton full width when the initial waveform is
given by Eq. (B3) (horizontal bars indicate theoretical
predictions). System parameters: v2 = +1, y4 = —0.15,
s=+41,a=1.0, Kk = 1.0 x 1073, Blue circle: Q = 4. Green
square: {2 = 8. Red triangle: 2 = 12. Black diamond:

Q = 16.

(

where we have written R + iZ = ¢(Z — iR) and sub-
sequently dropped the i premultiplier due to the global
phase invariance of Eq. (2). Solitons (C4) and (23a) thus
have the same intensity distribution (as they must) but
they differ in phase by 7/2 radians [in fact, the phase
of solution (C4) is simply Wq(7,{) + 7/2] . This form
of the cubic-quintic dark soliton has been reported else-
where in the context of nonlinear-Schrodinger models
[31]. It is now straightforward to show that the well-
known “A —iF” representation of the cubic dark soliton
emerges in the limit |v4|po/|v2] < O(1) [6], where

wa(r, ¢) o Atanh [(’}/on)l/QA@d(T,C) _iF.  (C5)
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