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Abstract 12 

The brain has a high metabolic rate and its metabolism is almost entirely restricted to 13 

oxidative utilization of glucose. These factors emphasize the extreme dependence of neural 14 

tissue on a stable and adequate supply of glucose. Whereas initially it was thought that only 15 

glucose deprivation (i.e. under hypoglycaemic conditions) can affect brain function it has 16 

become apparent that low-level fluctuations in central availability can affect neural and 17 

consequently, cognitive performance. In this paper the impact of diet-based glycaemic 18 

response and glucose regulation on cognitive processes across the life span will be 19 

reviewed. The data suggest that although an acute rise in blood glucose levels has some 20 

short-term improvements of cognitive function, a more stable blood glucose profile which 21 

avoids greater peaks and troughs in circulating glucose is associated with better cognitive 22 

function and a lower risk of cognitive impairments in the longer term. Therefore, a habitual 23 

diet that secures optimal glucose delivery to the brain in the fed and fasting states should be 24 

most advantageous for the maintenance of cognitive function. Although the evidence to 25 

date is promising, it is insufficient to allow firm and evidence-based nutritional 26 

recommendations. What limits our ability to draw strong conclusions from the findings of 27 

previous studies is the fact that they often differ widely with respect to subject 28 

characteristics and cognitive tests used. Future research needs to carefully consider 29 

conceptual and methodological factors including potential inter-individual differences, 30 

adequate selection of tests and control of extraneous (confounding) variables. The rise in 31 

obesity, diabetes and metabolic syndrome in recent years highlights the need for targeted 32 
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dietary and lifestyle strategies to promote healthy lifestyle and brain function across the 33 

lifespan and for future generations. Consequently, there is an urgent need for hypothesis-34 

driven, randomised controlled trials that evaluate the role of different glycaemic 35 

manipulations on cognition.  36 

 37 

Background 38 

Rise in nutrition-related illness highlights the need for targeted health promotion and 39 

interventions across the lifespan and for future generations. Traditionally the focus of such 40 

interventions was on development of chronic disease and premature death. However, there 41 

is now a large body of evidence demonstrating that cognitive decline accompanies certain 42 

metabolic health conditions such as type 2 diabetes, metabolic syndrome and obesity and 43 

that modifiable lifestyle factors including diet may contribute significantly to the risk of 44 

cognitive decline, including dementia(1). Consequently, there has been increasing interest in 45 

the effects of nutrition on cognitive performance and more specifically how cognitive 46 

performance can be optimised using nutritional interventions. When looking across the life-47 

span, broadly speaking nutritional interventions offer opportunity to i) optimize cognitive 48 

development during infancy and childhood, ii) ensure the highest levels of cognitive function 49 

during adulthood and iii) prevent cognitive decline in older age (see Figure 1).   50 

 51 

The macronutrient glucose is perhaps most thoroughly researched in terms of its effects on 52 

cognition. Investigations into the effects of glucose on cognition have served as a useful 53 

prototype to develop paradigms for studying the effects of more complex nutrition-like 54 

interventions. The notion that oral glucose administration might facilitate mental 55 

performance was first proposed in the 1950’s. Hafermann(2)investigated the effects of 56 

glucose administration on school children, and observed a distinct increase in cognitive 57 

performance, including performance in mathematics and generally improved concentration. 58 

However, it was not until the mid 1980’s that glucose effects on cognitive performance 59 

became more widely investigated(3). Here the impact of diet-based glycaemic response and 60 

glucose regulation on cognitive processes across the life span will be reviewed. Before 61 

considering the relationship of glucose, glycaemic response and cognitive processes, some 62 

features of glucose metabolism important for the understanding of its role in cognition will 63 

be discussed.  64 
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 65 

 66 

Glucose: the major source of energy for the brain 67 

The central significance of glucose as the major nutrient of the brain, its metabolism and 68 

control, have been well documented. All processes of cells (including nerve cells) require 69 

energy. In humans and most animals, adenosine triphosphate (ATP) works as the main 70 

carrier of chemical energy. The human body uses three types of molecules to yield the 71 

necessary energy to drive ATP synthesis: fats, proteins, and carbohydrates. In addition to 72 

being the major source of biological energy, aerobic carbohydrate metabolism is the main 73 

source of energy available for brain tissue and glucose and oxygen are the sole metabolic 74 

energy source that can cross the blood brain barrier and hence be utilized by brain cells to 75 

form ATP(4). Brain tissue is absolutely dependent upon the oxidative metabolism of glucose 76 

for energy as glucose is essentially the sole energy fuel for the brain except during 77 

prolonged starvation when ketone bodies, generated by the liver, replace glucose(5). 78 

Associated measurements of oxygen and glucose levels in blood sampled upon entering and 79 

leaving the brain in humans show that almost all the oxygen utilised by the brain can be 80 

accounted for by the oxidative metabolism of glucose(6). Compared with other organs, the 81 

brain possesses paradoxically limited stores of glycogen, which without replenishment are 82 

exhausted in up to 10 minutes. In nervous tissue, glycogen is stored in astrocytes. Astrocytes 83 

participate significantly in brain glucose uptake and metabolism and due to their location 84 

and metabolic versatility; they may be the “fuel processing plants” within the central 85 

nervous system(7) . Due to limited glycogen storage capacity, the brain relies on a continuous 86 

supply of glucose as its primary fuel, delivered via the bloodstream. The entry of glucose 87 

into the brain is mediated by the family of glucose (GLUT) transporters which are adapted to 88 

the metabolic needs of the tissue in which it is found. The primary GLUT isoforms in the 89 

brain are GLUT1 and GLUT3 but others have been detected in different brain regions, at a 90 

lower level of expression(8). 91 

 92 

The immense expenditure of energy by the brain relative to its weight and volume is 93 

thought to be due to the need to maintain ionic gradients across the neuronal membrane, 94 

on which the conduction of impulses in the billions of neurons. In addition, there is no break 95 

from the brain’s energy demand as the rate of brain metabolism is relatively steady day and 96 
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night, and may even increase slightly during the dreaming phases of sleep. Thus the energy 97 

requirements of brain tissue are exceptionally constant(9) and glucose deprivation can 98 

severely disrupt neuronal activity, producing EEG patterns characteristic of lowered 99 

cognitive functioning(10). Indeed, when blood glucose drops below 4 mmol/l (72 mg/dl; 100 

hypoglycaemic condition), it can cause discomfort, confusion, coma, convulsions, or even 101 

death in extreme conditions(11). Conversely, persistent blood glucose concentrations above 102 

the normal range (hyperglycaemic condition) can also have damaging physiological effects. 103 

Because glucose exerts osmotic pressure in the extracellular fluid, extremely high blood 104 

glucose concentrations can cause cellular dehydration. An excessively high level of blood 105 

glucose concentration also causes loss of glucose in the urine, which can affect kidney 106 

function and deplete the body’s supply of fluids and electrolytes(12).  107 

 108 

Glucose brain metabolism: changes across the lifespan 109 

The rate of glucose brain metabolism changes across the life span. Initially, there is a rise in 110 

the rate of glucose utilization from birth until about age 4 years, at which time the child's 111 

cerebral cortex uses more than double the amount of glucose compared to adults. This high 112 

rate of glucose utilization is maintained from age 4 to 10. Childhood is a time of intense 113 

learning and therefore coincides with the most metabolically expensive period(13). The high 114 

energy demand of a child’s brain requires the use of the majority of hepatically generated 115 

plasma glucose(14). In addition, glucose supply needs to be particularly stable as impairments 116 

are thought to occur at higher plasma glucose level (4.2 mmol/l)(15). After this period, there 117 

is a gradual decline in glucose metabolic rate, reaching adult values by age 16-18 years (see 118 

for example(16)). This is followed by a plateau phase until middle age after when a significant 119 

age-related decline in cerebral glucose metabolism can be observed (see for example(17)). 120 

This age-specific metabolic pattern of glucose consumption has not been observed in other 121 

species and it has been argued that this could be a driver or indeed a consequence of 122 

human cognition(18).  123 

 124 

Most children and young adults maintain circulating glucose within the normal range 125 

throughout cycles of feeding and fasting and balanced alterations in secretions of regulatory 126 

hormones. In contrast, older adults have a broader range over which circulating glucose is 127 

maintained and in addition have attenuated counter regulatory responses. Circulating 128 
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insulin levels tend to be elevated with age (approx. 8% higher than in young adults) and are 129 

indicative of reduced insulin sensitivity(19). Reduced insulin sensitivity or insulin resistance is 130 

a condition where individuals develop resistance to the cellular actions of insulin, 131 

characterized by an impaired ability of insulin to inhibit glucose output from the liver and to 132 

promote glucose uptake in fat and muscle. Both effects of insulin insensitivity on liver and 133 

muscle tissue cause elevations in peripheral blood glucose levels. Changes in insulin action 134 

have been observed at different stages of the development. Basal insulin secretion increase 135 

during puberty, falling back to pre-pubertal levels in adulthood(20). Yet, fasting glucose levels 136 

remain constant, implying an increase in tissue resistance to insulin coinciding with 137 

puberty(21). The reason for the puberty-induced reduction of insulin sensitivity appears to be 138 

growth-hormone related(22-24). Growth hormone secretion reaches a peak at around puberty 139 

and will begin to decrease by the age of 21 years(25). It is commonly in middle age where 140 

insulin resistance and poor glucose tolerance become a health issue. Given that the brain 141 

uses glucose as a primary substrate for brain function, it is perhaps not surprising that 142 

conditions that affect peripheral and central glucose regulation and utilization may also 143 

affect cognitive functioning. Moreover, based on the evidence above there might be ‘critical 144 

periods’ in which alterations in cerebral glucose supply might have more pronounced effects 145 

on cognitive performance.  146 

 147 

The consequences of fluctuations in central glucose availability have begun to be better 148 

understood. Whereas initially it was thought that only glucose deprivation (i.e. under 149 

hypoglycaemic conditions) can affect brain function it has become apparent that low-level 150 

fluctuations in central availability can affect neural and consequently, cognitive 151 

performance. In the next section we will review work into the phenomenon of cognitive 152 

enhancement following a glucose load.  153 

 154 

Acute administration of a glucose load: prototypical experimental paradigm  155 

Over the last thirty years, a large body of literature has demonstrated beneficial effects of 156 

acute glucose administration on cognition in various populations (for reviews see (26, 27)). The 157 

general methodology used in these studies involves administration of an oral glucose load 158 

(usual range between 25 and 50g of glucose) after a period of fasting (ranging from 2h to 159 
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overnight fast) followed by assessment of cognitive performance and measurement of 160 

capillary blood glucose levels.  161 

 162 

Using this experimental paradigm, beneficial effects have been observed across different 163 

populations. For example, glucose administration has been shown to enhance cognitive 164 

performance in adolescents(28), young adults(29-38), older adults(39, 40) and improvements have 165 

been observed in subjects with mild or severe cognitive pathologies, including individuals 166 

with Alzheimer's disease and Down’s syndrome (see (26, 27) for reviews). In addition, 167 

facilitation of cognitive performance induced by elevations in plasma glucose levels has also 168 

been reported in patients with schizophrenia(41, 42). It is important at this point to note that 169 

these results do not reflect a negative effect of fasting on cognition and memory, as the 170 

degree of fasting in which participants engaged was not exceptional and participants do not 171 

reach blood glucose levels associated with hypoglycaemia. What these findings 172 

demonstrated are the beneficial cognitive effects of raising blood glucose levels within 173 

normal physiological limits.  174 

 175 

Cognition is not a monolithic concept, but encompasses a range of mental processes which 176 

occur when information is perceived, evaluated, stored, manipulated, retrieved or 177 

otherwise processed. Important components of cognition are perception, attention, 178 

vigilance, memory, executive function and language. These can be measures using different 179 

task which in turn allow assessment of subcomponents. In terms of cognitive tasks affected, 180 

benefits have been found to occur in a range of cognitive domains, including information 181 

processing and attention(39, 43-46), working memory(29, 30, 35, 36, 47), executive function(48, 49) 182 

problem solving(50) and  long-term memory(29-31, 33-35, 51-53). 183 

 184 

Trying to define the various aspects of cognition, which are most receptive to glucose-185 

induced enhancement, the clearest enhancement effects of increased glucose supply have 186 

been observed for verbal declarative long-term memory over a variety of conditions and 187 

paradigms (for review see(54)). As different aspects of cognition pertain to different neural 188 

structures and network, this allows speculation about the areas of the brain that might be 189 

particularly susceptible to glycaemic fluctuations. The robust effects on long-term memory, 190 

suggest that glucose facilitation may be particularly pronounced in tasks that pertain to the 191 
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hippocampal formation(29). The level of task demand is a further moderating factor for 192 

cognitive enhancement by increased glucose availability. Indeed, in younger participants, 193 

glucose-related improvement of cognition appears to be related to the difficulty of the 194 

cognitive tasks. Tasks which are more cognitively demanding appear to be more sensitive to 195 

the effect of glucose loading(30, 36, 55).  In addition, ‘depletion’ of episodic memory capacity 196 

and/or glucose resources in the brain due to performing a concomitant cognitive task might 197 

be crucial to the demonstration of a glucose facilitation effect. The reason for this is likely to 198 

be that younger individuals already working at optimal physiological and cognitive efficiency 199 

(and therefore functioning at or near a ceiling level of performance), whereas older 200 

participants and clinical patients are unable to achieve optimal performance due to age- or 201 

illness-related degenerative changes.  202 

 203 

Indeed, while both young and older adults show cognitive improvement after the oral 204 

administration of glucose, the effects appear to be more profound in older individuals. 205 

Cognitive decline over the aging process has been well documented(56-58). Traditionally, 206 

cognitive impairments are assumed to reflect deficits caused by damage of brain areas or 207 

systems in which cognitive processing in normal subjects occurs. However, more recently 208 

there has been a focus shift on specific physiologic and metabolic impairments that appear 209 

to contribute to the cognitive decline observed in ageing. Older adults have a broader range 210 

over which circulating glucose is maintained and in addition have attenuated counter 211 

regulatory responses. These suboptimal metabolic and cognitive conditions are likely to 212 

make older individuals more susceptible to glucose facilitation of cognitive performance. 213 

 214 

The energy cost for effortful, controlled or executive processes appears to be significantly 215 

higher than that for automatic or reflexive processes(59). Effortful, controlled or executive 216 

processes are processes that are reliant on the central executive, in which thoughts, 217 

behaviours and actions are coordinated to allow goal directed and purposeful behaviour(60), 218 

while automatic and reflexive behaviours are evolutionarily predisposed or learned 219 

behaviours elicited by environmental stimuli. Indeed, lowered peripheral glucose levels 220 

following performance of a cognitively demanding task have been reported(55, 61). This fall in 221 

plasma glucose could reflect a more efficient transfer of glucose to the brain which in turn 222 

results in increased provision centrally. One should be cautious when making assumptions 223 
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about peripheral blood glucose levels and their putative effects on the brain, as other 224 

studies have failed to demonstrate such findings(62, 63). Nevertheless, the evidence suggests 225 

that cognitively demanding tasks and in particular those relying on executive functions are 226 

also sensitive to changes in glucose (see for example(59, 64)) Administration of a glucose drink 227 

would consequently provide the brain with sufficient metabolic resources for extensive 228 

cognitive processing and support the brain areas under greatest cognitive load, and thus 229 

lead to improved performance. 230 

 231 

Apart from task difficulty and cognitive domain, the amount of glucose administered is also 232 

an important factor. As with many substances affecting cognitive performance, glucose 233 

displays an inverted U-shaped dose-response curve, and its effect is time dependent(3)). For 234 

older adults 25g of glucose appear to be the optimal dose, with performance deterioration 235 

observed after administration of 75g of glucose(65). For young adults 25g also seems to most 236 

reliably facilitate cognitive performance, however, there is evidence suggesting that the 237 

optimal dose or shape of the dose-response curve may be dependent on inter-individual 238 

difference in glucose metabolism, and the cognitive domain being assessed(33). Of note, the 239 

cognitive enhancing effects of pharmaceutical substances such as stimulants 240 

(methylphenidate, modafinil) and acetylcholinesterase inhibitor (dementia drugs) in healthy 241 

individuals are generally moderate or small (as estimated by Cohen’s d effect size) according 242 

to systematic reviews (see for example(66, 67)). The effects of glucose administration are 243 

comparable with those from pharmaceutical interventions, with effect sizes for glucose 244 

effects range from 0.34 to 4.26, with typical values of 1.02, 0.81 and 1.07 for heavily loaded 245 

working memory and verbal episodic recognition and recall respectively(68). 246 

 247 

Glucose facilitation of cognitive performance: putative underlying mechanisms 248 

The precise mechanisms by which increased peripheral and/or central glucose availability 249 

affects cognitive processes are still unclear. There are two broad theoretical approaches: 250 

energetic demand models and domain specific models. Energetic demand models, have 251 

their basis in the observation that the amount of mental effort involved in cognitive 252 

processing is an important determinant of a task’s susceptibility to glucose enhancement. 253 

Domain specific theories, on the other hand stipulate that certain areas of the brain are 254 

more susceptible to changes in glucose availability. However, as will become clear these 255 
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different approaches are by no means mutually exclusive, their relative explanatory value 256 

depending on cognitive task and brain structure.  257 

Glucose metabolism varies throughout tissue/cell types of the brain, with a clearly 258 

established correlation between increased energy metabolism and increased neuronal 259 

activity and energy metabolism(69).Both the rate of blood to brain glucose transport(70) and 260 

glucose metabolism(71) are stimulated in different areas in the brain during cognitive tasks 261 

relevant to that area. There is evidence that performing cognitively demanding tasks 262 

increases total brain consumption by as much as 12%(72). 263 

 264 

As described, glucose exerts quite robust effects on long-term memory tasks. The 265 

hippocampus is the brain region most strongly implicated in long-term memory 266 

performance(73). Microdialysis measurements of brain glucose have shown a large decrease 267 

in hippocampal extra cellular fluid (ECF; 32 ± 2%) in rats tested for spontaneous alternation 268 

on a four-arm maze (a difficult memory task), while a smaller decrease (11 ± 2%) was seen 269 

in rats tested on a simpler three arm- maze, suggesting that the changes observed in ECF 270 

glucose are related to task difficulty. The fall in ECF can be prevented by administration of 271 

glucose, which in turn leads to enhanced memory performance(74). There is some evidence 272 

that the concentration of extracellular glucose in the brain after its transfer across the 273 

blood-brain barrier from plasma glucose varies with brain region from 1.3 mmol/l in the 274 

hippocampus to 0.3-0.5 mmol/l in the striatum (for review, see(75)). These findings suggest 275 

that the hippocampal area is particularly sensitive to energy fluctuations. However, the 276 

hippocampus has relatively greater glycogen stores compared to other areas suggesting that 277 

it has evolved some protection against temporary deficits (13 mmol/l compared to 5-6 278 

mmol/l in the cerebral cortex(76). 279 

 280 

Research also shows that difficult tasks are more likely to be susceptible to glycaemic 281 

interventions. Difficult tasks include those involving executive functions pertaining to frontal 282 

brain regions: inhibition/self-control, working memory and mental flexibility(77, 78). Evidence 283 

suggested that tasks that demand such cognitive control and attentional resources appear 284 

to be more energy demanding(59). Consequently, another area of the brain which appears to 285 

be particularly sensitive to energy fluctuations is the frontal cortex. The cerebral cortex, and 286 

in particular the prefrontal cortex, represents the neural basis of higher cognitive functions 287 
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e.g(79, 80). Aspects of higher-level cognition were probably one of the last cognitive abilities to 288 

develop ontogenetically. Based on the “last-in, first-out rule”, cognitive abilities that 289 

developed last ontogenetically are likely the first to become impaired when cognitive and/or 290 

physiological resources are compromised. Consequently, optimal performance on task 291 

pertaining to function of the pre-frontal cortex might require more energetic fuel than 292 

others.  293 

 294 

From an evolutionary perspective, energy mobilization is of particular importance in times 295 

of stress in order to prepare the body for the “fight or flight” response.  Exposure to threats 296 

or stressors results in activation of two major endocrine systems, the hypothalamic-anterior 297 

pituitary-adrenocortical axis (HPA) and the sympatho-adrenomedullary axis (SAM axis). A 298 

major physiological role of activation of both endocrine systems is considered to be a 299 

temporary increase in energy production and more specifically provision of additional 300 

metabolic fuel through increase in glucose availability(81). Liberation of additional metabolic 301 

resources allow the organism to adapt rapidly to such environmental challenges.  302 

 303 

From a memory perspective such endogenous processes could act as relevance moderators 304 

of the “print-now” signal by regulating encoding and synaptic plasticity(82). That is to say 305 

they could moderate memory strength and contribute to memory formation by selectively 306 

promoting the storage of significant events and not trivial ones(83, 84). In terms of its 307 

influence on prefrontal cortex function, these processes could moderate energy supply, 308 

allowing allocation of optimal resources to functions relevant to survival. Administration of 309 

a glucose load might by-pass the above mentioned endocrine activation and the 310 

concomitant increased peripheral and/or central glucose availability could lead to optimal 311 

energy supply.  312 

 313 

Glucose has other important mechanisms of action in the central nervous system, including 314 

interactions with various neurotransmitter systems (e.g. acetylcholine, dopamine, opiates). 315 

There is evidence suggesting that the cognitive facilitation observed after glucose loading is 316 

due to an increase in enhancement of acetylcholine synthesis and/or release (see(26) for 317 

review). However, effects on neurotransmitter systems and energy supply theories are not 318 

mutually exclusive. For example, Peters et al.(85) proposed a model for brain energy supply 319 
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controlled by high-affinity and low-affinity ATP sensitive potassium channels in neocortical 320 

neurons.  According to the model, high-affinity ATP sensitive potassium channels are located 321 

on excitatory neurons, whereas those with low-affinity are located on inhibitory neurons. 322 

Occupancy of these channels changes depending on ATP levels whereby low (but not 323 

critically low) ATP concentration would lead to excitatory glutamatergic neuronal activity, 324 

whereas at high ATP levels a shift towards predominately inhibitory GABA-ergic neuronal 325 

activity occurs(85). Moreover, Sandberg et al(82) described a model of an autoassociative 326 

network with plasticity modulation that produced an inverted U-shaped curve to overall 327 

plasticity similar to the one commonly observed in arousal-performance or glucose dose-328 

response plots. Additional energy availability could result in optimal neuronal activation as 329 

defined by optimal balance of inhibitory and excitatory activity which in turn results in peak 330 

cognitive performance.  331 

 332 

In addition, elevated insulin in response to hyperglycaemia rather than glucose levels per se 333 

may moderate memory performance (see(86) for review). Originally, insulin was considered 334 

only as a peripheral hormone, unable to cross the blood-brain barrier (BBB) and to affect 335 

the central nervous system (CNS). However, there is now increasing evidence that neuronal 336 

glucose metabolism is antagonistically controlled by insulin and cortisol (see(87, 88) for 337 

reviews). Insulin present in adult CNS is primarily derived from pancreatic β-cells and is 338 

transported by CSF into the brain. It is also partially formed in pyramidal neurons, such as 339 

those in the hippocampus, prefrontal cortex, entorhinal cortex and the olfactory bulb, but 340 

not in glial cells(89). The suggestion that glucose administration and/or impairments in 341 

glucoregulatory mechanisms exert the most profound effects on medial temporal regions is 342 

supported by functional characteristics associated with these areas such as high density of 343 

insulin receptors in the hippocampus (e.g. (90, 91)) which are known to promote cellular 344 

glucose uptake (e.g. see (26, 92)). Insulin-sensitive glucose transporters such as GLUT4 (which 345 

mediate passive diffusion of glucose through the blood brain barrier) are also enriched in 346 

the hippocampus (though the highest concentration is in the cerebellum, see(93). Given the 347 

established role of the hippocampus in memory, elevated insulin in response to 348 

hyperglycaemia may boost glucose utilization in the hippocampus and result in improved 349 

performance(94). Indeed, at the molecular level, insulin and/or insulin receptors seem to 350 

contribute to the regulation of learning and memory via the activation of specific signalling 351 

Page 11 of 30

Cambridge University Press

Proceedings of the Nutrition Society



For Peer Review

12 
 

pathways, one of which is shown to be associated with the formation of long-term memory 352 

(for a more detailed account see (95, 96).  353 

 354 

Lastly, glucose might also act via peripheral physiological mechanisms, which in turn 355 

facilitate central mechanisms involved in cognition. It has been suggested that important 356 

players in this peripheral route are the liver and the vagus nerve. Messier and White (97, 98) 357 

suggested that changes in cell membrane transport in the liver following administration of 358 

high doses of glucose and fructose (> 1000mg/kg) are detected by the coeliac ganglion, then 359 

transformed into neural signals and finally carried via the vagus nerve to the brain. In 360 

accordance with this suggestion, coeliac ganglion lesions (which block most of the efferents 361 

of the liver) have been shown to abolish the mnemonic effect of glucose(98). To date there is 362 

no concrete information available concerning how this proposed neural signal from the liver 363 

might influence cognitive performance when it reaches the brain. However, the nucleus of 364 

the solitary tract (NST) in the brain stem is the main relay station for afferent vagal nerve 365 

fibers. This nucleus has widespread projections to numerous areas in the cerebral cortex, 366 

including the hippocampus and the prefrontal cortex and stimulation of the vagus nerve 367 

induces changes in the electrophysiological and metabolic profile of these brain 368 

structures(99). The research is not yet conclusive, but suggests that the underlying 369 

mechanism is multifarious. The most likely scenario is that glucose provides additional 370 

metabolic fuel under high demand conditions and that certain areas of the brain are more 371 

susceptible to limitations in fuel supply, or are evolutionarily programmed to react to an 372 

endogenous rise in plasma glucose levels.  373 

 374 

Glycaemic regulation and cognition  375 

The investigations into the effects of administration of a glucose load have been important 376 

in elucidating the potential underlying mechanisms. Acute administration of a glucose load 377 

has been shown to benefit cognitive performance. This can be advantageous in conditions 378 

where there is a need for fast ‘fuel refill’, for example in situations of stress combined with 379 

physical performance (see e.g.(100)). However, over longer time periods, elevated blood 380 

glucose levels act as an allostatic load to biological system and can accelerate disease 381 

processes. Due to the complex relationship between glucose administration, glucose 382 

metabolism and cognition, inducement of repeated hyperglycaemic conditions would 383 
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eventually result in performance decrements as it affects glycaemic regulation, i.e. the 384 

ability of the body to effectively regulate blood glucose levels and to remove glucose from 385 

the blood. Blood glucose levels of healthy individuals respond to glucose ingestion by rising 386 

for roughly half an hour and then returning to near baseline measures within 2 hours, 387 

whereas in individuals with poor glucose tolerance, blood glucose levels commonly peak 388 

quickly and then fall more slowly.  389 

 390 

Impairments in glucose and insulin regulation lead to increases in plasma glucose levels, but 391 

decreased glucose utilization due to insulin resistance. Given the dependence of the brain 392 

on glucose for optimal functioning and the evidence showing that acute glucose 393 

administration can influence cognitive function it is not surprising that impaired glycaemic 394 

control may contribute to cognitive impairments (see(101) for a review of the literature). 395 

Consequently, in addition to food intake, glycaemic control is another important factor 396 

when considering cognition across the life-span.  Conditions in which glycaemic regulation is 397 

severely compromised are diabetes type 1 and type 2, impaired glucose tolerance (IGT), and 398 

impaired fasting glucose (IFG). Cognitive impairments were indeed one of the earliest 399 

recognized neurological complications associated with diabetes(102). To date, numerous 400 

studies have compared cognitive functioning in diabetic patients with non-diabetic 401 

controls(103). Although these studies differed widely with respect to patient characteristics 402 

(age, duration and type of diabetes) and cognitive tests used, the majority of these studies 403 

demonstrated cognitive impairments in this population which included decreased 404 

performance on various attention and memory tasks(101, 104-107). Risk factors associated with 405 

cognitive complications in diabetes appear to be i) degree of metabolic control(108) and ii) 406 

repeated episodes of hypoglycaemia(109). It is therefore not surprising that in children 407 

diagnosed with Type 1 diabetes before age 10 years, cognitive complications are generally 408 

only observed if they have a history of hypoglycaemic seizures(110). It is evident from the 409 

literature that Type 2 diabetes is the metabolic condition associated with an increased risk 410 

of cognitive dysfunction(111-113). 411 

 412 

However, there is now increasing evidence of a relationship between glycaemic control and 413 

cognitive functions in healthy, non-diabetic populations (see (101, 105) for reviews). As 414 

mentioned earlier, impairments in glucose tolerance become a larger issue in middle age 415 
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and consequently it is likely that the negative cognitive impact of abnormalities in glucose 416 

tolerance increases with age. Cognitive decline over the aging process has been well 417 

documented and it has been suggested that normal aging may represent a condition in 418 

which there is greater vulnerability to disrupted glucose regulation (see for example(58)). 419 

Indeed, evidence to support this hypothesis is provided by the finding that memory 420 

performance in elderly participants with poor glucose regulation is impaired relative to 421 

elderly participants with good glucose regulation(114-116). Moreover, age-related changes in 422 

glucose metabolism have been identified as a risk factor for Alzheimer’s disease (26, 86, 117). 423 

Consistent with this notion is the finding that hyperglycaemia (induced through oral and 424 

intravenous glucose administration) can facilitate memory performance in Alzheimer’s 425 

patients, at least in the early stages of the disease(118). Interestingly, alterations in blood 426 

glucose regulation seem to depend on the severity of the disease process. More specifically, 427 

high insulin levels are observable at the very early (‘very mild’) stages and decline as 428 

dementia progresses. Moreover, memory facilitation can be achieved through glucose 429 

administration in the early stages and the degree of facilitation decreases at more advanced 430 

stages of the disease(94). Indeed, as abnormalities in brain insulin resistance and deficiency 431 

have been observed in Alzheimer’s disease, and the fact that molecular and biochemical 432 

hallmarks of Alzheimer’s disease, such as neuronal loss, synaptic disconnection, tau 433 

hyperphosphorylation, and amyloid-beta accumulation overlap with Type 1 and Type 2 434 

diabetes, the term “Type 3 diabetes” has been suggested to account for the underlying 435 

abnormalities associated with AD-type neurodegeneration(119). 436 

 437 

However, and perhaps more worryingly, performance decrements due to poor glucose 438 

regulation have been reported in younger individuals (see (101, 105) for reviews). For example, 439 

recent studies have shown that even in a healthy young student population those with 440 

better glucose regulation (those who had the smallest blood glucose rise following glucose 441 

ingestion) perform better on tests of memory(35, 49, 105, 120-122), vigilance(49, 120), planning(120) 442 

and dichotic listening(123) compared to those with poorer glucose regulation. In addition, 443 

glucose administration preferentially improved performance in those with poorer glucose 444 

regulation and the effects are less likely to be observed in good glucose regulators in both 445 

old and young populations(26). This would suggest that glucose control or tolerance is 446 

associated with cognition throughout the lifespan. Overall there appears to be some 447 
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evidence that glucoregulation may exert direct effects on cognitive function in that those 448 

with poor glucoregulation may demonstrate mild cognitive deficit compared with good 449 

glucoregulation. However, research in young adults is limited, furthermore the 450 

methodologies for determining glucoregulatory control have been varied. Only a few studies 451 

have used a standardized oral glucose tolerance test (OGTT) for the evaluation of glucose 452 

tolerance in healthy young adults (for example (35, 124)). The OGTT involves administration of 453 

a 75g glucose load after a minimum eight hour fast and is the gold standard test for the 454 

diagnosis of diabetes mellitus (WHO, 1999). Moreover, the majority of studies have only 455 

assessed one specific measurement of glucose tolerance. Several glucoregulatory indices 456 

have been previously evaluated for their relationship with cognitive performance in younger 457 

and older participants. These include: fasting levels, peak glucose levels, recovery and 458 

evoked glucose to baseline levels and incremental area under the curve (AUC) (see(35)). At a 459 

younger age, the deficits associated with poor glucoregulation may be minimal and hard to 460 

detect therefore it is important to identify the most sensitive marker. A study in our 461 

laboratory found AUC, which takes baseline blood glucose levels into account (AUC with 462 

respect to ground; see(125)  463 

 464 

for calculations), to be the best predictor of cognitive performance, whereas the most 465 

commonly used incremental AUC did not show a strong association(35). This suggests that 466 

overall circulating glucose levels may be an important factor in the assessment of 467 

glucoregulation in sub-clinical; populations with normal glucose tolerance as defined by the 468 

World Health Organisation (WHO). Indeed, a recent study identified fasting blood glucose 469 

levels as a predictor for cognitive performance(126). Young adults who were obese but 470 

otherwise healthy had higher fasting glucose levels compared with normal weight 471 

participants. In addition, higher glucose levels were associated with poorer cognitive 472 

performance on tests of inhibitory control, especially among individuals with pre-diabetic 473 

levels. Consequently, subclinical elevations in blood glucose may contribute to cognitive 474 

impairments before the development of clinically defined disease states.  475 

 476 

 477 

The postprandial glycaemic response and cognition 478 
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When considering the nature of glucose availability, the rate at which food increases and 479 

maintains blood glucose, i.e. ‘the Glycaemic Index’ (GI) appears to be an important 480 

modulating factor. Shortly after intake of a high GI food there is a relatively rapid rise in 481 

blood glucose levels followed by a corresponding rapid decrease, whereas after the intake 482 

of a low GI food there is a relatively smaller rise in blood glucose followed by more stable 483 

blood glucose concentration. GI solely provides a measure of carbohydrate quality(127), 484 

whereas glycaemic load (GL) takes into account the amount of carbohydrates consumed and 485 

is calculated by multiplying the amount of available carbohydrate in a food item by the GI of 486 

the food and dividing this by 100(128).  487 

 488 

Although the effect of glucose administration has been extensively studied in an acute, 489 

short-term context, much remains to be done in order to establish the cognitive effects 490 

associated with foods of low or high GI and GL. When looking at effects across the life-span, 491 

children may be particularly sensitive to glycaemic effects on brain activity and associated 492 

cognitive outcomes. As outlined previously, the reason for the greater susceptibility is likely 493 

to be due to greater energetic needs during this period compared to adults (see for 494 

example(16)) Moreover, it has been suggested that in younger children, the overnight fast 495 

induces greater the metabolic stress, as the higher the ratio of brain to liver weight and the 496 

greater the metabolic rate per unit of brain weight, the greater the demand on glycogen 497 

stores(129) Most studies examining the effects of GI on cognition have focused on the effect 498 

of breakfast on children’s cognitive performance. It has been shown that children at risk for 499 

malnourishment have improved cognition and learning at school if provided with breakfast 500 

(see(130) for a review of the literature). Moreover, in developed countries it has been found 501 

that skipping breakfast can result in impaired cognitive performance(130, 131). This suggests 502 

that increased plasma glucose availability due to breakfast consumption leads to better 503 

cognitive performance. Investigating the optimal rate of glucose supply following breakfast 504 

consumption(132), compared a low GI breakfast with a high GI breakfast and found that when 505 

children consumed the low GI food they remembered significantly more than when they ate 506 

the high GI breakfast. Ingwersen et al(133) compared the cognitive effects of a low GI 507 

breakfast and a high GI breakfast across the morning and found that performance on 508 

attention tasks was poorer 130 minutes after the high GI breakfast compared to the low GI 509 

breakfast. Furthermore, the low GI breakfast prevented a decline in memory performance. 510 
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Overall, the results of studies assessing GI in children suggest that a lower postprandial 511 

glycaemic response may be protective against a decline in memory and attention 512 

throughout the morning(132-139). However, the evidence is far from conclusive(140, 141) and few 513 

studies have actually profiled the glycaemic response in children(142).  514 

 515 

From a metabolic perspective, adolescence might also be a time where greater susceptibility 516 

to glycaemic variations is observed due to the specific metabolic conditions observed during 517 

that time of development.  However, few studies have looked at the effects of GI in 518 

adolescent populations and the results are somewhat contradictive. Wesnes et al(134) found 519 

that a low GI breakfast resulted in better memory performance and attention, but the age 520 

range used in this study was quite large (6-16 years). Other studies found performance 521 

benefits following a high GI intervention when assessing memory performance(137, 143) 522 

whereas a low GI intervention proved to be beneficial for measures of 523 

attention/information processing(137). Cooper et al. (2012) found no difference between 524 

high GI and low GI on reaction times, but better performance on an executive function task 525 

following low GI(138).  526 

 527 

In adult populations, the outcome of investigating the effects of GI has also been somewhat 528 

inconsistent. Some show beneficial effects on cognitive performance of low-GI foods(135, 144, 529 
145) whereas others show no such effects (146, 147). Benton et al(136) compared three breakfasts 530 

varying in GL from 2·5 to 17·86 and found that the higher GL foods led to poorer memory 531 

performance. Lamport et al(148) investigated the effects of low GI and high GI evening meals 532 

followed by a high GI standard breakfast on subsequent cognitive performance. Although no 533 

significant differences between evening meals on cognitive performance were observed, the 534 

high GI evening meal was associated with better memory performance the following 535 

morning after breakfast had been consumed. 536 

 537 

To date only a few studies have been carried out into the effect of low GI and GL foods on 538 

glycaemic control and cognition in older adults, or populations with pre-existing metabolic 539 

and/or cognitive impairments. Kaplan et al. (33) found no differences between meals of dif- 540 

ferent GI in performance in elderly adults. Nilsson, Radeborg and Bjork(144) showed that in a 541 
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sample ranging from 49–70 years, performance was better in the late postprandial period 542 

after consumption of a low-GI compared to a high-GI breakfast. In adults with type 2 543 

diabetes consuming a low-GI carbohydrate meal, relative to a high-GI carbohydrate meal, 544 

has been shown to result in better cognitive performance in the postprandial period(149). 545 

However, two other studies by Lamport et al.(148, 150) did not find any benefits following 546 

consumption of a low glycaemic load breakfast. All of these studies investigated the acute 547 

effects of postprandial glycaemic manipulation and it may be the case that for these 548 

populations cognitive effects will only be evident with chronic improvements in glycaemic 549 

control. Indeed, dietary interventions (combined with exercise interventions) have been 550 

shown to result in improved cognitive performance in adults with impaired glucose control 551 

when they were implemented for 12 months(151). 552 

 553 

Overall, it appears that a quick rise in blood glucose levels has some short-term benefits, 554 

most notably on memory performance; whereas over longer periods of time (i.e. 555 

throughout the morning) a more stable blood glucose profile seems to be more beneficial. 556 

In normoglycaemic samples, effects of low GI and/or low GL foods were usually observed in 557 

the late postprandial period (75-222 min) where they seem to prevent a decline in attention 558 

and memory(132, 133, 135). In populations with abnormalities in glucose regulation, benefits of 559 

low GI foods have been reported in particular following longer-term intervention.  560 

 561 

Conclusion  562 

Based on the evidence it is clear that avoiding peaks and troughs in glucose availability is key 563 

to optimal cognitive performance. Administration of a glucose load does not represent a 564 

viable strategy over any prolonged timeframe since consistently elevated blood glucose 565 

leads to insulin resistance. Habitual diets that are rich in refined/simple carbohydrates also 566 

lead to high blood glucose. As described earlier, following ingestion of low GI and/or GL food 567 

there is a relatively smaller rise in blood glucose followed by more stable blood glucose 568 

concentration. Although the evidence to date is promising, there is an urgent need for 569 

hypothesis driven, randomised controlled trials that evaluate the role of different glycaemic 570 

manipulations on cognition. A relatively recent review into the effects of carbohydrates on 571 

cognition in older individuals identified only one study that fulfilled these criteria(152). The 572 

study that was included investigated the acute effects of a glucose drink(153), whereas 573 
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studies investigating more complex carbohydrates were not. Future research comparing the 574 

effects of different types of carbohydrates, with differing glycaemic profiles are clearly 575 

needed. What limits our ability to draw strong conclusions from the findings of previous 576 

studies is the fact that they often differ widely with respect to subject characteristics and 577 

cognitive tests used. Future research needs to carefully consider conceptual and 578 

methodological factors including potential inter-individual differences, adequate selection 579 

of tests and control of extraneous (confounding) variables (for a detailed account of 580 

methodological issues see (154)). 581 

 582 

Moreover, when assessing food items in terms of health benefits and potential dangers, we 583 

need to remember that in a habitual diet (as opposed to some of the experimental 584 

interventions described earlier), carbohydrates are rarely ingested in isolation. Co-ingestion 585 

of other nutrients and nutritional compounds alters the rate of carbohydrate degradation 586 

during digestion and consequently affect regulation of postprandial blood glucose and 587 

insulin levels. For example, a lowering of glycaemic response has been found when purified 588 

extracts of fibre are added to a test food in sufficient quantity (155-158). Moreover, high fibre 589 

diets have been shown to decrease postprandial blood glucose levels(159), improve glycaemic 590 

control in diabetic populations and decrease the risk of Type 2 Diabetes(160, 161). Similarly, 591 

dietary proteins have been found to have positive effects on insulin production in 592 

populations with normal glucose metabolisms as well as type 2 diabetics(162-164). Another 593 

factor that needs to be considered is the amount and the type of fat consumed. Evidence 594 

suggests that the risk of impaired glucose regulation and Type 2 diabetes is associated with 595 

a high trans fatty acid intake and a low poly-unsaturated to saturated fat intake ratio(165). 596 

There are reports stating that saturated and trans fatty acids increase insulin resistance, 597 

whereas poly-unsaturated fats decrease resistance and offer protection against disease 598 

(see(166)). Consequently, diets high in saturated fats or trans fats should be avoided as they 599 

are likely to interfere with glucose tolerance and insulin sensitivity. 600 

 601 

In conclusion, a habitual diet that secures optimal glucose delivery to the brain in the fed 602 

and fasting states should be most advantageous for the maintenance of cognitive function. 603 

This can be achieved by adhering to a low saturated fat and low glycaemic load diet–604 

especially when combined with sufficient physical exercise, which has also been shown to 605 
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significantly reduce the risk of developing impairments in glucose metabolism (see for 606 

example(167)). This combination of diet and exercise has been demonstrated to have 607 

cognitive and metabolic benefits (improved glucose and insulin metabolism) in adults with 608 

impaired glucose tolerance(151). Dietary lifestyle changes can have a positive impact 609 

throughout the lifespan and appear to not only reduce the risk of acquiring cognitive 610 

impairments, but can also attenuate existing impairments. For example, a recent study 611 

showed that a 4-week low-saturated fat/low-glycaemic index diet resulted in improved 612 

memory performance and insulin metabolism in adults with amnestic mild cognitive 613 

impairment(168).  614 

 615 

The rise in obesity, diabetes and metabolic syndrome in recent years highlights the need for 616 

targeted dietary and lifestyle strategies to promote healthy lifestyle and brain function 617 

across the lifespan and for future generations. The data indicate that modifiable lifestyle 618 

factors and most notably dietary changes may contribute significantly to optimal cognition 619 

across the lifespan. Consequently, the therapeutic effects of longer-term dietary 620 

intervention may be a promising avenue of exploration. Lifestyle changes are difficult to 621 

execute and to maintain, but present an exciting potential for optimizing cognitive 622 

performance across the lifespan.   623 

 624 

 625 
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Figure 1: Nutrition and cognition: potential for optimizing cognitive performance across the 
lifespan 
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