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Imperfect Inspection of a System With Unrevealed
Failure and an Unrevealed Defective State

Cristiano A. V. Cavalcante, Philip A. Scarf , and M. D. Berrade

Abstract—This paper proposes a model of inspection of a pro-
tection system in which the inspection outcome provides imperfect
information of the state of the system. The system itself is required
to operate on demand typically in emergency situations. The pur-
pose of inspection is to determine the functional state of the system
and consequently whether the system requires replacement. The
system state is modeled using the delay time concept in which the
failed state is preceded by a defective state. Imperfect inspection
is quantified by a set of probabilities that relate the system state
to the outcome of the inspection. The paper studies the effect of
these probabilities on the efficacy of inspection. The analysis indi-
cates that preventive replacement mitigates low-quality inspection
and that inspection is cost-effective provided the imperfect inspec-
tion probabilities are not too large. Some derivative policies in
which replacement is “postponed” following a positive inspection
are also studied. An isolation valve in a utility network motivates the
modeling.

Index Terms—Delay-time model, preventive maintenance,
protection system, quality of service, replacement.

NOTATION

T, T∗ Inspection interval (a decision variable) and its
optimum value.

M, M∗ Number of inspections until preventive replacement
(a decision variable) and its optimum value.

X System age at defect arrival with s-density,
s-distribution, and reliability functions fX , FX , F̄X .

Y Delay-time from defect arrival to subsequent failure
(time in defective state) with s-density, s-distribution,
and reliability functions fY , FY , F̄Y .

G, D, F System states: good, defective, failed, respectively.
P, N Inspection outcomes: positive, negative.
α Imperfect inspection probability Pr(P|G).
β1 Imperfect inspection probability Pr(N|D).
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β2 Imperfect inspection probability Pr(N|F).
λ Mean of exponential delay-time distribution.
γ Characteristic life parameter of Weibull defect arrival

distribution.
δ Shape parameter of Weibull defect arrival distribution.
cI Cost of an inspection.
cR Cost of a replacement.
cF Downtime cost-rate.
U Cost of a renewal cycle.
W Downtime in a renewal cycle.
V Length of a renewal cycle.
Q Long-run total cost per unit time, cost-rate (objective

function).

I. INTRODUCTION

THIS PAPER studies a protection or preparedness system
subject to imperfect inspection. This system is required

to operate on demand typically in emergency situations. Such
protection systems include military defense systems, medical
equipment (e.g., defibrillators), automobile airbags, isolation
valves, fire suppressors and alarms, secondary power supplies,
and flood defenses. The Thames barrier [1] is an example of
the latter. If this system fails to operate when the water level of
the river is predicted to flood London, then estimates of the cost
of such a failure are tens of billions of pounds. These systems
are inspected or tested on a regular basis to determine their
functional state. Thus, isolation valves are closed and opened,
cold-standby pumps are started, and the Thames barrier is raised.
Such “inspections” incur significant costs. Therefore, system
owners wish to know how often inspections should be performed
and whether inspection is effective.

In the proposed model, inspection is imperfect, so that the
true functional state of the system cannot be known with cer-
tainty. The efficacy of inspection is then suspect, and there may
exist circumstances in which inspection is not sufficiently ef-
fective to be economically justified. Such imperfect testing has
been considered for critical systems [2]–[4] and for protection
systems [5], [6]. These latter works are extended in this paper
by supposing that a protection system is subject to a three-
state failure process and inspection is imperfect. In the three-
state failure process, a failure is preceded by the defective state
and sojourns in the good and defective states are random vari-
ables [7], [8]. This is the delay-time concept, developed initially
by Christer [9], and later extended by many others for pro-
tection systems [3], [6]–[8], [10], [11] and for critical systems
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[12]–[17]. The sojourn in defective state is the delay-time. For
a critical system, failure is self-announcing and the object of
inspection is failure prevention. For a protection system, failure
is not self-announcing and the object of inspection is to reveal
the functional state of the system—that is, to determine whether
the protection system will operate in the event of a demand for
its function.

Others have extended the delay-time concept to critical sys-
tems with minor and major defect states, to model real systems
more closely. However, imperfect inspection is modeled in a
more restrictive way than we consider here in this paper. In [18]
and [19], the minor-defect state may be missed at an inspection,
whereas here in this paper, inspection may misclassify both the
defective and the failed states, albeit with lower probabilities in
the latter case. In [20], inspection is perfect but replacements
may be delayed. This is a different idea.

The possibility of the defective state itself can explain inspec-
tion errors. For example, an isolation valve [10] that is either
good or failed may be clearly indicated as such on inspection, but
one that is defective may be more difficult to correctly classify
as operational. This issue also arises in medical screening tests,
whereby early disease stages are undetectable and the screening
error-rate decreases as the disease develops [21]. Furthermore,
degradation may be more likely to be overlooked in its early
stages than in more advanced stages. This may be the result
of perception of a maintainer that low degradation implies an
insignificant risk of failure. Of course, in reality, better testing-
systems may provide better information about the states of sys-
tems and sub-systems. Nonetheless, it is important to study, in
an idealized situation (the model), the effect of imperfect in-
spection upon the efficacy and efficiency of protection systems
with a defective state. This can inform maintenance policy and
decision making for real systems [22], in order to mitigate the
serious consequences of an unmet demand. The approach taken
in the paper is related to the notion of quality of maintenance
[23], and there is a growing literature concerned with mistakes of
perception [24], [25], demonstrating increasing concern about
human influence on the performance of a system.

The proposed model supposes that the outcome of an inspec-
tion provides imperfect information about the true condition
(state) of the protection system. The protection system is sub-
ject to periodic inspection and the outcome of the inspection
determines whether the system is replaced. The cost-rate (long-
run total cost per unit time of maintenance and downtime due to
failure) and availability of the protection system are determined.
The paper then studies the effect of the model parameters on the
behavior of these criteria. The paper also proposes a further
policy in which the maintainer postpones action (replacement)
either until a succession of positive inspections has occurred or
for a fixed time period, in order to quantify the consequences of
postponement. An isolation valve in a utility network motivates
the numerical example that is described.

In the next section, the model of the principal policy is
specified and expressions for the cost-rate and the availabil-
ity are developed. Then, the numerical example and study the
policy behavior are presented. Postponement-type policies are
then described in a similar fashion. The paper finishes with

TABLE I
IMPERFECT INSPECTION PROBABILITIES

conclusions: a summary of findings and a discussion of limita-
tions, potential developments, and implications for the manage-
ment of maintenance.

II. MODEL

A. Model Specification

In what follows, the system is a single, nonrepairable com-
ponent in a socket that performs an operational function [26] on
demand.

This system deteriorates over time but also may be subject to
external shocks (e.g., a dredger crashed into a pier of the Thames
barrier, sank, and damaged a gate, and the flood defense system
was not operational for a period). The failure process is modeled
using the delay-time model [9], [27], whereby the system may
be in one of three states: good (G), defective (D), and failed (F).
Times in the good and the defective states are random variables
that are themselves mutually s-independent.

It is assumed that
1) the system will operate on demand if it is in state G or

D, but not if it is in state F;
2) inspections are scheduled at system ages kT , k =

1, . . . ,M , and replacement is scheduled at system age
MT regardless of the system state at MT ;

3) the purpose of inspection is to determine if the system
will operate in the event of a demand;

4) an inspection outcome is either positive P (the inspection
test indicates the system would not operate on demand),
or negative N (the inspection test indicates the system
would operate on demand);

5) the inspection outcome is related to the system state
through the probabilities specified in Table I;

6) if the inspection outcome is P, then the system is replaced,
and if it is N, the system is not replaced;

7) replacement and renewal are synonymous;
8) the times taken to carry out inspection and replacement

are negligible;
9) when the system is in state F, a downtime penalty cost

with rate cF is incurred; this in a sense is what the
decision-maker is prepared to pay per unit of time to
prevent the consequences of the event against which the
system provides protection [28], [29];

10) the cost of an inspection is cI and the cost of a
replacement is cR .

Notice that assumptions 3), 4), and 6) imply that the out-
come of inspection effectively determines whether the system
is replaced. Assumption 5) implies that inspection does not
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determine the system state. An inspection outcome that classi-
fies system state (as G, D, or F), albeit with imprecision, leads
to a different model that is not studied in this paper.

Inspection alone cannot guarantee high availability of the
system because inspection is imperfect, and the extent of the
imperfection (and the cost) will determine whether inspection
is effective. Consequently, the purpose of the model is to analyze
circumstances in which inspection is effective, when M ∗ > 1,
and in which it is not, when M ∗ = 1.

Inspection models in the literature are broadly of two types.
The first type models the idea that inspection of a hot-system (or
critical system) reveals a state that precedes failure. This is the
delay-time model [9], [27]. The purpose of this model is to plan
inspections. The second type models the idea that inspection
reveals the functional state of a cold-system (a protection system
with unrevealed failure) [28], [29]. The purpose is the same:
to plan inspections. For inspection models of the first type,
imperfect testing has been modeled in [30] and [31]. There, the
inspection outcome may misclassify the underlying state of the
system. For inspection models of the second type, imperfect
inspection has also been studied [5], [6], [32]–[34], and again
therein inspection may misclassify the system state. This paper
conflates these types: the system in the model is a protection
system (cold-system) that can be in a defective state. Thus, the
novelty of the approach is to model imperfect inspection of a
system with unrevealed failure and an unrevealed defective state,
and to do so by stochastically relating the inspection outcome
to the unobserved state of the (degrading) system.

The model is motivated by an isolation valve in a network
used to transport a dangerous product. The valve is a protection
system that is required to operate on demand. For example, the
valve is normally open and in the event of damage to a part
of the network, shutting the valve isolates the damaged part of
the network and prevents contamination of the environment by
the product. Such isolation valves deteriorate with age and are
inspected, and replacement of a failed valve is important.

Inspection corresponds to shutting the valve and measuring
the downstream flow-rate R. The inspection outcome is regarded
as positive if R > rP , and negative otherwise. In the good state
G, the actual flow rate through the shut valve (leakage) is small
(e.g., <0.1% of normal flow). In the defective state D, the leak-
age is moderate, and in the failed state F, the leakage is large (e.g.,
>2% of normal flow). The measured flow-rate R through the shut
valve may be related to leakage (and hence the state of the valve)
by the imperfect inspection probabilities Pr(R > rP |G) = α,
Pr(R ≤ rP |D) = β1 , and Pr(R ≤ rP |F) = β2 . Error in the
measurement of R underlies the imperfection of inspection. This
example illustrates two points in the model. First, the inspec-
tion outcome and the system state are stochastically related.
Second, it is natural that β1 > β2 (although this is not a re-
quirement of the model), since the measured flow rate is less
likely to be small when the leakage is large than when it is
moderate. Thus, the valve may fail the inspection test (test pos-
itive) when it is defective, but it is less likely to do so than
when it is failed. To the knowledge of the authors, these two
types of false negative probabilities β1 and β2 , which relate
inspection outcome to the underlying state of a system with

unrevealed failure, have been not previously modeled in the
literature.

This inspection process has similarities to destructive testing
[35], whereby the destructive testing of an item provides im-
perfect information about the state other stochastically identical
items.

In a special case, one might suppose β2 = 0, so that when the
system is failed, the test reveals the true operational state, and
that when the system is defective, the inspection does not.

If instead the inspection outcome can be G, D, or F (imper-
fectly), then other models may be considered. A maintainer may
wish to take an action that follows a D (inspection says the com-
ponent is defective) that is different to the action that follows an
F (inspection says the component is failed).

Thus, suppose the system is inspected at some time kT , and
the outcome is D. Then, the decision-maker may wish to take
immediate action or to postpone action until new information
or an opportunity (see [31] and the references therein) becomes
available. Given α > 0, this D may be a false positive, and given
that the system can perform its operational function when defec-
tive anyway, the action might be not to replace but to inspect at
(k + 1)T . However, this is a different model to the one studied
here. Nonetheless, there may exist circumstances in which the
maintainer does not take immediate action following a positive
inspection, either deferring a decision to the next inspection,
say, or postponing replacement. Policies that postpone action
are the subject of Section IV.

B. Development of the Cost-Rate

Consider then the policy introduced in Section II.A: schedule
inspections at ages kT , (k = 1, . . . ,M), and replace the system
if an inspection outcome is P. If the system reaches age MT , re-
place the system regardless of whether the inspection outcome is
P or N; this is a preventive replacement. The cost-rate Q(M,T )
is derived so that the cost-optimal policy (M ∗, T ∗) may be de-
termined. Also, the properties of Q(M,T ) and (M ∗, T ∗) with
respect to the parameters, most notably the inspection parame-
ters, may be studied.

Let K be the number of inspections until renewal.
Now, Pr(K = 1) depends on whether M = 1 or M > 1. If

M = 1, then Pr(K = 1) = 1 because renewal must occur at
time T. When M > 1, it follows that

Pr(K = 1) = (1 − β2)
∫ T

0
FY (T − x)fX (x)dx

+ (1 − β1)
∫ T

0
F̄Y (T − x)fX (x)dx+αF̄X (T ). (1)

The first term is the probability of failure before T and the
outcome of inspection is P given the system is failed (this is the
(1 − β2) in the term). The second term is the probability that
a defect arises before T, does not fail by T, and the outcome of
inspection is P given the system is defective (this is the (1 − β1)
in the term). The third term is the probability of no defect by
T and the outcome of inspection is P given the system is good
(this is the α in the term). The events corresponding to three
terms are pictorially represented in Fig. 1.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON RELIABILITY

Fig. 1. Possible system states at first inspection. ◦ Defect arrival. • Failure.
• Failure prevented by inspection.

Fig. 2. Possible system states at second inspection given no replacement at
first inspection.

Thus, there is a careful distinction between the inspection
outcome and the system state. The system state is unknown
and unobserved. The inspection outcome is not an observation
of the system state. If inspection is N for example, the system
state remains unknown. Only a demand for the operation of the
system can reveal the state of the system. But, in the model, there
are no demands. Instead, a cost is incurred for the time that the
system is F. It is not known for how long the system is in state
F. But, the expectation of this quantity is known, conditional on
renewal at a particular inspection.

Thus, for example, if on inspection a flood barrier rises, then
the inspection outcome is N. But that does not mean that the
state of the barrier is G (or even G or D). It could be F, because in
the event of a real demand the barrier may not operate, perhaps
because the conditions of the test and the conditions of the
demand event (flood) are different. An inspection arguably can
never reproduce exactly the conditions that exist at the time
of a real demand (cf. fire safety drills). If it did, then α =
β1 = β2 = 0. For the case of the barrier, one would hope that
these inspection error probabilities are very close to zero. At
Fukushima [36], protection systems (to supply power in the
event of a flood) would have been tested on a regular basis
and would have been found to be operational. If not, the plant
would have been shut down. Nonetheless, when the ultimate
flood occurred, there was no power from any system available
to shut down the reactors.

Consider now K = 2.
When M > 2, Fig. 2 shows six cases, or more precisely three

sets of cases (system in failed state at 2T , system in defective

Fig. 3. Replacement at second inspection, considering events arising in the
first inspection.

state at 2T , and system in good state at 2T ). In the first set (that
the system is in the failed state at 2T ), the defect can arise either
in the first inspection interval or the second and the failure in the
same inspection interval or if possible the subsequent, and in
the second set, the defect can arise either in the first inspection
interval or the second.

Thus,

Pr(K = 2,M > 2) = β2(1 − β2)
∫ T

0
FY (T − x)fX (x)dx

+ β1(1 − β2)
∫ T

0
{FY (2T − x) − FY (T − x)}fX (x)dx

+ (1 − α)(1 − β2)
∫ 2T

T

FY (2T − x)fX (x)dx

+ β1(1 − β1)
∫ T

0
F̄Y (2T − x)fX (x)dx

+ (1 − α)(1 − β1)
∫ 2T

T

F̄Y (2T − x)fX (x)dx

+ α(1 − α)F̄X (2T ). (2)

When M = 2, K = 2 if an only if the system is not renewed
at the first inspection. Therefore only events in the first interval
(see Fig. 3) are of concern and the first inspection is itself N|F
(with probability β2) or N|D (with probability β1) or N|G (with
probability 1 − α).

Thus,

Pr(K = 2,M = 2) = β2

∫ T

0
FY (T − x)fX (x)dx

+ β1

∫ T

0
F̄Y (T − x)fX (x)dx + (1 − α)F̄X (T ). (3)

Proceeding to the general case K = k, for M > k there are
the following three cases again:

1) the system is in the failed state at kT , and the defect arose
in any interval i = 1, . . . , k and the consequent failure in
any interval j = i, . . . , k, and the inspection is P|F;

2) the system is in the defective state at kT , and the defect
arose in any interval i = 1, . . . , k, and the inspection is
P|D;

3) the system is in the good state at kT and the inspection
is P.
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Thus, for k = 2, . . . ,M − 1 (M > 2), it follows that

Pr(K = k)

=(1 − β2)
k∑

i=1

(1 − α)i−1βk−i
2

∫ iT

(i−1)T
FY (iT − x)fX (x)dx

+ (1 − β2)
k−1∑
i=1

k∑
j=i+1

(1 − α)i−1βj−i
1 βk−j

2

×
{∫ iT

(i−1)T
{FY (jT − x) − FY ((j − 1)T − x)}fX (x)dx

}

+ (1 − β1)
k∑

i=1

(1 − α)i−1βk−i
1

∫ iT

(i−1)T
F̄Y (kT − x)fX (x)dx

+ α(1 − α)k−1 F̄X (kT ). (4)

In this expression, the first two terms correspond to the case
in which the system is in the failed state at kT . The first of
these terms corresponds to the defect arising in the ith inspec-
tion interval and the failure occurring in the same interval, with
this failure being undetected until kT (this is the factor βk−i

2 ).
The second term corresponds to the defect arising in the ith
inspection interval and the failure occurring in a later interval,
with imperfect inspections, N|D, occurring at the intervening
inspections (this is the factor βj−i

1 ) and the failure being unde-
tected until kT (this is the factor βk−j

2 ). In both terms, the factor
(1 − α)i−1 is the probability of N|G at each inspection prior
to the defect arrival, and this must be the case, otherwise the
system would have been renewed earlier. The third term corre-
sponds to the second case in the bullets above and the last term
to the third case.

For k = M (M > 2), noting that replacement occurs at MT
regardless of whether the inspection outcome is P or N, it follows
that

Pr(K = M)

=
M −1∑
i=1

(1 − α)i−1βM −i
2

∫ iT

(i−1)T
FY (iT − x)fX (x)dx

+
M −2∑
i=1

M −1∑
j=i+1

(1 − α)i−1βj−i
1 βM −j

2

×
{∫ iT

(i−1)T
{FY (jT − x) − FY ((j − 1)T − x)}fX (x)dx

}

+
M −1∑
i=1

(1 − α)i−1βM −i
1

∫ iT

(i−1)T
F̄Y ((M − 1)T − x)fX (x)dx

+ (1 − α)M −1 F̄X ((M − 1)T ).

The first term in this expression corresponds to the case when
a defect arises in the ith inspection interval and causes a failure
in the same interval and all subsequent inspections at least as
far as the M−1th are negative. The second term (double sum)
corresponds to a defect arising in the ith inspection interval and

causing a failure in a later interval but no later than the M−1th
and all subsequent inspections at least as far as the M−1th are
negative. The third term corresponds to a defect arising in the
ith inspection interval and no failure occurring until at least
the M−1th inspection. Notice further if β1 = β2 = 0 in this
expression, then immediately this reduces to

Pr(K = M) = (1 − α)M −1 F̄X ((M − 1)T )

as required because in this case, for renewal to occur at MT ,
the first M − 1 inspections must each be N|G and no defect can
have arisen by (M − 1)T .

Then, letting VM be the length of a renewal cycle, it follows
that

E(VM ) =
M∑

k=1

kT Pr(K = k).

The calculation of the costs and the cost of a renewal cycle
UM proceeds as follows.

First, denote the downtime in a cycle by W. Then, note care-
fully that downtime occurs if and only if the system fails, and
that failures are not self-announcing and the true system state is
observed neither at failures nor at inspections. In reality, failure
is only observed at external demands for the system function that
occur when the system is failed. However, the model consid-
ers these demands only in the standard way [28], [29] through
a downtime cost-rate that is equivalent to the notion that de-
mands arise according to a Poisson process with a fixed rate and
severity.

Define the event Fk that the system fails and the system is
renewed at kT . Then, when Fk occurs, the downtime is

Wk = kT − X − Y.

Let Ik be an indicator function for the event Fk . Observe
that Ik = 1 if and only if Ij = 0 j �= k = 1, . . . ,M . It therefore
follows that

W =
M∑

k=1

Wk × Ik .

Therefore,

E(W ) =
M∑

k=1

E(Wk × Ik )

and for k = 1 (M > 1)

E(W1 × I1)

= (1 − β2)
∫ T

0

∫ T −x

0
(T − x − y)fY (y)fX (x)dy dx

(5a)

and for M = 1

E(W1 × I1) =
∫ T

0

∫ T −x

0
(T − x − y)fY (y)fX (x)dy dx

and for k = 2, . . . , M − 1 (M > 2)
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Fig. 4. Some cases that illustrate the calculation of the downtime.

E(Wk × Ik ) = (1 − β2)
k∑

i=1

(1 − α)i−1βk−i
2

×
{∫ iT

(i−1)T

∫ iT −x

0
(kT − x − y)fY (y)fX (x)dydx

}

+ (1 − β2)
k−1∑
i=1

k∑
j=i+1

(1 − α)i−1βj−i
1 βk−j

2

×
{∫ iT

(i−1)T

∫ jT −x

(j−1)T −x

(kT − x − y)fY (y)fX (x)dydx

}

(5b)

and for k = M (M > 1)

E(WM × IM ) =
M∑
i=1

(1 − α)i−1βM −i
2

×
{∫ iT

(i−1)T

∫ iT −x

0
(MT − x − y)fY (y)fX (x)dydx

}

+
M −1∑
i=1

M∑
j=i+1

(1 − α)i−1βj−i
1 βM −j

2

×
{∫ iT

(i−1)T

∫ jT −x

(j−1)T −x

(MT − x − y)fY (y)fX (x)dydx

}
.

Explaining these expressions a little, in the formula for
E(Wk × Ik ), for k = 2, . . . ,M − 1 (M > 2), for example, two
terms can be distinguished. In the first term, the defect and the
consequent failure arise in the same interval, and the preceding
inspections are each N|G with probability (1 − α)i−1 , and the
subsequent inspections are N|F with probability βk−i

2 , and the
ultimate inspection, where renewal occurs, is P|Fwith probabil-
ity (1 − β2). In the second term, the defect and the consequent
failure arise in the different intervals and the intervening in-
spections are each N|D with probability βj−i

1 . Some cases are
illustrated for k = 1, 2, 3 (M > 3) in Fig. 4.

When M = 1, and downtime occurs, the defect and the failure
arise in the first and only interval, there are no inspections, and
so no inspection related probabilities.

When k = 1 (M > 1), and downtime occurs, then the failure
must have occurred in the first interval and the first inspection
must be P|F.

The expected cost of a renewal cycle is the sum of the cost
of inspections, the cost of downtime, and the cost of renewal
(which itself occurs with probability 1), so that

E(UM ) = cI

M −1∑
k=1

k Pr(K = k)

+ (M − 1)cI Pr(K = M) + cFE(W ) + cR , (M > 1)

E(UM ) = cFE(W ) + cR (M = 1).

Further notice that the model arbitrarily chooses not to incur
the inspection cost at MT . The rationale for this or otherwise has
been discussed at length in [5]. The abovementioned formulae
are altered in a small way if it is assumed otherwise

E(UM ) = cI

M∑
k=1

k Pr(K = k) + cFE(W ) + cR , (M > 1)

E(UM ) = cI + cFE(W ) + cR , (M = 1).

Finally, the long-run cost per unit time or cost-rate by the
renewal–reward theorem [37] is Q(M,T ) = E(UM )/E(VM ),
and the availability is A(M,T ) = 1 − E(W )/(T × E(K)).

When M is not finite (pure inspection policy), the expected
cost per cycle and the expected cycle length are

E(U∞) = cI

∞∑
k=1

k Pr(K = k) + cFE(W∞) + cR

E(V∞) =
∞∑

k=1

kT Pr(K = k)

where

E(W∞) =
∞∑

k=1

E(Wk × Ik )

with the respective terms given in (5a) and (5b) and Pr(K = k)
in (4), and the cost-rate is Q(∞, T ) = E(U∞)/E(V∞) and the
availability is A(∞, T ) = 1 − E(W∞)/(T × E(K)).

Notice that E(U∞) = limM →∞E(UM ) and E(V∞) =
limM →∞E(VM ). Therefore, the pure inspection policy appears
as a special case of the policy with preventive replacement when
M → ∞.

III. NUMERICAL EXAMPLE

In this paper, the unit of cost is set equal to the cost of a re-
placement, so that cR = 1. The inspection cost and the downtime
cost-rate are specified as cI = 0.05 and cF = 5, respectively. For
the isolation valve example discussed in Section I, suppose that
the demand rate is 0.1 per year (one loss of product every ten
years) and the cost of a contamination event is $100 000. Then,
the cost-rate of unmet demands is $10 000 per year. This in turn
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TABLE II
RESULTS

suggests a cost of renewal (of the valve mechanism) of $2000
and an inspection cost of $100.

The time until a defect occurs is assumed to have a Weibull
distribution; thus, F̄X = exp{−(x/γ)δ}, with characteristic life
γ = 10 in an arbitrary time unit and shape δ = 3 (noting that
the valve-mechanism life of 10 years would seem reasonable).

The delay-time is assumed to be exponential, F̄Y =
exp(−x/λ), with mean λ = 1. This assumption is considered
for the numerical results but is not a restriction of the model.

Inspection parameters are set to 0.2 = β1 > β2 = 0.1 and
α = 0.1.

This set of parameters values is called the base case.
Table II presents the cost-optimal policy for this base case (case
2, shaded) and for other cases in which parameter values are
varied. The (M,T ) policy is considered along with two special
cases, M = 1 (no inspection and thus age-based replacement)
and M = ∞ (pure inspection).

First, it can be seen that as δ decreases, inspections become
more frequent to compensate for the greater variance in the time
to defect arrival, to the extent that when δ is the smallest, pure
inspection is near cost-optimal, and when δ is the largest, age-
based replacement is cost-optimal. Here, the cost-rate increases
by 42% and the availability decreases accordingly. In addition,
Fig. 5 shows that in early life (x < 7) the hazard rate of a defect
arrival decreases with δ. The reverse is true in later life. Thus, the
optimum inspection interval appears to be adapted to the initial
behavior of the hazard rate, a point noted in [38] that proposes
a two-phase inspection policy that has lower costs and greater
availability than the single-phase inspection policy. An exten-
sion of the (M, T) policy to a two-phase policy (M1 , T1 ,M2 , T2)
could be analyzed in a further study.

When M is finite and α, β1 , or β2 increases, then T∗ increases.
However, the corresponding M∗ decreases and so does M∗T∗.
Thus, inspection is relaxed due to its decreasing quality, but this
is mitigated by earlier preventive maintenance. When the pure

Fig. 5. Hazard rate of the Weibull distribution of defect arrival γ = 10 for
δ = 2 (solid line), δ = 3 (dotted line), and δ = 5 (dashed line).

inspection policy is considered (M = ∞), the same behavior
with α is observed but the situation is just the opposite (T∗

decreases) when β1 or β2 increases. In this case, because there
is no preventive maintenance, more frequent inspection is the
best means to avoid defects or failures that remain undetected
due to low quality inspections.

In both the (M, T) policy and the pure inspection policy,
availability decreases as α or β2 increases. The availability of
the pure inspection policy decreases as β1 increases across its
entire range, but the availability of the (M,T) policy increases
initially with β1 but is insensitive to further increase. The pure
replacement policy is by definition insensitive to the imperfect
inspection parameters because there is no inspection.

The (M,T ) policy is cost-optimal over the range of values
of the mean delay-time λ considered, and T increases with in-
creasing λ and M does not vary with λ.

Second, comparing case 6 to case 2, it can be seen that the
marginal increased cost of imperfect inspection is 26%. Reduc-
tion in Pr(P|G) offers the greatest cost-benefit (the reduction
in Q∗ relative to case 2 is smaller in case 11 than in case
7 or 9). This also benefits availability. Thus, to increase the
availability of protection, one should perform more inspections
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but only if they do not report positives when the system is D
or F.

Finally, inspection is cost-effective for a range of inspection
costs (cases 13, 2, and 14), and the superiority of the (M,T )
policy increases with increasing downtime cost-rate cF (cases
15, 2, and 16). The percentage increased cost of age-based re-
placement over the optimal policy is 6.5%, 7.5%, and 8.4% as
cF increases from 2.5 to 5 and to 10, and correspondingly 7.4%,
9.0%, and 11.0% for pure inspection. Further, it can be seen that
as cF increases, the age limit for replacement decreases (7.6 to
6.4 and to 6.0 years), and inspection becomes more frequent. A
consequence of this increasing frequency of maintenance is that
the availability increases substantially (from 0.980 to 0.989 and
to 0.994).

As cI increases, inspection is less frequent and the availability
decreases marginally. This is the opposite behavior to when cF
increases, whereby the inspection frequency and the availability
both increase. As the inspection interval decreases, so does the
downtime as defects and failures are more likely to be detected.

IV. OTHER INSPECTION MODELS

A. Repeated Inspection

If inspections are frequent and the mean delay-time is large,
then one might react to the first positive inspection by postponing
a replacement decision until the subsequent inspection. A sen-
sible policy might then be to inspect at times kT , k = 1, 2, . . .,
and replace the system when the Lth consecutive inspection is
positive.

However, difficulties with calculations arise because runs of
positive inspections less than length L may precede the final
renewal triggered by L consecutive positive inspections. Then, it
is necessary to consider the type 1 binomial distribution of order
l [39] (the number of occurrences of l consecutive successes in
a Bernoulli process). This allows one to determine Pr(Z =
0) for a finite Bernoulli sequence of length n, X1 , . . . , Xn ,
with Pr(Xi = 1) = pand moving product of length L, Zi =∏L−1

j=0 Xi+j , and sum Z =
∑n−L+1

i=1 Zi (i.e., in a finite Bernoulli
sequence the probability that there is no run of 1 s of length L).
This distribution has been used in reliability [40], [41].

Nonetheless, there is the further added problem that if a defect
arises in the ith inspection interval, then there arises a Bernoulli
sequence in which p changes part way through. Setting β1 =
β2 = 0 avoids this difficulty, but this is not pursued.

B. Repeated Inspection α = 0

The combinatorial problem simplifies when α = 0 and when
the policy replaces the system after the occurrence of L positive
inspections that are not necessarily consecutive. This policy is
now investigated for the imperfect inspection parameters defined
in Table III.

In reality, it may make sense that α = 0 because the recog-
nition of faults (defects or failures) when they are present is
arguably a more important issue than the contrary, because a
false negative (potentially an unmet demand) may have much
greater consequence than a false positive (replacement of a good
valve).

TABLE III
IMPERFECT INSPECTION PROBABILITIES

The formulae that follow are valid for L > 1. If L = 1, then
one uses the formulae in Section II.B with α = 0.

For further simplicity, the model supposes that preventive
replacement is not scheduled, so that M = ∞.

Let K be the number of inspections until renewal as before.
For the (L, T ) policy, K = L,L + 1, L + 2, . . . and

Pr(K = L) = (1 − β2)L

∫ T

0
FY (T − x)fX (x)dx

+
L∑

j=2

(1 − β1)
j−1(1 − β2)

L−j+1

×
∫ T

0

(∫ jT −x

(j−1)T −x

fY (y)dy

)
fX (x)dx

+ (1 − β1)L

∫ T

0
F̄Y (LT − x)fX (x)dx.

This is because when K = L, the defect must arise in the first
interval. Then, the first term corresponds to the defect and the
failure arising in the first interval and the following inspections
are all positive (with probability (1 − β2)L ). The second term
corresponds to the failure arising in the second or third, . . . , or
Lth interval (hence the summation with these limits). Inspections
that precede the failure are P with probability 1 − β1 in each
case; inspections that follow the failure are P with probability
1 − β2 . The final term corresponds to no failure arising before
LT and each inspection is therefore N|D.

Consider now the remaining cases. When K = L + k, k =
1, 2, . . ., a defect cannot arise later than in the interval (kT, (k +
1)T ). Otherwise, renewal would occur before (L + k)T . (For
example, if L = 2 and there are five inspections (k = 3), a
defect cannot appear later than 4T.) The following formula
distinguishes various cases:

Pr(K = L + k) =
k+1∑
i=1

(
L + k − i

L − 1

)
(1 − β2)Lβk−i+1

2

×
∫ iT

(i−1)T
FY (iT − x)fX (x)dx

+
k+1∑
i=1

k+L−1∑
j=i

s∑
m=t

(
j − i + 1

m

)
(1 − β1)

m βj−i+1−m
1

×
(

L + k − j − 1

L − m − 1

)
βr

2 (1 − β2)L−m
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×
∫ iT

(i−1)T

∫ (j+1)T −x

jT −x

fY (y)dyfX (x)dx

+
k+1∑
i=1

(
L + k − i

L − 1

)
βk−i+1

1 (1 − β1)L

×
∫ iT

(i−1)T
F̄Y ((L + k)T − x)fX (x)dx

with s = min{L − 1, j − i + 1}, t = max{0, j − k}, and r =
max{0, k − j + m}.

The first summation in this expression corresponds to the case
in which defect and failure occur in the same interval. If so, a
defect cannot occur later than in (kT, (k + 1)T ). In the second
summation, defect and failure occur in different intervals and
a defect cannot occur later than in (kT, (k + 1)T ). The third
summation considers the case when a defect occurs but there is
no failure.

The expected number of inspections is given by

E(K) = L +
∞∑

k=1

k Pr(K = L + k)

which can be alternatively written as

E(K) = L +
∞∑

k=1

Pr(K ≥ L + k).

The downtime calculation proceeds as follows. Let Ik be an
indicator function for the event that a failed system is renewed
at the (L + k)th inspection. Observe that Ik = 1 if and only if
Ij = 0 j �= k. It therefore follows that the downtime is given by

W =
∞∑

k=0

WL+k × Ik

where WL+k is the downtime incurred when the system is re-
newed at the (L + k)th inspection.

For k = 0, it follows that

E(WL × I0)

= (1 − β2)L

∫ T

0

∫ T −x

0
(LT − x − y)fY (y)dyfX (x)dx

+
L∑

j=2

(1 − β1)
j−1(1 − β2)

L−j+1

×
∫ T

0

(∫ jT −x

(j−1)T −x

(LT − x − y)fY (y)dy

)
fX (x)dx

and for k > 0

E(WL+k × Ik )

=
k+1∑
i=1

(
L + k − i

L − 1

)
(1 − β2)Lβk−i+1

2

×
∫ iT

(i−1)T

∫ iT −x

0
((L + k)T − x − y)fY (y)dyfX (x)dx

+
k+1∑
i=1

k+L−1∑
j=i

s∑
m=t

(
j − i + 1

m

)
(1 − β1)

m βj−i+1−m
1

×
(

L + k − j − 1

L − m − 1

)
βr

2 (1 − β2)L−m

×
∫ iT

(i−1)T

∫ (j+1)T −x

jT −x

((L + k)T − x − y)fY (y)fX (x)dy dx.

The expected downtime in a renewal cycle is then

E(W ) =
∞∑

k=0

E(WL+k × Ik )

and the cost-rate is

Q(L, T ) = {cIE(K) + cFE(W ) + cR}/(T × E(K)).

The availability, or uptime, is given by

A(L, T ) = 1 − E(W )
(T × E(K))

= 1 −
∑∞

k=0 E(WL+k × Ik )∑∞
k=0 T (L + k) Pr(K = L + k)

.

The repeated inspection policy may be justified when the
maintainer wants to extend system lifetime. Thus, the maintainer
is inclined to consider that a positive inspection is the result of
a system that is defective rather than failed.

Also, it may be interesting to determine the cost of a repeated
inspection policy in these circumstances in order to understand
the cost of “ignorance,” whereby a maintainer uses a policy
(repeated inspection) that is necessarily cost-sub-optimal. In
practice, one would wish to make a maintainer aware of the
cost of procrastination. If a maintainer does not seek immediate
replacement, then postponement of replacement may be pre-
ferred. This policy is considered in the next section. But, first
some numerical results for the repeated inspection policy are
considered briefly.

Again it is assumed that α = 0 and the parameter values as in
Section III are used. Table IV briefly shows some results, and it
can be seen that in each case L∗ = 1 as expected. Regarding the
cost of “ignorance,” the marginal increased cost of repeated in-
spections can be calculated. Therein, repeated inspection leads
to greater cost and lower availability with increasing L. The
marginal increased cost of repeated inspection is greatest when
the mean delay-time is the smallest (39% for L = 2 when λ = 2
and 44% for L = 2 when λ = 0.5). Also, as L increases, T∗ de-
creases (more frequent inspection) but not so much that LT∗ re-
mains constant. Thus, increasing the inspection frequency does
not compensate for repeated inspection, presumably because
of the imperfect inspection. Indeed, for larger β1 or β2 , LT∗

increases with L more rapidly than for smaller β1 or β2 .

C. Postponed Replacement, α = 0

The inspection parameters are assumed as in Table III. Once
a positive inspection has occurred, at kT say, it is supposed that
the maintainer decides to postpone replacement for a time τ ;
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TABLE IV
RESULTS FOR REPEATED INSPECTION POLICY

during this period of postponement (kT, kT + τ), there are no
further inspections. The rationale is that the maintainer seeks to
extend the system life with a minimal cost, taking advantage of
the delay-time, the time for which the system is defective but
functional. Furthermore, the maintainer is aware that a prob-
lem exists and new inspections would incur an extra cost for a
system that is close to replacement. Note, the cost-rate can be
developed for α > 0, but since this policy follows naturally from
the previous (repeated inspection), the supposition that α = 0 is
continued.

Another aspect already mentioned is that an N|D or N|F
inspection may be of greater concern that a P|G inspection.

Let K be the number of inspections until renewal, K =
1, 2, . . . In this model, K is the number of inspections up
to including the first positive inspection, and it follows that
Pr(K = 1), Pr(K = 2), and Pr(K = k) are given by (1), (2),
and (4), respectively, but with α = 0. Thus, K has the same dis-
tribution as the policy in Section II.B (policy 1) with M = ∞.
Furthermore, when τ = 0, policy 1 is obtained as a special case
with α = 0.

The cycle length for this postponed replacement policy has the
modification for the additional period of postponement. Thus,
the expected cycle length is

E(Vτ ) = τ +
∞∑

k=1

kT Pr(K = k).

The downtime is different to policy 1, but in principle, the
derivation is similar. Thus, consider the event Sk : inspection at
kT is positive and the defect arises at time x and the failure
y time units later. The downtime conditional on Sk is Δxy =
kT + τ − x − y, and the expected downtime is (for τ > 0)

E(Wτ ) =
∞∑

i=1

(1 − β2)

×
{ ∞∑

k=i

βk−i
2

∫ iT

(i−1)T

{∫ iT −x

0
Δxy fY (y)dy

}
fX (x)dx

+
∞∑

j=i

∞∑
k=j+1

βj−i+1
1 βk−j−1

2

×
∫ iT

(i−1)T

{∫ (j+1)T −x

jT −x

Δxy fY (y)dy

}
fX (x)dx

}

+
∞∑

i=1

∞∑
k=i

(1 − β1)βk−i
1

×
∫ iT

(i−1)T

{∫ kT +τ−x

kT −x

Δxy fY (y)dy

}
fX (x)dx.

Here, in the first term, the defect and failure occur in the same
interval ((i − 1)T, iT ) and the failure is detected at kT, k > i. In
the second term the failure occurs in the interval ((j − 1)T, jT )
subsequent to that of the defect and the failure is detected at
kT, k > j + 1. In both cases, the positive inspection is due to
a failure, so it is a true positive. In the final term, a defect is
detected at kT and the failure occurs during the interval of
postponement (kT, kT + τ).

The expected cost of a cycle is then

E(Uτ ) = cI

∞∑
k=1

k Pr(K = k) + cFE(Wτ ) + cR .

For the parameter values in the cases in Table II, it follows
that τ ∗ = 0 always, and so for brevity, these results are omit-
ted. The optimality of τ ∗ = 0 is contrary to the examples in
[31] wherein α �= 0 and the possibility of opportunity-based
maintenance means τ ∗ > 0 is optimum.

Nonetheless, it is interesting to consider the cost-rate if the
maintainer acts sub-optimally and postpones replacement. In-
deed, Fig. 6 indicates that postponement is not a good policy,
because of the possibility that the system is failed at a positive
inspection and the consequent downtime is costly. Moreover,
postponement is less appropriate when β2 is larger.

However, when β2 = 0, the cost rises more rapidly than for
β2 > 0, which is curious. This is perhaps because T is held at its
optimum value for τ = 0, and τ > 0 may imply a smaller T∗.
Nonetheless, for β2 = 0 and a large mean delay-time, it might
be expected that postponement is optimal.
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Fig. 6. Cost-rate Q as a function of the length of postponement τ for β2 = 0
(dash line), β2 = 0.1 (dotted), β2 = 0.2 (solid), and with T at its optimal value
for the respective β2 and other parameters as base case (see case 2 in Table II).

Finally, a policy in which the first positive inspection triggers
a deeper, more costly inspection that verifies the state of the
system can be considered. Then, postponement only occurs if the
system is defective (noting that because α = 0 the system cannot
be G). However, consideration of such a two stage inspection
policy is beyond the scope of this paper.

Other related analyses are also possible. For example, if two
inspection tests were available, with costs cI1 and cI2 such
that the cheaper inspection was less effective, then one could
ask which test is preferred. Alternatively, one might consider
what is an appropriate investment to improve inspection test
effectiveness.

V. CONCLUSION

This paper studied imperfect inspection of a protection sys-
tem. This system is subject to a three-state (G, D, and F) failure
process, and sojourns in the G and D states are random vari-
ables. The inspection outcome provides imperfect information
about the system state that is quantified through a set of proba-
bilities that are parameterized in the model. Given then a level
of ignorance about the state of the protection system following
an inspection, the maintainer must decide whether to replace the
system. At a higher level, the maintainer must decide whether to
inspect. These decisions are studied by developing the cost-rate
of an inspection and replacement policy that is natural in this
context.

The novelty of the paper is the consideration of imperfect
inspection for a protection system subject to a state (defective)
that lies between the good and the failed states. Imperfect in-
spections can occur in both states although is less likely when
the system is failed than defective. This mimicks inspection of
systems in real life. Thus, the benefit of modeling the defec-
tive state is that this may better represent the reality in which
inspection provides imperfect information about the true un-
derlying state of the protection system. Given this uncertainty,
the maintainer must decide if inspection is an effective strategy.
Further, interest in modeling the defective state also emerges if
the duration of use on-demand is nonnegligible, so that there
is the possibility of failure during the demand period when the
system is defective at the start of the demand period. However,
this would be another study.

The analysis in this paper shows first that, since inspection
might not be effective, it is natural that a maintainer would in
ignorance replace the system at a particular age. The cases ana-
lyzed in the numerical example show that this policy is effective
not only in terms of cost but also concerning availability. Thus,
preventive maintenance at MT is protection against low-quality
inspections. Then, second, the analysis shows that inspection
is cost-effective provided the imperfect inspection probabilities
are not too large. Therein, the most important (to the cost-rate)
is α = Pr(P|G). Finally, it was shown that there exist circum-
stances in which a pure inspection policy is near-cost-optimal.
However, even when inspection is perfect, ageing of the system
implies that preventive replacement at MT remains a sensible
policy. A two-stage policy that is an adaptation to the increas-
ing hazard-rate of an ageing system may provide further cost-
benefit. This would be another study.

The inclusion in the model of an additional imperfect in-
spection probability β2 adds another level of complexity to the
cost-rate function. Thus, the expressions for the cost-rate as
well as its derivative are rather complicated. This leads to an
empirical study with no analytical results. Nevertheless, since
inspection aims to detect defective and failed states, only small
and medium values of T constitute the region of interest. The
results in Tables II and IV present the global optimum in that
region at least.

For the repeated inspection policy, the imperfect inspection
probabilities are simplified in order to calculate the cost-rate
and availability. Then, it is found that repeated inspection leads
to high cost and downtime, and postponement of replacement
is not a good decision. However, this sub-optimality is in part
due to the simplification (because it is likely that postponement
would be justified when α > 0). Corresponding calculations in
the general case (with a full set of imperfect inspection proba-
bilities) would make an interesting and challenging study and
may determine circumstances in which repeated inspection is
preferable.

It would be interesting to consider imperfection in inspection
when inspection reports the system state (G, D, or F) rather than
the functionality of the system (N or P). This is a new, different
model worthy of future investigation.
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