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Abstract 

Outdoor thermal comfort significantly influences the users’ experience in urban places; affecting 

their extent of usage. The paper aims to identify the outdoor thermal benchmarks for the 

temperate oceanic (Cfb) climate zones in Australia. It examines the perception of thermal comfort 

in two urban places in Melbourne city. Field measurements were conducted during summer and 

winter seasons along with 2123 valid questionnaires and observations in both contexts. 

Micrometeorological parameters were measured and used to calculate the mean radiant 

temperature and the physiological equivalent temperature (PET). The questionnaire provided 

information regarding the thermal sensations and preferences of the users using ASHRAE seven-

point and McIntyre scales respectively. The quantitative analysis is used to calculate the range of 

outdoor thermal comfort in Melbourne. This was ranged between 20 °C and 25 °C   PET. 

Additionally, the neutral and preferred temperature were found to be 20.4 °C and 

19.2 °C respectively. Variations in different benchmarks were observed with different seasons and 

types of urban places. The results endorse the significant impact of thermal adaptation factors on 

the users’ comfort levels and acceptability for micrometeorological environments. The findings also 

identify the different thermal benchmarks that help urban designers creating comfortable outdoor 

places within the oceanic temperate climatic zones. 
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1 Introduction 

Designing thermally comfortable outdoor places has proven to be a significant factor for the extent 

of their success; influencing the users’ attendance and positive behaviour (Aljawabra & 

Nikolopoulou, 2010; Eliassona, Knez, Westerbergb, Thorssona, & Lindberga, 2007).   Previous 

research showed how micrometeorological conditions influence the participation of users in 

outdoor places during different seasons. In USA and Canada, the participation of users in the 

outdoor places represented an average of 10% and 3% during summer and winter respectively 

(Leech, Burnett, Nelson, & Aaron, 2000). Being challenged by several variables, outdoor thermal 

comfort (OTC) studies have been characterised by its complexity. Many attempts took place to 

identify the different factors affecting OTC sensation (Chen & Ng, 2012). Micrometeorological 

parameters are the most apparent variables responsible for thermal sensation in outdoor places. 

However, the expansive variation between objective micrometeorological measurements and 

subjective human thermal sensation votes suggested significant effects of physical, physiological 

and psychological adaptation (Nikolopoulou & Steemers, 2003).  Besides these factors, outdoor 

places have a lower control over micrometeorological parameters, which adds to this complexity. 

Understanding the OTC ranges of users is, therefore, a valuable tool for urban designers that 

enriches the design possibilities by creating comfortable outdoor public places, and accordingly, 

increase their success rate and contribute to the sustainability of cities (Cheung & Jim, 2017). 

Previous research attempted to identify OTC ranges in places with different geographical and 

micrometeorological characteristics including parks (Kántor & Unger, 2010; Lam, Loughnan, & 
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Tapper, 2018; Mahmoud, 2011; S Thorsson, Lindqvist, & Lindqvist, 2004), urban squares (da Silveira 

Hirashima, de Assis, & Nikolopoulou, 2016), streets (Holst & Mayer, 2011; Lee, Holst, & Mayer, 

2013; Mayer, Holst, Dostal, Imbery, & Schindler, 2008) and university campuses (Salata, Golasi, de 

Lieto Vollaro, & de Lieto Vollaro, 2016; Shooshtarian & Ridley, 2016; Xi, Li, Mochida, & Meng, 2012). 

As Chen and Ng (2012) identified modelling and empirical methods are the two main approaches 

used in assessing OTC.  The empirical method prevails due to relying on detailed analysis for both 

objective micrometeorological parameters affecting thermal comfort and subjective assessments 

of users. Research on subjective thermal comfort perception generally employs questionnaires as 

the main data collection tool. The number of respondents to the questionnaires in previous OTC 

studies varied widely from eight to 7851 (Liu, Zhang, & Deng, 2016; Salata et al., 2016); as does the 

duration of field surveys from one day to two years. However, as Salata et al. stated (2016), summer 

and winter were the most frequently investigated seasons. Different scales were used for 

respondents to specify their thermal sensation votes. ASHRAE 7 points scale (cold, cool, slightly cool, 

neutral, slightly warm, warm, hot) is the most commonly employed (Lin, 2009;  Lin, de Dear, & 

Hwang, 2011; Ng & Cheng, 2012; Pantavou, Theoharatos, Santamouris, & Asimakopoulos, 2013; 

Salata et al., 2016; Yang, Wong, & Jusuf, 2013; Yang, Wong, & Zhang, 2013). However, few studies 

used the 5 points scale (very cold, cool, neutral, warm, very hot) (Nikolopoulou, Baker, & Steemers, 

2001) and the 9 points scale (very cold, cold, cool, slightly cool, neutral, slightly warm, warm, hot, 

very hot) (Kántor, Égerházi, & Unger, 2012; Liu et al., 2016; Yahia & Johansson, 2013). To identify 

thermal preferences, the McIntyre (1980) scale ranging from cooler (-1), no change (0) to warmer 

(+1) preferences is used (Cheng, Ng, Chan, & Givoni, 2012; Lin, 2009; Lin et al., 2011; Salata et al., 

2016; Yang, Wong, & Jusuf, 2013). Different rational thermal comfort models were employed in 

outdoor settings. Chen and Ng (2012) explained that to have a significant effect on planning 
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practice, these models are to be supported by both human-biometeorological and physiological 

information. The indexes were originally dependant on the energy fluxes between the human body 

and the environment. The Predicted Mean Vote Index (PMV), Effective Temperature (ET in °C), and 

Standard Effective Temperature (SET* in °C) (Fanger, 1982; Gagge, Fobelets, & Berglund, 1986); are 

examples of indexes originally developed for indoor thermal comfort studies and were later 

adapted to be applied in outdoor settings (Cheng et al., 2012; Nikolopoulou et al., 2001; S Thorsson 

et al., 2004). The Outdoor Standard Effective Temperature (OUT_SET* in °C) (Spagnolo & de-Dear, 

2003) and the Physiological Equivalent Temperature (PET in °C) (Mayer & Höppe, 1987) are thermo-

physiological assessment variables that were purposely designed for outdoor settings. PET is the 

most predominant thermal comfort index used in the OTC studies (da Silveira Hirashima et al., 2016; 

Elnabawi, Hamza, & Dudek, 2016; Holst & Mayer, 2011; Kántor, Égerházi, et al., 2012; Lee et al., 

2013; Lee & Mayer, 2018; Lee, Mayer, & Chen, 2016; Lee, Mayer, & Schindler, 2014; Lin & 

Matzarakis, 2008; Lin, 2009; Liu et al., 2016; Mayer et al., 2008; Ng & Cheng, 2012; Salata et al., 

2016; Yang, Wong, & Zhang, 2013). 

The most commonly used benchmarks to identify OTC are neutral PET (NPET), preferred PET (PPET), 

thermal acceptability range (TAR), and neutral PET range (NPETR). As observed by Cheung and Jim 

(2017), different methods are used to define and calculate those benchmarks. NPET is widely 

expressed as the temperature arising from neutral thermal sensation (Fanger, 1982). The linear 

regression, quadratic regression and the probit analysis are three different methods used in 

calculating NPET. As determined by Kántor, Kovács, and Takács (2016), these different techniques 

led to significant variations in the NPET values. The linear regression between mean thermal 

sensation votes (MTSV) and PET is the most widely used method in calculating NPET in similar 

studies (Chen, Wen, Zhang, & Xiang, 2015; Cohen, Potchter, & Matzarakis, 2013; Elnabawi et al., 
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2016; Kántor, Égerházi, et al., 2012; Lin & Matzarakis, 2008; Lin, 2009; Mahmoud, 2011; Salata et 

al., 2016; Yang, Wong, & Zhang, 2013). Although this method was criticized by assuming that 

thermal sensation votes are continuous instead of ordinal data (Cheung & Jim, 2017), this impact 

was found to be insignificant (Salata et al., 2016). Few studies used the same method having the 

linear regression using different other thermal comfort indexes (Pantavou et al., 2013; Yang, Wong, 

& Jusuf, 2013; Zhao, Zhou, Li, He, & Chen, 2016). PPET is the ultimate temperature in which the 

probabilities of users’ preferences towards having warmer and cooler changes are equivalent. To 

calculate PPET, a probit regression analysis for both warmer and cooler preferences is modelled and 

the intersection of both corresponds to the preferred temperature (Lin, 2009; Lin et al., 2011; Salata 

et al., 2016; Yang, Wong, & Jusuf, 2013; Yang, Wong, & Zhang, 2013; Zhao et al., 2016). TAR is the 

limit determining the temperature accepted by 80 or 90% of the respondents (ASHRAE, 2004). This 

range is generated from a quadratic regression between the thermal acceptability of the 

respondents and the temperature. Yang, Wong, and Jusuf (2013) calculated this range based on the 

assumption that 80% acceptability rate corresponds to the value of ±0.85 MTSV in the linear 

regression between the binned MTSV and the temperature as per ISO-7730 (2005). NPETR 

corresponds to the values ranging from -0.5 to +0.5 MTSV in the NPET linear regression (Chen et al., 

2015; Kántor et al., 2016; Lai, Guo, Hou, Lin, & Chen, 2014; Liu et al., 2016; Salata et al., 2016). 

Different benchmarks obtained in similar OTC studies are summarised in Table 1, showing that the 

NPET is the most commonly used and the NPETR values are the least reported.  

This paper aims to identify the different outdoor thermal comfort benchmarks for Melbourne city 

representing the temperate Oceanic climatic zone in Australia, adopting the most commonly used 

methods in OTC studies, to help ultimately urban designers and urban planners in designing 

comfortable outdoor public places.  
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Place Koppen 
classification 

Season Urban place Micrometeorological measurements responses  Scale Index N 
PET 

P 
PET 

TA
R 

NPET
R 

Singapore, 
Singapore  
(Yang, Wong, & 
Zhang, 2013) 
 

Tropical rainforest 
(Af) 

August to May  13 urban spaces  
(parks,  squares,  streets, 
campuses and  quay) 

Air temperature (Ta), globe 
temperature (Tg), relative humidity 
(RH), wind speed (V), Vapour pressure 
(VP),&  global radiation (G) 

2020 valid ASHRAE 7 pts PET √ √ √  

Singapore, 
Singapore (Yang, 
Wong, & Jusuf, 
2013) 

Af Aug. to May  13 urban spaces  Ta, Tg , RH, V  & G 2036 valid ASHRAE 7 pts  OT √ √ √  

Belo Horizonte, 
Brazil (da Silveira 
Hirashima et al., 
2016) 

Tropical wet (Aw) Summer & winter Urban squares Ta, Tg, RH, & V 1693 Other 7 pts PET √ √ √  

Damascus, Syria 
(Yahia & 
Johansson, 2013) 

Semi-arid cool (Bsk ) Summer & winter 2 types of residential areas and 
parks 

 Ta, Tg , RH, V & wind direction (WD) 920  9 pts PET 
OUTSET 

√ - √ - 

Cairo, Egypt 
(Elnabawi et al., 
2016) 

Hot arid (Bwh) Summer & winter Street Ta, Tg, RH, V  & solar radiation (SR) 320 ASHRAE 7 pts PET √ √ √ - 

Shanghai, China 
(Chen et al., 2015) 

Humid Sub-tropical 
(Cfa) 

Autumn & winter Urban park Ta, Tg, RH, V  & G 596 ASHRAE 7 pts PET - - √ √ 

Guangzhou, China 
(Li, Zhang, & Zhao, 
2016) 

Cfa  Summer, winter & 
spring  

4 residential communities 
(resting areas) 

Ta, Tg , RH, V  & G 1005 9 pts PET √ √ √ - 

Guangzhou, China 
(Zhao et al., 2016) 

Cfa  Aug. - mid-Oct. University Ta, Tg, RH, V  & G 1582 ASHRAE 7 pts SET* √ √ √  

Changsha, China 
(Liu et al., 2016) 

Cfa  All year 6 typical public spaces Ta, Tg, RH, & V   7851 valid 9 pts PET √ - - √ 

Changsha, China 
(Yang, Wong, & 
Zhang, 2013) 

Cfa  June to Aug.  17 urban spaces (parks, squares, 
streets & campuses) 

Ta, Tg, RH, V, VP  & G 2052 ASHRAE 7 pts PET √ √ √ - 

Sydney, Australia 
(Spagnolo & de-
Dear, 2003) 

Cfa Summer & winter  Outdoor and semi outdoor 
places 

Ta, RH, V, short & long wave radiation 
fluxes (K and L) 

1018 ASHRAE 7 pts OT, ET*, 
OUTSET*, PET 

√ √ - - 

Sun moon lake, 
Taiwan (Lin & 
Matzarakis, 2008) 

Cfa All year Touristic area Ta, Tg, RH, V  & G 1644 ASHRAE 7 pts PET √ - √ - 

Szeged, Hungary 
(Kántor, Égerházi, 
et al., 2012; 

Temperate Warm 
(Cfb) 

Autumn & Spring 2 urban squares  Ta, RH, V, K and L 967 9 pts PET  √ - √ √ 
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Kántor, Unger, & 
Gulyás, 2012) 
Szeged, Hungary 
(Kántor et al., 
2016) 

Cfb  Spring, summer & 
autumn  

6 recreational areas Ta, RH, V, K and L 5805 valid 9 pts PET √ √  √ 

Melbourne, 
Australia 
(Shooshtarian & 
Rajagopalan, 
2017; 
Shooshtarian & 
Ridley, 2017) 

Cfb  Spring, summer & 
autumn 

University campus Ta, Tg), RH, V  and G 1023 valid ASHRAE 7 pts PET √ √ √ - 

Athens, Greece 
(Pantavou et al., 
2013) 

Hot dry summer 
(Csa) 

All year  3 places (square, street, & 
region) 

Ta, Tg), RH, V, SR  and G 1706 ASHRAE 7 pts UTCI √ - √ - 

Tel Aviv, (Cohen et 
al., 2013) 

Csa Summer & winter 3 places (parks, street & square) Ta, RH, V, WD and G 1731 9 pts PET √ - √ - 

Rome, Italy (Salata 
et al., 2016) 

Csa Feb. to Jan. Sapienza University campus Ta, Tg , RH, V  and G 941 valid ASHRAE 7 pts  PET √ √  √ 

Taichung, Taiwan 
(Lin, 2009) 

Dry-winter humid 
sub-tropical  (Cwa) 

Apr. to Feb. (hot & 
cool) 

Public square Ta, Tg, RH, V  and G 
 

505 ASHRAE 7 pts PET √ √ √  

Tianjin, China (Lai 
et al., 2014) 

Hot summer 
continental (Dwa) 

March to Jan. Park Ta, Tg, RH, V  and G 
 

1585 ASHRAE 7 pts PMV, PET, 
UTCI 

- - - √ 

Table 1 Different methods and results from similar OTC studies
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2 Study area 1 

Melbourne city is situated between latitude 37°49’′ south and longitude 144°58 ’′ east of Australia 2 

having a total area of 9990.5 km2. The climatic conditions in Melbourne city are within the 3 

temperate climate group (cfb) according to the widely used Köppen- Geiger climatic classification, 4 

having uniform precipitation distribution and warm summers. The summary of major climate 5 

statistics recorded at Melbourne Regional Office (latitude: 37.81° S, longitude 144.97° E, elevation 6 

31m) from the year 1855 to 2015 shows that the mean air temperature lies between minimum and 7 

maximum of 13°C and 26°C during summer and between 6°C and 15°C during winter as shown in 8 

Fig. 1. The mean rainfall recorded during the same period ranged between 47 mm and 66 mm 9 

during January and October respectively. The mean daily sunshine varied between 4 h to 9 h in June 10 

and January respectively. The relative humidity at 9:00 am and 3:00 pm were also noted to have a 11 

minimum of 62% (October and December), and 47% (December and January) and a maximum of 12 

80% (June) and 63% (June) respectively. The wind speed in the same conditions was documented 13 

with a value of minimum 2.4 (April) and 3.5 m/s (May) and a maximum of 3.5 (October) and 4.4 m/s 14 

(September) for both 9 am and 3 pm respectively (BOM, 2017). According to the Beaufort comfort 15 

scale for wind speed, these values range from the light breeze to gentle breeze, which is relatively 16 

comfortable (Burberry, 1997). 17 
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The study was employed in two different types of urban places; the Federation square and Deakin 19 

University’s Burwood campus; having different functions, activities, urban characteristics, as well as 20 

the frequency of visits. The distance between the two study areas is 14.5 km. As per Gehl (2011) 21 

classification to urban places, Federation square represents places where optional and social 22 

activities take place, which require a higher quality and accordingly better climatic comfort levels. 23 

Conversely, Burwood campus exemplifies places where necessary activities are more dominant 24 

where less quality could be tolerated.  25 

2.1 Federation square 26 

Federation square is a main attraction in the Central Business District (CBD) of Melbourne.  A total 27 

area of 3.2 ha situated in the intersection of two key linear paths having the ability to accommodate 28 

15000 people at one time. The square is surrounded by key buildings including the National Gallery 29 

of Victoria, cafes and restaurants providing different activities for their visitors. Having this unique 30 

location facilitates its role as a place for people to gather, a landmark for tourists to visit as well as a 31 

spot for public activities events that are frequently organised. The flooring in Federation square is 32 

Figure 1 Mean monthly air temperature and humidity in Melbourne (1855_ 2015) 
Source: The authors based on (BOM, 2017) 
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mainly paved with sandstone cobblestones. Concrete and bluestone also cover few parts of the 33 

square and green infrastructure is very limited (Fig. 2a). 34 

2.2 Deakin Burwood campus 35 

Burwood campus is the largest campus for Deakin University accommodating around 20800 36 

undergraduate and postgraduate students. It is located around 15 km from Melbourne CBD. 37 

Facilities in the campus include art collection and galleries, bookshop, childcare, library, sports 38 

centre, lecture theatres, computer labs, medical centre and counselling services, multi-faith prayer 39 

rooms as well as on-campus accommodation. This field study took place in the main gathering area 40 

for students in the central courtyard located between the library, learning spaces, food outlet and 41 

student life department from the north, south, east and west sides respectively. The campus is 42 

mainly paved with concrete and has numerous green areas (Fig. 2b). 43 

Figure 2 Studied urban places (a) Federation square (b) Burwood campus  
Source: (Melbourne-for-the-visitor, 2017; Rushwright-associates, 2017) 

 44 

3 Material and methods 45 

This empirical study applied both objective field measurements and subjective assessments of 46 

human perceptions (Fig. 3). Field measurements describing the micrometeorological conditions for 47 

studied places were employed simultaneously with structured questionnaires and observations for 48 
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examining human thermal sensation. As recommended by Ng and Cheng (2012), meteorological 49 

measurements were distanced within a maximum of three meters from questionnaires’ 50 

respondents.  The results of both objective and subjective examination were correlated to identify 51 

the outdoor thermal requirements of users. The data were collected during summer between 52 

January and February 2013 and 2014 and during winter from July to August 2013 and 2014 from 53 

9:00 am to 5:00 pm to examine different micrometeorological conditions. In Federation square, 54 

both weekdays and weekends were included to have a comprehensive assessment for the different 55 

days. However, in Burwood campus, due to its functional character, only weekdays during teaching 56 

periods were considered. Rainy days were excluded from both case studies. 57 

 

3.1 Microclimatic objective measurements: 58 

3.1.1 Field measurements 59 

As per previous studies, the recorded micrometeorological parameters in this study are the ambient 60 

air temperature (Ta in °C), relative humidity (RH in %), wind speed (V in m/s), solar radiation (Ra in 61 

w/s2) and globe temperature (Tg in °C) used in calculating the mean radiant temperature (Tmrt) 62 

(Chen et al., 2015; Cheng et al., 2012; Krüger, Drach, Emmanuel, & Corbella, 2013; Lai et al., 2014; 63 

Li et al., 2016; Pantavou et al., 2013; Salata et al., 2016). Additional micrometeorological parameters 64 

Figure 3 Selected methods chart 
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were obtained from the nearby Melbourne (Olympic Park) weather station (such as cloud cover and 65 

water vapour pressure) . The weather station is 8 m above sea level and located 2 and 10.4 km away 66 

from Federation square and Burwood campus respectively. 67 

The Mobile Architecture and Built Environment Laboratory (Mabel) thermal comfort carts were 68 

used in monitoring micrometeorological parameters for their high accuracy and mobility during the 69 

field visit. The comfort carts are designed to assess thermal environments according to the 70 

procedures and protocols prescribed in ASHRAE’s thermal comfort standard- ASHRAE 55-92R and 71 

ISO 7726 Ergonomics of the thermal environment - Instruments for measuring physical quantities 72 

(ISO, 2002). Each cart measures the micrometeorological parameters simultaneously at four 73 

heights. The LO, MID, HI and HEAD heights measure at 0.1, 0.6, 1.1 and 1.7 m above the floor 74 

respectively. The LO, MID, and HI heights correspond to the ankles, waist, and head of a seated 75 

person respectively; and the HEAD height corresponds to the head of a standing person. The (Ta) 76 

and (Tg) are monitored through two temperature probes at the LO, MID and HI heights. One 77 

thermocouple exists at the HEAD level for (Ta) measurements. The accuracy of the three OMEGA 78 

44032 linear thermistors that recorded both (Ta) and (Tg) was 0.1 °C. A HyCal integrated humidity 79 

sensor (IH-3605-B) were used to record relative humidity (RH) with 2% accuracy at MID height. A 80 

polystyrene circular white disc protected both temperature and humidity sensors from direct sun 81 

exposure. Digital TSI anemometers with omnidirectional hot wire type of anemometer probes were 82 

monitoring (V) at the different heights.  The anemometers were calibrated to meet the specified 83 

measurement accuracy of 3 % of reading within the response time of 0.2 s. The heart of the system, 84 

Campbell Scientific CR23X data logger, is a fully programmable data acquisition system that can run 85 

MABEL carts in different operational modes enabling quick and efficient performance of cross-86 

sectional thermal comfort research (Fig. 4).  87 
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Another weather station was installed measuring Ta; V and RH for cross-checking purposes. The 88 

portable station was also used for the solar radiation. The 89 

measuring device used was a Kipp and Zonen pyranometer for 90 

global irradiance (Boland, Ridley, & Brown, 2008). The design 91 

of the mobile meteorological station is consistent with other 92 

meteorological devices used in past studies (Holst & Mayer, 93 

2011; Lee et al., 2013; Lee et al., 2014; Helmut Mayer et al., 94 

2008; Ng & Cheng, 2012; Nikolopoulou & Steemers, 2003; 95 

Spagnolo & de-Dear, 2003). The devices were all tested and calibrated before the survey and their 96 

timing systems were synchronized with Melbourne standard time. During the field measurements, 97 

the devices were allowed 10 -15 minutes response time before the actual recording. The comfort 98 

carts were placed in both open sky and shaded area, and were programmed to record all measured 99 

data at 1 and 15 min intervals automatically.  100 

3.1.2 Thermal comfort index 101 

Each questionnaire was associated with its corresponding micrometeorological measurements 102 

taking into consideration its location and time. To assess thermal comfort levels, respondents’ 103 

thermal perception, preferences and acceptances are linked to the thermal comfort index 104 

calculated from these micrometeorological parameters. As stated previously, PET is the most 105 

commonly used and recommended index in OTC studies. It is the heat balance model of human 106 

body based on Munich Energy-balance Model for Individuals (MEMI), and defined as the air 107 

temperature in a typical indoor setting at which the heat balance of the human body is maintained 108 

by skin temperature, core temperature, and sweat rate equal to those under the conditions to be 109 

assessed (Höppe, 1999). PET is expressed in Celsius and assumes constant values of 0.9 CLO for 110 

 
Figure 4 MABEL comfort cart 
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clothing and 80 W for metabolic rate. It is calculated in this study through Rayman software, version 111 

1.2 (Lee & Mayer, 2016; Matzarakis, Rutz, & Mayer, 2007) using Ta (°C), RH (%), V (m/s), Tmrt (°C), 112 

and cloud cover (octas) in addition to respondents’ age and gender characteristics as input data 113 

(Makaremi, Salleh, Jaafar, & GhaffarianHoseini, 2012).    114 

3.1.3 The mean radiant temperature (Tmrt) 115 

Mean radiant temperature is defined as the ‘uniform temperature of an imaginary enclosure in 116 

which the radiant heat transfer from the human body equals the radiant heat transfer in the actual 117 

non-uniform enclosure’ (ASHRAE, 2001). The importance of Tmrt returns to its significant influence 118 

on the energy balance and thermal comfort of the human body (Mayer & Höppe, 1987; Spagnolo 119 

& de-Dear, 2003). Tmrt is a critical factor used in calculating PET index. Using Tg in calculating Tmrt 120 

reported a relatively small difference in accuracy when compared to other methods based on 121 

integral radiation measurements and angular factor ( Thorsson, Honjo, Lindberg, Eliasson, & Lim, 122 

2007). Following similar research (Chen et al., 2015; Cheng et al., 2012; Krüger et al., 2013; Lai et al., 123 

2014; Li et al., 2016; Pantavou et al., 2013; Salata et al., 2016), Tmrt is calculated based on the 124 

conversion of globe temperature data measured by the globe thermometer consisting of a 125 

thermocouple wire held at the middle of a 38 mm diameter black table-tennis ball in the previously 126 

specified comfort carts using Eq. (1) (Thorsson, Lindberg, Eliasson, & Holmer, 2007). 127 

 128 
             (1) 129 

 130 

Where: D is globe diameter (m) (= 0.038 m in this study), and ε is emissivity (= 0.95 for black coloured 131 

globe).  132 
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3.2 Human subjective assessment 133 

3.2.1 Questionnaires & observations 134 

The randomly distributed designed questionnaire was divided into three main parts starting with 135 

the respondents’ personal data including their age, gender, clothing, activities, etc. Clothing values 136 

were calculated using the checklist used by Ng and Cheng (2012). Activities were converted into 137 

metabolic rates of 1, 1.2, and 2 met for users’ sitting, standing and walking respectively. Both 138 

calculations were adopted from the ASHRAE standard 55 (2004) and ISO-7730 (1994). Respondents 139 

were then required to indicate their thermal perception according to ASHRAE 7 points scale to 140 

enable reliable comparisons of results with various OTC studies using the same scale. Thermal 141 

acceptability and preferences using the McIntyre scale (cooler -1, no change 0 and warmer +1) were 142 

also recorded. Additional data including time of response, the location of respondents in the place, 143 

and sky conditions were simultaneously observed and filled with an observation sheet. Johansson, 144 

Thorsson, Emmanuel, and Krüger (2014) suggested a range of 400 to 500 respondents to be a 145 

reliable sample size for OTC studies. Using the equation developed by Cochran (2007), a minimum 146 

of 118 respondents is calculated as an acceptable sample size for this study. 147 

4 Results  148 

4.1 Descriptive analysis 149 

4.1.1 Respondents 150 

A total of 2123 users responded to the questionnaires, which fulfils the sample size required for 151 

generalisation. A balanced distribution of respondents was noted in both urban places and seasons 152 

studied. The numbers of respondents in Federation square and Burwood campus were 1021 and 153 

1102 respectively. During summer and winter, the respondents were 1146 and 977 respectively. A 154 

variation in the pattern of usage and attendance could be noticed in Federation square in different 155 
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seasons during the weekdays and the weekends. The attendance on weekends during summer was 156 

much higher than weekdays (1.8) while this percentage was almost similar during winter (1.2). This 157 

ratio suggests that the micrometeorological conditions during summer are more encouraging for 158 

users to visit outdoor public places to carry out their optional activities during weekends. The gender 159 

distribution of the sample also indicated a slightly higher attendance of female in both places. The 160 

total number of female to male is 567 to 454, and 665 to 437, in Federation square, and Burwood 161 

campus respectively. To represent accurately the thermal sensation votes of respondents, the users 162 

living in the city for less than 6 months as well as pregnant women were excluded (Salata et al., 163 

2016).  164 

4.1.2 Micrometeorological measurements 165 

The frequency of measured air temperature at both urban places varied from a minimum of 17.5°C 166 

and 7.3°C and a maximum of 34.6°C and 18.4°C  for summer and winter respectively. In Burwood 167 

campus and Federation square the minimum values were 19.3°C and 9.5°C and the maximum 168 

values were 28.8°C and 17°C for summer and winter respectively. According to the PET classification 169 

values for temperate climate (Matzarakis, Mayer, & Isiomon, 1999), during summer these values 170 

ranged from neutral to slightly warm at the Federation square, and from slightly cool to warm at 171 

Burwood campus. During winter, the Federation square temperature ranged from slightly cool to 172 

cool and Burwood campus temperature ranged from neutral to cold. As shown in Figure 5, Burwood 173 

campus has a wider range of air temperature during both seasons.  174 
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(a) (b) 

  

(C) (d) 

Figure 5 The frequency of measured air temperature in   Federation square (a) during summer, (b) during winter; and in Burwood campus 
(c) during summer and (d) during winter 

 175 
The distribution of V, RH, and G are detailed in Table 2. According to the Beaufort comfort scale 176 

(Burberry, 1997), V values at the Federation square and Burwood campus during both seasons 177 

varied from calm to light breeze. These values represent very light wind only felt on exposed skins. 178 

RH varied from 8.4% to 84.5% during summer and from 41.5% to 95.7% during winter. RH values at 179 

Burwood campus tended to be lower and higher than in Federation square during summer and 180 

winter respectively.  G during summer and winter in both places varied from 45 to 903 W/m2 during 181 

summer and from zero to 513 W/m2 during winter. Both the global and the diffuse radiation values 182 

during winter were noticeably less than during summer. 183 

Place Season Wind Speed (m/s) Relative Humidity (%) Global Radiation (w/m2) 
Minimum Maximum Minimum Maximum Minimum Maximum 

Federation square 
 

Summer 0.15 0.7 31.5% 83% 45 903 
Winter 0.36 1.47 41.5% 66.3% 0 513 

Burwood  campus Summer 0.3 2 8.4% 84.5% 328 879 
Winter 0.27 1.1 47.5% 95.7% 24.1 470.4 

Table 2 Distribution of wind speed, relative humidity and radiation in Federation square and Burwood campus 184 
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4.1.3 Thermal sensation votes (TSV) 185 

 The TSV identifies the thermal perception of users 186 

obtained from the ASHRAE scale in the 187 

questionnaire (Fig. 6). A percentage of 14.7% of the 188 

total respondents selected to feel thermally neutral 189 

(TSV=0). The votes inclined towards the cold 190 

(TSV<0) and warm (TSV>0) directions were 53% and 191 

32.2% respectively. The frequency distribution of thermal sensation votes in the different seasons 192 

showed an absolute skewness of -0.412 and +0.987 during summer and winter respectively. This 193 

skewness is in line with the Micrometeorological measurements that ranged from warm (2) to cold 194 

(-3) feeling according to the temperate regions’ PET classification (Matzarakis et al., 1999). 195 

4.2 Thermal comfort benchmarks 196 

4.2.1 Neutral PET (NPET) 197 

The NPET is retrieved from the linear regression (LR) between the mean thermal sensation votes 198 

(MTSV) and the thermal comfort index (PET) calculated from the measured micrometeorological 199 

data. Due to the significance of thermal adaptation, similar studies have determined the 200 

respondents’ MTSVs for each temperature interval with different bins width of 0.5°C, 1°C, 1.2°C and 201 

2°C PET (da Silveira Hirashima et al., 2016; Kántor et al., 2016; T.-P. Lin & Matzarakis, 2008; Salata 202 

et al., 2016; Shooshtarian & Ridley, 2017; Yang, Wong, & Zhang, 2013). This research determines 203 

the MTSV for each 0.5°C PET intervals for more precision as per the framework of Yang, Wong, and 204 

Zhang (2013). The fitted regression lines for the aggregated data, during   summer, and winter are 205 

represented by Eqs. (2), (3), and (4) respectively (Fig. 7). The significant correlation revealed a 206 

 

Figure 6 Distribution of thermal sensation votes 
during summer and winter 
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powerful relationship between the two variables especially for the aggregated data having R2 of 207 

0.919. 208 

MTSV = 0.176 PET - 3.584                              R2 = 0.919, p < .001  (2) 

MTSV = 0.169 PET - 3.381                              R2 = 0.695, p < .001  (3) 

MTSV = 0.127 PET - 3.101 R2 = 0.727, p < .001  (4) 

   209 
By substituting MTSV=0 in Eq. (2), the value of the NPET was found to be 20.4°C. The values of NPET 210 

during summer and winter were calculated to be 20 and 24.4°C respectively. For Federation square 211 

and Burwood campus, their solved fitted equations attained NPETs of 19.9 and 20.7°C respectively. 212 

The higher NPET at Burwood campus indicates the higher tolerance of their users during both heat 213 

and cold conditions. 214 

 
Figure 7 Regression model between MTSV and PET for (a) the aggregated data, summer and winter (b) Federation square and Burwood 
campus. 

 215 

4.2.2 Neutral PET range (NPETR) 216 

The NPETR is the lowest benchmark reported in OTC studies. However, it allows a quick 217 

understanding of thermal comfort ranges within cities.  The value of this benchmark is determined 218 

by solving the fitted LR equation with mean thermal sensation votes of ±0.5. NPETR values for the 219 
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aggregated data in this study ranged from 17.5°C to 23.2°C. NPETR varied from 17°C to 22.9°C 220 

during summer and from 20°C to 28.4°C during winter. 221 

 222 

4.2.3 Preferred PET (PPET) 223 

Thermal preferences towards having cooler and warmer climatic conditions recorded by 224 

respondents were evaluated for considering bins with a width of 0.5°C PET. To calculate the PPET, 225 

a probit regression analysis for both warmer and cooler preferences was modelled and the 226 

intersection of both corresponded to the preferred temperature. This is the most commonly used 227 

method in PPET calculations that were originally recommended by Ballantyne, Hill, and Spencer 228 

(1977). Values of 19.2°C and 23.2°C were obtained for the aggregated data and during summer 229 

respectively from the two fitted lines as shown in Fig. 8. The non-parametric Chi-square assessing 230 

the goodness of fit of the probit models for both cooler and warmer preferences in the aggregated 231 

data indicated statistically significant results of (X2 = 90.706, d(f) = 57, p < 0.05) and (X2 = 103.643, 232 

d(f) = 57, p <0.01) respectively. The probit models fitted well on both sides.  The chi-square during 233 

winter indicated non-significant result, which indicates that winter data does not fit in the probit 234 

model. 235 

 
Figure 8 The preferred temperature obtained from the probit model for (a) all data (b) summer data 

 236 
 237 
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PPET for both urban places were also calculated using the logistic curve model with the probit 238 

function. Statistical significance of (X2 = 60.490, d (f) = 39, p < 0.005) resulted for the different 239 

preferences in Federation square. In Burwood campus both warmer and cooler preferences also 240 

indicated statistical significance of (X2 = 110.426, d (f) = 53, p < 0.001) and (X2 = 96.322, d (f) = 53, p 241 

< 0.001) respectively. The preferred PET values obtained in Federation square and Burwood campus 242 

from the intersection of the two fitted probability lines are 19.3°C and 19.2°C which are 0.7 and 243 

1.4°C less than the NPET obtained earlier. 244 

 
Figure 9 The preferred temperature obtained from the probit model for (a) Federation square (b) Burwood campus 

 245 

4.2.4 Thermal acceptability range (TAR) 246 

This benchmark is frequently determined in thermal comfort studies for the design of outdoor 247 

environments (Cheung & Jim, 2017). The common method of identifying TAR is the intersection of 248 

the acceptability line of 80 % or 90% with the quadratic polynomial fitting the acceptability 249 

percentages in 1°C or 2°C PET intervals. To calculate the TAR and the PET range for Melbourne, the 250 

best-fitted curve between the percentage of acceptability for in correspondence to PET bins with a 251 

width of 1°C were used (Fig. 10). The minimum acceptable rate for thermal conditions is 80% 252 

(ASHRAE, 2004); however, this percentage (20% unacceptability) showed a large range of 253 

acceptable temperature from 15 to 29.9°C. For more precision, a percentage of 90% acceptability 254 

range is selected for defining TAR, which was calculated to vary from 20 to 24.9°C. The TAR 255 
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calculated at Federation square ranged from 17.5 to 22.6°C and in Burwood campus from 20.1 to 256 

25.3°C with 90% and 88% acceptability rates respectively.  257 

 
Figure 10  Distribution of Percentage of unacceptability votes 

 258 
Due to the significance of TAR benchmark, this study also used the approach of Yang, Wong, and 259 

Jusuf (2013) relying on the assumption that the mean thermal sensation votes of ±0.85 on the 260 

ASHRAE scale correspond to 80% of thermal acceptability (ISO-7730, 2005). When substituting 261 

MTSV = ±0.85 in Eq. (2), a range of 15.5°C and 25.2°C is obtained. This range is narrower than its 262 

equivalent of 80% acceptability obtained from the quadratic polynomial model. The same pattern 263 

was found when calculating TAR for the different urban places as sown in Fig.11. 264 

 
Figure 11 TAR using different methods in Federation square and Burwood campus 

 265 

4.2.5 PET classification for Melbourne 266 

To obtain the classification of thermal perception for Melbourne city, this study used the framework 267 

of Lin and Matzarakis (2008).  The PET comfort classification is calculated by increasing and 268 
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decreasing the interval of each point in the scale by 5°C (the difference between 20 and 25°C 269 

previously calculated TAR). The PET classification results are shown in Fig. 12. 270 

Figure 12 PET classification for Melbourne City, Australia. 271 
 272 

5 Discussion 273 

5.1 Thermal comfort benchmarks 274 

5.1.1 Neutral PET (NPET) 275 

Regional differences are noticed in the NPET values when comparing the obtained results to other 276 

studies. The NPET value was found to be 20.4°C, which is similar to Athens, Greece (Pantavou et al., 277 

2013) classified with its hot dry summers. Although the context of this study is having the same 278 

climatic zone as Szeged, Hungary (Kántor et al., 2016), NPET is almost 2°C higher. This difference 279 

can be related to the lower mean temperature winter readings in Hungary when compared to those 280 

in Melbourne. A wide variation of almost 8°C is identified between NPET in this study and its 281 

equivalent in the tropical rainforest climate of Singapore (Yang, Wong, & Zhang, 2013).  282 

 

Figure 13 Mean air temperature in different OTC studies 
Source:(Climate-Data.org, 2017) 
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It is observed from Fig. 13 and Table 3 that the cities characterised by hot climates are having higher 283 

NPET than those having cold climates. Different NPET values in Guangzhou, China were calculated 284 

in different studies (Liu et al., 2016; Yang, Wong, & Zhang, 2013; Zhao et al., 2016); however, the 285 

different types of their studied urban places could explain this variation.  286 

Another variation was detected during different seasons. NPET during summer was generally found 287 

to be higher than winter in the previous studies, with a difference varying from 0.9°C (Elnabawi et 288 

al., 2016) and 11.8°C (da Silveira Hirashima et al., 2016). In this study, NPET during winter was found 289 

to be 4.4°C higher than during summer. This variation was in line with other studies in Melbourne 290 

(Shooshtarian & Ridley, 2017) and Hungary (Kántor et al., 2016) having the same Cfb climatic 291 

classification that had higher values during autumn than summer of 4.63°C and 2.1°C respectively. 292 

Damascus (Yahia & Johansson, 2013) and Sydney (Spagnolo & de-Dear, 2003) also had the same 293 

pattern of higher NPET winter values of 7.6°C and 5.9°C respectively. In addition to the climate 294 

characteristics of the different regions, Li et al. (2016) and Salata et al. (2016) explained this variation 295 

by the psychological human mechanism of Alliesthesia, tending towards favouring high air 296 

temperature during cold and vice-versa.  297 

Reference Neutral PET Comments and used analysis  
Summer Winter Other Overall 

Melbourne, This study 20 24.4 - 20.4 Linear Regression(LR) MTSV vs PET bin 
(0.5°C) 

Singapore, Singapore 
(Yang, Wong, & Zhang, 
2013) 

   28.1 LR MTSV vs PET bin (0.5°C) 

Singapore, Singapore 
(Yang, Wong, & Jusuf, 
2013) 

   28.7 LR MTSV vs OT 

Belo Horizonte, Brazil 
(da Silveira Hirashima 
et al., 2016) 

27.7 15.9 - - LR MTSV vs PET bin (1°C) 

Damascus, Syria (Yahia 
& Johansson, 2013) 

15.8 23.4 - - PA using PET  

Cairo, Egypt (Elnabawi 
et al., 2016) 

29.5 24.3 - - LR between MTSV and PET) 

Cairo, Egypt 
(Mahmoud, 2011) 

27.4 26.5   Average LR MTSV vs PET for 9 zones 
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Guangzhou, China (Li et 
al., 2016) 

- 15.6 25.6 spring - PET, (LR TSV vs PET) 

Guangzhou, China 
(Zhao et al., 2016) 

- - - 23.9 LR MTSV vs for each 2°C degree SET* 
interval 

Changsha, China (Liu et 
al., 2016) 

17.5 14.9 23.3 autumn 18.6 LR 

Changsha, China (Yang, 
Wong, & Zhang, 2013) 

- -  27.9 LR MTSV vs PET bin (0.5°C) 

Sydney, Australia 
(Spagnolo & de-Dear, 
2003) 

22.9 28.8  24 Probit intersection of trans. curves at 
50% probability PET 

Taiwan (Lin & 
Matzarakis, 2008) 

   27.2 LR MTSV vs PET bin (1°C) 

Szeged, Hungary 
(Kántor, Égerházi, et 
al., 2012; Kántor, 
Unger, et al., 2012) 

   18.5 
(LR) 

LR and QR - MTSV vs PET bin (1°C) 

Szeged, Hungary 
(Kántor et al., 2016) 

16.4 
(LR) 

 17.7 spring 
18.5 autumn 

18.53 
(LR) 

LR and QR - MTSV vs PET bin (1°C) and 
different interpretations for TSV = 0 in 
(PA)  

Melbourne, Australia 
(Shooshtarian & Ridley, 
2017) 

20.47  19.4 spring 
 25.1 autumn 

 LR MTSV vs PET bin 2°C 

Athens, Greece 
(Pantavou et al., 2013) 

   20.3 LR MTSV vs (index) bin (1°C) 

Tel Aviv (Cohen et al., 
2013) 

23.9 22.7   LR MTSV vs (index) bin (1°C) 

Rome, Italy (Salata et 
al., 2016) 

26.9 24.9   LR mean  TSV vs PET bin (1°C) 

Taichung, Taiwan (    Lin, 
2009) 

25.6 23.7   LR MTSV vs PET bin (1°C) 

Table 3 Neutral PET values in different OTC studies 298 
 299 

5.1.2 Neutral PET range (NPETR) 300 

NPETR values for the aggregated data in this study ranged from 17.5°C to 23.2°C. This range is 301 

limited when compared to the corresponding range in Hungary (Kántor et al., 2016). Although both 302 

cities belong to the same climatic temperate zone, a wider range skewed toward cooler 303 

temperature is perceived in Hungary.  This difference could also be explained by the lower mean 304 

temperature readings in Hungary in comparison to Melbourne city. On the other side, the values in 305 

Rome (Salata et al., 2016) were inclined towards higher temperature values, which again could be 306 

related to their higher mean temperature during summer as shown in Fig. 13.  307 

NPETR varied from 17°C to 22.9°C during summer and from 20°C to 28.4°C during winter. Only the 308 

winter range can be compared to both Shanghai (Chen et al., 2015) and Changsha (Liu et al., 2016) 309 
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that were found to have a skewness towards the lower temperature, which could also be related 310 

to their climatic characteristics.  It is noticed that the winter range for Shanghai is wider due the 311 

diversity of climatic conditions during  winter that makes residents more tolerant to the different 312 

climates as explained by Chen et al. (2015). These variations show that the different climatic 313 

conditions affect the users’ thermal requirements. 314 

City Neutral PET Range Comments and used analysis  
Summer Winter Overall 

Melbourne, This study 17 - 22.9 20 - 28.4 17.5 - 23.2 LR MTSV vs PET bin (0.5°C) TSV = ±0.5 
Shanghai, China (Chen et al., 
2015) 

 15 - 29  LR MTSV vs PET bin (1°C) TSV = ±0.5 

Changsha, China (Liu et al., 
2016) 

 15 - 22  LR MTSV vs PET bin (1°C) TSV = ±0.5  

Szeged, Hungary (Kántor, 
Égerházi, et al., 2012; Kántor, 
Unger, et al., 2012) 

  7 - 39 LR MTSV vs PET bin (1°C)  TSV = ±0.5 

Szeged, Hungary (Kántor et 
al., 2016) 

  13.5 - 22.2 LR MTSV vs PET bin (1°C)  TSV = ±0.5 

Rome, Italy (Salata et al., 
2016) 

  21.1 - 29.2 LR MTSV vs PET bin (1°C)  TSV = ±0.5 

Table 4 Neutral PET range values in different OTC studies 315 
 316 

5.1.3 Preferred PET (PPET) 317 

It is observed from the comparison in Table 5 that the PPET value for the aggregated data is almost 318 

similar to Szeged (Kántor et al., 2016) belonging to the same Cfb climatic zone. Other studies had 319 

very close PPET despite their different climate characteristics including Cairo (Elnabawi et al., 2016) 320 

and Guangzhou (Zhao et al., 2016), which belong to hot arid and humid subtropical climatic zones 321 

respectively. The same pattern is repeated for Singapore (Yang, Wong, & Zhang, 2013) and Sydney 322 

(Spagnolo & de-Dear, 2003) having tropical rainforest and humid subtropical climates respectively. 323 

The value of PET during summer (23.2°C) also resembles those calculated in Sydney (23.4°C), 324 

followed by Taichung (24.5°C), Melbourne (24.6 when using LR), and Rome (24.8°C). The difference 325 

between NPET and PPET for aggregated and summer data are -3.2 and 1.2°C respectively. Yang, 326 

Wong, and Jusuf (2013) explained this variance results from the respondents’ preferences to the 327 

word ‘cool’ than ‘warm’ that have an undesirable psychological effect. 328 
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City Neutral PET (°C) Comments and used analysis  
Summer Winter Other Overall 

Melbourne, this study 23.2   19.2 Probability analysis (PA) (1.2° difference from 
NPET) 

Singapore, Singapore 
(Yang, Wong, & Zhang, 
2013) 

   25.2 PA (2.9° difference) 

Singapore, Singapore 
(Yang, Wong, & Jusuf, 
2013) 

   26.5 PA (2.2° difference) 

Belo Horizonte, Brazil 
(da Silveira Hirashima 
et al., 2016) 

14.9 20.9   PA (12.8° (summer) and -5° (winter) difference) 

Cairo, Egypt (Elnabawi 
et al., 2016) 

   24 PA (5.5° difference from NPET) 

Guangzhou, China (Li et 
al., 2016) 

- 18.8 30 spring - Polynomial relation MTSV & PET, (-4.4° (spring) 
-3.2°(winter) difference) 

Guangzhou, China 
(Zhao et al., 2016) 

- - - 23.7 PA (0.2° difference) 

Changsha, China (Yang, 
Wong, & Zhang, 2013) 

- -  22.1 PA (5.8° difference) 

Sydney, Australia 
(Spagnolo & de-Dear, 
2003) 

23.4 30.9  25 PA (-0.5 (summer), -2.1 (winter), -1° (total) 
difference) 

Szeged, Hungary 
(Kántor et al., 2016) 

   18.53  
 

 PA with different interpretations for ‘no 
change’ votes (0.93°, -1.17°,& 1.03° difference) 

Melbourne, Australia 
(Shooshtarian & 
Rajagopalan, 2017) 

15 (PA) 
24.6 
(LR) 

 27.5spring, 
32.1autumn 

 LR MTSV and PET and PA (5.4 (summer), -8.3 
(spring), -7° (autumn) difference)  

Rome, Italy (Salata et 
al., 2016) 

24.8 22.5   PA (2.1° (summer) and 2.4° (winter) difference) 

Taichung, Taiwan (Lin, 
2009) 

24.5 23   PA (1.1° (summer) and 0.7° (winter) difference) 

Table 5 Preferred PET values in different OTC studies 329 
 330 

5.1.4 Thermal acceptability range (TAR) 331 

The values for TAR are compared with other studies as shown in Table 6. When comparing the 332 

results obtained from the 80% acceptability rate with peers, it was found that the other study in 333 

Melbourne (Shooshtarian & Rajagopalan, 2017) had a close range. However, their study had a wider 334 

range that might be explained by the nature of their studied place; a university campus having 335 

necessary activities tolerating less quality than other urban places where optional activities occur. 336 

Athens’ study (Pantavou et al., 2013) also used 80% acceptability rate obtaining a range from 15.4 337 

to 26°C, which indicate that their users are less tolerant to heat regardless their higher monthly 338 

mean temperature ranging from 10°C to 29°C. The range between 20°C and 24.9°C obtained from 339 

the 90% acceptability rate in this study could be also compared with the majority of other OTC 340 
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studies using the same level. The variation between the different studies indicates that the climate 341 

characteristics are influencing the users’ acceptability ranges (Li et al., 2016; Salata et al., 2016). The 342 

most noticeable aspect from the comparison is the narrower range in our study, which confirms 343 

that the users in Melbourne are exposed to limited and moderate climatic conditions. This is clear 344 

from its monthly mean temperature ranging from 9.75 to 20.2°C. A wider range of TAR was found 345 

in Guangzhou (Li et al., 2016) ranging from 18.1 to 31.1°C due to having mean temperature values 346 

ranging from 13 and 29°C. Similar values were found in Cairo (Elnabawi et al., 2016) and Changsha 347 

(Yang, Wong, & Zhang, 2013). Both cities do not belong to the same climatic zones, however, they 348 

have similar monthly mean temperature of 14- 28°C and 16-30°C for Cairo and Changsha 349 

respectively. Yang, Wong, and Jusuf (2013) was the only study using MSTV=±0.85 for calculating 350 

TAR. Their calculated TAR was about 4 to 5°C higher than Melbourne, which can also be related to 351 

their climatic characteristics. 352 

City TAR (°C) Comments and used analysis  
From To 

Melbourne , this study 15 
20  

15.5  

29.9 (80%) 
24.9 (90%) 

25.2 (±0.85) 

90% and 80% acceptability rate, and 
MTSV = ±0.85  

Singapore, Singapore 
(Yang, Wong, & 
Zhang, 2013) 

24 30 88% acceptability rate 

Singapore, Singapore 
(Yang, Wong, & Jusuf, 
2013) 

26.3 31.7 MTSV = ±0.85 

Belo Horizonte, Brazil 
(da Silveira Hirashima 
et al., 2016) 

19 27 Predicted probability model 

Damascus, Syria 
(Yahia & Johansson, 
2013) 

22.8  
21 

28.5 (90%) 
31.3 (80%) 

90% and 80% acceptability rate 

Cairo, Egypt (Elnabawi 
et al., 2016) 

23 32 90% acceptability rate 

Shanghai, China (Chen 
et al., 2015) 

13 
9 

30 autumn 
25 winter 

90% acceptability rate 

Guangzhou, China (Li 
et al., 2016) 

18.1 
16.9 
27.9 

31.1 
22.7 winter 
32.3 spring 

≤32.4 summer 

90% acceptability rate 

Guangzhou, China 
(Zhao et al., 2016) 

28.54 (90%) 31.1 (80%) 90% and 80% acceptability rate 
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Changsha, China 
(Yang, Wong, & 
Zhang, 2013) 

24 31 88% acceptability rate 

Sun moon lake, 
Taiwan (  Lin & 
Matzarakis, 2008) 

21.6 35.6 88% acceptability rate 

Melbourne, Australia 
(Shooshtarian & 
Rajagopalan, 2017) 

14.2 
19.8 (TSV) 

33.1 
24.1 (TSV) 

80% acceptability rate from direct thermal 
acceptance and from TSV 

Athens, Greece 
(Pantavou et al., 
2013) 

15.4 26.5 80% acceptability rate 

Tel Aviv (Cohen et al., 
2013) 

19 
20 

25 winter 
26 summer 

90% acceptability rate 

Taichung, Taiwan (Lin, 
2009) 

21.3 28.5 90% acceptability rate 

Table 6 Thermal Acceptability Range values in different OTC studies 353 
 354 

5.1.5 PET classification for Melbourne 355 

PET classification for Melbourne city in comparison to other studies is illustrated in Table 7. The 356 

table shows that the values of temperature sensation scale for Melbourne are very close to 357 

Western/Middle Europe. However, Melbourne residents are slightly less tolerated to cold 358 

temperature as the cold votes lied between 5 and 10°C while the same votes for Western/Middle 359 

Europe region ranged from 4°C to 8°C. A great difference can also be observed between the scales 360 

in Taiwan, which might be related to their mean monthly temperature ranging from 16 to 29°C. 361 

Taiwan classification showed lower tolerance to cold and vice versa for warm climatic conditions. 362 

The comparison could be explained by the mean monthly temperature for the different regions, 363 

however, some limitation could be perceived due to the variety of methods used in identifying the 364 

PET classification. The method used in this study is similar to its equivalent in Taiwan (Lin & 365 

Matzarakis, 2008). However, Tel Aviv (Cohen et al., 2013), Tianjin (Lai et al., 2014) and Melbourne 366 

(Shooshtarian & Rajagopalan, 2017) used discriminant analysis, linear regression and probit analysis 367 

respectively. Yang, Wong, and Zhang (2013) used the 88% in identifying the neutral range, which is 368 

very close to the 90% used in this study. However, they used the same intervals of 4°C used by   Lin 369 

and Matzarakis (2008) rather than the difference calculated from TAR.  370 
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PET  (°C) range calculated for 
Melbourn
e, this 
study 

Western
/Middle 
Europe 
(Matzar
akis et 
al., 
1999) 

Tel Aviv 
(Cohen 
et al., 
2013) 

Taiwan (  
Lin & 
Matzara
kis, 
2008) 

Tianjin 
(Lai et 
al., 
2014) 

Changsh
a (Liu et 
al., 
2016) 

Changsh
a (Yang, 
Wong, & 
Zhang, 
2013) 

Singapore 
(Yang, 
Wong, & 
Zhang, 
2013) 

Melbour
ne 
(Shoosht
arian & 
Rajagopal
an, 2017) 

Very Cold (-
4) 
 

         

5 4 8 14 -16 -8 NA NA NA 

Cold (-3) 
 

         
10 8 12 18 -11 -1 NA NA 9.4 

Cool (-2) 
 

         
15 13 15 22 -6 7 20 20 13.2 

Slightly Cool 
(-1) 

         
20 18 19 26 11 15 24 24 19.4 

Neutral (0) 
 

         
25 23 26 30 24 22 31 30 22.9 

Slightly 
Warm (1) 

         
30 29 28 34 31 30 35 34 29.2 

Warm (2) 
 

         
35 35 34 38 36 38 39 38 45 

Hot (3) 
 

         
40 41 40 42 46 46 43 42 NA 

Very Hot (4)          
Table 7 classification in different OTC studies 371 
 372 

6 Conclusion 373 

Outdoor places have a significant role in the liveability and sustainability within cities. Outdoor 374 

thermal comfort benchmarks could support the design of comfortable outdoor places as well as 375 

reducing the cooling energy demand for indoor settings. This paper aimed to identify these OTC 376 

benchmarks for the Australian Temperate Oceanic climatic zone. Various methods were used in 377 

identifying the different benchmarks, which obstruct having reasonable comparisons between the 378 

different regions (Cheung & Jim, 2017; Salata et al., 2016). Accordingly, the study reviewed the 379 

commonly used methods to obtain the different benchmarks. To analyse objective measurements 380 

and subjective assessments, meteorological measurements were monitored during summer and 381 

winter simultaneously with 2123 randomly distributed questionnaires covering personal data, 382 

thermal perception, preference, and acceptance. NPET were calculated using a linear regression 383 

between the mean thermal sensation votes (MTSV) for each temperature interval of PET calculated 384 
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based on measured micrometeorological data. When substituting MTSV=0 in the regression, NPET 385 

was found to be 20.4°C. NPET values in Federation square and Burwood campus were of 19.9°C and 386 

20.7°C respectively suggesting that the campus’ users have higher tolerance towards both heat and 387 

cold conditions. This could return to the necessary activities realised in the campus, where less 388 

quality of physical characteristics could be acceptable (Gehl, 2011). NPET was calculated to be also 389 

higher than its equivalent in summer. These seasonal variations were explained by the psychological 390 

human mechanism of Alliesthesia, tending towards favouring high air temperature during cold and 391 

vice-versa (Li et al., 2016; Salata et al., 2016). By solving the equation having MTSV=±0.5, the 392 

calculated NPETR varied from 17.5°C to 23.2°C. PPET is typically obtained from the intersection of 393 

the two probit analysis for cooler and warmer preferences recorded by users. PPET values for the 394 

aggregated and summer data were calculated to be 19.2°C and 23.2°C respectively. Due to its 395 

significance, TAR was obtained using three different methods. The main used method was the 396 

intersected acceptability line of 90% with the quadratic polynomial fitting the acceptability 397 

percentages in 1°C PET intervals. A thermal acceptability rate ranging from 20 and 24.9°C was 398 

attained using this method. Although NPET and PPET were not in the centre of the acceptability 399 

range, Cheung and Jim (2017) explained that by the users’ physical, psychological, and physiological 400 

status   influencing their preferences. The PET classifications were found to range from very cold 401 

(≤5°C), cold (5°C-10°C), cool (10°C-15°C), slightly cool (15°C-20°C), neutral (20°C-25°C), slightly warm 402 

(25°C-30°C), warm (30°C-35°C), hot (35°C-40°C) and very hot (≥40°C). The influence of climatic 403 

conditions, represented by the mean monthly temperature, and the thermal adaptation, were two 404 

main reasons for the variations of results in the different OTC studies. Users residing in hot and 405 

humid regions showed higher tolerance toward high temperature when compared to those in 406 

temperate climatic conditions. Finally, these benchmarks provide a good representation for OTC in 407 
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the temperate oceanic climatic zones in Australia represented by two studied urban places in 408 

Melbourne city. The same method could also be employed internationally to obtain equivalents 409 

benchmarks in the different regions. 410 
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