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Gut microbiome composition is associated
with spatial structuring and social
interactions in semi-feral Welsh Mountain
ponies
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Abstract

Background: Microbiome composition is linked to host functional traits including metabolism and immune function.
Drivers of microbiome composition are increasingly well-characterised; however, evidence of group-level microbiome
convergence is limited and may represent a multi-level trait (i.e. across individuals and groups), whereby heritable
phenotypes are influenced by social interactions. Here, we investigate the influence of spatial structuring and social
interactions on the gut microbiome composition of Welsh mountain ponies.

Results: We show that semi-feral ponies exhibit variation in microbiome composition according to
band (group) membership, in addition to considerable within-individual variation. Spatial structuring was also
identified within bands, suggesting that despite communal living, social behaviours still influence microbiome
composition. Indeed, we show that specific interactions (i.e. mother-offspring and stallion-mare) lead to more similar
microbiomes, further supporting the notion that individuals influence the microbiome composition of one another
and ultimately the group. Foals exhibited different microbiome composition to sub-adults and adults, most
likely related to differences in diet.

Conclusions: We provide novel evidence that microbiome composition is structured at multiple levels within
populations of social mammals and thus may form a unit on which selection can act. High levels of within-individual
variation in microbiome composition, combined with the potential for social interactions to influence microbiome
composition, suggest the direction of microbiome selection may be influenced by the individual members present in
the group. Although the functional implications of this require further research, these results lend support to the idea
that multi-level selection can act on microbiomes.

Keywords: 16S rRNA gene, Amplicon sequencing, Harem, Horizontal transmission, Life stage, Multi-level trait, Spatial
proximity, Social networks, Vertical transmission

Background
All metazoan species harbour complex communities of
microorganisms referred to as host microbiomes. The
host plus its microbiome can be considered as a dis-
tinct biological entity, the holobiont, with a comple-
mentary genome, the hologenome [1]. Although the
concept of a holobiont remains a topic of debate [2, 3],

there are several compelling arguments for why this
approach is biologically relevant. First, microbiome
composition can be heritable such that offspring
microbiomes resemble those of their parents [4]. Sec-
ond, microbiome genomes are much more plastic and
evolvable over short periods of time than host ge-
nomes, providing hosts with phenotypic plasticity that
can respond more rapidly to external and internal
challenges [5]. Third, these diverse communities are
associated with host functional traits, such as immune
function and metabolism, as demonstrated across a
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range of host sites for both mammalian and non-
mammalian taxa [6–8]. For example, microbiome
composition and complexity has been associated
with disease prevalence for many host taxa at the in-
dividual and population level [9–12]. Many host spe-
cies have a considerable 'core' microbiome that is
stable with a body site across individuals, time, and
space [13–17]. This core microbiome is thought to
represent the heritable "house-keeping" component
of the microbiome, while there is also a flexible
component to the microbiome that varies based on
environmental influences [5]. At the same time,
there is significant temporal variation in microbiome
composition between and within individuals of a
given species [18, 19].
Intriguingly, group-level microbiome similarity may

represent an example of a multi-level trait, where herit-
able phenotypes are influenced by association patterns
[20]. In fact, social structure can lead to adaptive and
evolutionary changes within the microbiome and, poten-
tially, the host organism [3]. For example, social pollina-
tors, such as honeybees and bumblebees, share a distinct
community of bacteria not identified in solitary bee spe-
cies [21]. The presence of this distinct microbiome pro-
vides social bee species with protection from parasitic
infection and thus confers fitness benefits not present in
solitary species lacking this shared microbiome [22]. In
communities, interaction patterns defined by social net-
works can be used to characterise the nature of interac-
tions between individuals. These networks have long
been suggested to impact on transmission dynamics of
disease in humans [23, 24] and animals [25, 26], but so-
cial interactions should also be associated with the op-
portunity to share microbiomes and thus may confer
fitness benefits [27].
Spatial proximity between individuals has been

shown to facilitate microbiome exchange even when
social behaviours are minimal. For example, gut
microbiomes of solitary North American red squirrels
(Tamiasciurus hudsonicus; [28]) and mouthpart
microbiomes of Phofung river frog tadpoles (Amietia
hymenopus; [29]) are spatially structured. Similarly,
gopher tortoise (Gopherus polyphemus) gut micro-
biome composition is determined by the geographic
proximity of burrows, as well as home ranges and
kinship [30]. If spatial proximity promotes micro-
biome similarity, then social structuring determined
by patterns of interaction, association and spatial
proximity between individuals provides an ideal
mechanism for driving subpopulation level patterns in
host microbiome communities [31]. The role of social
interactions in transmitting pathogens and parasites
between individuals is well known; however, such be-
haviours can also alter and influence the composition

of the microbiome [27]. For example, yellow baboon
(Papio cynocephalus) group membership, social net-
works, and grooming interactions predict the taxo-
nomic structure of the gut microbiome even after
controlling for the effects of diet, kinship and shared
environments [32, 33]. Similarly, gut microbiomes of
chimpanzees (Pan troglodytes) are associated with
interaction frequency [34] and human milk micro-
biomes are influenced by the size of the social net-
work and physical/proximal contact with an infant
[35]. Despite the growing interest in the role of social
interactions in determining gut microbiome compos-
ition [34, 36], the majority of studies focus on
primates.
Equids provide an interesting test case for micro-

biome dynamics at the subpopulation level. As hind-
gut fermenters, the Equidae are particularly reliant
on microbial digestion for energy and nutrition [5,
37]. Free-ranging horses (Equus ferus caballus) form
harem bands (i.e. family groups) composed of (usu-
ally) one mature stallion, multiple mares, and their
immature offspring. Found in Snowdonia National
Park, the semi-feral Carneddau pony is the closest to
a wild unmanaged pony population in the UK [38,
39]. They are direct descendants of the wild Welsh
mountain pony and are a genetically unique and
distinct population, rendering them a high conserva-
tion priority [38]. Over 300 individuals exist within
smaller scattered bands that form complex social
networks [38–40]. Individuals within bands engage
in varying levels of affiliative behaviour with conspe-
cifics dependant on various factors such as kinship,
age, social status, and season. Males are socially cen-
tral (i.e. well connected), while females are more
peripheral and tend to have weak bonds with other
mares [40]. Although female relationship strength
varies between seasons, their position within the so-
cial network is stable across years [40].
Here, we determine how the gut microbiome of

semi-feral ponies from Snowdonia National Park is in-
fluenced by spatial structuring, social interactions, and
kin relationships. Using social network analysis com-
bined with 16S rRNA gene amplicon sequencing of fae-
cal samples, we test the following hypotheses: (i) there
will be within-individual variation in microbiome com-
position, but this will not be as large as between-individ-
ual variation; (ii) mares will have more similar
microbiomes to band stallions than to other mares in
their band; (iii) mares will have more similar micro-
biomes to their own offspring than to other juveniles in
the band; (iv) band, life stage, and sex will influence
microbiome composition; (v) band-level variation in
microbiome composition will be driven by spatial struc-
turing (i.e. social networks).
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Methods
Study animals
Carneddau Welsh mountain ponies are located in the
Carneddau mountain range, Snowdonia National Park,
North Wales (53.22°N, 3.95°W) over an area of approxi-
mately 35–40 km2 of commons land between 287 and
610 m above sea level. The land is used primarily for
sheep farming and recreational hiking and thus ponies
are habituated to human presence but not to physical
contact. The population is essentially unmanaged aside
from an annual roundup event each November, during
which individuals are herded onto adjacent farmland for
1 to 2 days for population monitoring and management
purposes. Individuals can be identified using their
age-sex classification and a photographic database that
depicts coat colour, face and leg markings, and ear tags/
notches. For this study, we collected data from 30 indi-
viduals across three focal bands (Aber, Marsh, and Val-
ley) that have been the subjects of long-term behavioural
and demographic data collection [39, 40] (Table 1).

Distribution mapping and social network analysis
Demography and proximity data were collected over ten
sampling days between the 21 August and 14 November
2014 (the same time period when faecal sampling also
occurred). All ponies included in the spatial analyses
were sighted a minimum of 5 days, sampled opportunis-
tically within the study area. Upon encountering a
group, we recorded time, pony IDs, and GPS location
along with an approximate spatial network of the ponies.
We plotted the geographic distribution of the bands over
the study period using the ggmap package [41] in RStu-
dio (v1.0.153) [42] for R (v3.4.1) [43].
For the social network analysis, we approximated the

distance in metres between individuals. All individuals
less than ~ 100 m apart and moving as a cohesive unit
were considered to be associated with each other [40].
Association matrices were constructed for each day of
sampling; individuals that were close together (< 15 m)
or interacted were given a score of 2, other individuals
(i.e. those 15–100 m apart) were given a score of 1 and
more than 100 m apart scored 0. Using these association
scores, an overall weighted association index for each
dyad was calculated using a modified version of the sim-
ple ratio index [44], where edge weight was calculated
as:

EAB ¼ xSUM
2xCOUNT þ yAB þ yA þ yB

where xSUM is the sum of associations between indi-
viduals A and B, xCOUNT is the number of times A and
B have been sighted together (where xCOUNT multi-
plied by two is the maximum possible association
score), yAB is the number of times both A and B were
observed but not together, yA is the number of times
only individual A was seen, and yB is the number of
times only B was seen.

Sample collection and 16S rRNA gene amplicon
sequencing
For each band, faecal samples were collected from the
stallion plus 4–7 mares and 2–5 juveniles (Table 1 and
Additional file 1: Table S1) between the 21st August and
11th November 2014, prior to the annual round-up. Fae-
cal samples were collected using sterile gloves. Most
samples were collected within 10 minutes of defecation,
but on rare occasions, this took up to a maximum of
1 hour when multiple individuals defecated within a
short period. Several samples were collected from differ-
ent parts of the dung pile, but no faeces in contact with
the ground were collected (thus, there was minimal risk
of environmental contamination). The samples were
mixed thoroughly by hand in a sterile bag and a sub-
sample retained for analysis. Three to five samples were
collected per individual across the four study months
(Additional file 1: Table S1). Samples were stored and
transported in cool bags to the University of Manchester
the same day and frozen at − 80 °C prior to DNA
extraction.
DNA was extracted using the QIAamp DNA Stool

Mini Kit (Qiagen, UK) following the manufacturer’s
protocol with an additional incubation time of 30 min at
95 °C. A blank extraction was also included to act as a
negative control for sequencing. DNA was amplified for
the 16S rRNA gene (v4 region) using dual-indexed for-
ward and reverse primers according to Kozich et al. [45]
and Griffiths et al. [29]. Briefly, PCRs were run in dupli-
cate using Solis BioDyne 5x HOT FIREPol® Blend Mas-
ter Mix, 2 μM primers and 1 μl of sample DNA.
Thermocycling conditions were as follows: 95 °C for
15 min; 28 cycles of (95 °C for 20 s, 50 °C for 60 s, 72 °C
for 60 s), and a final extension at 72 °C for 10 min. PCR
replicates were checked on an Agilent 2200 TapeStation,
combined into a single PCR plate and cleaned using
HighPrep™ PCR clean up beads (MagBio, USA) accord-
ing to the manufacturers’ instructions. Products were
quality checked using an Agilent 2200 TapeStation and
quantified using a Qubit™ 3.0 Fluorometer according to
the manufacturers’ protocol. Samples were pooled
according to concentrations in order to minimise

Table 1 Demographic data for each band used in this study
Band Adults Sub-adults Foals Total

individualsStallion Mares Female Male Female Male

Aber 1 6 0 1 1 0 9

Marsh 1 7 1 0 2 2 13

Valley 1 4 1 1 0 1 8
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sequencing bias. Paired-end (2 × 250 bp) amplicon se-
quencing was conducted on an Illumina MiSeq platform
with negative and positive (mock community) controls.

Pre-processing of microbiome data
We conducted all analyses in RStudio (v1.0.153) [42] for
R (v3.4.1) [43]. A total of 3,208,334 raw sequence reads
from 112 samples were generated during sequencing.
We conducted sequence processing in dada2 v1.5.0 [46]
using the default pipeline (see Additional files 1, 2, 3,
and 4). Modal contig length was 253 bp once paired-end
reads were merged. We removed sequence variants
(SVs) with length > 260 bp (4 SVs; 0.086% of total se-
quences) along with chimeras and two SVs found in the
negative controls, leaving an average of 22,294 reads per
sample (range 8071–42,869). We assigned taxonomy
using the SILVA v128 database [47, 48]. To provide
greater taxonomic detail about unidentified SVs and to
stop the removal of these during analyses that agglomer-
ate to a given taxonomic level, we fully annotated the
taxonomy table to species level using higher levels as-
signments (e.g. SV1 was named “Family_Prevotellaceae”
at the genus and species levels). We exported the final
SV table, taxonomy table, and sample metadata to the
phyloseq package [49] and converted the data to relative
abundance for further analyses.

Microbiome variation according to ID
We produced an NMDS plot in phyloseq using the
Bray-Curtis distance matrix to visualise the variation
within and between individuals according to community
composition. To determine the microbiome variation at-
tributable to individual variation (ID), we conducted a
permutational ANOVA (PERMANOVA; adonis) in the
vegan package [50].
We calculated the core microbiome of individual sam-

ples using a detection threshold of 0.001% and a preva-
lence threshold of 99.9% (i.e. a given SV must be present
in 99.9% of individuals with a relative abundance of at
least 0.001%) in the microbiome package [51]. We used
an NMDS plot to visualise the variation in core micro-
biome according to ID and analysed the data using an
adonis analysis (as above).
To determine whether there was greater microbiome

variation within an individual than between individuals,
we calculated Jensen-Shannon Divergence (JSD) values in
the phyloseq package [49]. JSD values give a measure of
similarity between all individual samples (i.e. by calculat-
ing the distance between samples) either from the same
individual (i.e. within-individual variation) or from differ-
ent individuals in the same band (i.e. between-individual
variation). Smaller JSD values indicate more similar mi-
crobial communities and conversely, larger values indicate
a less similar community. We used a generalised linear

mixed model with ID and band as random factors to com-
pare JSD distances within individuals to JSD distances be-
tween individuals and visualised the data using a bar
chart.

Microbiome variation according to band, life stage, and
sex
We categorised individuals under the age of 1 year as
foals and for older individuals, females < 2 years old and
males < 3 years old as sub-adults (females are usually re-
productively mature from 2 years onwards but males
take longer to mature, disperse, and attract mares). We
classified all others as adults, with the exception of one
female who still displayed sub-adult behaviours, did not
disperse from her natal band, and had not foaled by age
3, and so was considered a sub-adult. We visualised the
taxonomic composition (at the class level) of the com-
munities according to band and life stage using stacked
plots in phyloseq [49] and ggplot2 [52].
To obtain the “average microbiome” for an individual,

we merged raw sample data within an individual using
the merge_samples function in phyloseq (using “fun =
mean”) [49]. To determine whether there was greater
microbiome variation between bands than within bands,
we calculated Jensen-Shannon Divergence (JSD) values
between individuals using data from their average micro-
biome, as described above. We used a one-way ANOVA
with Tukey’s post hoc analysis to compare JSD distances
within and between bands and visualised the data using
a bar chart.
We produced NMDS plots in phyloseq using the

Bray-Curtis distance matrix to visualise differences in
beta diversity according to band and life stage. We used
an adonis analysis to test for significant effects of band,
life stage, and sex on total microbiome community com-
position. We then calculated the core microbiome as de-
scribed above and repeated the adonis analysis for this
core community. Additionally, we agglomerated the core
taxa to genus level and visualised the core microbiome
as a heat map to give a representation of the bacterial
taxa present.
To identify differences in microbiome composition be-

tween foals (which at approximately 5–8 months old,
were most likely still nursing) and sub-adults (which
were most likely fully weaned), we conducted an indica-
tor analysis using the multipatt function in the indicspe-
cies package [53].

Effects of spatial structuring and social interactions on
the microbiome
We correlated the social network association matrix with
the NMDS scores of each individuals’ average microbiome
using Kendall’s correlation coefficient for non-parametric
data with ties. Networks were constructed and visualised
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using the igraph package [54] with edges weighted by ei-
ther microbiome similarity (the inverse of the NMDS dis-
tance) or the association index as described above. As the
microbiome distance matrix is fully connected, we delated
edges with a similarity less than the mean value for the
population. We calculated JSD values between merged
samples in the phyloseq package [49] and used general lin-
ear mixed models (with ID and band as random factors)
to identify whether mares had more similar microbiomes
to other mares within the same band or to the band stal-
lion and whether mares had more similar microbiomes to
their own offspring than to other mares’ offspring within
the same band. We visualised these using bar charts.

Results
Bacteria primarily belonged to the Bacteroidia, Clos-
tridia, Spirochaetes, and Fibrobacteria classes (Bacteroi-
detes, Fibrobacteres, Firmicutes, and Spirochaetae phyla)
(Additional file 1: Figure S1 and S2). The dominant
families represented in the core microbiome were anaer-
obic bacteria associated with grass-eating mammals, in-
cluding Prevotellaceae, Ruminococcaceae, Rikenellaceae,
Lachnospiraceae, Spirochaetaceae, Fibrobacteraceae, Chris-
tensenallaceae, Erysipelotrichaceae, Acidaminococcaceae,
and various groups of Bacteroidales.
An adonis analysis showed pony ID had a significant ef-

fect on total microbiome composition (p < 0.001; Table 2),
with 52.6% of the variation in the microbiome attributable
to individual variation (Fig. 1). We obtained similar results
for the adonis with the core microbiome (p < 0.001;
Table 2), with 49.6% of the variation explained by ID.
Despite the large amount of microbiome variation ex-
plained by ID, within-individual samples had significantly
lower JSD values (mean of 0.255 ± 0.006) than between-in-
dividual samples (mean of 0.347 ± 0.001) (χ2 = 391.62, df =
1, p < 0.001) (Fig. 2a). That is, there is greater variation be-
tween individuals (average of 35%) than within individuals
(average of 26%).
There were significant effects of band and life stage on

total microbiome composition, but not sex (Table 2,
Fig. 3a and b). In both cases, the proportion of the

variation in the microbiome for these significant factors
(14.0% for band and 10.4% for life stage) was much
lower than for pony ID alone (52.6%). The results of the
adonis analysis for the core microbiome were similar to
those for the total microbiome, where band and life
stage both significantly affected core microbiome com-
position, but sex did not (Table 2). Band and life stage
account for a slightly larger proportion of the variation
in the core microbiome (19.4% and 16.6%, respectively)
than the total microbiome.
Consistent with the spatial distribution of the bands

(Fig. 4a), microbiome composition of individuals in Val-
ley differed considerably to those in Aber and Marsh,
which are more similar to each other but still display
some degree of separation (Fig. 3a). There was a signifi-
cant difference in JSD metric values within and between
the bands (F5,424 = 6.557, p < 0.001), and the Tukey post-
hoc indicated that within-band variation for Valley was
significantly lower than the variation within the other
two bands, and significantly lower than between-band
variation for all three combinations (Fig. 2b). In addition
to this band-level differentiation of microbiomes, there
was a significant correlation between social network tie
weight (i.e. spatial distribution) and microbiome com-
position (τ = − 0.11, p < 0.001) within bands, such that
individuals that associate more have more similar micro-
biomes (Fig. 4b, c).
The microbiome of foals was considerably different

from that of sub-adults and adults, whereas these latter
two groups were very similar to one another (Fig. 3b
and Additional file 1: Figure S2). An indicator analysis
identified six bacterial genera (out of a possible 188) that
were significantly associated (p < 0.05) with sub-adults
compared with foals; Prevotellaceae Ga6A1 group, Deni-
trobacterium, Oscillibacter, Anaerovibrio, Famil-
y_CR-115, and Anaerostipes. There were no genera
significantly (i.e. uniquely) associated with foals com-
pared with sub-adults.
Maternal relationship had a significant effect on micro-

biome similarity (χ2 = 8.425, df = 2, p = 0.015; Fig. 2c).
Pairwise comparisons showed significant differences in

Table 2 Statistical outputs for adonis analyses of microbiome composition
Microbiome component Adonis model Term F value df R2 value % variation attributed to term p value

Total ID ID 3.021 29. 79 0.526 52.6 0.001

Total Band + life stage + sex Band 2.289 2.24 0.140 14.0 0.001

Total Band + life stage + sex Life stage 1.708 2.24 0.104 10.4 0.011

Total Band + life stage + sex Sex 0.725 1.24 0.022 2.2 0.856

Core ID ID 3.176 29. 79 0.496 49.6 0.001

Core Band + life stage + sex Band 3.697 2.24 0.194 19.4 0.001

Core Band + life stage + sex Life stage 3.170 2.24 0.166 16.6 0.005

Core Band + life stage + sex Sex 0.345 1.24 0.009 0.9 0.925
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Fig. 1 NMDS plot of the total microbiome of individual ponies in the study. Larger filled circles indicate the centroid for each individual

a

c

b

d

Fig. 2 Average (± SE) Jensen-Shannon divergence metrics for pony microbiome composition a within and between individuals; b within and
between bands; c between mothers and their offspring, as well as between juveniles and non-maternal mares and foal-less mares; and d between the
band stallion and band mares, and between all mares within a band. Significantly different results are indicated by *
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microbiome divergence between mother-offspring rela-
tionships and non-maternal mares and juveniles (foals and
sub-adults combined) (p = 0.017). Microbiome diver-
gences between foal-less mares and juveniles were not sig-
nificantly different to those of mother-offspring
relationships (p = 0.313) or non-maternal mares and juve-
niles (p = 1.000). Mares had significantly more similar

microbiomes to the band stallion than the other mares in
their band (χ2 = 4.206, df = 1, p = 0.040; Fig. 2d).

Discussion
The effects of population structuring, in general, and so-
cial interactions, in particular, on microbiome compos-
ition remains poorly understood; challenges often arise

Fig. 3 NMDS plots of the total microbiome of ponies plotted according to band membership (a) and life stage (b). Larger filled circles indicate
group centroids

a b c

Fig. 4 a Map showing the spatial distribution of pony bands encountered during sampling. b Social network of the sampled individuals
with edge width proportional to tie strength between individuals and c network visualisation of microbiome distance between individuals
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in the separation of direct microbiota transmission via
social interactions from effects of communal living such
as a shared diet or physical environment [27, 32]. Here,
we show that despite large variation between individuals
in microbiome composition, spatial structuring, social
relationships (i.e. mother-offspring and stallion-mare),
and network ties account for microbiome similarities.
The main predictor of microbiome composition is indi-
vidual identity (pony ID), accounting for around 50% of
microbiome variation, with ~26% variation across mul-
tiple samples collected for each individual and ~34%
variation between individuals. Significant inter-individual
variation in microbiome composition has been shown in
other species [18, 19, 28, 55–57]. Given that such a large
component of microbiome variation is due to individual
ID, which individuals are present in the band (both
mares and stallions) may well influence the composition
of the total group microbiome.
Band membership also predicted microbiome compos-

ition, with ~ 14% of the total microbiome variation and
~ 19% of the core microbiome variation explained by
this factor. That the microbiome composition of ponies
belonging to Aber and Marsh are more similar to one
another than Valley may be driven by both spatial struc-
turing and diet, given that the home ranges of these
bands overlap. The home ranges of Aber and Marsh are
also somewhat different to that of Valley in terms of ele-
vation, slope, and soil moisture; these are more
low-lying and marshier in comparison to the steeper,
more well-drained, and exposed slopes that charac-
terised the home range of Valley during the study period.
The type and quality of grasses or forage across the
study area (approximately 5 km2) also vary according to
habitat type and thus, diet quality may be driving the ob-
served differences in bands. In addition, variation in
browsing behaviour may be driving differences in micro-
biome composition between individuals. Dietary com-
position has been shown to affect the microbiome of
vertebrates, with consequences for microbiome function
and fitness traits such as reproductive success [37, 56,
58–60]. The microbiome of Equidae is highly susceptible
to changes in diet with implications for nutrient assimi-
lation [37] and diet can have a significant effect on
population performance [61]. Microbes acquired from
the environment (horizontal transfer) are likely to have
greater genomic variation than vertically transmitted
symbionts and thus may provide greater variation for
microbiome-derived functional advantages [5]. Thus,
spatial variation in microbial communities between sub-
populations may have implications for fitness traits [5].
Aber and Marsh also showed higher within-band vari-
ation, comparable in magnitude to between-band vari-
ation, whereas Valley had significantly lower microbiome
variation within the band. This may reflect the spatial

and environmental differences experienced by members
of Valley compared with Aber and Marsh, as well as
fewer interactions between Valley and the other two
bands. This lower microbiome variation across the
group as a whole may have implications for group-level
fitness. More work is required to understand how
group-level microbiome variation relates to population
resilience [27].
Although it may be difficult to dissociate between the

influence of shared living and diet on microbiome com-
position between bands, we also identified spatial struc-
turing of microbiome composition within bands,
suggesting that despite communal living, social behav-
iours still influence microbiome composition. Social be-
haviours, such as grooming, that occur between
members of the same band provide an opportunity for
individuals to share microbial communities. Moreover,
close spatial proximity also promotes the sharing of gut
microbiomes through contact with recently deposited
faeces, including potential coprophagy [62]. Thus,
microbiomes of individuals with close social ties are
more likely to converge and, indeed, our data show that
specific interactions (i.e. mother-offspring and
stallion-mare) lead to more similar microbiomes. This
further supports the notion that individuals influence
the microbiome composition of one another and ultim-
ately the group. Affiliative behaviours occur more fre-
quently between mothers and their offspring than
between foals and non-maternal mares, but vertical
transmission of microbiomes between mothers and their
foals may also derive from birth and during nursing [35,
63, 64]. Ren et al. [28] also found that microbiomes of
mothers and offspring were more similar to one another
than between unrelated individuals in red squirrels.
Interestingly, foal-less mares had an intermediate micro-
biome similarity to foals compared with mothers and
non-maternal mares, suggesting greater levels of affilia-
tive behaviour or social interaction between foals and
mares that did not have offspring in the band. Stallions
occupy a central social role in the group, unlike less
well-connected mares [40], which is reflected in the
greater microbiome similarity between stallions and
mares (than between mares) as demonstrated here. It is
not clear whether the convergence of microbiomes is
driven by the stallion or the mare, but it may well be
both. This may result from affiliative behaviours between
stallions and mares (including mating) but may also re-
flect the behaviour of stallions to smell, and thus come
into contact with, mares’ faeces. Given that juveniles are
prone to dispersal [39, 40] and that social structures
tend to break up and reform after significant events such
as the annual round-up (Lea and Shultz, unpublished
data), it would be interesting to follow changes in indi-
viduals’ microbiomes over such events to determine how
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quickly these converge and whether microbial signatures
of the original band remain. It would also be of interest
to compare the microbiome composition of males in
bachelor groups to those of stallions to further deter-
mine the propensity for mares to alter stallion
microbiomes.
Although we can estimate similarity between micro-

bial communities across bands and individuals, we do
not yet know how this relates to functional variation
or fitness proxies at the subpopulation (i.e. band) level.
Genetic determinants of microbiome composition,
and thus the heritability of microbiomes, have been
demonstrated across a range of host taxa [4, 29, 30,
57]. That band-level differences in microbiome com-
position were also significant in the core microbiome
further supports the notion that group-level selection
may occur within host microbiomes. However, disper-
sal of individuals between bands means that subpopu-
lations are not genetically isolated. To further
understand the potential for microbiome to act as a
unit that selection can act on, it would be valuable to
quantify the relative contributions of genetic, environ-
mental, and social factors that determine microbiome
composition within this system (and across a range of
hosts) and to link these to fitness outcomes such as
reproductive success and disease susceptibility.
We also demonstrate differences between life stages in

microbiome composition of Carneddau ponies; foals had
considerably different microbiome composition to both
sub-adults and adults. Similar changes in microbiome
composition across host development have been seen in
other host organisms [10, 29, 65]. For mammals, this is
particularly evident for nursing young compared with
weaned individuals [66–68], and this most likely explains
the results we see in our data. There was an absence of
unique genera in the microbiome of foals, indicating the
transition to a grass-based diet leads to the assimilation
of additional bacterial groups into the gut microbiome,
potentially through environmental transmission. Al-
though gut microbiome composition has been shown to
differ between sexes [69], we found that microbiomes
were not significantly different between males and fe-
males for this population of semi-feral ponies. However,
this may reflect a low number of males in the analysis. It
would be of interest to follow changes in male micro-
biome across dispersion and particularly shifts in com-
position as stallions form new family groups and their
microbiome is influenced by, and influences, new mares
joining their band.

Conclusions
Here, we show that semi-feral ponies exhibit variation in
microbiome composition between bands, which may relate
to social, dietary, and environmental factors. In addition,

due to the high level of within-individual variation, the dir-
ection of group selection may be influenced by the individ-
ual members present in the band. Spatial structuring was
also identified within bands, suggesting that despite com-
munal living, social behaviours still influence microbiome
composition. We identify two such interactions;
mother-offspring and stallion-mare, that lead to more simi-
lar microbiomes, indicating that individuals influence the
microbiome composition of one another and ultimately the
group. Thus, we provide novel evidence that microbiome
composition is structured at multiple levels within popula-
tions. The functional implications of this require further
research.
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